[image: image3.wmf]OpenCores
SPI Master Core Specification
3/15/2004

[image: image3.wmf]SPI Master Core

Specification

Author: Simon Srot

simons@opencores.org

Rev. 0.6
March 15, 2004
Revision History

	Rev.
	Date
	Author
	Description

	0.1
	June 13, 2002
	Simon Srot
	First Draft

	0.2
	July 12, 2002
	Simon Srot
	Document is lectured.

	0.3
	December 28, 2002
	Simon Srot
	Support for 64 bit character len added.

	0.4
	March 26, 2003
	Simon Srot
	Automatic slave select signal generation added.

	0.5
	April 15 2003
	Simon Srot
	Support for 128 bit character len added.

	0.6
	March 15, 2004
	Simon Srot
	Bit fields in CTRL changed.

Contents

iiContents

1Introduction

2IO ports

22.1 WISHBONE interface signals

22.2 SPI external connections

3Registers

33.1 Core Registers list

33.2 Data receive register low/high[RxL/RxH]

43.3 Data transmit register low/high[TxL/TxH]

43.4 Control and status register [CTRL]

53.5 Divider register [DIVIDER]

53.6 Slave select register [SS]

7Operation

74.1 WISHBONE interface

74.2 Serial interface

9Architecture

10Core configuration

1

Introduction

This document provides specifications for the SPI (Serial Peripheral Interface) Master core. Synchronous serial interfaces are widely used to provide economical board-level interfaces between different devices such as microcontrollers, DACs, ADCs and other. Although there is no single standard for a synchronous serial bus, there are industry-wide accepted guidelines based on two most popular implementations:

· SPI (a trademark of Motorola Semiconductor)

· Microwire/Plus (a trademark of National Semiconductor)

Many IC manufacturers produce components that are compatible with SPI and Microwire/Plus.

The SPI Master core is compatible with both above-mentioned protocols as master with some additional functionality. At the hosts side, the core acts like a WISHBONE compliant slave device.

Features:

· Full duplex synchronous serial data transfer

· Variable length of transfer word up to 128 bits

· MSB or LSB first data transfer

· Rx and Tx on both rising or falling edge of serial clock independently

· 8 slave select lines

· Fully static synchronous design with one clock domain

· Technology independent Verilog

· Fully synthesizable

2

IO ports

2.1 WISHBONE interface signals

	Port
	Width
	Direction
	Description

	wb_clk_i
	1
	Input
	Master clock

	wb_rst_i
	1
	Input
	Synchronous reset, active high

	wb_adr_i
	5
	Input
	Lower address bits

	wb_dat_i
	32
	Input
	Data towards the core

	wb_dat_o
	32
	Output
	Data from the core

	wb_sel_i
	4
	Input
	Byte select signals

	wb_we_i
	1
	Input
	Write enable input

	wb_stb_i
	1
	Input
	Strobe signal/Core select input

	wb_cyc_i
	1
	Input
	Valid bus cycle input

	wb_ack_o
	1
	Output
	Bus cycle acknowledge output

	wb_err_o
	1
	Output
	Bus cycle error output

	wb_int_o
	1
	Output
	Interrupt signal output

Table 1: Wishbone interface signals

All output WISHBONE signals are registered and driven on the rising edge of wb_clk_i. All input WISHBONE signals are latched on the rising edge of wb_clk_i.

2.2 SPI external connections

	Port
	Width
	Direction
	Description

	/ss_pad_o
	8
	Output
	Slave select output signals

	sclk_pad_o
	1
	Output
	Serial clock output

	mosi_pad_o
	1
	Output
	Master out slave in data signal output

	miso_pad_i
	1
	Input
	Master in slave out data signal input

Table 2: SPI external connections
3

Registers

3.1 Core Registers list

	Name
	Address
	Width
	Access
	Description

	Rx0
	0x00
	32
	R
	Data receive register 0

	Rx1
	0x04
	32
	R
	Data receive register 1

	Rx2
	0x08
	32
	R
	Data receive register 2

	Rx3
	0x0c
	32
	R
	Data receive register 3

	Tx0
	0x00
	32
	R/W
	Data transmit register 0

	Tx1
	0x04
	32
	R/W
	Data transmit register 1

	Tx2
	0x08
	32
	R/W
	Data transmit register 2

	Tx3
	0x0c
	32
	R/W
	Data transmit register 3

	CTRL
	0x10
	32
	R/W
	Control and status register

	DIVIDER
	0x14
	32
	R/W
	Clock divider register

	SS
	0x18
	32
	R/W
	Slave select register

Table 3: List of core registers

All registers are 32-bit wide and accessible only with 32 bits (all wb_sel_i signals must be active).

3.2 Data receive registers[RxX]

	Bit #
	31:0

	Access
	R

	Name
	Rx

Table 4: Data Receive register

Reset Value: 0x00000000

RxX
The Data Receive registers hold the value of received data of the last executed transfer. Valid bits depend on the character length field in the CTRL register (i.e. if CTRL[9:3] is set to 0x08, bit RxL[7:0] holds the received data). If character length is less or equal to 32 bits, Rx1,Rx2 and Rx3 are not used, if character length is less than 64 bits, Rx2 and Rx3 are not used and so on.
NOTE: The Data Received registers are read-only registers. A Write to these registers will actually modify the Transmit registers because those registers share the same FFs.

3.3 Data transmit register [TxX]

	Bit #
	31:0

	Access
	R/W

	Name
	Tx

Table 5: Data Transmit register

Reset Value: 0x00000000

TxX
The Data Receive registers hold the data to be transmitted in the next transfer. Valid bits depend on the character length field in the CTRL register (i.e. if CTRL[9:3] is set to 0x08, the bit Tx0[7:0] will be transmitted in next transfer). If character length is less or equal to 32 bits, Tx1, Tx2 and Tx3 are not used, if character len is less than 64 bits, Tx2 and Tx3 are not used and so on.
3.4 Control and status register [CTRL]

	Bit #
	31:14
	13
	12
	11
	10
	9
	8
	7
	6:0

	Access
	R
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R
	R/W

	Name
	Reserved
	ASS
	IE
	LSB
	Tx_NEG
	Rx_NEG
	GO_BSY
	Reserved
	CHAR_LEN

Table 6: Control and Status register

Reset Value: 0x00000000

ASS
If this bit is set, ss_pad_o signals are generated automatically. This means that slave select signal, which is selected in SS register is asserted by the SPI controller, when transfer is started by setting CTRL[GO_BSY] and is de-asserted after transfer is finished. If this bit is cleared, slave select signals are asserted and de-aserted by writing and clearing bits in SS register.

IE

If this bit is set, the interrupt output is set active after a transfer is finished. The Interrupt signal is deasserted after a Read or Write to any register.

LSB

If this bit is set, the LSB is sent first on the line (bit TxL[0]), and the first bit received from the line will be put in the LSB position in the Rx register (bit RxL[0]). If this bit is cleared, the MSB is transmitted/received first (which bit in TxX/RxX register that is depends on the CHAR_LEN field in the CTRL register).

Tx_NEG

If this bit is set, the mosi_pad_o signal is changed on the falling edge of a sclk_pad_o clock signal, or otherwise the mosi_pad_o signal is changed on the rising edge of sclk_pad_o.

Rx_NEG

If this bit is set, the miso_pad_i signal is latched on the falling edge of a sclk_pad_o clock signal, or otherwise the miso_pad_i signal is latched on the rising edge of sclk_pad_o.

GO_BSY

Writing 1 to this bit starts the transfer. This bit remains set during the transfer and is automatically cleared after the transfer finished. Writing 0 to this bit has no effect.

NOTE: All registers, including the CTRL register, should be set before writing 1 to the GO_BSY bit in the CTRL register. The configuration in the CTRL register must be changed with the GO_BSY bit cleared, i.e. two Writes to the CTRL register must be executed when changing the configuration and performing the next transfer, firstly with the GO_BSY bit cleared and secondly with GO_BSY bit set to start the transfer.

When a transfer is in progress, writing to any register of the SPI Master core has no effect.

CHAR_LEN

This field specifies how many bits are transmitted in one transfer. Up to 64 bits can be transmitted.

CHAR_LEN = 0x01 … 1 bit

CHAR_LEN = 0x02 … 2 bits

…

CHAR_LEN = 0x7f … 127 bits

CHAR_LEN = 0x00 … 128 bits

3.5 Divider register [DIVIDER]

	Bit #
	31:16
	15:0

	Access
	R
	R/W

	Name
	Reserved
	DIVIDER

Table 7: Divider register

Reset Value: 0x0000ffff

DIVIDER

The value in this field is the frequency divider of the system clock wb_clk_i to generate the serial clock on the output sclk_pad_o. The desired frequency is obtained according to the following equation:

[image: image1.wmf](

)

2

1

_

*

+

=

DIVIDER

f

f

clk

wb

sclk

3.6 Slave select register [SS]

	Bit #
	31:8
	7:0

	Access
	R
	R/W

	Name
	Reserved
	SS

Table 8: Slave Select register

Reset Value: 0x00000000

SS

If CTRL[ASS] bit is cleared, writing 1 to any bit location of this field sets the proper ss_pad_o line to an active state and writing 0 sets the line back to inactive state. If CTRL[ASS] bit is set, writing 1 to any bit location of this field will select appropriate ss_pad_o line to be automatically driven to active state for the duration of the transfer, and will be driven to inactive state for the rest of the time.
4

Operation

[image: image4.png]cOMPATIELE

This core is an SPI and Microwire/Plus compliant synchronous serial controller. At the host side, it is controlled via registers accessible through a WISHBONE rev. B1 interface.

4.1 WISHBONE interface

The SPI core has five 32-bit registers through the WISHBONE rev. B1 compatible interface. All accesses to SPI registers must be 32-bit (wb_sel[3:0] = 0xf). Please refer to the WISHBONE specification at

http://www.opencores.org/wishbone/specs/wbspec_b1.pdf
4.2 Serial interface

The serial interface consists of slave select lines, serial clock lines, as well as input and output data lines. All transfers are full duplex transfers of a programmable number of bits per transfer (up to 64 bits).

Compared to the SPI/Microwire protocol, this core has some additional functionality. It can drive data to the output data line in respect to the falling (SPI/Microwire compliant) or rising edge of the serial clock, and it can latch data on an input data line on the rising (SPI/Microwire compliant) or falling edge of a serial clock line. It also can transmit (receive) the MSB first (SPI/Microwire compliant) or the LSB first.

It is important to know that the RxX and TxX registers share the same flip-flops, which means that what is received from the input data line in one transfer will be transmitted on the output data line in the next transfer if no write access to the TxX register is executed between the transfers.

5

Architecture

The SPI Master core consists of three parts shown in the following figure:

Appendix A

Core configuration

To meet specific system requirements and size constraints on behalf of the core functionality, the SPI Master core can be configuredby setting the appropriate define directives in the spi_defines.v source file. The directives are as follows:

SPI_DIVIDER_BIT_NB

This parameter defines the maximum number of bits needed for the divider. Set this parameter accordingly to the maximum system frequency and lowest serial clock frequency:

[image: image2.wmf]ú

û

ù

ê

ë

é

-

*

=

1

2

log

R_BIT_NB

SPI_DIVIDE

min

max

2

sclk

sys

f

f

Default value is 16.
SPI_MAX_CHAR

This parameter defines the maximum number of bits that can be received/transmitted in one transfer.

The default value is 64.

SPI_SS_NB

This parameter defines the number of slave select lines.

The default value is 8.

/ss_pad_o[0]

/ss_pad_o[1]

/ss_pad_o[2]

MASTER

sclk_pad_o

mosi_pad_o

miso_pad_i

MISO MOSI SCLK /SS

SLAVE 2

MISO MOSI SCLK / SS

SLAVE 1

MISO MOSI SCLK /SS

SLAVE 0

/ss_pad_o[0]

/ss_pad_o[1]

/ss_pad_o[2]

MASTER

sclk_pad_o

mosi_pad_o

miso_pad_i

WISHBONE

MISO MOSI SCLK/SS

SLAVE 2

MISO MOSI SCLK/SS

SLAVE 1

MISO MOSI SCLK/SS

SLAVE 0

miso_pad_i

mosi_pad_o

sclk_pad_o

ss_pad_o

Clock generator

spi_clgen.v

Serial Interface

spi_shift.v

spi_top.v

WHISHBONE Interface

WHISHBONE SOC Bus

WISHBONE

LSB

(Tx[0])

ss_pad_o

sclk_pad_o

mosi_pad_o

miso_pad_i

LSB

(Rx[0])

CTRL[LSB] = 0, CTRL[CHAR_LEN] = 0x08, CTRL[TX_NEG] = 1, CTRL[RX_NEG] = 0

CTRL[LSB] = 1, CTRL[CHAR_LEN] = 0x0a, CTRL[TX_NEG] = 0, CTRL[RX_NEG] = 1

miso_pad_i

MSB

(Rx[9])

mosi_pad_o

sclk_pad_o

ss_pad_o

LSB

(Tx[0])

MSB

(Tx[9])

MSB

(Tx[7])

MSB

(Rx[7])

LSB

(Rx[0])

www.opencores.org
Rev 0.3 Preliminary
ii of 3

_1085386724.unknown

_1085401290.unknown

