
1 Easyviz

Easyviz is a unified interface to various packages for scientific visualization and
plotting. The Easyviz interface is written in Python with the purpose of mak-
ing it very easy to visualize data in Python scripts. Both curve plots and more
advanced 2D/3D visualization of scalar and vector fields are supported. The
Easyviz interface was designed with three ideas in mind: 1) a simple, Matlab-
like syntax; 2) a unified interface to lots of visualization engines (called back-
ends later): Gnuplot, Matplotlib, Grace, Veusz, Pmw.Blt.Graph, PyX, Matlab,
VTK, VisIt, OpenDX; and 3) a minimalistic interface which offers only basic
control of plots: curves, linestyles, legends, title, axis extent and names. More
fine-tuning of plots can be done by invoking backend-specific commands.

Easyviz was made so that one can postpone the choice of a particular visu-
alization package (and its special associated syntax). This is often useful when
you quickly need to visualize curves or 2D/3D fields in your Python program,
but haven’t really decided which plotting tool to go for. As Python is gaining
popularity at universities, students are often forced to continuously switch be-
tween Matlab and Python, which is straightforward for array computing, but
(previously) annoying for plotting. Easyviz was therefore also made to ease the
switch between Python and Matlab.

If you encounter problems with using Easyviz, please visit the Troubleshoot-
ing chapter and the Installation chapter at the end of the documentation.

1.1 Easyviz Documentation

The present documentation is available in a number of formats:

• PDF

• Plain HTML

• Sphinx HTML

• Plain text

• Wiki

• Doconce source

The documentation is written in the Doconce format and can be translated into
a number of different formats (reST, Sphinx, LATEX, HTML, XML, OpenOffice,
RTF, Word, and plain untagged ASCII).

1.2 Guiding Principles

First principle. Array data can be plotted with a minimal set of keystrokes
using a Matlab-like syntax. A simple
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t = linspace(0, 3, 51) # 51 points between 0 and 3
y = t**2*exp(-t**2)
plot(t, y)

plots the data in (the NumPy array) t versus the data in (the NumPy array)
y. If you need legends, control of the axis, as well as additional curves, all this
is obtained by the standard Matlab-style commands

y2 = t**4*exp(-t**2)
# pick out each 4 points and add random noise:
t3 = t[::4]
y3 = y2[::4] + random.normal(loc=0, scale=0.02, size=len(t3))

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’b-’)
plot(t3, y3, ’bo’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’, ’data’)
title(’Simple Plot Demo’)
axis([0, 3, -0.05, 0.6])
xlabel(’t’)
ylabel(’y’)
show()

hardcopy(’tmp0.eps’) # this one can be included in LaTeX
hardcopy(’tmp0.png’) # this one can be included in HTML

Easyviz also allows these additional function calls to be executed as a part of
the plot call:

plot(t, y1, ’r-’, t, y2, ’b-’, t3, y3, ’bo’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’, ’data’),
title=’Simple Plot Demo’,
axis=(0, 3, -0.05, 0.6),
xlabel=’t’, ylabel=’y’,
hardcopy=’tmp1.eps’,
show=True)

hardcopy(’tmp0.png’)

A scalar function f(x, y) may be visualized as an elevated surface with colors
using these commands:

x = linspace(-2, 2, 41) # 41 point on [-2, 2]
xv, yv = ndgrid(x, x) # define a 2D grid with points (xv,yv)
values = f(xv, yv) # function values
surfc(xv, yv, values,

shading=’interp’,
clevels=15,
clabels=’on’,
hidden=’on’,
show=True)

Second princple. Easyviz is just a unified interface to other plotting packages
that can be called from Python. Such plotting packages are referred to as
backends. Several backends are supported: Gnuplot, Matplotlib, Grace (Xmgr),
Veusz, Pmw.Blt.Graph, PyX, Matlab, VTK, VisIt, OpenDX. In other words,
scripts that use Easyviz commands only, can work with a variety of backends,
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depending on what you have installed on the machine in question and what
quality of the plots you demand. For example, switching from Gnuplot to
Matplotlib is trivial.

Scripts with Easyviz commands will most probably run anywhere since at
least the Gnuplot package can always be installed right away on any platform.
In practice this means that when you write a script to automate investigation
of a scientific problem, you can always quickly plot your data with Easyviz (i.e.,
Matlab-like) commands and postpone to marry any specific plotting tool. Most
likely, the choice of plotting backend can remain flexible. This will also allow
old scripts to work with new fancy plotting packages in the future if Easyviz
backends are written for those packages.

Third principle. The Easyviz interface is minimalistic, aimed at rapid pro-
totyping of plots. This makes the Easyviz code easy to read and extend (e.g.,
with new backends). If you need more sophisticated plotting, like controlling
tickmarks, inserting annotations, etc., you must grab the backend object and
use the backend-specific syntax to fine-tune the plot. The idea is that you can
get away with Easyviz and a plotting package-independent script ”95 percent”
of the time - only now and then there will be demand for package-dependent
code for fine-tuning and customization of figures.

These three principles and the Easyviz implementation make simple things
simple and unified, and complicated things are not more complicated than they
would otherwise be. You can always start out with the simple commands - and
jump to complicated fine-tuning only when strictly needed.

2 Tutorial

This tutorial starts with plotting a single curve with a simple plot(x,y) com-
mand. Then we add a legend, axis labels, a title, etc. Thereafter we show
how multiple curves are plotted together. We also explain how line styles and
axis range can be controlled. The next topic deals with animations and making
movie files. More advanced subjects, such as fine tuning of plots (using plotting
package-specific commands) and working with Axis and Figure objects, close
the curve plotting part of the tutorial.

Various methods for visualization of scalar fields in 2D and 3D are treated
next, before we show how 2D and 3D vector fields can be handled.

2.1 A Note on Import Statements

The recommended standard import of numpy and matplotlib in programs
reads:

import numpy as np
import matplotlib.pyplot as plt
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This import ensures that all functionality from different packages are prefixed
by a short form of the package name. This convention has, from a computer
science perspective, many advantages as one sees clearly where functionality
comes from. However, convincing scientists with extensive Matlab, Fortran, or
C++ experience to switch to Python can be hard when mathematical formulas
are full of np. prefixes and all plotting commands are decorated with an ”extra”
plt. The developers of Easyviz think it is a major point to have Python code
as close to Matlab and standard mathematical syntax as possible. Therefore,
examples in this manual employ the ”star import”:

from scitools.std import *

This statement imports the Easyviz plotting commands and also performs from numpy import *.
Hence, mathematical functions like sin and log are available and work for ar-
rays, as in Matlab, and the plotting commands are the same as those in Matlab.
This type of import statement is similar to the popular

from matplotlib.pylab import *

among Matplotlib users (although not promoted by Matplotlib developers). The
primary additional feature of the scitools.std import is the possibility to
choose among many different backends for plotting, where Matplotlib is one of
the options.

2.2 Plotting a Single Curve

Let us plot the curve y = t2 exp(−t2) for t values between 0 and 3. First we gen-
erate equally spaced coordinates for t, say 51 values (50 intervals). Then we com-
pute the corresponding y values at these points, before we call the plot(t,y)

command to make the curve plot. Here is the complete program:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51) # 51 points between 0 and 3
y = zeros(len(t)) # allocate y with float elements
for i in xrange(len(t)):

y[i] = f(t[i])

plot(t, y)
show() # optional

If you have problems running this file, make sure you have installed SciTools
and one or more plotting programs, see Chapter 7.

The first line imports all of SciTools and Easyviz that can be handy to
have when doing scientific computations. This includes everything from numpy

(from numpy import *), all Easyviz plotting commands, some modules (sys,
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math), and all of SciPy (from scipy import *) if SciPy is installed. In the
program above, we first pre-allocate the y array and fill it with values, element
by element, in a Python loop. Alternatively, we may operate on the whole t

array at once, which yields faster and shorter code:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51) # 51 points between 0 and 3
y = f(t) # compute all f values at once
plot(t, y)
show() # optional

The f function can also be skipped, if desired, so that we can write directly

y = t**2*exp(-t**2)

To include the plot in electronic documents, we need a hardcopy of the
figure in PostScript, PNG, or another image format. The hardcopy command
produces files with images in various formats:

hardcopy(’tmp1.eps’) # produce PostScript
hardcopy(’tmp1.png’) # produce PNG

An alternative name for hardcopy is savefig:

savefig(’tmp1.eps’) # produce PostScript
savefig(’tmp1.png’) # produce PNG

The filename extension determines the format: .ps or .eps for PostScript, and
.png for PNG. Figure 1 displays the resulting plot. With show(False) we can
suppress the plot from being shown at the screen, which is useful when create
a large number of figure files in programs.

On some platforms, some backends may result in a plot that is shown in just
a fraction of a second on the screen before the plot window disappears (using
the Gnuplot backend on Windows machines or using the Matplotlib backend
constitute two examples). To make the window stay on the screen, add

raw_input(’Press the Return key to quit: ’)

at the end of the program. The plot window is killed when the program ter-
minates, and this satement postpones the termination until the user hits the
Return key.

2.3 Decorating the Plot

The x and y axes in curve plots should have labels, here t and y, respectively.
Also, the curve should be identified with a label, or legend as it is often called.
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Figure 1: A simple plot in PostScript format.

A title above the plot is also common. In addition, we may want to control the
extent of the axes (although most plotting programs will automatically adjust
the axes to the range of the data). All such things are easily added after the
plot command:

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’)
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title(’My First Easyviz Demo’)

This syntax is inspired by Matlab to make the switch between Easyviz and
Matlab almost trivial. Easyviz has also introduced a more ”Pythonic” plot

command where all the plot properties can be set at once:

plot(t, y,
xlabel=’t’,
ylabel=’y’,
legend=’t^2*exp(-t^2)’,
axis=[0, 3, -0.05, 0.6],
title=’My First Easyviz Demo’,
savefig=’tmp1.eps’, # or hardcopy=’tmp1.eps’
show=True)

With show=False one can avoid the plot window on the screen and just make
the hardcopy. This feature is particularly useful if one generates a large number
of separate figures in the program. The keyword savefig can be replaced by
hardcopy if desired.
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Figure 2: A single curve with label, title, and axes adjusted.

Note that we in the curve legend write t square as t^2 (LATEX style) rather
than t**2 (program style). Whichever form you choose is up to you, but the
LATEX form sometimes looks better in some plotting programs (Matplotlib and
Gnuplot are two examples). See Figure 2 for what the modified plot looks like
and how t^2 is typeset in Gnuplot.

2.4 Plotting Multiple Curves

A common plotting task is to compare two or more curves, which requires
multiple curves to be drawn in the same plot. Suppose we want to plot the
two functions f1(t) = t2 exp(−t2) and f2(t) = t4 exp(−t2). If we write two
plot commands after each other, two separate plots will be made. To make
the second plot command draw the curve in the first plot, we need to issue a
hold(’on’) command. Alternatively, we can provide all data in a single plot

command. A complete program illustrates the different approaches:

from scitools.std import * # for curve plotting

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)
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Figure 3: Two curves in the same plot.

# Matlab-style syntax
plot(t, y1)
hold(’on’)
plot(t, y2)

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’)
title(’Plotting two curves in the same plot’)
savefig(’tmp2.eps’) # or hardcopy(’tmp2.eps’)

# Alternative "Pythonic" style
plot(t, y1, t, y2, xlabel=’t’, ylabel=’y’,

legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
title=’Plotting two curves in the same plot’,
savefig=’tmp2.eps’)

The sequence of the multiple legends is such that the first legend corresponds
to the first curve, the second legend to the second curve, and so on. The visual
result appears in Figure 3.

Doing a hold(’off’) makes the next plot command create a new plot in
the same window. This new plot just erases the previous curves.

With the keyword argrument grid=True to plot we can add a grid, which
is frequently used when plotting curves (see Figure 4).

The default location of the legends is dependent on the backend (some have
a fixed location, like Gnuplot, and some try to find the most optimal location,
like Matplotlib). One can control the location by the loc keyword to the legend
function, e.g.,
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Figure 4: Curves with a grid.

legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’, loc=’upper left’)

The most popular values are upper right, upper left, lower left, and lower right,
depending on the shape of the curves and extend of the axes. The keyword
argument fancybox draws a box around the legends if True, otherwise no box
is drawn. The corresponding keywords for the plot function are legend_loc

and legend_fancybox:

plot(t, y1, t, y2, xlabel=’t’, ylabel=’y’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
legend_loc=‘upper left‘, legend_fancybox=True,
axis=[0, 4, -0.1, 0.8],
title=’Plotting two curves in the same plot’,
savefig=’tmp2.eps’)

The loc and fancybox specifications work (at present) with Gnuplot and Mat-
plotlib only.

The legend function also accepts a list of legends instead of the legends
as separate positional arguments. This allows an overlapping syntax between
Matplotlib and Easyviz so that the same code can apply either of the packages
(however, Matplotlib’s keywords to plot, like label and linewidth, are not
recognized so not all syntax is interchangable).

2.5 Making Multiple Figures

The hold command either adds a new curve or replaces old curve(s) by new ones.
Often one wants to make multiple figures in a program, realized as multiple
windows on the screen. The figure() command creates a new figure:
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Figure 5: A figure with legends placed to the upper left with a box frame.

x = linspace(-2, 2, 81)
y1 = sin(pi*x)*exp(-0.5*x**2)
plot(x, y1)

figure() # separate plot window
y2 = sin(pi*x/2)*exp(-0.5*x**2)
plot(x, y2)

figure() # yet another plot window
y3 = sin(pi*x/4)*exp(-0.5*x**2)
plot(x, y3)

More information in the figure command is found later on under the heading
Working with Axis and Figure Objects.

2.6 Controlling Line Styles

When plotting multiple curves in the same plot, the individual curves get dis-
tinct default line styles, depending on the program that is used to produce the
curve (and the settings for this program). It might well happen that you get a
green and a red curve (which is bad for a significant portion of the male pop-
ulation). Therefore, we often want to control the line style in detail. Say we
want the first curve (t and y1) to be drawn as a red solid line and the second
curve (t and y2) as blue circles at the discrete data points. The Matlab-inspired
syntax for specifying line types applies a letter for the color and a symbol from
the keyboard for the line type. For example, r- represents a red (r) line (-),
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Figure 6: Two curves in the same plot, with controlled line styles.

while bo means blue (b) circles (o). The line style specification is added as an
argument after the x and y coordinate arrays of the curve:

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’bo’)

# or
plot(t, y1, ’r-’, t, y2, ’bo’)

The effect of controlling the line styles can be seen in Figure 6.
Assume now that we want to plot the blue circles at every 4 points only.

We can grab every 4 points out of the t array by using an appropriate slice:
t2 = t[::4]. Note that the first colon means the range from the first to the
last data point, while the second colon separates this range from the stride, i.e.,
how many points we should ”jump over” when we pick out a set of values of the
array.

from scitools.std import *

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
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Figure 7: Circles at every 4 points and extended line thickness (6) and circle
size (3).

t2 = t[::4]
y2 = f2(t2)

plot(t, y1, ’r-6’, t2, y2, ’bo3’,
xlabel=’t’, ylabel=’y’,
axis=[0, 4, -0.1, 0.6],
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
title=’Plotting two curves in the same plot’,
hardcopy=’tmp2.eps’)

In this plot we also adjust the size of the line and the circles by adding an
integer: r-6 means a red line with thickness 6 and bo5 means red circles with
size 5. The effect of the given line thickness and symbol size depends on the
underlying plotting program. For the Gnuplot program one can view the effect
in Figure 7.

The different available line colors include

• yellow: ’y’

• magenta: ’m’

• cyan: ’c’

• red: ’r’

• green: ’g’
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• blue: ’b’

• white: ’w’

• black: ’k’

The different available line types are

• solid line: ’-’

• dashed line: ’--’

• dotted line: ’:’

• dash-dot line: ’-.’

During programming, you can find all these details in the documentation of
the plot function. Just type help(plot) in an interactive Python shell or
invoke pydoc with scitools.easyviz.plot. This tutorial is available through
pydoc scitools.easyviz.

We remark that in the Gnuplot program all the different line types are drawn
as solid lines on the screen. The hardcopy chooses automatically different line
types (solid, dashed, etc.) and not in accordance with the line type specification.

Lots of markers at data points are available:

• plus sign: ’+’

• circle: ’o’

• asterisk: ’*’

• point: ’.’

• cross: ’x’

• square: ’s’

• diamond: ’d’

• upward-pointing triangle: ’^’

• downward-pointing triangle: ’v’

• right-pointing triangle: ’>’

• left-pointing triangle: ’<’

• five-point star (pentagram): ’p’

• six-point star (hexagram): ’h’

• no marker (default): None

Symbols and line styles may be combined, for instance as in ’kx-’, which means
a black solid line with black crosses at the data points.
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Another Example. Let us extend the previous example with a third curve
where the data points are slightly randomly distributed around the f2(t) curve:

from scitools.std import *

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

# Pick out each 4 points and add random noise
t3 = t[::4] # slice, stride 4
random.seed(11) # fix random sequence
noise = random.normal(loc=0, scale=0.02, size=len(t3))
y3 = y2[::4] + noise

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’ks-’) # black solid line with squares at data points
plot(t3, y3, ’bo’)

legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’, ’data’)
title(’Simple Plot Demo’)
axis([0, 3, -0.05, 0.6])
xlabel(’t’)
ylabel(’y’)
show()
savefig(’tmp3.eps’) # or hardcopy
savefig(’tmp3.png’) # or hardcopy

The plot is shown in Figure 8.

Minimalistic Typing. When exploring mathematics in the interactive Python
shell, most of us are interested in the quickest possible commands. Here is an
example of minimalistic syntax for comparing the two sample functions we have
used in the previous examples:

t = linspace(0, 3, 51)
plot(t, t**2*exp(-t**2), t, t**4*exp(-t**2))

Text. A text can be placed at a point (x, y) using the call

text(x, y, ’Some text’)

More Examples. The examples in this tutorial, as well as additional exam-
ples, can be found in the examples directory in the root directory of the SciTools
source code tree.
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Figure 8: A plot with three curves.

2.7 Math Syntax in Legends and Titles

Some backends understand some mathematical syntax. Easyviz accepts LaTeX-
style syntax and translates it to something appropriate for the background in
question. As a rule of thumb, write plain LATEX syntax if you need mathematical
symbols and expressions in legends and titles. Matplotlib will show the result in
an excellent way, Gnuplot PostScript output will handle super- and subscripts
as well as greek letters. All other backends will strip off backslashes, dollar signs,
curly braces, qand other annoying LATEX syntax. Normally, power expressions
with double multiplication symbols are replaced by a hat.

2.8 Interactive Plotting Sessions

All the Easyviz commands can of course be issued in an interactive Python
session. The only thing to comment is that the plot command returns a result:

>>> t = linspace(0, 3, 51)
>>> plot(t, t**2*exp(-t**2))
[<scitools.easyviz.common.Line object at 0xb5727f6c>]

Most users will just ignore this output line.
All Easyviz commands that produce a plot return an object reflecting the

particular type of plot. The plot command returns a list of Line objects, one
for each curve in the plot. These Line objects can be invoked to see, for instance,
the value of different parameters in the plot:
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>>> line, = plot(x, y, ’b’)
>>> getp(line)
{’description’: ’’,
’dims’: (4, 1, 1),
’legend’: ’’,
’linecolor’: ’b’,
’pointsize’: 1.0,
...

Such output is mostly of interest to advanced users.

2.9 Making Animations

A sequence of plots can be combined into an animation and stored in a movie
file. First we need to generate a series of hardcopies, i.e., plots stored in files.
Thereafter we must use a tool to combine the individual plot files into a movie
file.

Example. The function f(x;m, s) = (2π)−1/2s−1 exp
[

−
1

2

(

x−m
s

)2
]

is known

as the Gaussian function or the probability density function of the normal (or
Gaussian) distribution. This bell-shaped function is ”wide” for large s and
”peak-formed” for small s, see Figure 9. The function is symmetric around
x = m (m = 0 in the figure). Our goal is to make an animation where we
see how this function evolves as s is decreased. In Python we implement the
formula above as a function f(x, m, s).
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The animation is created by varying s in a loop and for each s issue a
plot command. A moving curve is then visible on the screen. One can also
make a movie file that can be played as any other computer movie using a
standard movie player. To this end, each plot is saved to a file, and all the files
are combined together using some suitable tool, which is reached through the
movie function in Easyviz. All necessary steps will be apparent in the complete
program below, but before diving into the code we need to comment upon a
couple of issues with setting up the plot command for animations.

The underlying plotting program will normally adjust the y axis to the max-
imum and minimum values of the curve if we do not specify the axis ranges
explicitly. For an animation such automatic axis adjustment is misleading - the
axis ranges must be fixed to avoid a jumping axis. The relevant values for the
axis range is the minimum and maximum value of f . The minimum value is
zero, while the maximum value appears for x = m and increases with decreasing
s. The range of the y axis must therefore be [0, f(m;m,min s)].

The function f is defined for all −∞ < x < ∞, but the function value is very
small already 3s away from x = m. We may therefore limit the x coordinates
to [m− 3s,m+ 3s].

Now we are ready to take a look at the complete code for animating how
the Gaussian function evolves as the s parameter is decreased from 2 to 0.2:

from scitools.std import *
import time

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0
s_start = 2
s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)
x = linspace(m -3*s_start, m + 3*s_start, 1000)
# f is max for x=m; smaller s gives larger max value
max_f = f(m, m, s_stop)

# Show the movie on the screen
# and make hardcopies of frames simultaneously
counter = 0
for s in s_values:

y = f(x, m, s)
plot(x, y, axis=[x[0], x[-1], -0.1, max_f],

xlabel=’x’, ylabel=’f’, legend=’s=%4.2f’ % s,
hardcopy=’tmp%04d.png’ % counter)

counter += 1
#time.sleep(0.2) # can insert a pause to control movie speed

# Make movie file the simplest possible way
movie(’tmp*.png’)

Note that the s values are decreasing (linspace handles this automatically if
the start value is greater than the stop value). Also note that we, simply because
we think it is visually more attractive, let the y axis go from -0.1 although the
f function is always greater than zero.
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Remarks on Filenames. For each frame (plot) in the movie we store the plot
in a file. The different files need different names and an easy way of referring
to the set of files in right order. We therefore suggest to use filenames of the
form tmp0001.png, tmp0002.png, tmp0003.png, etc. The printf format 04d

pads the integers with zeros such that 1 becomes 0001, 13 becomes 0013 and so
on. The expression tmp*.png will now expand (by an alphabetic sort) to a list
of all files in proper order. Without the padding with zeros, i.e., names of the
form tmp1.png, tmp2.png, ..., tmp12.png, etc., the alphabetic order will give
a wrong sequence of frames in the movie. For instance, tmp12.png will appear
before tmp2.png.

Note that the names of plot files specified when making hardopies must be
consistent with the specification of names in the call to movie. Typically, one
applies a Unix wildcard notation in the call to movie, say plotfile*.png, where
the asterisk will match any set of characters. When specifying hardcopies, we
must then use a filename that is consistent with plotfile*.png, that is, the
filename must start with plotfile and end with .png, but in between these
two parts we are free to construct (e.g.) a frame number padded with zeros.

We recommend to always remove previously generated plot files before a new
set of files is made. Otherwise, the movie may get old and new files mixed up.
The following Python code removes all files of the form tmp*.png:

import glob, os
for filename in glob.glob(’tmp*.png’):

os.remove(filename)

These code lines should be inserted at the beginning of the code example above.
Alternatively, one may store all plotfiles in a subfolder and later delete the
subfolder. Here is a suitable code segment:

import shutil, os
subdir = ’temp’ # name of subfolder for plot files
if os.path.isdir(subdir): # does the subfolder already exist?

shutil.rmtree(subdir) # delete the whole folder
os.mkdir(subdir) # make new subfolder
os.chdir(subdir) # move to subfolder
# ...perform all the plotting...
# ...make movie...
os.chdir(os.pardir) # optional: move up to parent folder

Movie Formats. Having a set of (e.g.) tmp*.png files, one can simply gen-
erate a movie by a movie(’tmp*.png’) call. The format of the movie is de-
termined by which video encoders that are installed on the computer. The movie
function runs through a list of encoders (convert, mencoder, ffmpeg mpeg_encode,
ppmtompeg, mpeg2enc, html) and choses the first one which is installed. The
fall back encoder html actually does not create a video file, but makes insetad
an HTML file that can play the series of hardcopies made (tmp*.png, for in-
stance). When no filename is given to the movie function, the output file with
the movie has filestem movie and extension depending on the video format and
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the encoder used. For example, if convert was used to create an animated GIF
file, the default output file is movie.gif. Similarly, movie.avi is in AVI format,
movie.mpeg is in MPEG format, and so forth.

You can get complete control of the movie format and the name of the movie
file by supplying the encoder and output_file arguments to the movie func-
tion. This is the recommended use. Here is an example on generating an ani-
mated GIF file tmpmovie.gif with the convert program from the ImageMagick
software suite:

movie(’tmp_*.png’, encoder=’convert’, fps=2,
output_file=’tmpmovie.gif’)

This call requires ImageMagick to be installed on the machine. The argument
fps stands for frames per second so here the speed of the movie is slow in that
there is a delay of half a second between each frame (image file). To view the
animated GIF file, one can use the animate program (also from ImageMagick)
and give the movie file as command-line argument. One can alternatively put
the GIF file in a web page in an IMG tag such that a browser automatically
displays the movie.

Making an HTML file that can play the movie in a web browser is carried
out by the call

movie(’tmp_*.png’, encoder=’html’, fps=10,
output_file=’tmpmovie.html’)

Just load tmpmovie.html into a browser (e.g., run firefox tmpmovie.html

from the command line).
An AVI movie can be generated by the call

movie(’tmp_*.png’, encoder=’ffmpeg’, fps=4,
output_file=’tmpmovie.avi’,

Alternatively, we may generate an MPEG movie using the ppmtompeg encoder
from the Netpbm suite of image manipulation tools:

movie(’tmp_*.png’, encoder=’ppmtompeg’, fps=24,
output_file=’tmpmovie.mpeg’,

The ppmtompeg supports only a few (high) frame rates.
The next sample call to movie uses the Mencoder tool and specifies some

additional arguments (video codec, video bitrate, and the quantization scale):

movie(’tmp_*.png’, encoder=’mencoder’, fps=24,
output_file=’tmpmovie.mpeg’,
vcodec=’mpeg2video’, vbitrate=2400, qscale=4)

Here is yet another example:

movie(’tmp_*.png’, encoder=’ffmpeg’,
output_file=’tmpmovie1c.mpeg’, vodec=’mpeg2video’)
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The file examples/movie_demo1.py that comes with the SciTools source code
generates frames in a movie and creates movie files in many formats.

Playing movie files can be done by a lot of programs. Windows Media Player
is a default choice on Windows machines. On Unix, a variety of tools can be
used. For animated GIF files the animate program from the ImageMagick suite
is suitable, or one can simply show the file in a web page with the HTML
command <img src="tmpmovie.gif">. AVI and MPEG files can be played by,
for example, the myplayer, vlc, or totem programs.

Making Movies in Batch. Sometimes it is desired to carry out large num-
bers of computer experiments and create movies in each individual experiments.
Then one probably does not want to have the screen full of movie windows. To
turn off showing the movie on the screen while creating the individual frames,
just give the show=False keyword argument to the plot function. All hard-
copies and the movies are then made in batch, which also might speed up the
program since rendering graphics on the screen is avoided.

2.10 Controlling the Aspect Ratio of Axes

By default, Gnuplot, Matplotlib and other plotting packages automatically cal-
culate suitable physical sizes of the axis in the plotting window. However,
sometimes one wants to control this, i.e., impose a certain ratio of the physical
extent of the axis.

In the gnuplot and matplotlib backends, we set daspectmode=manual and
daspect=[r,1,1], where r is the ratio of the y-axis length to the x-axis length
(r equal to 1 gives a square plot area). For example,

plot(x, y, ’r-’,
axis=[0, 1, 0, 1],
daspect=[1,1,1],
daspectmode=’manual’)

Note that one should always use axis and set axes limits explicitly when pre-
scribing the aspect ratio.

Suppose the x-axis goes from 0 to 20 and the y-axis from -2 to 2. Of-
ten we want the units on the axes to have the same length, i.e., the x-axis
should be five times as long as the y-axis in this example. This is accomplished
by daspect=[0.2,1,1]). Alternatively, one can apply daspectmode=’equal’

(which means equal physical units on the axis).
Here is an example which demonstrates various aspects of setting the aspect

ratio:

from scitools.std import *
n = 20 # no of periods of a sine function
r = 80 # resolution of each period
x = linspace(0, n, r*n + 1)
amplitude = 1 + sin(2*pi*0.05*x)
y = amplitude*sin(2*pi*x)
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# x-axis goes from 0 to 20, y-axis from -2 to 2.

subplot(2, 1, 1)
plot(x, y,

axis=[x[0], x[-1], y.min(), y.max()],
daspectmode=’equal’,
title=’daspectmode=equal’,
)

subplot(2, 1, 2)
plot(x, y,

axis=[x[0], x[-1], y.min(), y.max()],
daspect=[0.5,1,1],
daspectmode=’manual’,
title=’daspectmode=manual, daspect=[0.5,1,1]’,
)

figure()
plot(x, y,

axis=[x[0], x[-1], y.min(), y.max()],
daspect=[1,1,1],
daspectmode=’manual’,
title=’daspectmode=manual, daspect=[1,1,1]’,
)

show()
raw_input()

2.11 Moving Plot Window

When calculating long time series, it may be desirable to have a moving plot
window that follows the time series. The module MovingPlotWindow was made
for this purpose. There are three different modes of this tool, where each mode
moves the window in a certain way. With mode set as continuous movement,
the plot window moves with the curves continuously. With mode set as continuous drawing,
the curves are drawn from left to right in the plot window, as an animation (one
step at a time). When the curves reach the right border of the plot window,
the window (or more correctly, the x-axis) is moved in a jump to the right so
that the curves are coming in from the left border again. With mode set as
jumps the curves are plotted directly in the window and shown for a specified
period of time (the pause parameter), then the axis jump one window to the
right, and the curves are displayed in this (time) window. The jumps mode is
well suited for quickly browsing a time series. The continuousdrawing mode
is aimed at studing the ”tip” of the time series as they are computed, and
continuous movement is a kind of default choice for most purposes. Running
the module file gives a demo of the three modes.

Below is an example of how to compute a time series by finite differences
and comparing this series with the exact solutions. For large times, there is a
fequency discrepancy that one wants to investigate.

def _demo(I, k, dt, T, mode=’continuous movement’):
"""
Solve u’ = -k**2*u, u(0)=I, u’(0)=0 by a finite difference
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method with time steps dt, from t=0 to t=T.
"""
if dt > 2./k:

print ’Unstable scheme’
N = int(round(T/float(dt)))
u = zeros(N+1)
t = linspace(0, T, N+1)

umin = -1.2*I
umax = -umin
period = 2*pi/k # period of the oscillations
plot_manager = MovingPlotWindow(8*period, dt, yaxis=[umin, umax],

mode=mode)
u[0] = I
u[1] = u[0] - 0.5*dt**2*k**2*u[0]
for n in range(1,N):

u[n+1] = 2*u[n] - u[n-1] - dt**2*k**2*u[n]

if plot_manager.plot(n):
s = plot_manager.first_index_in_plot
plot(t[s:n+2], u[s:n+2], ’r-’,

t[s:n+2], I*cos(k*t)[s:n+2], ’b-’,
axis=plot_manager.axis(),
title="Solution of u’’ + k^2 u = 0 for t=%6.3f (mode: %s)" \
% (t[n+1], mode))

plot_manager.update(n)

An appropriate import statement is

from scitools.MovingPlotWindow import MovingPlotWindow

2.12 Advanced Easyviz Topics

The information in the previous sections aims at being sufficient for the daily
work with plotting curves. Sometimes, however, one wants to fine-control the
plot or how Easyviz behaves. First, we explain how to set the backend. Second,
we tell how to speed up the from scitools.std import * statement. Third,
we show how to operate with the plotting program directly and using plotting
program-specific advanced features. Fourth, we explain how the user can grab
Figure and Axis objects that Easyviz produces ”behind the curtain”.

Controlling the Backend. The Easyviz backend can either be set in a con-
figuration file (see ”Setting Parameters in the Configuration File” below), by
importing a special backend in the program, or by adding a command-line op-
tion

--SCITOOLS_easyviz_backend name

where name is the name of the backend: gnuplot, vtk, matplotlib, etc. Which
backend you choose depends on what you have available on your computer
system and what kind of plotting functionality you want.

An alternative method is to import a specific backend in a program. Instead
of the from scitools.std import * statement one writes
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from numpy import *
from scitools.easyviz.gnuplot_ import * # work with Gnuplot
# or
from scitools.easyviz.vtk_ import * # work with VTK

Note the trailing underscore in the module names for the various backends.
The following program prints a list of the names of the available backends

on your computer system:

from scitools.std import *
backends = available_backends()
print ’Available backends:’, backends

There will be quite some output explaining the missing backends and what
must be installed to use these backends. Be prepared for exceptions and error
messages too.

Importing Just Easyviz. The from scitools.std import * statement im-
ports many modules and packages:

from numpy import *
from scitools.numpyutils import * # some convenience functions
from numpy.lib.scimath import *
from scipy import * # if scipy is installed
import sys, operator, math
from scitools.StringFunction import StringFunction
from glob import glob

The scipy import can take some time and lead to slow start-up of plot scripts.
A more minimalistic import for curve plotting is

from scitools.easyviz import *
from numpy import *

Alternatively, one can edit the SciTools configuration file as explained below in
the section ”Setting Parameters in the Configuration File”.

Many discourage the use of ”star import” as shown above. For example, the
standard import of Numerical Python in all of its documentation is

import numpy as np

A similar import for SciTools and Easyviz is

import scitools.std as st
import numpy as np

Although np functions are important into the namespace of st in this case, we
recommend to distinguish the packages when using a prefix. A typical plotting
example will then read

x = np.linspace(0, 3, 51)
y = x**2*np.exp(-x)
st.plot(x, y, ’r-’, title="Plot")
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The corresponding syntax for the minimalistic import of scitools.easyviz
and numpy reads

import scitools.easyviz as ev
import numpy as np

Setting Parameters in the Configuration File. Easyviz is a subpackage
of SciTools, and the the SciTools configuration file, called scitools.cfg has
several sections ([easyviz], [gnuplot], and [matplotlib]) where parameters
controlling the behavior of plotting can be set. For example, the backend for
Easyviz can be controlled with the backend parameter:

[easyviz]
backend = vtk

Similarly, Matplotlib’s use of LATEX can be controlled by a boolean parameter:

[matplotlib]
text.usetex = <bool> false

The text <bool> indicates that this is a parameter with a boolean
A configuration file with name .scitools.cfg file can be placed in the

current working folder, thereby affecting plots made in this folder, or it can be
located in the user’s home folder, which will affect all plotting sessions for the
user in question. There is also a common SciTools config file scitools.cfg for
the whole site, located in the directory where the scitools package is installed.
It is recommended to copy the scitools.cfg, either from installation or the
SciTools source folder lib/scitools, to .scitools.cfg in your home folder.
Then you can easily control the Easyviz backend and other paramteres by editing
your local .scitools.cfg file.

Parameters set in the configuration file can also be set directly on the com-
mand line when running a program. The name of the command-line option
is

--SCITOOLS_sectionname_parametername

where sectionname is the name of the section in the file and parametername is
the name of the parameter. For example, setting the backend parameter in the
[easyviz] section by

--SCITOOLS_easyviz_backend gnuplot

Here is an example where we use Matplotlib as backend, turn on the use of
LATEX in Matplotlib, and avoid the potentially slow import of SciPy:

python myprogram.py --SCITOOLS_easyviz_backend matplotlib \
--SCITOOLS_matplotlib_text.usetex true --SCITOOLS_scipy_load no
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Figure 10: Illustration of a text and an arrow using Gnuplot-specific commands.

Working with the Plotting Program Directly. Easyviz supports just
the most common plotting commands, typically the commands you use ”95
percent” of the time when exploring curves. Various plotting packages have lots
of additional commands for diverse advanced features. When Easyviz does not
have a command that supports a particular feature, one can grab the Python
object that communicates with the underlying plotting program (the ”backend”)
and work with this object directly, using plotting program-specific command
syntax. Let us illustrate this principle with an example where we add a text
and an arrow in the plot, see Figure 10.

Easyviz does not support arrows at arbitrary places inside the plot, but
Gnuplot does. If we use Gnuplot as backend, we may grab the Gnuplot object
and issue Gnuplot commands to this object directly. Here is an example of the
typical recipe, written after the core of the plot is made in the ordinary (plotting
program-independent) way:

if backend == ’gnuplot’:
g = get_backend()
# g is a Gnuplot object, work with Gnuplot commands directly:
g(’set label "global maximum" at 0.1,0.5 font "Times,18"’)
g(’set arrow from 0.5,0.48 to 0.98,0.37 linewidth 2’)
g.refresh()
g.hardcopy(’tmp2.eps’) # make new hardcopy

g.reset() # new plot
data = Gnuplot.Data(t, t**3*exp(-t), with_=’points 3 3’,

title=’t**3*exp(-t)’)
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func = Gnuplot.Func(’t**4*exp(-t)’, title=’t**4*exp(-t)’)
g(’set tics border font "Courier,14"’)
g.plot(func, data)

For the available features and the syntax of commands, we refer to the Gnuplot
manual and the demo.py program in Python interface to Gnuplot. Note that one
must call g.hardcopy to save the figure to file. A call to savefig or hardcopy
remakes the plot, but without the special calls g(’...’) so the label and arrow
are left out of the hardcopy in the example above.

Here is an example with Matplotlib:

if backend == ’matplotlib’:
pyplot = get_backend()
# Work with standard matplotlib.pyplot functions

The files grab_backend*.py in the examples folder of the SciTools source code
contain many examples on how to do backend-specific operations, especially
with Matplotlib. Note that after having issued calls via the pyplot object,
one must apply pyplot.savefig to correctly save the plot (a plain savefig or
hardcopy remakes the plot without the features inserted by the pyplot object).

Here are some useful links to documentation of various plotting packages:

• Matplotlib Documentation

• Gnuplot Documentation

• Gnuplot Tips (Not So Frequently Asked Questions)

• Grace User’s Guide

• PyX Documentation

• PyX Tutorial for Gnuplot Users

The idea advocated by Easyviz goes as follows. You can quickly generate plots
with Easyviz using standard commands that are independent of the underlying
plotting package. However, when you need advanced features, you must add
plotting package-specific code as shown above. This principle makes Easyviz a
light-weight interface, but without limiting the available functionality of various
plotting programs.

Working with Axis and Figure Objects. Easyviz supports the concept
of Axis objects, as in Matlab. The Axis object represents a set of axes, with
curves drawn in the associated coordinate system. A figure is the complete
physical plot. One may have several axes in one figure, each axis representing
a subplot. One may also have several figures, represented by different windows
on the screen or separate hardcopies.

Users with Matlab experience may prefer to set axis labels, ranges, and
the title using an Axis object instead of providing the information in separate
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commands or as part of a plot command. The gca (get current axis) command
returns an Axis object, whose set method can be used to set axis properties:

plot(t, y1, ’r-’, t, y2, ’bo’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
savefig=’tmp2.eps’)

ax = gca() # get current Axis object
ax.setp(xlabel=’t’, ylabel=’y’,

axis=[0, 4, -0.1, 0.6],
title=’Plotting two curves in the same plot’)

show() # show the plot again after ax.setp actions

The figure() call makes a new figure, i.e., a new window with curve plots.
Figures are numbered as 1, 2, and so on. The command figure(3) sets the
current figure object to figure number 3.

Suppose we want to plot our y1 and y2 data in two separate windows. We
need in this case to work with two Figure objects:

plot(t, y1, ’r-’, xlabel=’t’, ylabel=’y’,
axis=[0, 4, -0.1, 0.6])

figure() # new figure

plot(t, y2, ’bo’, xlabel=’t’, ylabel=’y’)

We may now go back to the first figure (with the y1 data) and set a title and
legends in this plot, show the plot, and make a PostScript version of the plot:

figure(1) # go back to first figure
title(’One curve’)
legend(’t^2*exp(-t^2)’)
show()
savefig(’tmp2_1.eps’)

We can also adjust figure 2:

figure(2) # go to second figure
title(’Another curve’)
savefig(’tmp2_2.eps’)
show()

The current Figure object is reached by gcf (get current figure), and the dump
method dumps the internal parameters in the Figure object:

fig = gcf(); print fig.dump()

These parameters may be of interest for troubleshooting when Easyviz does not
produce what you expect.

Let us then make a third figure with two plots, or more precisely, two axes:
one with y1 data and one with y2 data. Easyviz has a command subplot(r,c,a)
for creating r rows and c columns and set the current axis to axis number a. In
the present case subplot(2,1,1) sets the current axis to the first set of axis in
a ”table” with two rows and one column. Here is the code for this third figure:
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figure() # new, third figure
# Plot y1 and y2 as two axis in the same figure
subplot(2, 1, 1)
plot(t, y1, xlabel=’t’, ylabel=’y’)
subplot(2, 1, 2)
plot(t, y2, xlabel=’t’, ylabel=’y’)
title(’A figure with two plots’)
show()
savefig(’tmp2_3.eps’)

Note: The Gnuplot backend will overwrite the tickmarks on the y axis if two
or more curves in the same subplot have significantly different variations in y

direction. To avoid this cluttering of tickmarks, set the axes extent explicitly.
If we need to place an axis at an arbitrary position in the figure, we must

use the command

ax = axes(viewport=[left, bottom, width, height])

The four parameteres left, bottom, width, height are location values be-
tween 0 and 1 ((0,0) is the lower-left corner and (1,1) is the upper-right corner).
However, this might be a bit different in the different backends (see the docu-
mentation for the backend in question).

Mathematics and LATEX in Legends, Title, and Axis Labels. Some
plotting packages support nicely formatted mathematics as axis labels, in leg-
ends, and in the figure title. For example, Matplotlib accepts standard LATEX
syntax, while Gnuplot, when saving figures to PostScript format, supports greek
letters, sub- and super-scripts, exponentials, etc. Different plotting engines
(backends) will require mathematics in legends, titles, and labels to be format-
ted differently.

• With Matplotlib we recommend to use standard LATEX.

• With Gnuplot we recommend plain text when plotting on the screen, and
greek letters preceded with a backslash when saving to file. Gnuplot su-
ports LATEX syntax for sub- and super-scripts (underscore and hat, resp.).
Other types of mathematics should be expressed in plain text.

The file examples/math_text.py tests different syntax in legends, axis labels,
and titles. Running this script with --SCITOOLS_easyviz_backend X for dif-
ferent values of X (gnuplot, matplotlib, grace, pyx, etc.) produces plots that
one can examine to see various formats treat mathematics with and without
LATEX syntax.

If it is important to have Easyviz code that works with several backends,
one can apply a little if-else test:

from scitools.std import *
...
if backend == ’gnuplot’:
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title_screen = ’mu=0.5, alpha=sum(i=1 to n) tau_i^2’
title_eps = r’\mu=0.5, \alpha=sum(i=1 to n) \tau_i^2’

elif backend == ’matplotlib’:
title_screen = title_eps = \

r’$mu=0.5$, $\alpha=\sum_{i=1}^n \tau_i^2$’
else:

title_screen = title_eps = ’mu=0.5, alpha=sum(i=1 to n) tau_i^2’

plot(...)
...
title(title_screen)
show()
title(title_eps)
savefig(’myplot.eps’)

Turning Off All Plotting. Sometimes, especially during debugging or when
trying out a large-scale experiment, it is nice to turn off all plotting on the
screen and all making of hardcopies. This is easily done by

turn_off_plotting(globals())

All the plot functions now ”do nothing” (actually they are DoNothing objects
from scitools.misc).

3 Visualization of Scalar Fields

A scalar field is a function from space or space-time to a real value. This real
value typically reflects a scalar physical parameter at every point in space (or
in space and time). One example is temperature, which is a scalar quantity
defined everywhere in space and time. In a visualization context, we work with
discrete scalar fields that are defined on a grid. Each point in the grid is then
associated with a scalar value.

There are several ways to visualize a scalar field in Easyviz. Both two-
and three-dimensional scalar fields are supported. In two dimensions (2D) we
can create elevated surface plots, contour plots, and pseudocolor plots, while in
three dimensions (3D) we can create isosurface plots, volumetric slice plots, and
contour slice plots.

3.1 Elevated Surface Plots

To create elevated surface plots we can use either the surf or the mesh com-
mand. Both commands have the same syntax, but the mesh command creates
a wireframe mesh while the surf command creates a solid colored surface.

Our examples will make use of the scalar field f(x, y) = sin r, where r is the

distance in the plane from the origin, i.e., r =
√

x2 + y2. The x and y values in
our 2D domain lie between -5 and 5.

The example first creates the necessary data arrays for 2D scalar field plot-
ting: the coordinates in each direction, extensions of these arrays to form a
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Figure 11: Result of the mesh command for plotting a 2D scalar field (Gnuplot
backend).

ndgrid, and the function values. The latter array is computed in a vectorized
operation which requires the extended coordinate arrays from the ndgrid func-
tion. The mesh command can then produce the plot with a syntax that mirrors
the simplicity of the plot command for curves:

x = y = linspace(-5, 5, 21)
xv, yv = ndgrid(x, y)
values = sin(sqrt(xv**2 + yv**2))
h = mesh(xv, yv, values)

The mesh command returns a reference to a new Surface object, here stored in
a variable h. This reference can be used to set or get properties in the object
at a later stage if needed. The resulting plot can be seen in Figure 11.

We remark that the computations in the previous example are vectorized.
The corresponding scalar computations using a double loop read

values = zeros(x.size, y.size)
for i in xrange(x.size):

for j in xrange(y.size):
values[i,j] = sin(sqrt(x[i]**2 + y[j]**2))

However, for the mesh command to work, we need the vectorized extensions xv
and yv of x and y.

The surf command employs the same syntax, but results in a different plot
(see Figure 12):

surf(xv, yv, values)
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Figure 12: Result of the surf command (Gnuplot backend).

The surf command offers many possibilities to adjust the resulting plot:

setp(interactive=False)
surf(xv, yv, values)
shading(’flat’)
colorbar()
colormap(hot())
axis([-6,6,-6,6,-1.5,1.5])
view(35,45)
show()

Here we have specified a flat shading model, added a color bar, changed the
color map to hot, set some suitable axis values, and changed the view point
(the view takes two arguments: the azimuthal rotation and the elevation, both
given in degrees). The same plot can also be accomplished with one single,
compound statement (just as Easyviz offers for the plot command):

surf(xv, yv, values,
shading=’flat’,
colorbar=’on’,
colormap=hot(),
axis=[-6,6,-6,6,-1.5,1.5],
view=[35,45])

Figure 13 displays the result.

3.2 Contour Plots

A contour plot is another useful technique for visualizing scalar fields. The
primary examples on contour plots from everyday life is the level curves on ge-
ographical maps, reflecting the height of the terrain. Mathematically, a contour
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Figure 13: Result of an extended surf command (Gnuplot backend).

line, also called an isoline, is defined as the implicit curve f(x, y) = c. The
contour levels c are normally uniformly distributed between the extreme values
of the function f (this is the case in a map: the height difference between two
contour lines is constant), but in scientific visualization it is sometimes useful to
use a few carefully selected c values to illustrate particular features of a scalar
field.

In Easyviz, there are several commands for creating different kinds of contour
plots:

• contour: Draw a standard contour plot, i.e., lines in the plane.

• contourf: Draw a filled 2D contour plot, where the space between the
contour lines is filled with colors.

• contour3: Same as contour, but the curves are drawn at their corre-
sponding height levels in 3D space.

• meshc: Works in the same way as mesh except that a contour plot is drawn
in the plane beneath the mesh.

• surfc: Same as meshc except that a solid surface is drawn instead of a
wireframe mesh.

We start with illustrating the plain contour command, assuming that we al-
ready have computed the xv, yv, and values arrays as shown in our first example
on scalar field plotting. The basic syntax follows that of mesh and surf:
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Figure 14: Result of the simplest possible contour command (Gnuplot backend).

contour(xv, yv, values)

By default, five uniformly spaced contour level curves are drawn, see Figure 14.
The number of levels in a contour plot can be specified with an additional

argument:

n = 15 # number of desired contour levels
contour(xv, yv, values, n)

The result can be seen in Figure 15.
Sometimes one wants contour levels that are not equidistant or not dis-

tributed throughout the range of the scalar field. Individual contour levels to
be drawn can easily be specified as a list:

levels = [-0.5, 0.1, 0.3, 0.9]
contour(xv, yv, values, levels, clabels=’on’)

Now, the levels list specify the values of the contour levels, and the clabel

keyword allows labeling of the level values in the plot. Figure 16 shows the
result. We remark that the Gnuplot backend colors the contour lines and places
the contour values and corresponding colors beside the plot. Figures that are re-
produced in black and white only can then be hard to analyze. Other backends
may draw the contour lines in black and annotate each line with the correspond-
ing contour level value. Such plots are better suited for being displayed in black
and white.

The contourf command,

33



-6 -4 -2  0  2  4  6
-6

-4

-2

 0

 2

 4

 6

Figure 15: A contour plot with 15 contour levels (Gnuplot backend).
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Figure 16: Four individually specified contour levels (Gnuplot backend).
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Figure 17: Filled contour plot created by the contourf command (VTK back-
end).

contourf(xv, yv, values)

gives a filled contour plot as shown in Figure 17. Only the Matplotlib and VTK
backends currently supports filled contour plots.

The contour lines can be ”lifted up” in 3D space, as shown in Figure 18,
using the contour3 command:

contour3(xv, yv, values, 15)

Finally, we show a simple example illustrating the meshc and surfc com-
mands:

meshc(xv, yv, values,
clevels=10,
colormap=hot(),
grid=’off’)

figure()
surfc(xv, yv, values,

clevels=15,
colormap=hsv(),
grid=’off’,
view=(30,40))

The resulting plots are displayed in Figures 19 and 20.
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Figure 18: Example on the contour3 command for elevated contour levels
(Gnuplot backend).
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Figure 19: Wireframe mesh with contours at the bottom (Gnuplot backend).
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Figure 20: Surface plot with contours (Gnuplot backend).

3.3 Pseudocolor Plots

Another way of visualizing a 2D scalar field in Easyviz is the pcolor command.
This command creates a pseudocolor plot, which is a flat surface viewed from
above. The simplest form of this command follows the syntax of the other
commands:

pcolor(xv, yv, values)

We can set the color shading in a pseudocolor plot either by giving the shading
keyword argument to pcolor or by calling the shading command. The color
shading is specified by a string that can be either ’faceted’ (default), ’flat’,
or ’interp’ (interpolated). The Gnuplot and Matplotlib backends support
’faceted’ and ’flat’ only, while the VTK backend supports all of them.

3.4 Isosurface Plots

For 3D scalar fields, isosurfaces or contour surfaces constitute the counterpart
to contour lines or isolines for 2D scalar fields. An isosurface connects points in
a scalar field with (approximately) the same scalar value and is mathematically
defined by the implicit equation f(x, y, z) = c. In Easyviz, isosurfaces are
created with the isosurface command. We will demonstrate this command
using 3D scalar field data from the flow function. This function, also found
in Matlab, generates fluid flow data. Our first isosurface visualization example
then looks as follows:
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Figure 21: Pseudocolor plot (Gnuplot backend).

x, y, z, v = flow() # generate fluid-flow data
setp(interactive=False)
h = isosurface(x,y,z,v,-3)
h.setp(opacity=0.5)
shading(’interp’)
daspect([1,1,1])
view(3)
axis(’tight’)
show()

After creating some scalar volume data with the flow function, we create an
isosurface with the isovalue −3. The isosurface is then set a bit transparent
(opacity=0.5) before we specify the shading model and the view point. We
also set the data aspect ratio to be equal in all directions with the daspect

command. The resulting plot is shown in Figure 22. We remark that the
Gnuplot backend does not support 3D scalar fields and hence not isosurfaces.

Here is another example that demonstrates the isosurface command (again
using the flow function):

x, y, z, v = flow()
setp(interactive=False)
h = isosurface(x,y,z,v,0)
shading(’interp’)
daspect([1,4,4])
view([-65,20])
axis(’tight’)
show()

Figure 23 shows the resulting plot.
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Figure 22: Isosurface plot (VTK backend).

Figure 23: Another isosurface plot (VTK backend).
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3.5 Volumetric Slice Plot

Another way of visualizing scalar volume data is by using the slice\_ command
(since the name slice is already taken by a built-in function in Python for array
slicing, we have followed the standard Python convention and added a trailing
underscore to the name in Easyviz - slice\_ is thus the counterpart to the
Matlab function slice.). This command draws orthogonal slice planes through
a given volumetric data set. Here is an example on how to use the slice\_

command:

x, y, z = ndgrid(seq(-2,2,.2), seq(-2,2,.25), seq(-2,2,.16),
sparse=True)

v = x*exp(-x**2 - y**2 - z**2)
xslice = [-1.2, .8, 2]
yslice = 2
zslice = [-2, 0]
slice\_(x, y, z, v, xslice, yslice, zslice,

colormap=hsv(), grid=’off’)

Note that we here use the SciTools function seq for specifying a uniform parti-
tioning of an interval - the linspace function from numpy could equally well be
used. The first three arguments in the slice\_ call are the grid points in the
x, y, and z directions. The fourth argument is the scalar field defined on-top of
the grid. The next three arguments defines either slice planes in the three space
directions or a surface plane (currently not working). In this example we have
created 6 slice planes: Three at the x axis (at x = −1.2, x = 0.8, and x = 2),
one at the y axis (at y = 2), and two at the z axis (at z = −2 and z = 0.0).
The result is presented in Figure 24.

Contours in Slice Planes. With the contourslice command we can create
contour plots in planes aligned with the coordinate axes. Here is an example
using 3D scalar field data from the flow function:

x, y, z, v = flow()
setp(interactive=False)
h = contourslice(x, y, z, v, seq(1,9), [], [0], linspace(-8,2,10))
axis([0, 10, -3, 3, -3, 3])
daspect([1, 1, 1])
ax = gca()
ax.setp(fgcolor=(1,1,1), bgcolor=(0,0,0))
box(’on’)
view(3)
show()

The first four arguments given to contourslice in this example are the ex-
tended coordinates of the grid (x, y, z) and the 3D scalar field values in the
volume (v). The next three arguments defines the slice planes in which we want
to draw contour lines. In this particular example we have specified two contour
plots in the planes x = 1, 2, . . . , 9, none in y = const planes (empty list) , and
one contour plot in the plane z = 0. The last argument to contourslice is
optional, it can be either an integer specifying the number of contour lines (the
default is five) or, as in the current example, a list specifying the level curves.
Running the set of commands results in the plot shown in Figure 25.
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Figure 24: Slice plot where the x axis is sliced at -1.2, 0.8, and 2, the y axis is
sliced at 2, and the z axis is sliced at -2 and 0.0 (VTK backend).
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Figure 25: Contours in slice planes (VTK backend).
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Figure 26: Contour slice plot of a 3D MRI data set (VTK backend).

Here is another example where we draw contour slices from a three-dimensional
MRI data set:

import scipy.io
mri = scipy.io.loadmat(’mri_matlab_v6.mat’)
D = mri[’D’]
image_num = 8

# Displaying a 2D Contour Slice
contourslice(D, [], [], image_num, daspect=[1,1,1], indexing=’xy’)

The MRI data set is loaded from the file mri_matlab_v6.mat with the aid from
the loadmat function available in the io module in the SciPy package. We then
create a 2D contour slice plot with one slice in the plane z = 8. Figure 26
displays the result.

4 Visualization of Vector Fields

A vector field is a function from space or space-time to a vector value, where
the number of components in the vector corresponds to the number of space
dimensions. Primary examples on vector fields are the gradient of a scalar field;
or velocity, displacement, or force in continuum physics.

In Easyviz, a vector field can be visualized either by a quiver (arrow) plot or
by various kinds of stream plots like stream lines, stream ribbons, and stream
tubes. Below we will look closer at each of these visualization techniques.
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Figure 27: Velocity vector plot (Gnuplot backend).

4.1 Quiver Plots

The quiver and quiver3 commands draw arrows to illustrate vector values
(length and direction) at discrete points. As the names indicate, quiver is for
2D vector fields in the plane and quiver3 plots vectors in 3D space. The basic
usage of the quiver command goes as follows:

x = y = linspace(-5, 5, 21)
xv, yv = ndgrid(x, y, sparse=False)
values = sin(sqrt(xv**2 + yv**2))
uv, vv = gradient(values)
quiver(xv, yv, uv, vv)

Our vector field in this example is simply the gradient of the scalar field used
to illustrate the commands for 2D scalar field plotting. The gradient function
computes the gradient using finite difference approximations. The result is a
vector field with components uv and vv in the x and y directions, respectively.
The grid points and the vector components are passed as arguments to quiver,
which in turn produces the plot in Figure 27.

The arrows in a quiver plot are automatically scaled to fit within the grid. If
we want to control the length of the arrows, we can pass an additional argument
to scale the default lengths:

scale = 2
quiver(xv, yv, uv, vv, scale)

This value of scale will thus stretch the vectors to their double length. To turn
off the automatic scaling, we can set the scale value to zero.
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Figure 28: Combined quiver and pseudocolor plot (VTK backend).

Quiver plots are often used in combination with other plotting commands
such as pseudocolor plots or contour plots, since this may help to get a better
perception of a given set of data. Here is an example demonstrating this prin-
ciple for a simple scalar field, where we plot the field values as colors and add
vectors to illustrate the associated gradient field:

xv, yv = ndgrid(linspace(-5,5,101), linspace(-5,5,101))
values = sin(sqrt(xv**2 + yv**2))
pcolor(xv, yv, values, shading=’interp’)

# Create a coarser grid for the gradient field
xv, yv = ndgrid(linspace(-5,5,21), linspace(-5,5,21))
values = sin(sqrt(xv**2 + yv**2))
uv, vv = gradient(values)
hold(’on’)
quiver(xv, yv, uv, vv, ’filled’, ’k’, axis=[-6,6,-6,6])
figure(2)
contour(xv, yv, values, 15)
hold(’on’)
quiver(xv, yv, uv, vv, axis=[-6,6,-6,6])

The resulting plots can be seen in Figure 28 and 29.
Visualization of 3D vector fields by arrows at grid points can be done with

the quiver3 command. At the time of this writing, only the VTK backend
supports 3D quiver plots. A simple example of plotting the ”radius vector
field” ~v = (x, y, z) is given next:

x = y = z = linspace(-3,3,4)
xv, yv, zv = ndgrid(x, y, z, sparse=False)
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Figure 29: Combined quiver and pseudocolor plot (VTK backend).

uv = xv
vv = yv
wv = zv
quiver3(xv, yv, zv, uv, vv, wv, ’filled’, ’r’, axis=[-7,7,-7,7,-7,7])

The strings ’filled’ and ’r’ are optional and makes the arrows become filled
and red, respectively. The resulting plot is presented in Figure 30.

4.2 Stream Plots

Stream plots constitute an alternative to arrow plots for visualizing vector fields.
The stream plot commands currently available in Easyviz are streamline,
streamtube, and streamribbon. Stream lines are lines aligned with the vector
field, i.e., the vectors are tangents to the streamlines. Stream tubes are sim-
ilar, but now the surfaces of thin tubes are aligned with the vectors. Stream
ribbons are also similar: thin sheets are aligned with the vectors. The latter
type of visualization is also known as stream or flow sheets. In the near future,
Matlab commands such as streamslice and streamparticles might also be
implemented.

We start with an example on how to use the streamline command. In this
example (and in the following examples) we will use the wind data set that is
included with Matlab. This data set represents air currents over a region of
North America and is suitable for testing the different stream plot commands.
The following commands will load the wind data set and then draw some stream
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Figure 30: 3D quiver plot (VTK backend).

lines from it:

import scipy.io # needed to load binary .mat-files

# Load the wind data set and create variables
wind = scipy.io.loadmat(’wind.mat’)
x = wind[’x’]
y = wind[’y’]
z = wind[’z’]
u = wind[’u’]
v = wind[’v’]
w = wind[’w’]

# Create starting points for the stream lines
sx, sy, sz = ndgrid([80]*4, seq(20,50,10), seq(0,15,5),

sparse=False)

# Draw stream lines
streamline(x, y, z, u, v, w, sx, sy, sz,

view=3, axis=[60,140,10,60,-5,20])

The wind data set is stored in a binary ‘.mat‘-file called wind.mat. To load the
data in this file into Python, we can use the loadmat function which is available
through the io module in SciPy. Using the loadmat function on the ‘wind.mat‘-
file returns a Python dictionary (called wind in the current example) containing
the NumPy arrays x, y, z, u, v, and w. The arrays u, v, and w are the 3D vector
data, while the arrays x, y, and z defines the (3D extended) coordinates for
the associated grid. The data arrays in the dictionary wind are then stored in
seperate variables for easier access later.
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Figure 31: Stream line plot (Vtk backend).

Before we call the streamline command we must set up some starting point
coordinates for the stream lines. In this example, we have used the ndgrid

command to define the starting points with the line:

sx, sy, sz = ndgrid([80]*4, seq(20,50,10), seq(0,15,5))

This command defines starting points which all lie on x = 80, y = 20, 30, 40, 50,
and z = 0, 5, 10, 15. We now have all the data we need for calling the streamline
command. The first six arguments to the streamline command are the grid
coordinates (x,y,z) and the 3D vector data (u,v,w), while the next three
arguments are the starting points which we defined with the ndgrid command
above. The resulting plot is presented in Figure 31.

The next example demonstrates the streamtube command applied to the
same wind data set:

streamtube(x, y, z, u, v, w, sx, sy, sz,
daspect=[1,1,1],
view=3,
axis=’tight’,
shading=’interp’)

The arrays sx, sy, and sz are the same as in the previous example and defines
the starting positions for the center lines of the tubes. The resulting plot is
presented in Figure 32.

Finally, we illustrate the streamribbon command:
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Figure 32: Stream tubes (Vtk backend).

streamribbon(x, y, z, u, v, w, sx, sy, sz,
ribbonwidth=5,
daspect=[1,1,1],
view=3,
axis=’tight’,
shading=’interp’)

Figure 33 shows the resulting stream ribbons.

4.3 Bar Charts

Easyviz also supports a unified interface to simple bar charts. Here is a simple
example for displaying tabular values, with one bar for each data point:

from scitools.std import *
languages = [’C’, ’Java’, ’C++’, ’PHP’, ’VB’, ’C#’, ’Python’,

’Perl’, ’JavaScript’]
ratings = [18, 18, 9.7, 9.7, 6.4, 4.4, 4.2, 3.6, 2.5]
bar(ratings, ’r’,

barticks=languages,
ylabel=’Ratings in percent (TIOBE Index, April 2010)’,
axis=[-1, len(languages), 0, 20],
hardcopy=’tmp.eps’)

The bar chart illustrates the data in the ratings list. These data correspond
to the names in languages.
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Figure 33: Stream ribbons (VTK backend).
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Figure 34: A simple bar chart illustrating the popularity of common program-
ming languages.
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One may display groups of bars. The data can then be put in a matrix,
where rows (1st index) correspond to the groups the columns to the data within
one group:

data = [[ 0.15416284 0.7400497 0.26331502]
[ 0.53373939 0.01457496 0.91874701]
[ 0.90071485 0.03342143 0.95694934]
[ 0.13720932 0.28382835 0.60608318]]

bar(data,
barticks=[’group 1’, ’group 2’, ’group 3’, ’group 4’],
legend=[’bar 1’, ’bar 2’, ’bar 3’],
axis=[-1, data.shape[0], 0, 1.3],
ylabel=’Normalized CPU time’,
title=’Bars from a matrix, now with more annotations’)

When the names of the groups (barticks) are quite long, rotating them 90 degrees
is preferable, and this is done by the keyword argument rotated_barticks=True.

The demo program in examples/bar_demo.py contains additional examples
and features.

5 Backends

As we have mentioned earlier, Easyviz is just a unified interface to other plot-
ting packages, which we refer to as backends. We have currently implemented
backends for Gnuplot, Grace, OpenDX, Matlab, Matplotlib, Pmw.Blt, Veusz,
VisIt, and VTK. Some are more early in developement than others, like the
backends for OpenDx and VisIt.

Because of limitations in many of the plotting packages, not all features in
Easyviz are supported by each of the backends. Gnuplot has (at the time of
this writing) no support for visualization of 3D vector fields, so this is of course
not available in the Gnuplot backend either.

Some supported visualization programs are commented on below.

Gnuplot. Gnuplot is a command-driven interactive or scripted plotting utility
that works on a wide variety of platforms. Gnuplot supports many types of
plots in both 2D and 3D, including curve plots, contour plots, vector plots, and
surface plots. 3D scalar and vector fields are not supported. To access Gnuplot
from Python and send NumPy arrays to Gnuplot, we use the Python module
Gnuplot.

Matlab. Many view Matlab as the de facto standard for making curves and
plots of 2D scalar/vector fields.

Matplotlib. Matplotlib is now quickly gaining wide popularity in the scien-
tific Python community and has established itself as the de facto standard for
curve plotting and 2D contour and (recently) surface plotting. The interface
to Matplotlib is Matlab-insipired, and different backends are used to create the
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plots: Gtk, Tk, WxWidgets and many more. (Since Easyviz and Matplotlib
haver very similar Matlab-style syntax, Easyviz is just a thin layer on top of
Matplotlib to enable Matplotlib to be used with the Easyviz unified syntax.)
Matplotlib is now a comprehensive package with lots of tuning possibilities that
Easyviz does not support - but one can fetch the underlying Matplotlib from
Easyviz and call all the functionality of Matplotlib directly.

Grace. Grace is a highly interactive curve plotting program on the Unix/X11
platform which has been popular for many years. It does not support 2D or 3D
scalar or vector fields. However, it has a lot of functionality for computing with
curves and adjusting/fine-tuning plots interactively.

PyX. PyX is a Python package for the creation of PostScript and PDF files.
It combines an abstraction of the PostScript drawing model with a TeX/LATEX
interface. Complex tasks like 2d and 3d plots in publication-ready quality are
built out of these primitives.

Pmw.Blt.Graph. Pmw (Python Mega Widgets) extends the Tkinter pack-
age with more sophisticated widgets, included an interactive widget for curve
plotting. This widget is based on the BLT package (an extension of Tk written
in C). The BLT backend offers currenlty only basic plotting functionality.

Veusz. From Veusz homepage: Veusz is a GUI scientific plotting and graph-
ing package. It is designed to produce publication-ready Postscript or PDF
output. SVG, EMF and bitmap formats export are also supported. Veusz has
a comprehensive GUI and produces really high-quality plots.

VTK. VTK (Visualization ToolKit) is a package primarily aimed at visualiz-
ing 2D and 3D scalar and vector fields by a range of techniques. VTK is used to
achieve 2D and 3D visualizations of the same type as Matlab offers. However,
VTK can do much more (although the Easyviz commands are restricted to what
is typically offered by Matlab).

6 Design

6.1 Main Objects

All code that is common to all backends is gathered together in a file called
common.py. For each backend there is a separate file where the backend depen-
dent code is stored. For example, code that are specific for the Gnuplot backend,
are stored in a file called gnuplot_.py and code specific for the VTK backend
are stored in vtk_.py (note the final underscore in the stem of the filename -
all backend files have this underscore).

Each backend is a subclass of class BaseClass. The BaseClass code is
found in common.py and contains all common code for the backends. Basically,
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a backend class extends BaseClass with rendering capabilities and backend-
specific functionality.

The most important method that needs to be implemented in the backend
is the _replot method, which updates the backend and the plot after a change
in the data. Another important method for the backend class is the hardcopy

method, which stores an image of the data in the current figure to a file.
Inspired by Matlab, the Easyviz interface is organized around figures and

axes. A figure contains an arbitrary number of axes, and the axes can be
placed in arbitrary positions in the figure window. Each figure appears in a
separate window on the screen. The current figure is accessed by the gcf()

call. Similarly, the current axes are accessed by calling gca().
It is natural to have one class for figures and one for axes. Class Figure

contains a dictionary with one (default) or more Axis objects in addition to
several properties such as figure width and height. Class Axis has another
dictionary with the plot data as well as lots of parameters for colors, text fonts,
labels on the axes, hidden surfaces, etc. For example, when adding an elevated
surface to the current figure, this surface will be appended to a list in the
current Axis object. Optionally one can add the surface to another Axis object
by specifying the Axis instance as an argument.

All the objects that are to be plotted in a figure such as curves, surfaces,
vectors, and so on, are stored in repsectively classes. An elevated surface, for
instance, is represented as an instance of class Surface. All such classes are sub-
classes of PlotProperties. Besides being the base class of all objects that can
be plotted in a figure (Line, Surface, Contours, VelocityVectors, Streams,
Volume), class PlotProperties also stores various properties that are common
to all objects in a figure. Examples include line properties, material properties,
storage arrays for x and y values for Line objects, and x, y, and z values for 3D
objects such as Volume.

The classes mentioned above, i.e., BaseClass with subclasses, class PlotProperties
with subclasses, as well as class Figure and class Axis constitute the most im-
portant classes in the Easyviz interface. Other less important classes are Camera,
Light, Colorbar, and MaterialProperties.

All the classes in common.py follows a convention where class parameters are
set by a setp method and read by a getp method. For example, we can set the
limits on the x axis by using the setp method in a Axis instance:

ax = gca() # get current axis
ax.setp(xmin=-2, xmax=2)

To extract the values of these limits we can write

xmin = ax.getp(’xmin’)
xmax = ax.getp(’xmax’)

Normal use will seldom involve setp and getp functions, since most users will
apply the Matlab-inspired interface and set, e.g., the limits by

xlim([-2,2])
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7 Installation

Easyviz comes with the SciTools package, so to install Easyviz, you must install
SciTools, which is available from Google code.

If you run a Linux system that allows installation from Debian repositories
(Ubuntu is such a Linux system), you get SciTools, NumPy, and Gnuplot with
one Unix command:

Terminal

Unix> sudo apt-get install python-scitools

because SciTools is in standard Debian. You probably want to be able to plot
with other packages than Gnuplot as well. In addition, it is convenient to
have ImageMagick installed for conversion between plot file formats and some
encoders for videos. Here is a suggested list for installation on Debian systems:

Terminal

Unix> sudo apt-get install python-matplotlib python-tk python-scipy python-scientific imagemagick netpbm

Otherwise, you download the tarball with the SciTools software, pack it out,
go the scitools folder, and run the standard command

Unix/DOS> python setup.py install

Easyviz is reached as the package scitools.easyviz and can be imported
in several ways (see the paragraph heading ”Importing Just Easyviz” in the
Tutorial).

Easyviz will not work unless you have one or more plotting programs cor-
rectly installed. Below, we have collected some brief information on installing
various programs. (Note that if you do an apt-getinstall python-scitools

all necessary plotting programs are automatically installed for you.)
Please check your plotting program independently of Easyviz, as described

in the Check Your Backends! section of the Troubleshooting chapter, if you
encounter strange errors during Easyviz plotting.

7.1 Installing Gnuplot

7.2 Linux/Unix

Compile from Source. Gnuplot can be downloaded from gnuplot.sourceforge.net.
It builds easily on most Unix systems. You also need the Gnuplot Python mod-
ule, which can be obtained from gnuplot-py.sourceforge.net.

Debian/Ubuntu. Prebuilt versions are available for Debian/Ubuntu: run

apt-get install gnuplot gnuplot-x11 python-gnuplot
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but running these commands are not necessary since on Debian/Ubuntu you will
install python-scitools which effectively installs all the software that SciTools
depend on.

7.3 Windows

On Windows, one can either use Gnuplot under Cygwin or use a precompiled
binary from sourgeforce.net.

Using the Gnuplot Cygwin package. In this case there are two things
that needs to be changed in the gp_cygwin.py file in the top-level directory of
the Gnuplot.py source tree. First you need to change the gnuplot_command

variable to gnuplot instead of pgnuplot.exe. Then you should change the
default_term variable to x11 instead of windows since the Gnuplot Cygwin
package is not compiled with the Windows terminal. Finally, install Gnuplot.py
(python setup.py install) and launch X11 by running startx from a Cyg-
win prompt. Try to run the test.py script that comes with Gnuplot.py. If
everything works, Easyviz can use Gnuplot.

Using Gnuplot Binaries. First download the Gnuplot 4.2.4 binaries for
Windows (or a newer version) A possible URL is

http://prdownloads.sourceforge.net/sourceforge/gnuplot/gp424win32.zip

The zip file may have another name for a newer version of Gnuplot on Windows.
Then unzip the gp424win32.zip file to the folder

C:\gnuplot

Add the folder name

C:\gnuplot\bin

to the PATH environment variable (this is done in a graphical interface for setting
environment variables).

Check out the latest SVN revision of the Python interface to Gnuplot, which
is the Python module file Gnuplot.py:

svn co https://gnuplot-py.svn.sourceforge.net/svnroot/gnuplot-py/trunk/gnuplot-py

Install Gnuplot.py:

cd gnuplot-py
python setup.py bdist_wininst
dist\gnuplot-py-1.8+.win32.exe

Check out the latest SVN revision of SciTools:

svn co http://scitools.googlecode.com/svn/trunk/ scitools

Install SciTools:

cd scitools
python setup.py bdist_wininst
dist\SciTools-0.4.win32.exe

(The SciTools version number differs.)
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7.4 Installing Matplotlib

This is normally just a matter of

python setup.py install

in the root directory of the Matplotlib code.

Windows. You can download prebuilt binaries from the Matplotlib home
page.

8 Troubleshooting

8.1 Can I Perform a Diagnostic Test of Easyviz?

Yes. It is wise to perform a diagnostic test before reporting any error or trouble
to the SciTools maintainers. Find the source folder of SciTools and go to the
misc subfolder. Run

python diagonstic.py

On the screen, you can see what you have of working software that Easyviz
may use. You do not need to see ”ok” after each test, but at least one plot-
ting program must be properly installed. Include the detailed diagonstics in
the scitools_diagnostic.log file as attachment in any mail to the SciTools
developers.

8.2 The Plot Window Disappears Immediately

Depending on the backend used for plotting with Easyviz, the plot window may
be killed when the program terminates. Adding a statement that makes the
program halt provides a remedy:

raw_input(’Press Return key to quit: ’)

The plot window will now stay on the screen until hitting the Enter/Return key.
Another remedy can be to add a show() call at the end of the plotting:

show()

8.3 I Get Thread Errors While Plotting

With the Gnuplot backend, thread errors from Python may occur if you plot
many curves. The remedy is to do import time and insert a time.sleep(0.2)

(pause the program for 0.2 sec) between each call to the plot command.
Remark: Scitools v0.8 automatically inserts a 0.2 sec pause when plotting

many curves with the Gnuplot backend.
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8.4 I Get Strange Errors Saying Something About LATEX

You probably run Easyviz with Matplotlib as backend, and you do not have a
working LATEX installation. Matplotlib applies LATEX for improved rendering of
legends, titles, and numbers. The fix is to turn off the use of LATEX, which is done
by the text.usetex parameter in the matplotlib section of the configuration
file. Set this parameter to false. See the subsection ”Setting Parameters
in the Configuration File” in the section ”Advanced Easyviz Topics” in the
Easyviz tutorial. The tutorial can be reached from the code.google.com site
or by running pydoc scitools.easyviz. If you use Matplotlib as default plotting
engine, we recommend to have a .scitools.cfg configuration file in your home
folder and that use control the use of Matplotlib parameters in this file.

Another fix of LaTeX-related problems is to switch to another backend than
Matplotlib.

8.5 Old Programs with 2D Scalar/Vector Field Plotting
Do Not Work

SciTools version 0.7 changed the default backend for plotting to Matplotlib
instead of Gnuplot (provided you have Matplotlib and you run setup.py to
install SciTools - binaries for Debian still has Gnuplot as the plotting engine).
Some functionality in Gnuplot, especially regarding 2D vector/scalar fields, is
not yet present in Matplotlib and/or supported by the Easyviz interface to
Matplotlib. You then need to explicitly run the script with Gnuplot as plottin
engine:

python myprogram.py --SCITOOLS_easyviz_backend gnuplot

or you must import gnuplot explicitly in the program:

from scitools.std import *
from scitools.easyviz.gnuplot_ import *

or you can edit the installed scitools.cfg file (”backend” keyword in the
”easyviz” section), or your local version .scitools.cfg in your home folder,
or maybe the simplest solution is to reinstall SciTools with Gnuplot as plotting
engine:

python setup.py install --easyviz_backend gnuplot

8.6 Check Your Backends!

When you encounter a problem with Easyviz plotting, make sure that the back-
end works correctly on its own (there may, e.g., be installation problems with
the backend - Easyviz just calls the backend to do the plotting).

Gnuplot. For the Gnuplot backend you can try the following commands in a
terminal window:
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Terminal

Unix/DOS> gnuplot
gnuplot> plot sin(x)

This should result in a plot of the sine function on the screen. If this command
does not work, Easyviz will not work with the Gnuplot backend. A common
problem is that Gnuplot is installed, but the path to the Gnuplot executable
is not registered in the PATH environment variable. See the section Installing

Gnuplot if you need help with installing the Gnuplot program and its Python
interface.

Matplotlib. The following code tests if you have installed Matplotlib cor-
rectly:

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2*np.pi, 101)
y = np.sin(x)
plt.plot(x, y)
plt.show()

In case of problems, go to the Matplotlib source directory, remove the build

subdirectory, and try a new install with python setup.py install.

8.7 Can I Easily Turn Off All Plotting?

Yes, this is very convenient when debugging other (non-plotting) parts of a
program. Just write

from scitools.std import *
turn_off_plotting(globals())

8.8 How Can I Change the Type of Gnuplot Window?

The configuration file (.scitools.cfg in your home directory or a local direc-
tory, copied from scitools.cfg in the SciTools source code distribution) has
an item for controlling the type of terminal used by Gnuplot:

[gnuplot]
...
default_term = <str> wxt

Here, the wxt terminal, based on wxWidgets, is chosen. Other choices are x11

on systems supporting X11 graphics, or aqua on Mac. The wxt value is an
allround choice since wxWidgets work, in theory, on all platforms.

8.9 How Can The Aspect Ratio of The Axes Be Con-
trolled?

See the section ”Controlling the Aspect Ratio of Axes” in the tutorial.
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8.10 Trouble with Gnuplot and Threads

When using the Gnuplot backend, the following error may be encountered:

thread.error: can’t start new thread

A remedy is to create fewer plots, and for animations, update the plot window
less frequently. For example,

for i in range(number_of_frames_in_animation):
<prepare data>
if i % == 100: # plot every 100 frames

<make plot>

8.11 Trouble with Movie Making

The call to movie demands that you have video encoders installed. The le-
gal encoders are mencoder, ffmpeg, mpeg_encode, ppmtompeg, mpeg2enc, and
convert. Some of these also require additional software to be installed.

To install (e.g.) convert, you need to install the ImageMagick software
suite, since convert is a part of that package. ImageMagick is easy to install
on most platforms. The ppmtompeg encoder is a part of the Netpbm software,
while mpeg2enc is a part of mjpegtools.

On Linux Ubuntu you can issue the following installation command to install
most of the available encoders for the movie function:

Unix> sudo apt-get install mencoder ffmpeg libavcodec-unstripped-51 netpbm mjpegtools imagemagick

When something goes wrong with the movie making, check the output in
the terminal window. By default, Easyviz prints the command that makes the
movie. You can manually copy this command and run it again to start finding
out what can be wrong. Just switching to a different encoder can be a quick
remedy. The switch is done with the encoder keyword argument to movie, e.g.,

# Make animated GIF movie in the file tmpmovie.gif
movie(’tmp_*.png’, encoder=’convert’, fps=2,

output_file=’tmpmovie.gif’)

8.12 I Get Thread Errors with Gnuplot

When plotting inside a loop, e.g.,

for i in some_values:
...
plot(t, X0, ’r-6’, axis=(0, 1, -2, 2),

xlabel=’t’, ylabel=’Xt’, title=’My Title’)

Gnuplot may lead to thread errors. A remedy is to do some plotting outside
the loop and then only update the data inside the loop:

plot(t, X0, ’r-6’, axis=(0, 1, -2, 2),
xlabel=’t’, ylabel=’Xt’, title=’My Title’)

for i in some_values:
...
plot(t, X0)
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8.13 Where Can I Find Easyviz Documentation?

There is a verbose Easyviz documentation that mainly focuses on an introduc-
tion to Easyviz (what you read now is a part of that documentation).

Another useful source of information is the many examples that come with
the SciTools/Easyviz source code. The examples are located in the examples

subfolder of the source.

8.14 Grace Gives Error Messages When Calling Savefig/Hard-
copy

Some versions of grace do not like commands for printing the plot to file. Try
the interactive GUI: set options in Print setup... and then click on Print.

8.15 I Cannot Find Out How My Plot Can Be Created

Note that Easyviz only support the most basic types of plots:

• y=f(x) curves

• bar plots

• contour plots of 2D scalar fields

• elevated 3D surfaces of 2D scalar fields

• 3D isosurfaces of 3D scalar fields

• arrows reflecting 2D/3D vector fields

• streamlines, streamtubes, and streamribbon for 3D vector fields.

For such standard plots you can use Easyviz, otherwise you have to use a plotting
package like Matplotlib, Gnuplot, or VTK directly from your Python program.

The following Matlab-like commands (functions) are available (but not sup-
ported by all backends):

• autumn,

• axes,

• axis,

• bone,

• box,

• brighten,

• camdolly,
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• camlight,

• camlookat,

• campos,

• camproj,

• camroll,

• camtarget,

• camup,

• camva,

• camzoom,

• caxis,

• cla,

• clabel,

• clf,

• close,

• closefig,

• closefigs,

• colorbar,

• colorcube,

• colormap,

• coneplot,

• contour,

• contour3,

• contourf,

• contourslice,

• cool,

• copper,

• daspect,

• figure,
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• fill,

• fill3,

• flag,

• gca,

• gcf,

• get,

• gray,

• grid,

• hardcopy,

• hidden,

• hold,

• hot,

• hsv,

• ishold,

• isocaps,

• isosurface,

• jet,

• legend,

• light,

• lines,

• loglog,

• material,

• mesh,

• meshc,

• openfig,

• pcolor,

• pink,

• plot,
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• plot3,

• prism,

• quiver,

• quiver3,

• reducevolum,

• savefig,

• semilogx,

• semilogy,

• set,

• shading,

• show,

• slice ,

• spring,

• streamline,

• streamribbon,

• streamslice,

• streamtube,

• subplot,

• subvolume,

• summer,

• surf,

• surfc,

• surfl,

• title,

• vga,

• view,

• white,

• winter,
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• xlabel,

• ylabel,

• zlabel
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