Nuitka Developer

Manual

-
1

Contents

Milestones
Version Numbers

Current State

Setting up the Development Environment for Nuitka

Visual Studio Code
Eclipse / PyCharm
Commit and Code Hygiene
Coding Rules Python
Tool to format
Identifiers
Classes
Functions
Module/Package Names
Context Managers
Prefer list contractions over built-ins
Coding Rules C
The "git flow" model
Nuitka "git/github" Workflow
APl Documentation and Guidelines
Use of Standard Python __doc___ Strings
Special doxygen Anatomy of __doc__
Checking the Source
Running the Tests
Running all Tests
Basic Tests
Syntax Tests
Program Tests
Generated Tests
Compile Nuitka with Nuitka
Internal/Plugin API
Working with the CPython suites
Design Descriptions
Nuitka Logo
Choice of the Target Language
Use of Scons internally

Locating Modules and Packages

© © © N N N o o o0 A DA B WW W W W DNDNDNNMNDNDPEPE PP

e~ N e o o o o = = =
o M DM W W NDNDDNDDNDR R R

Hooking for module i nport process
Supporting __cl ass___ of Python3
Frame Stack
Parameter Parsing
Input
Keyword dictionary
Argument tuple
SSA form for Nuitka
Loop SSA
Python Slots in Optimization
Basic Slot Idea
Representation in Nuitka
The C side
Built-in call optimization
Code Generation towards C
Exceptions
Statement Temporary Variables
Local Variables Storage
Exit Targets
Frames
Abortive Statements

Constant Preparation

Language Conversions to make things simpler

The assert statement

The "comparison chain" expressions

The execfi | e built-in

Generator expressions with yi el d

Function Decorators
Functions nested arguments
In-place Assignments
Complex Assignments
Unpacking Assignments
With Statements

For Loops

While Loops

Exception Handlers

Statement t r y/except with el se

Class Creation (Python2)

17
17
18
19
19
19
19
20
21
21
21
22
23
25
25
25
25
25
25
26
26
26
26
26
27
28
28
28
29
29
29
30
31
32
33
33
35
35

Class Creation (Python3)
Generator Expressions
List Contractions
Set Contractions
Dictionary Contractions
Boolean expressions and and or
Simple Calls
Complex Calls
Assignment Expressions
Match Statements
Print Statements
Reformulations during Optimization
Builtin zi p for Python2
Builtin zi p for Python3
Builtin map for Python2
Builtin mi n
Builtin max
Call to di r without arguments
Callls to functions with known signatures
Nodes that serve special purposes
Try statements
Releases
Side Effects
Caught Exception Type/Value References
Hard Module Imports
Locals Dict Update Statement
Optimizing Attribute Lookups into Method Calls for Built-ins types
Plan to add "ctypes" support
Goals/Allowances to the task
Type Inference - The Discussion
Applying this to "ctypes"
Excursion to Functions
Excursion to Loops
Excursion to Conditions
Excursion to r et ur n statements
Excursion to yi el d expressions
Mixed Types
Back to "ctypes"

36
36
37
37
38
38
38
38
40
40
41
42
42
42
43
44
44
44
44
46
46
47
47
47
47
48
48
48
48
49
51
52
53
54
55
55
55
56

Now to the interface
Discussing with examples
Code Generation Impact
Initial Implementation
Goal 1 (Reached)
Goal 2 (Reached)
Goal 3
Goal 4
Limitations for now
How to make Features Experimental
Command Line
In C code
In Python
When to use it
When to remove it
Adding dependencies to Nuitka
Adding a Run Time Dependency
Adding a Development Dependency
Idea Bin
Prongs of Action
Builtin optimization
Class Creation Overhead Reduction
Memory Usage at Compile Time
Coverage Testing
Python3 Performance
Caching of Python level compilation

Updates for this Manual

56
58
58
59
59
60
60
61
62
63
63
63
63
64
64
64
64
65
65
67
67
68
68
68
68
68
68

"Nuitka Developer Manual - Milestones"

The purpose of this Developer Manual is to present the current design of Nuitka, the project rules, and the
motivations for choices made. It is intended to be a guide to the source code, and to give explanations that
don't fit into the source code in comments form.

It should be used as a reference for the process of planning and documenting decisions we made.
Therefore we are e.g. presenting here the type inference plans before implementing them. And we update
them as we proceed.

It grows out of discussions and presentations made at conferences as well as private conversations or
issue tracker.

Milestones

1. Feature parity with CPython, understand all the language construct and behave absolutely
compatible.

Feature parity has been reached for CPython 2.6 and 2.7. We do not target any older CPython
release. For CPython 3.3 up to 3.8 it also has been reached. We do not target the older and
practically unused CPython 3.0 to 3.2 releases.

This milestone was reached. Dropping support for Python 2.6 and 3.3 is an option, should this prove
to be any benefit. Currently it is not, as it extends the test coverage only.

2. Create the most efficient native code from this. This means to be fast with the basic Python object
handling.

This milestone was reached, although of course, micro optimizations to this are happening all the
time.

3. Then do constant propagation, determine as many values and useful constraints as possible at
compile time and create more efficient code.

This milestone is considered almost reached. We continue to discover new things, but the
infrastructure is there, and these are easy to add.

4. Type inference, detect and special case the handling of strings, integers, lists in the program.
This milestone is considered in progress.

5. Add interfacing to C code, so Nuitka can turn a ct ypes binding into an efficient binding as written
with C.

This milestone is planned only.

6. Add hints module with a useful Python implementation that the compiler can use to learn about types
from the programmer.

This milestone is planned only.

Version Numbers

For Nuitka we use semantic versioning, initially with a leading zero still, once we pass release 0. 9, the
scheme will indicate the 10 through using 1. O.

Current State
Nuitka top level works like this:

e nui t ka. t ree. Bui | di ng outputs node tree

e nui t ka. opti m zat i on enhances it as best as it can

"Nuitka Developer Manual - page 1 - Milestones"

"Nuitka Developer Manual - Setting up the Development Environment for Nuitka"

e nui tka. fi nalizati on prepares the tree for code generation
e nui t ka. code_gener at i on. CodeGener at i on orchestrates the creation of code snippets
* nui t ka. code_gener ati on. * Codes knows how specific code kinds are created

e nui t ka. Mai nCont r ol keeps it all together
This design is intended to last.

Regarding types, the state is:

» Types are always PyCbhj ect *, and only a few C types, e.g. nui t ka_bool and nui t ka_voi d and
more are coming. Even for objects, often it's know that things are e.g. really a PyTupl eCbj ect **,
but no C type is available for that yet.

» There are a some specific use of types beyond "compile time constant”, that are encoded in type and
value shapes, which can be used to predict some operations, conditions, etc. if they raise, and result
types they give.

 In code generation, the supported C types are used, and sometimes we have specialized code
generation, e.g. a binary operation that takes an i nt and a fl oat and produces a f | oat value.
There will be fallbacks to less specific types.

The expansion with more C types is currently in progress, and there will also be alternative C types, where
e.g. PyObj ect * and C | ong are in an enum that indicates which value is valid, and where special code
will be available that can avoid creating the PyQbj ect ** unless the later overflows.

Setting up the Development Environment for
Nuitka

Currently there are very different kinds of files that we need support for. This is best addressed with an
IDE. We cover here how to setup the most common one.

Visual Studio Code

Download Visual Studio Code from here: https://code.visualstudio.com/download

At this time, this is the recommended IDE for Linux and Windows. This is going to cover the plugins to
install. Configuration is part of the . vscode in your Nuitka checkout. If you are not familiar with Eclipse,
this is Free Software IDE,designed to be universally extended, and it truly is. There are plugins available
for nearly everything.

The extensions to be installed are part of the Visual Code recommendations in
. vscode/ ext ensi ons. j son and you will be prompted about that and ought to install these.

Eclipse / PyCharm

Don't use these anymore, we consider Visual Studio Code to be far superior for delivering a nice out of the
box environment.

Commit and Code Hygiene

In Nuitka we have tools to auto format code, you can execute them manually, but it's probably best to
execute them at commit time, to make sure when we share code, it's already well format, and to avoid
noise doing cleanups.

The kinds of changes also often cause unnecessary merge conflicts, while the auto format is designed to
format code also in a way that it avoids merge conflicts in the normal case, e.g. by doing imports one item
per line.

"Nuitka Developer Manual - page 2 - Setting up the Development Environment for Nuitka"

https://code.visualstudio.com/download

"Nuitka Developer Manual - Coding Rules Python"

In order to set up hooks, you need to execute these commands:

Where python is the one you use with Nuitka, this then gets all
devel opnment requirenents, can be full PATH.

python -mpip install -r requirenents-devel.txt

python ./m sc/install-git-hooks. py

These commands will make sure that the aut of or mat - nui t ka- sour ce is run on every staged file
content at the time you do the commit. For C files, it may complain unavailability of cl ang- f or nat , follow
it's advice. You may call the above tool at all times, without arguments to format call Nuitka source code.

Should you encounter problems with applying the changes to the checked out file, you can always execute
it with COVMM T_UNCHECKED=1 environment set.

Coding Rules Python

These rules should generally be adhered when working on Nuitka code. It's not library code and it's
optimized for readability, and avoids all performance optimization for itself.

Tool to format

There is a tool bi n/ aut of or mat - nui t ka- sour ce which is to apply automatic formatting to code as
much as possible. It uses bl ack (internally) for consistent code formatting. The imports are sorted with
i sort for proper order.

The tool (mostly bl ack and i sort) encodes all formatting rules, and makes the decisions for us. The
idea being that we can focus on actual code and do not have to care as much about other things. It also
deals with Windows new lines, trailing space, etc. and even sorts PyLint disable statements.

Identifiers

Classes

Classes are camel case with leading upper case. Functions and methods are with leading verb in lower
case, but also camel case. Variables and arguments are lower case with _ as a separator.

cl ass Somed ass:
def doSonet hi ng(sone_paraneter):
sonme_var = ("foo", "bar")

Base classes that are abstract have their name end with Base, so that a meta class can use that
convention, and readers immediately know, that it will not be instantiated like that.

Functions

Function calls use keyword argument preferably. These are slower in CPython, but more readable:

get SequenceCr eat i onCode(
sequence_ki nd=sequence_ki nd, el ement _i dentifiers=identifiers, context=context

)

When the names don't add much value, sequential calls can be done:

cont ext . set LoopConti nueTar get (handl er _start _target)

"Nuitka Developer Manual - page 3 - Coding Rules Python"

"Nuitka Developer Manual - Prefer list contractions over built-ins"

Here, set LoopCont i nueTar get will be so well known that the reader is expected to know the argument
names and their meaning, but it would be still better to add them. But in this instance, the variable name
already indicates that it is.

Module/Package Names

Normal modules are named in camel case with leading upper case, because of their role as singleton
classes. The difference between a module and a class is small enough and in the source code they are
also used similarly.

For the packages, no real code is allowed in their __init__ . py and they must be lower case, like e.g.
nui t ka or codegen. This is to distinguish them from the modules.

Packages shall only be used to group things. In nuit ka. code_generati on the code generation
packages are located, while the main interface is nui t ka. code_gener ati on. CodeGener ati on and
may then use most of the entries as local imports.

There is no code in packages themselves. For programs, we use __nmai n___ package to carry the actual
code.

Names of modules should be plurals if they contain classes. Example is that a Nodes module that
contains a Node class.

Context Managers
Names for context manages start with wi t h

In order to easily recognize that something is to be used as a context manager, we follow a pattern of
naming them wi t hSonet hi ng, to make that easily recognized.

wi t h wi t hEnvi ronment Pat hAdded(os. pat h.j oi n(sys. prefix, "bin")):
wi th withDirectoryChange(self.qt_datadir):

This makes these easy to recognize even in their definition.

Prefer list contractions over built-ins

This concerns map, filter, and appl y. Usage of these built-ins is highly discouraged within Nuitka
source code. Using them is considered worth a warning by "PyLint" e.g. "Used built-in function 'map™. We
should use list contractions instead, because they are more readable.

List contractions are a generalization for all of them. We love readability and with Nuitka as a compiler,
there won't be any performance difference at all.

There are cases where a list contraction is faster because you can avoid to make a function call. And there
may be cases, where map is faster, if a function must be called. These calls can be very expensive in
CPython, and if you introduce a function, just for map, then it might be slower.

But of course, Nuitka is the project to free us from what is faster and to allow us to use what is more
readable, so whatever is faster, we don't care. We make all options equally fast and let people choose.

For Nuitka the choice is list contractions as these are more easily changed and readable.

Look at this code examples from Python:

class A:
def get X(self):
return 1

"Nuitka Developer Manual - page 4 - Prefer list contractions over built-ins"

"Nuitka Developer Manual - Coding Rules C"

X = property(getX)

class B(A):
def get X(self):
return 2

A().x == 1 # True
B().x == 1 # True (!)

This pretty much is what makes properties bad. One would hope B() . x to be 2, but instead it's not
changed. Because of the way properties take the functions and not members, and because they then are
not part of the class, they cannot be overloaded without re-declaring them.

Overloading is then not at all obvious anymore. Now imagine having a setter and only overloading the
getter. How to update the property easily?

So, that's not likable about them. And then we are also for clarity in these internal APIs too. Properties try
and hide the fact that code needs to run and may do things. So let's not use them.

For an external APl you may exactly want to hide things, but internally that has no use, and in Nuitka,
every APl is internal APl. One exception may be the hi nt s module, which will gladly use such tricks for
an easier write syntax.

Coding Rules C

For the static C parts, e.g. compiled types, helper codes, the cl ang- f or mat from LLVM project is used,
the tool aut of or mat - nui t ka- sour ce does this for us.

We always have blocks for conditional statements to avoid typical mistakes made by adding a statement to
a branch, forgetting to make it a block.

The "git flow" model

» The flow is used for releases and occasionally subsequent hot fixes.

A few feature branches were used so far. It allows for quick delivery of fixes to both the stable and the
development version, supported by a git plug-in, that can be installed via "apt-get install git-flow".

« Stable (mai n branch)

The stable version, is expected to pass all the tests at all times and is fully supported. As soon as
bugs are discovered, they are fixed as hot fixes, and then merged to develop by the "git flow"
automatically.

» Development (devel op branch)

The future release, supposedly in almost ready for release state at nearly all times, but this is as
strict. It is not officially supported, and may have problems and at times inconsistencies. Normally this
branch is supposed to not be rebased. For severe problems it may be done though.

« Factory (default feature branch)

Code under construction. We publish commits there, that may not hold up in testing, and before it
enters develop branch. Factory may have severe regressions frequently, and commits become
rebased all the time, so do not base your patches on it, please prefer the devel op branch for that,
unless of course, it's about factory code itself.

"Nuitka Developer Manual - page 5 - Coding Rules C"

"Nuitka Developer Manual - Nuitka "git/github" Workflow"

» Personal branches (jorj, orsiris, others as well)
We are currently not using this, but it's an option.
* Feature Branches

We are not currently using these. They could be used for long lived changes that extend for multiple
release cycles and are not ready yet. Currently we perform all changes in steps that can be included
in releases or delay making those changes.

Nuitka "git/github" Workflow

» Forking and cloning

You need to have git installed and GitHub account. Goto Nuitka repository
<https://github.com/Nuitka/Nuitka> and fork the repository.

To clone it to your local machine execute the following your git bash:

git clone https://github.com your-user-nane/ Nuitka.git
cd Nui tka
git renote add upstream https://github. conml Nuitka/Nuitka.git

» Create a Branch

git checkout devel op
git pull --rebase upstream
git checkout -b feature_branch

If you are having merge conflicts while doing the previous step, then check out (DON'T FORGET TO
SAVE YOUR CHANGES FIRST IF ANY):
<https://stackoverflow.com/questions/1125968/how-do-i-force-git-pull-to-overwrite-local-files>

* In case you have an existing branch rebase it to develop

git fetch upstream
git rebase upstreani devel op

Fix the merge conflicts if any and continue or skip commit if it is not your. Sometimes for important
bug fixes, develop history gets rewritten. In that case, old and new commits will conflict during your
rebase, and skipping is the best way to go.

git rebase --continue
not your conmmit:
git rebase --skip

If anything goes wrong while rebasing:

git rebase --abort

» Making changes

"Nuitka Developer Manual - page 6 - Nuitka "git/github" Workflow"

https://github.com/Nuitka/Nuitka
https://stackoverflow.com/questions/1125968/how-do-i-force-git-pull-to-overwrite-local-files

"Nuitka Developer Manual - APl Documentation and Guidelines"

git commt -a -m"Conmit Message"
git push -u origin # once, |ater always:
git push

APl Documentation and Guidelines

There is APl documentation generated with doxygen, available at this location .

To ensure meaningful doxygen output, the following guidelines must be observed when creating or
updating Python source:

Use of Standard Python _ _doc__ Strings

Every class and every method should be documented via the standard Python delimiters (*"" ... """)
in the usual way.

Special doxygen Anatomy of __doc_

Note

We are replacing Doxygen with sphinx, this is all obsolete

* Immediately after the leading " " ", and after 1 space on the same line, enter a brief description or title
of the class or method. This must be 1 line and be followed by at least 1 empty line.

"Nuitka Developer Manual - page 7 - APl Documentation and Guidelines"

https://nuitka.net/apidoc

"Nuitka Developer Manual - APl Documentation and Guidelines"

» Depending on the item, choose from the following "sections" to describe what the item is and does.

Each section name is coded on its own line, aligned with the leading """ and followed by a colon ":".
Anything following the section, must start on a new line and be indented by 4 spaces relative to the
section. Except for the first section (Not es:) after the title, sections need not be preceded by empty
lines -- but it is good practice to still do that.

* Not es: detailed description of the item, any length.

May contain line breaks with each new line starting aligned with previous one. The text will
automatically be joined across line breaks and be reformatted in the browser.

If you describe details for a class, you can do so without using this section header and all
formatting will still work fine. If you however omit the Not es: for methods, then the text will be
interpreted as code, be shown in an ugly monospaced font, and no automatic line breaks will
occur in the browser.

« Ar gs: positional arguments.

Each argument then follows, starting on a new line and indented by 4 spaces. The argument
name must be followed by a colon : or double hash - -, followed by a description of arbitrary
length.

The description can be separated by line breaks.
* Kwar gs: keyword arguments. Same rules as for args.
e Ret ur ns: description of what will be returned if applicable (any length).
* Yi el ds: synonymous for Ret ur ns: .
* Rai ses: name any exceptions that may be raised.

« Exanpl es: specify any example code.

def foo(pl, p2, kwl=None, kw2=None):
"""This is an exanpl e nethod.

Not es:
It does one or the other indispensable things based on sone paraneters
and proudly returns a dictionary.

Args:
pl: paraneter one
p2: paraneter two

Kwar gs:
kwl: keyword one
kw2: keyword two

Ret ur ns:
A dictionary cal cul ated fromthe input.

Rai ses:
Val ueError, | ndexError

Exanpl es:
>>> foo(1l, 2, kwl=3, kw2=4)
{*a': 4, 'b':. 6}

"Nuitka Developer Manual - page 8 - APl Documentation and Guidelines"

"Nuitka Developer Manual - Checking the Source”

Checking the Source

The static checking for errors is currently done with PyLi nt . In the future, Nuitka itself will gain the ability
to present its findings in a similar way, but this is not a priority, and we are not there yet.

So, we currently use PyLi nt with options defined in a script.
./ bi n/ check- nui t ka-wi t h- pyl i nt

The above command is expected to give no warnings. It is also run on our Cl and we will not merge
branches that do not pass.

Running the Tests

This section describes how to run Nuitka tests.

Running all Tests

The top level access to the tests is as simple as this:
./tests/run-tests
For fine grained control, it has the following options:

- - ski p-basi c-tests The basic tests, execute these to check if Nuitka is
heal thy. Default is True.

- - ski p-syntax-tests The syntax tests, execute these to check if Nuitka
handl es Syntax errors fine. Default is True.

--skip-programtests The progranms tests, execute these to check if Nuitka
handl es prograns, e.g. import recursions, etc. fine.
Default is True.

- - ski p- package-tests The packages tests, execute these to check if Nuitka
handl es packages, e.g. import recursions, etc. fine.
Default is True.

--skip-optim zati ons-tests
The optim zation tests, execute these to check if
Nui t ka does optim ze certain constructs fully away.
Default is True.

- - ski p- st andal one-tests
The standal one tests, execute these to check if Nuitka
st andal one node, e.g. not referring to outside,
inmportant 3rd library packages |ike PyQ fine. Default
is True.

--skip-reflection-test
The reflection test conpiles Nuitka with Nuitka, and
then Nuitka with the conpile Nuitka and compares the
outputs. Default is True.

- - ski p- cpyt hon26-tests
The standard CPython2.6 test suite. Execute this for
all corner cases to be covered. Wth Python 2.7 this
covers exception behavior quite well. Default is True.

- - ski p-cpyt hon27-tests
The standard CPython2.7 test suite. Execute this for

"Nuitka Developer Manual - page 9 - Checking the Source"

"Nuitka Developer Manual - Checking the Source”

all corner cases to be covered. Wth Python 2.6 these
are not run. Default is True.

- - ski p- cpyt hon32-tests
The standard CPython3.2 test suite. Execute this for
all corner cases to be covered. Wth Python 2.6 these
are not run. Default is True.

- - ski p-cpyt hon33-tests
The standard CPython3.3 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p-cpyt hon34-tests
The standard CPython3.4 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p- cpyt hon35-tests
The standard CPython3.5 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p- cpyt hon36-tests
The standard CPython3.6 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p-cpyt hon37-tests
The standard CPython3.7 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p-cpyt hon38-tests
The standard CPython3.8 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p- cpyt hon39-tests
The standard CPython3.9 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p-cpyt hon310-tests
The standard CPython3. 10 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - ski p-cpyt hon311-tests
The standard CPython3. 11 test suite. Execute this for
all corner cases to be covered. Wth Python 2.x these
are not run. Default is True.

- - no- pyt hon2. Do not use Python 2.6 even if available on the system
Default is False.

- - no- pyt hon2. Do not use Python 2.7 even if available on the system
Default is False.

- - no- pyt hon3. Do not use Python 3.3 even if available on the system
Default is False.

- - no- pyt hon3. Do not use Python 3.4 even if available on the system
Default is False.

- - no- pyt hon3. Do not use Python 3.5 even if available on the system
Default is False.

- - no- pyt hon3. Do not use Python 3.6 even if available on the system
Default is False.

"Nuitka Developer Manual - page 10 - Checking the Source"

"Nuitka Developer Manual - Basic Tests"

- -no- pyt hon3. 7 Do not use Python 3.7 even if available on the system
Default is Fal se.

--no-pyt hon3. 8 Do not use Python 3.8 even if available on the system
Default is Fal se.

--no-pyt hon3. 9 Do not use Python 3.9 even if available on the system
Default is Fal se.

--no- pyt hon3. 10 Do not use Python 3.10 even if available on the system
Default is Fal se.

- - no- pyt hon3. 11 Do not use Python 3.11 even if available on the system
Default is Fal se.

--coverage Make a coverage anal ysis, that does not really check.

Default is Fal se.

You will only run the CPython test suites, if you have the submodules of the Nuitka git repository checked
out. Otherwise, these will be skipped with a warning that they are not available.

The policy is generally, that . / t est/ r un- t est s running and passing all the tests on Linux and Windows
shall be considered sufficient for a release, but of course, depending on changes going on, that might have
to be expanded.

Basic Tests

You can run the "basic" tests like this:
./tests/basics/run_all.py search

These tests normally give sufficient coverage to assume that a change is correct, if these "basic" tests
pass. The most important constructs and built-ins are exercised.

To control the Python version used for testing, you can set the PYTHON environment variable to e.g.
pyt hon3. 5 (can also be full path), or simply execute the run_al | . py script directly with the intended
version, as it is portable across all supported Python versions, and defaults testing with the Python version
is run with.

Syntax Tests

Then there are "syntax" tests, i.e. language constructs that need to give a syntax error.

It sometimes so happens that Nuitka must do this itself, because the ast . par se doesn't see the problem
and raises no Synt axEr r or of its own. These cases are then covered by tests to make sure they work as
expected.

Using the gl obal statement on a function argument is an example of this. These tests make sure that the
errors of Nuitka and CPython are totally the same for this:

./tests/syntax/run_all.py search

Program Tests

Then there are small "programs" tests, that e.g. exercise many kinds of import tricks and are designed to
reveal problems with inter-module behavior. These can be run like this:

./tests/prograns/run_all.py search

"Nuitka Developer Manual - page 11 - Basic Tests"

"Nuitka Developer Manual - Generated Tests"

Generated Tests

There are tests, which are generated from Jinja2 templates. They aim at e.g. combining at types with
operations, in-place or not, or large constants. These can be run like this:

./tests/generated/run_all.py search

Compile Nuitka with Nuitka

And there is the "compile itself" or "reflected" test. This test makes Nuitka compile itself and compare the
resulting C++ when running compiled to non-compiled, which helps to find in-determinism.

The test compiles every module of Nuitka into an extension module and all of Nuitka into a single binary.

That test case also gives good coverage of the i nport mechanisms, because Nuitka uses a lot of
packages and imports between them.

./tests/reflected/ conpile_itself.py

Internal/Plugin API

The documentation from the source code for both the Python and the C parts are published as Nuitka API
and arguably in a relatively bad shape as we started generating those with Doxygen only relatively late.

doxygen ./ doc/ Doxyfile
xdg-open htm

Improvements have already been implemented for plugins: The plugin base class defined in
Pl ugi nBase. py (which is used as a template for all plugins) is fully documented in Doxygen now. The
same is true for the recently added standard plugins NunpyPl ugi n. py and Tki nt er Pl ugi n. py. These
will be uploaded very soon.

Going forward, this will also happen for the remaining standard plugins.
Please find here a detailed description of how to write your own plugin.

To learn about plugin option specification consult this document.

Working with the CPython suites

The CPython test suites are different branches of the same submodule. When you update your git
checkout, they will frequently become detached. In this case, simply execute this command:

git submodul e foreach 'git fetch & git checkout $(basenanme $(pwd)) && \
git reset --hard origin/$(basenanme $(pwd))'

When adding a test suite, for a new version, proceed like this:

Switch to a new branch.
git checkout CPyt hon39
git branch CPyt hon310
git checkout CPython310

Delete all but root commt

"Nuitka Developer Manual - page 12 - Generated Tests"

https://nuitka.net/apidoc
https://github.com/Nuitka/Nuitka/blob/develop/UserPlugin-Creation.rst
https://github.com/Nuitka/Nuitka/blob/develop/Using-Plugin-Options.rst

"Nuitka Developer Manual - Design Descriptions"

git rebase -i root

rm-rf test

cp ~/repos/ Nui tka-references/final/Python-3.10.0/Lib/test test
git add test

Update commit nessage to nention proper Python version.
git comit --anmend

Push to github, setting upstream for branch.

git push -u

Cherry pick the renpval conmmts from previous branches.

git log origin/CPython39 --reverse --oneline | grep ' Renpbved' | cut -d ' -fl1 | xargs git cherry-pick

Wil e being pronpted for nmerge conflicts with the deleted files:

git status | sed -n 's/deleted by them//p' | xargs git rm--ignore-unmatch x ; git cherry-pick --continue

Push to github, this is useful.
git push

Cherry pick the first commt of 'run_all.py', the copy it fromthe |ast state, and anend the commits.

git log --reverse origin/CPython39 --oneline -- run_all.py | head -1 | cut -d" ' -f1 | xargs git cherry-pick
git checkout origin/CPython39 -- run_all.py

chnod +x run_al |l . py

sed -i -e 's#python3. 9#python3. 10#' run_all.py

git comit --amend --no-edit run_all.py

Same for 'update_doctest_generated. py'

git log --reverse origin/CPython39 --oneline -- update_doctest_generated.py | head -1 | cut -d" ' -fl1 | xargs git cherry-pick
git checkout origin/CPython39 -- update_doctest_generated. py

chnod +x updat e_doct est _gener at ed. py

sed -i -e 's#python3. 9#pyt hon3. 10#' update_doct est _gener at ed. py

git coomit --amend --no-edit update_doctest_generated. py

Same for .gitignore

git log --reverse origin/CPython39 --oneline -- .gitignore | head -1 | cut -d" ' -f1 | xargs git cherry-pick

git checkout origin/CPython39 -- .gitignore

git coomt --amend --no-edit .gitignore

Now cherry-pick all commts of test support, these disable network, audio, GU, random filenames and nore

and are crucial for determnistic outputs and non-reliance on outside stuff.

git log --reverse origin/CPython39 --oneline -- test/support/__init__.py | tail -n +2 | cut -d" ' -f1 | xargs git cherry-pick

git push

Design Descriptions

These should be a lot more and contain graphics from presentations given. It will be filled in, but not now.

Nuitka Logo

The logo was submitted by "dr. Equivalent”. It's source is contained in doc/ Logo where 3 variants of the
logo in SVG are placed.

» Symbol only (symbol)
i mage: : doc/inmages/ Nuit ka- Logo- Synbol . png
calt: Nuitka Logo

* Text next to symbol (horizontal)
i mage: : doc/inmages/ Nui t ka- Logo-Hori zont al . png
;alt: Nuitka Logo

» Text beneath symbol (vertical)

i mage: : doc/inmages/ Nuit ka- Logo-Verti cal . png
calt: Nuitka Logo

From these logos, PNG images, and "favicons", and are derived.

"Nuitka Developer Manual - page 13 - Design Descriptions"

"Nuitka Developer Manual - Choice of the Target Language”

The exact ImageMagick commands are in nuit ka/t ool s/rel ease/ Docunent ati on, but are not
executed each time, the commands are also replicated here:

convert -background none doc/Logo/ Nui t ka- Logo- Synbol . svg doc/ i nages/ Nui t ka- Logo- Synbol . png

convert -background none doc/ Logo/ Nui t ka- Logo- Vertical .svg doc/i nages/ Nui t ka- Logo- Verti cal . png
convert -background none doc/ Logo/ Nui t ka- Logo- Hori zont al . svg doc/i nages/ Nui t ka- Logo- Hori zont al . png
optipng -02 doc/images/ Nui t ka- Logo- Synbol . png

optipng -02 doc/images/ Nui t ka- Logo- Verti cal . png

optipng -02 doc/i mages/ Nui t ka- Logo- Hori zont al . png

Choice of the Target Language

» Choosing the target language was important decision. factors were:

» The portability of Nuitka is decided here
« How difficult is it to generate the code?
* Does the Python C-API have bindings?
« Is that language known?

* Does the language aid to find bugs?
The decision for C11 is ultimately one for portability, general knowledge of the language and for control
over created code, e.g. being able to edit and try that quickly.

The current status is to use pure C11. All code compiles as C11, and also in terms of workaround to
missing compiler support as C++03. This is mostly needed, because MSVC does not support C. Naturally
we are not using any C++ features, just the allowances of C++ features that made it into C11, which is e.g.
allowing late definitions of variables.

Use of Scons internally

Nuitka does not involve Scons in its user interface at all; Scons is purely used internally. Nuitka itself,
being pure Python, will run without any build process just fine.

Nuitka simply prepares <pr ogr an®. bui | d folders with lots of files and tasks scons to execute the final
build, after which Nuitka again will take control and do more work as necessary.

Note

When we speak of "standalone" mode, this is handled outside of Scons, and after it, creating the
".dist" folder. This is done in nui t ka. Mai nCont r ol module.

For interfacing to Scons, there is the module nui t ka. bui | d. Sconsl nt er f ace that will support calling
scons - potentially from one of two inline copies (one for before / one for Python 3.5 or later). These are
mainly used on Windows or when using source releases - and passing arguments to it. These arguments
are passed as key=val ue, and decoded in the scons file of Nuitka.

The scons file is named Si ngl eExe. scons for lack of better name. It's really wrong now, but we have yet
to find a better name. It once expressed the intention to be used to create executables, but the same
works for modules too, as in terms of building, and to Scons, things really are the same.

"Nuitka Developer Manual - page 14 - Choice of the Target Language”

"Nuitka Developer Manual - Choice of the Target Language”

The scons file supports operation in multiple modes for many things, and modules is just one of them. It
runs outside of Nuitka process scope, even with a different Python version potentially, so all the
information must be passed on the command line.

What follows is the (lengthy) list of arguments that the scons file processes:

esource_dir

Where is the generated C source code. Scons will just compile everything it finds there. No list of files
is passed, but instead this directory is being scanned.

enuitka_src

Where do the include files and static C parts of Nuitka live. These provide e.g. the implementation of
compiled function, generators, and other helper codes, this will point to where nui t ka. bui | d
package lives normally.

e nodul e_node
Build a module instead of a program.
eresult_base

This is not a full name, merely the basename for the result to be produced, but with path included,
and the suffix comes from module or executable mode.

» debug_node

Enable debug mode, which is a mode, where Nuitka tries to help identify errors in itself, and will
generate less optimal code. This also asks for warnings, and makes the build fail if there are any.
Scons will pass different compiler options in this case.

* pyt hon_debug

Compile and link against Python debug mode, which does assertions and extra checks, to identify
errors, mostly related to reference counting. May make the build fail, if no debug build library of
CPython is available. On Windows it is possible to install it for CPython3.5 or higher.

«full _conpat_node

Full compatibility, even where it's stupid, i.e. do not provide information, even if available, in order to
assert maximum compatibility. Intended to control the level of compatibility to absurd.

e experimental node
Do things that are not yet accepted to be safe.
| to_node

Make use of link time optimization of gcc compiler if available and known good with the compiler in
guestion. So far, this was not found to make major differences.

» di sabl e_consol e
Windows subsystem mode: Disable console for windows builds.
eunstri pped_node
Unstripped mode: Do not remove debug symbols.
e cl ang_node
Clang compiler mode, default on macOS X and FreeBSD, optional on Linux.
e m ngw_node

MinGW compiler mode, optional and useful on Windows only.

"Nuitka Developer Manual - page 15 - Choice of the Target Language”

"Nuitka Developer Manual - Locating Modules and Packages”

» st andal one_node
Building a standalone distribution for the binary.
* show_scons

Show scons mode, output information about Scons operation. This will e.g. also output the actual
compiler used, output from compilation process, and generally debug information relating to be build
process.

* pyt hon_prefix
Home of Python to be compiled against, used to locate headers and libraries.
etarget _arch
Target architecture to build. Only meaningful on Windows.
* pyt hon_versi on
The major version of Python built against.
- abi fl ags

The flags needed for the Python ABI chosen. Might be necessary to find the folders for Python
installations on some systems.

eicon_path

The icon to use for Windows programs if given.

Locating Modules and Packages

The search for modules used is driven by nui t ka. i mpor ti ng. | nporti ng module.

* Quoting the nui t ka. i nporti ng. | nporti ng documentation:
Locating modules and package source on disk.

The actual import of a module would already execute code that changes things. Imagine a module
that does os. syst en(), it would be done during compilation. People often connect to databases,
and these kind of things, at import time.

Therefore CPython exhibits the interfaces in an i np module in standard library, which one can use
those to know ahead of time, what file import would load. For us unfortunately there is nothing in
CPython that is easily accessible and gives us this functionality for packages and search paths
exactly like CPython does, so we implement here a multi step search process that is compatible.

This approach is much safer of course and there is no loss. To determine if it's from the standard
library, one can abuse the attribute _ file__ of the os module like it's done in
i sSt andar dLi br ar yPat h of this module.

End quoting the nui t ka. i mporti ng. | nporti ng documentation.
* Role

This module serves the recursion into modules and analysis if a module is a known one. It will give
warnings for modules attempted to be located, but not found. These warnings are controlled by a
while list inside the module.

The decision making and caching are located in the nuitka.tree package, in modules
nui t ka. tree. Recursi on and nui tka. tree. | nport Cache. Each module is only considered once
(then cached), and we need to obey lots of user choices, e.g. to compile a standard library or not.

"Nuitka Developer Manual - page 16 - Locating Modules and Packages"

"Nuitka Developer Manual - Hooking for module import process"

Hooking for module i nport process

Currently, in generated code, for every i nport a normal __inport__ () built-in call is executed. The
nui t ka/ bui | d/ stati c_src/ Met aPat hBasedLoader . c file provides the implementation of a

sys. net a_pat h hook.

This meta path based importer allows us to have the Nuitka provided module imported even when
imported by non-compiled code.

Note

Of course, it would make sense to compile time detect which module it is that is being imported and
then to make it directly. At this time, we don't have this inter-module optimization yet, mid-term it
should become easy to add.

Supporting __cl ass__ of Python3

In Python3 the handling of _ cl ass__ and super is different from Python2. It used to be a normal
variable, and now the following things have changed.

» The use of the super variable name triggers the addition of a closure variable __cl ass__, as can
be witnessed by the following code:

class X
def fi1(self):
print(locals())

def f2(self):
print(locals())
super # Just using the nanme, not even calling it.

Output is:

{"self': < _main__.X object at Ox7f1773762390>'"'} {'self":
< _main__.X object at Ox7f1773762390>, ' class__': <class
' _main__.X >}

* This value of __cl ass___is also available in the child functions.

» The parser marks up code objects usage of "super". It doesn't have to be a call, it can also be a local
variable. If the super built-in is assigned to another name and that is used without arguments, it
won't work unless __cl ass___is taken as a closure variable.

* As can be seen in the CPython3 code, the closure value is added after the class creation is
performed.

* It appears, that only functions locally defined to the class are affected and take the closure.

"Nuitka Developer Manual - page 17 - Hooking for module import process"

"Nuitka Developer Manual - Frame Stack"

This left Nuitka with the strange problem, of how to emulate that.

The solution is this:

» Under Python3, usage of __cl ass___ as a reference in a child function body is mandatory. It remains
that way until all variable names have been resolved.

* When recognizing calls to super without arguments, make the arguments
into variable reference to __cl ass__ and potentially sel f (actually first argument name).

« After all variables have been known, and no suspicious unresolved calls to anything named super
are down, then unused references are optimized away by the normal unused closure variable.

* Class dictionary definitions are added.

These are special direct function calls, ready to propagate also "bases" and "metaclass” values,
which need to be calculated outside.

The function bodies used for classes will automatically store __cl ass___ as a shared local variable, if
anything uses it. And if it's not assigned by user code, it doesn't show up in the "locals()" used for
dictionary creation.

Existing __cl ass__ local variable values are in fact provided as closure, and overridden with the
built class , but they should be used for the closure giving, before the class is finished.

So _ _class__ will be local variable of the class body, until the class is built, then it will be the
__class__ itself.

Frame Stack

In Python, every function, class, and module has a frame. It is created when the scope is entered, and
there is a stack of these at run time, which becomes visible in tracebacks in case of exceptions.

The choice of Nuitka is to make this an explicit element of the node tree, that are as such subject to
optimization. In cases, where they are not needed, they may be removed.

Consider the following code.

def f():
i f someNot Rai singCall ():
return somePotential | yRai si ngCall ()
el se:
return None

In this example, the frame is not needed for all the code, because the condition checked wouldn't possibly
raise at all. The idea is the make the frame guard explicit and then to reduce its scope whenever possible.

So we start out with code like this one:

def f():
with frame_guard("f"):
i f sonmeNot Rai singCall ():
return somePotential | yRai si ngCal | ()
el se:
return None

This is to be optimized into:

"Nuitka Developer Manual - page 18 - Frame Stack"

"Nuitka Developer Manual - Parameter Parsing"

def f():
i f soneNot Rai singCall ():
with frame_guard("f"):
return sonePotential |l yRai singCall ()
el se:
return None

Notice how the frame guard taking is limited and may be avoided, or in best cases, it might be removed
completely. Also this will play a role when in-lining function. The frame stack entry will then be
automatically preserved without extra care.

Note

In the actual code, nui t ka. nodes. Fr aneNodes. St at enent sFr ane is represents this as a set
of statements to be guarded by a frame presence.

Parameter Parsing

The parsing of parameters is very convoluted in Python, and doing it in a compatible way is not that easy.
This is a description of the required process, for an easier overview.

Input

The input is an argument tupl e (the type is fixed), which contains the positional arguments, and
potentially an argument di ct (type is fixed as well, but could also be NULL, indicating that there are no
keyword arguments.

Keyword dictionary
The keyword argument dictionary is checked first. Anything in there, that cannot be associated, either raise
an error, or is added to a potentially given star dict argument. So there are two major cases.
* No star dict argument: Iterate over dictionary, and assign or raise errors.
This check covers extra arguments given.
» With star dict argument: Iterate over dictionary, and assign or raise errors.

Interesting case for optimization are no positional arguments, then no check is needed, and the
keyword argument dictionary could be used as the star argument. Should it change, a copy is needed
though.
What's noteworthy here, is that in comparison to the keywords, we can hope that they are the same value
as we use. The interning of strings increases chances for non-compiled code to do that, esp. for short
names.

We then can do a simple i s comparison and only fall back to real string == comparisons, after all of these
failed. That means more code, but also a lot faster code in the positive case.

Argument tuple

After this completed, the argument tuple is up for processing. The first thing it needs to do is to check if it's
too many of them, and then to complain.

"Nuitka Developer Manual - page 19 - Parameter Parsing"

"Nuitka Developer Manual - SSA form for Nuitka"

For arguments in Python2, there is the possibility of them being nested, in which case they cannot be
provided in the keyword dictionary, and merely should get picked from the argument tuple.

Otherwise, the length of the argument tuple should be checked against its position and if possible, values
should be taken from there. If it's already set (from the keyword dictionary), raise an error instead.

SSA form for Nuitka

The SSA form is critical to how optimization works. The so called trace collections builds up traces. These
are facts about how this works:

 Assignments draw from a counter unique for the variable, which becomes the variable version. This
happens during tree building phase.

» References are associated with the version of the variable active.

This can be a merge of branches. Trace collection does do that and provides nodes with the currently
active trace for a variable.

The data structures used for trace collection need to be relatively compact as the trace information can
become easily much more data than the program itself.

Every trace collection has these:

* variable_actives

Dictionary, where per "variable" the currently used version is. Used to track situations changes in
branches. This is the main input for merge process.

* variable_traces

Dictionary, where "variable" and "version" form the key. The values are objects with or without an
assignment, and a list of usages, which starts out empty.

These objects have usages appended to them. In "onVariableSet", a new version is allocated, which
gives a new object for the dictionary, with an empty usages list, because each write starts a new
version. In "onVariableUsage" the version is detected from the current version. It may be not set yet,
which means, it's a read of an undefined value (local variable, not a parameter name), or unknown in
case of global variable.

These objects may be told that their value has escaped. This should influence the value friend they
attached to the initial assignment. Each usage may have a current value friend state that is different.

When merging branches of conditional statements, the merge shall apply as follows:
* Branches have their own collection

Thee have potentially deviating sets of vari abl e_actives. These are children of an outer
collections.

 Case a) One branch only.

For that branch a collection is performed. As usual new assignments generate a new version making
it "active", references then related to these "active" versions.

Then, when the branch is merged, for all "active" variables, it is considered, if that is a change related
to before the branch. If it's not the same, a merge trace with the branch condition is created with the
one active in the collection before that statement.

 Case b) Two branches.
When there are two branches, they both as are treated as above, except for the merge.

When merging, a difference in active variables between the two branches creates the merge trace.

"Nuitka Developer Manual - page 20 - SSA form for Nuitka"

"Nuitka Developer Manual - Loop SSA"

Note

For conditional expressions, there are always only two branches. Even if you think you have more
than one branch, you do not. It's always nested branches, already when it comes out of the ast
parser.

Trace structure, there are different kinds of traces.

« nitial write of the version

There may be an initial write for each version. It can only occur at the start of the scope, but not later,
and there is only one. This might be known to be "initialized" (parameter variables of functions are
like that) or "uninitialized", or "unknown".

» Merge of other one or two other versions

This combines two or more previous versions. In cases of loop exits or entries, there are multiple
branches to combine potentially. These branches can have vastly different properties.

» Becoming unknown.

When control flow escapes, e.g. for a module variable, any write can occur to it, and it's value cannot
be trusted to be unchanged. These are then traced as unknown.

All traces have a base class Val ueTr aceBase which provides the interface to query facts about the state
of a variable in that trace. It's e.g. of some interest, if a variable must have a value or must not. This allows
to e.g. omit checks, know what exceptions might raise.

Loop SSA

For loops we have the addition difficulty that we need would need to look ahead what types a variable has
at loop exit, but that is a cyclic dependency.

Our solution is to consider the variable types at loop entry. When these change, we drop all gained
information from inside the loop. We may e.g. think that a variable is a i nt or f | oat, but later recognize
that it can only be a float. Derivations from i nt must be discarded, and the loop analysis restarted.

Then during the loop, we assign an incomplete loop trace shape to the variable, which e.g. says it was an
i nt initially and additional type shapes, e.g. i nt or | ong are then derived. If at the end of the loop, a
type produced no new types, we know we are finished and mark the trace as a complete loop trace.

If it is not, and next time, we have the same initial types, we add the ones derived from this to the starting
values, and see if this gives more types.

Python Slots in Optimization

Basic Slot Idea

For almost all the operations in Python, a form of overloading is available. That is what makes it so
powerful.

So when you write an expression like this one:
1.0 + sonething

This something will not just blindly work when it's a float, but go through a slot mechanism, which then can
be overloaded.

"Nuitka Developer Manual - page 21 - Loop SSA"

"Nuitka Developer Manual - Loop SSA"

cl ass SoneStrangeFl oat :
def _ float_(self):
return 3. 14

sonet hi ng = SoneSt rangeFl oat ()
...
1.0 + float(something) // 4.140000000000001

Here it is the case, that this is used by user code, but more often this is used internally. Not all types have
all slots, e.g. i st does not have __fl oat __ and therefore will refuse an addition to a f| oat value,
based on that.

Another slot is working here, that we didn't mention yet, and thatis __add__ which for some times will be
these kinds of conversions or it will not do that kind of thing, e.g. something do hard checks, which is why
this fails to work:

[+ 0

As a deliberate choice, thereisno __|i st __ slot used. The Python designers are aiming at solving many
things with slots, but they also accept limitations.

There are many slots that are frequently used, most often behind your back (__iter__, next__,
__It__,etc.). The list is large, and tends to grow with Python releases, but it is not endless.

Representation in Nuitka

So a slot in Nuitka typically has an owning node. We use __len__ as an example here. In the
conput eExpr essi on the | en node named Expr essi onBui | ti nLen has to defer the decision what it
computes to its argument.

def comput eExpression(self, trace_collection):
return sel f.subnode_val ue. conput eExpr essi onLen(
| en_node=sel f, trace_collection=trace_collection
)

That decision then, in the absence of any type knowledge, must be done absolutely carefully and
conservative, as could see anything executing here.

That examples this code in Expr essi onBase which every expression by default uses:

def comput eExpressi onLen(sel f, |en_node, trace_collection):
shape = sel f. get Val ueShape()

has_| en = shape. hasShapeSl| ot Len()

if has_ len is Fal se:
return makeRai seTypeEr r or Excepti onRepl acenment Fr oniTfenpl at eAndVal ue(
tenpl at e="obj ect of type '%' has no len()",
operation="|en",
ori gi nal _node=l en_node,
val ue_node=sel f,

)

elif has len is True:

"Nuitka Developer Manual - page 22 - Loop SSA"

"Nuitka Developer Manual - The C side"

iter_length = self.getlterationLength()

if iter_length is not None
from . Const ant Ref Nodes i nport nakeConst ant Ref Node

result = makeConst ant Ref Node(
constant=int(iter_length), # make sure to downcast |ong
sour ce_ref =l en_node. get Sour ceRef erence(),

)

result = wapExpressi onWt hNodeSi deEf f ect s(new_node=resul t, ol d_node=sel f)

return (
resul t,
“new_constant",
"Predicted 'len' result from val ue shape.",

)

sel f. onCont ent Escapes(trace_col | ection)

Any code coul d be run, note that.
trace_col | ecti on. onControl Fl onEscape(sel f)

Any exception nmay be raised
trace_col | ecti on. onExcepti onRai seExi t (BaseExcepti on)

return | en_node, None, None

Notice how by default, known __| en__ but unpredictable or even unknown ifa __| en__ slotis there, the
code indicates that its contents and the control flow escapes (could change things behind out back) and
any exception could happen.

Other expressions can know better, e.g. for compile time constants we can be a whole lot more certain:

def comput eExpressi onLen(sel f, |en_node, trace collection):
return trace_coll ection. get Conpil eTi neConput ati onResul t (
node=| en_node,
conput ati on=l anbda: |en(self.get Conpil eTi neConstant()),
description="""Conpile time constant |en val ue pre-conputed.""",

In this case, we are using a function that will produce a concrete value or the exception that the
conput at i on function raised. In this case, we can let the Python interpreter that runs Nuitka do all the
hard work. This lives in Conpi | eTi neConst ant Expr essi onBase and is the base for all kinds of
constant values, or even built-in references like the name | en itself and would be used in case of doing
I en(| en) which obviously gives an exception.

Other overloads do not currently exist in Nuitka, but through the iteration length, most cases could be
addressed, e.g. | i st nodes typical know their element counts.

The C side

When a slot is not optimized away at compile time however, we need to generate actual code for it. We
figure out what this could be by looking at the original CPython implementation.

PyObj ect *builtin_ | en(PyObject *self, PyQoject *v) {
Py ssize t res;

"Nuitka Developer Manual - page 23 - The C side"

"Nuitka Developer Manual - The C side"

res = PyQhject_Size(v);

if (res < 0 & PyErr_GCccurred())
return NULL;

return Pylnt FronSsize t(res);

}

We find a pointer to PyQoj ect _Si ze which is a generic Python C/API function used inthe bui I ti n_I en
implementation:

Py ssize t Py(Object_ Size(Pyoject *o) {
PySequenceMet hods *m

if (o == NULL) {
null _error();
return -1;

}

m = o- >0b_t ype- >t p_as_sequence,;
if (m&& m>sq_l ength)
return m>sq_I| ength(o);

return PyMappi ng_Si ze(o0);
}

On the C level, every Python object (the PyCbj ect *) as a type named ob_type and most of its
elements are slots. Sometimes they form a group, here t p_as_sequence and then it may or may not
contain a function. This one is tried in preference. Then, if that fails, next up the mapping size is tried.

Py ssize t PyMapping Size(PyObject *o0) {
PyMappi ngMet hods *m

if (o == NULL) {
null _error();
return -1;

}

m = 0- >0b_type->t p_as_nmappi ng;
if (m&& m>np_| engt h)
return m>np_| engt h(o);

type_error("object of type '% 200s' has no len()", 0);
return -1;

}

This is the same principle, except witht p_as_nappi ng and np_| engt h used.
So from this, we can tell how | en gets at what could be a Python class __| en__ or other built-in types.

In principle, every slot needs to be dealt with in Nuitka, and it is assumed that currently all slots are
supported on at least a very defensive level, to avoid unnoticed escapes of control flow.

"Nuitka Developer Manual - page 24 - The C side"

"Nuitka Developer Manual - Built-in call optimization”

Built-in call optimization

For calls to built-in names, there is typically a function in Python that delegates to the type constructor (e.g.
when we talk about i nt that just creates an object passing the arguments of the call) or its own special
implementation as we saw with the | en.

For each built-in called, we have a specialized node, that presents to optimization the actions of the
built-in. What are the impact, what are the results. We have seen the resulting example for | en above, but
how do we get there.

In Python, built-in names are used only if there is no module level variable of the name, and of course no
local variable of that name.

Therefore, optimization of a built-in name is only done if it turns out the actually assigned in other code,
and then when the call comes, arguments are checked and a relatively static node is created.

Code Generation towards C

Currently, Nuitka uses Pure C and no C++ patterns at all. The use of C11 requires on some platforms to
compile the C11 using a C++ compiler, which works relatively well, but also limits the amount of C11 that
can be used.

Exceptions

To handle and work with exceptions, every construct that can raise has either a bool ori nt return code
or PyQbj ect * with NULL return value. This is very much in line with that the Python C-API does.

Every helper function that contains code that might raise needs these variables. After a failed call, our
variant of PyErr_Fetch called FETCH ERROR _OCCURRED must be used to catch the defined error,
unless some quick exception cases apply. The quick exception means, NULL return from C-API without a
set exception means e.g. St opl terati on.

As an optimization, functions that raise exceptions, but are known not to do so, for whatever reason, could
only be asserted to not do so.

Statement Temporary Variables

For statements and larger constructs the context object track temporary values, that represent references.
For some, these should be released at the end of the statement, or they represent a leak.

The larger scope temporary variables, are tracked in the function or module context, where they are
supposed to have explicit del to release their references.

Local Variables Storage

Closure variables taken are to be released when the function object is later destroyed. For in-lined calls,
variables are just passed, and it does not become an issue to release anything.

For function exit, owned variables, local or shared to other functions, must be released. This cannot be a
del operation, as it also involves setting a value, which would be wrong for shared variables (and wasteful
to local variables, as that would be its last usage). Therefore we need a special operation that simply
releases the reference to the cell or object variable.

Exit Targets

Each error or other exit releases statement temporary values and then executes a got o to the exit target.
These targets need to be setup. The t r y/except will e.g. catch error exits.

Other exits are cont i nue, br eak, and r et ur n exits. They all work alike.

"Nuitka Developer Manual - page 25 - Built-in call optimization"

"Nuitka Developer Manual - Constant Preparation”

Generally, the exits stack of with constructs that need to register themselves for some exit types. A loop
e.g. registers the conti nue exit, and a contained try/fi nal | y too, so it can execute the final code
should it be needed.

Frames

Frames are containers for variable declarations and cleanups. As such, frames provide error exits and
success exits, which remove the frame from the frame stack, and then proceed to the parent exit.

With the use of non PyQbj ect ** C types, but frame exception exits, the need to convert those types
becomes apparent. Exceptions should still resolve the C version. When using different C types at frame
exception exits, there is a need to trace the active type, so it can be used in the correct form.

Abortive Statements

The way t ry/fi nal | y is handled, copies of the fi nal | y block are made, and optimized independently
for each abort method. The ones there are of course, r et ur n, conti nue, and br eak, but also implicit
and explicit r ai se of an exception.

Code trailing an abortive statement can be discarded, and the control flow will follow these "exits".

Constant Preparation

Early versions of Nuitka, created all constants for the whole program for ready access to generated code,
before the program launches. It did so in a single file, but that approach didn't scale well.

Problems were

» Even unused code contributed to start-up time, this can become a lot for large programs, especially in
standalone mode.

» The massive amount of constant creation codes gave backend C compilers a much harder time than
necessary to analyse it all at once.

The current approach is as follows. Code generation detects constants used in only one module, and
declared st at i c there, if the module is the only user, or ext er n if it is not. Some values are forced to be
global, as they are used pre-main or in helpers.

These ext er n values are globally created before anything is used. The st at i ¢ values are created when
the module is loaded, i.e. something did import it.

We trace used constants per module, and for nested ones, we also associate them. The global constants
code is special in that it can only use st ati ¢ for nested values it exclusively uses, and has to export
values that others use.

Language Conversions to make things simpler

There are some cases, where the Python language has things that can in fact be expressed in a simpler or
more general way, and where we choose to do that at either tree building or optimization time.

The assert statement

The assert statement is a special statement in Python, allowed by the syntax. It has two forms, with and
without a second argument. The later is probably less known, as is the fact that raise statements can have
multiple arguments too.

The handling in Nuitka is:

"Nuitka Developer Manual - page 26 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

assert val ue
Absolutely the sane as:
i f not val ue:

rai se AssertionError

assert value, raise_arg
Absolutely the sane as:
i f not val ue:
rai se AssertionError(raise_arg)

This makes assertions absolutely the same as a raise exception in a conditional statement.

This transformation is performed at tree building already, so Nuitka never knows about assert as an
element and standard optimizations apply. If e.g. the truth value of the assertion can be predicted, the
conditional statement will have the branch statically executed or removed.

The "comparison chain" expressions

In Nuitka we have the concept of an outline, and therefore we can make the following re-formulation
instead:

a<b() >c<d

def _conparison_chain(): # So called "outline" function
tnp_a = a
tmp_b = b()

tnmp = tnp_a < tnp_b

if not tnp:
return tnp

del tnp_a

tnp_c = c¢

tmp = tnp_b > tnp_c

if not tnp:
return tnp
del tnp_b

return tnp_c < d

_comnpari son_chai n()

This transformation is performed at tree building already. The temporary variables keep the value for the
use of the same expression. Only the last expression needs no temporary variable to keep it.

What we got from this, is making the checks of the comparison chain explicit and comparisons in Nuitka to
be internally always about two operands only.

"Nuitka Developer Manual - page 27 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

The execfi | e built-in
Handling is:
execfile(fil enane)

Basically the sane as:
exec(conpil e(open(fil enane).read()), filenane, "exec")

Note

This allows optimizations to discover the file opening nature easily and apply file embedding or
whatever we will have there one day.

This transformation is performed when the execf i | e built-in is detected as such during optimization.

Generator expressions with yi el d

These are converted at tree building time into a generator function body that yields from the iterator given,
which is the put into a for loop to iterate, created a lambda function of and then called with the first iterator.

That eliminates the generator expression for this case. It's a bizarre construct and with this trick needs no
special code generation.

This is a complex example, demonstrating multiple cases of yield in unexpected cases:

Xx = ((yield i) for i in (1, 2) if not (yield))
Basically the sane as:
def x():
for i in (1, 2):
if not (yield):
yield (yield i)

Function Decorators
When one learns about decorators, you see that:

@lecor at or
def function():
pass

|s basically the sane as:
def function():
pass

function = decorator(function)

The only difference is the assignment to function. In the @lecor at or case, if the decorator fails with an
exception, the name f unct i on is not assigned yet, but kept in a temporary variable.

"Nuitka Developer Manual - page 28 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Therefore in Nuitka this assignment is more similar to that of a lambda expression, where the assignment
to the name is only at the end, which also has the extra benefit of not treating real function and lambda
functions any different.

This removes the need for optimization and code generation to support decorators at all. And it should
make the two variants optimize equally well.

Functions nested arguments

Nested arguments are a Python2 only feature supported by Nuitka. Consider this example:

def function(a, (b, c)):
return a, b, c

We solve this, by kind of wrapping the function with another function that does the unpacking and gives the
errors that come from this:

def function(a, _1):
def _tmp(a, b, c):
return a, b, c

a, b= _1
return _tnp(a, b, c)

The . 1 is the variable name used by CPython internally, and actually works if you use keyword arguments
via star dictionary. So this is very compatible and actually the right kind of re-formulation, but it removes
the need from the code that does parameter parsing to deal with these.

Obviously, there is no frame for _t np, just one for f uncti on and we do not use local variables, but
temporary functions.

In-place Assignments
In-place assignments are re-formulated to an expression using temporary variables.

These are not as much a reformulation of += to +, but instead one which makes it explicit that the assign
target may change its value.

a +=b

_tnp = a._iadd__ (b)

if ais not _tnp:
a= _tnp

Using __iadd__ here to express that for the +, the in-place variant i add is used instead. The i s check
may be optimized away depending on type and value knowledge later on.

Complex Assignments

Complex assignments are defined as those with multiple targets to assign from a single source and are
re-formulated to such using a temporary variable and multiple simple assignments instead.

"Nuitka Developer Manual - page 29 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

_tmp = ¢
a=_tnp
b= tnp
del _tnp

This is possible, because in Python, if one assignment fails, it can just be interrupted, so in fact, they are
sequential, and all that is required is to not calculate ¢ twice, which the temporary variable takes care of.
Were b a more complex expression, e.g. b. sone_at t ri but e that might raise an exception, a would still
be assigned.

Unpacking Assignments

Unpacking assignments are re-formulated to use temporary variables as well.
a, b.attr, c[ind] =d =1¢, f, g = h()
Becomes this:

_tmp = h()

_iterl = iter(_tnp)

_tmpl unpack(_iterl, 3)
_tmp2 unpack(_iterl, 3)
_tnp3 = unpack(_iterl, 3)
unpack_check(_iterl)

a = _tnpl

b.attr = _tnmp2

c[ind] = _tnmp3

d= tnp

_iter2 = iter(_tnp)

_tmp4 unpack(_iter2, 3)
_tnpS unpack(_iter2, 3)
_tnp6 = unpack(_iter2, 3)
unpack_check(_iter1)

e = _tnp4
f = tnp5
g = _tnp6

That way, the unpacking is decomposed into multiple simple statements. It will be the job of optimizations
to try and remove unnecessary unpacking, in case e.g. the source is a known tuple or list creation.

Note

The unpack is a special node which is a form of next that will raise a Val ueEr r or when it cannot
get the next value, rather than a St oplterati on. The message text contains the number of
values to unpack, therefore the integer argument.

"Nuitka Developer Manual - page 30 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Note

The unpack_check is a special node that raises a Val ueEr r or exception if the iterator is not
finished, i.e. there are more values to unpack. Again the number of values to unpack is provided to
construct the error message.

With Statements

The wi t h statements are re-formulated to use temporary variables as well. The taking and calling of
__enter___and __exit__ with arguments, is presented with standard operations instead. The promise
tocall__exit__ isfulfilled byt ry/except clause instead.

with some_context as Xx:
sonet hi ng(x)

t np_source = some_cont ext

Actually it needs to be "special |ook-up" for Python2.7, so attribute
| ook-up won't be exactly what is there.
tnp_exit = tnp_source. exit_

This one nust be held for the whole with statenment, it nmay be assi gned
or not, in our exanple it is. If an exception occurs when calling

~ _enter_ ", the "~ __exit__" " should not be called.

tnp_enter result = tnp_source. enter_ ()

Indicator variable to know if "tnp_exit" has been call ed.
tnmp_i ndi cator = Fal se

try:
Now the assignnent is to be done, if there is any nane for the
manager given, this may become multipl e assignnment statenments and
even unpacki ng ones.
X = tnp_enter_result

Then the code of the "w th" bl ock.
sormet hi ng(x)
except Exception:
Note: This part of the code nust not set |ine nunbers, which we
indicate with special source code references, which we call "internal"
OQtherwise the |line of the frame woul d get corrupted.

tnp_i ndi cator = True

if not tnmp_exit(*sys.exc_info()):
rai se
finally:
if not tmp_indicator:
Call the exit if no exception occurred with all argunents
as "None".
t np_exi t (None, None, None)

"Nuitka Developer Manual - page 31 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Note

We don't refer really to sys. exc_i nfo() at all, instead, we have fast references to the current
exception type, value and trace, taken directly from the caught exception object on the C level.

If we had the ability to optimize sys.exc_info() to do that, we could use the same
transformation, but right now we don't have it.

For Loops

The f or loops use normal assignments and handle the iterator that is implicit in the code explicitly.

for x, y in iterable:
i f somet hi ng(x):
br eak
el se:
ot herw se()

This is roughly equivalent to the following code:

_iter = iter(iterable)
_no_break_indicator = Fal se

while 1:
try:
_tnmp_value = next(_iter)
except Stoplteration:
Set the indicator that the el se branch may be execut ed.
_no_break_indicator = True

Optimzation should be able to tell that the el se branch is run
only once.
br eak

Normal assignnent re-formrulation applies to this assignnment of course.
X, y = _tnp_val ue
del _tnp_val ue

i f sonething(x):
br eak

if _no_break_indicator:
ot herw se()

"Nuitka Developer Manual - page 32 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Note
The _iter temporary variable is of course also in a try/final | y construct, to make sure it
releases after its used. The x, y assignment is of course subject to unpacking re-formulation.

The t ry/except is detected to allow to use a variant of next that does not raise an exception, but
to be fast check about the NULL return from next built-in. So no actual exception handling is
happening in this case.

While Loops
Quoting the nui t ka. tree. Ref or nul ati onWhi | eLoopSt at enent s documentation:
Reformulation of while loop statements.

Loops in Nuitka have no condition attached anymore, so while loops are re-formulated like this:

whi |l e condition:
sonet hi ng()

while 1:
i f not condition:
br eak

sonet hi ng()

This is to totally remove the specialization of loops, with the condition moved to the loop body in an initial
conditional statement, which contains a br eak statement.

That achieves, that only br eak statements exit the loop, and allow for optimization to remove always true
loop conditions, without concerning code generation about it, and to detect such a situation, consider e.g.
endless loops.

Note

Loop analysis (not yet done) can then work on a reduced problem (which br eak statements are
executed under what conditions) and is then automatically very general.

The fact that the loop body may not be entered at all, is still optimized, but also in the general
sense. Explicit breaks at the loop start and loop conditions are the same.
End quoting the nui t ka. t r ee. Ref or nul at i onWi | eLoopSt at ement s documentation:

Exception Handlers

Exception handlers in Python may assign the caught exception value to a variable in the handler definition.
And the different handlers are represented as conditional checks on the result of comparison operations.

try:
bl ock()

"Nuitka Developer Manual - page 33 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

except A as e:
handl er A(e)

except B as e:
handl er B(e)

el se:
handl| er El se()

try:
bl ock()
except :
These are special nodes that access the exception, and don't really
use the "sys" nodul e
tnmp_exc_type = sys.exc_info()[0]
tnmp_exc_val ue = sys.exc_info()[1]

exception_matches is a conparison operation, also a special node
i f exception_nmatches(tnp_exc_type, (A)):
e = tnp_exc_val ue
handl er A(e)
el i f exception_matches(tnp_exc _type, (B,)):
e = tnp_exc_val ue
handl er B(e)
el se:
handl er El se()

For Python3, the assigned e variables get deleted at the end of the handler block. Should that value be
already deleted, that del does not raise, therefore it's tolerant. This has to be done in any case, so for
Pythong3 it is even more complex.

try:
bl ock()
except :
These are special nodes that access the exception, and don't really
use the "sys" nodul e
tnmp_exc_type = sys.exc_info()][0]
tnmp_exc_val ue = sys.exc_info()[1]

exception_matches is a conparison operation, also a special node
i f exception_natches(tnp_exc_type, (A)):
try:
e = tnp_exc_val ue
handl er A(e)
finally:
del e
elif exception_nmatches(tnp_exc_type, (B,)):
try:
e = tnp_exc_val ue
handl er B(e)
finally:
del e
el se:
handl er El se()

"Nuitka Developer Manual - page 34 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Should there be no el se: branch, a default re-raise statement is used instead.

And of course, the values of the current exception type and value, both use special references, that access
the C++ and don't go via sys.exc_info at all, nodes called Caught Excepti onTypeRef and
Caught Except i onVal ueRef .

This means, that the different handlers and their catching run time behavior are all explicit and reduced the
branches.

Statement t r y/except with el se

Much like el se branches of loops, an indicator variable is used to indicate the entry into any of the
exception handlers.

Therefore, the el se becomes a real conditional statement in the node tree, checking the indicator variable
and guarding the execution of the el se branch.

Class Creation (Python?2)
Classes in Python2 have a body that only serves to build the class dictionary and is a normal function
otherwise. This is expressed with the following re-formulation:

in nodul e "SonmeModul e"
...

cl ass Soned ass(SoneBase, Anot her Base):
""" This is the class docunentati on.

sonme_menber = 3

def _makeSoned ass():
The nodul e nane becones a normal | ocal variabl e too.
__hodul e__ = "SoneMdul e"

The doc string beconmes a normal |ocal variable.
_dOC__ — nwnmn Thl s IS the Cl ass dOCUITEnt atl on. NI}

sone_nenber = 3

return | ocal s()

force locals to be a witable dictionary, will be optimzed away, but

that property will stick. This is only to express, that |ocal s(), where
used will be witable to.

exec("")

Sonmed ass = make_cl ass(" SoneC ass", (SoneBase, AnotherBase), _nmkeSonmed ass())

That is roughly the same, except that _makeSoned ass is not visible to its child functions when it comes
to closure taking, which we cannot express in Python language at all.

Therefore, class bodies are just special function bodies that create a dictionary for use in class creation.
They don't really appear after the tree building stage anymore. The type inference will of course have to
become able to understand nake_cl ass quite well, so it can recognize the created class again.

"Nuitka Developer Manual - page 35 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Class Creation (Python3)

In Python3, classes are a complicated way to write a function call, that can interact with its body. The body
starts with a dictionary provided by the metaclass, so that is different, because it can __prepare__ a
non-empty locals for it, which is hidden away in "prepare_class_dict" below.

What's noteworthy, is that this dictionary, could e.g. be an Or der Di ¢t . | am not sure, what __prepare___
is allowed to return.

in nodul e "SomeModul e"
...

cl ass Somed ass(SonmeBase, Anot herBase, netaclass = SomeMet ad ass):
""" This is the class docunentation. """

some_nenber = 3

Non- keyword argunments, need to be evaluated first.
t np_bases = (SoneBase, Anot her Base)

Keyword argunments go next, _ netaclass__ is just one of them In principle
we need to forward the others as well, but this is ignored for the sake of
brevity.

t np_net acl ass = sel ect _netacl ass(tnp_bases, SonmeMet ad ass)
tnp_prepared = tnp_netacl ass. __prepare__ (" SoneCl ass", tnp_bases)

The function that creates the class dictionary. Receives tenporary vari abl es
to work wth.
def _makeSoneC ass():
This has effect, currently I don't know how to express that in Python3
syntax, but we will have a node that does that.
| ocal s().repl ace(tnp_prepared)

The nodul e nane becones a normal | ocal variabl e too.
__nmodul e = "SonmeModul e"

The doc string beconmes a normal |ocal variable.
__doc__ = """ This is the class docunentation.

some_nenber = 3

n n

Create the class, share the potential closure variable
with others.
__class__ = tnp_netacl ass("Soned ass", tnp_bases, |ocals())

__class__

return _ class__

Build and assign the cl ass.
Sonmed ass = _nmakeSonmed ass()

Generator Expressions

There are re-formulated as functions.

"Nuitka Developer Manual - page 36 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Generally they are turned into calls of function bodies with (potentially nested) for loops:

gen = (x * 2 for x in range(8) if cond())

def _gen_helper(__iterator):
for x in __iterator:
if cond():
yield x * 2

gen = _gen_hel per(range(8))

List Contractions

The list contractions of Python2 are different from those of Python3, in that they don't actually do any
closure variable taking, and that no function object ever exists.

list value =[x * 2 for x in range(8) if cond()]

def _listcontr_helper(__iterator):
result =]
for x in __iterator:
if cond():
resul t.append(x * 2)

return result

list value = _listcontr_hel per(range(8))
The difference is that with Python3, the function " _listcontr_helper" is really there and named

<listcontraction> (or <l i stconp> as of Python3.7 or higher), whereas with Python2 the function is
only an outline, so it can readily access the containing name space.

Set Contractions

The set contractions of Python2.7 are like list contractions in Python3, in that they produce an actual
helper function;

set value = {x * 2 for x in range(8) if cond()}

def _setcontr_helper(__iterator):
result = set()

for x in __iterator:
if cond():
result.add(x * 2)

return result

"Nuitka Developer Manual - page 37 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

set _value = _setcontr_hel per(range(8))

Dictionary Contractions
The dictionary contractions of are like list contractions in Python3, in that they produce an actual helper
function:

dict_value = {x: x * 2 for x in range(8) if cond()}

def _dictcontr_helper(__iterator):
result = {}

for x in __iterator:
if cond():
result[x] = x * 2

return result

set _value = _dictcontr_hel per(range(8))

Boolean expressions and and or

The short circuit operators or and and tend to be only less general that the i f /el se expressions, but
have dedicated nodes. We used to have a re-formulation towards those, but we now do these via
dedicated nodes too.

These new nodes, present the evaluation of the left value, checking for its truth value, and depending on it,
to pick it, or use the right value.
Simple Calls
As seen below, even complex calls are simple calls. In simple calls of Python there is still some hidden
semantic going on, that we expose.

func(argl, arg2, nanedl=arg3, naned2=arg4)
On the C-API level there is a tuple and dictionary built. This one is exposed:

func(*(argl, arg2), **{"nanedl": arg3, "naned2": arg4})

A called function will access this tuple and the dictionary to parse the arguments, once that is also
re-formulated (argument parsing), it can then lead to simple in-lining. This way calls only have 2 arguments
with constant semantics, that fits perfectly with the C-API where it is the same, so it is actually easier for
code generation.

Although the above looks like a complex call, it actually is not. No checks are needed for the types of the
star arguments and it's directly translated to PyCbj ect _Cal | .

Complex Calls

The call operator in Python allows to provide arguments in 4 forms.

"Nuitka Developer Manual - page 38 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

« Positional (or normal) arguments
» Named (or keyword) arguments
* Star list arguments

« Star dictionary arguments
The evaluation order is precisely that. An example would be:

sonet hi ng(posl, pos2, nanel=namedl, name2=nanmed2, *star _list, **star_dict)

The task here is that first all the arguments are evaluated, left to right, and then they are merged into only
two, that is positional and named arguments only. for this, the star list argument and the star dictionary
arguments, are merged with the positional and named arguments.

What's peculiar, is that if both the star list and dictionary arguments are present, the merging is first done
for star dictionary, and only after that for the star list argument. This makes a difference, because in case
of an error, the star argument raises first.

sonet hing(*1, **2)

This raises "TypeError: something() argument after ** must be a mapping, not int" as opposed to a
possibly more expected "TypeError: something() argument after * must be a sequence, not int."

That doesn't matter much though, because the value is to be evaluated first anyway, and the check is only
performed afterwards. If the star list argument calculation gives an error, this one is raised before checking
the star dictionary argument.

So, what we do, is we convert complex calls by the way of special functions, which handle the dirty work
for us. The optimization is then tasked to do the difficult stuff. Our example becomes this:

def _conplex_call(called, pos, kw, star list_arg, star_dict_arg):
Raises errors in case of duplicate argunments or tnp_star _dict not
bei ng a mappi ng.
tnmp_merged_dict = merge_star_dict_argunment s(
call ed, tnp_naned, mappi ng_check(called, tnp_star_dict)
)

Raises an error if tnp_star list is not a sequence.
tmp_pos_nerged = merge_pos_argunents(call ed, tnp_pos, tnp_star _list)

On the CAPlI level, this is what it |ooks |ike.
return called(*tnp_pos_nerged, **tnp_nerged_dict)

returned = _conplex_call (
cal | ed=son®t hi ng,
pos=(posl, pos2),
nanmed={"nanel": namedl, "nane2": naned2},
star_list_arg=star _|ist,
star _dict_arg=star_dict,

The call to _conpl ex_cal | is be a direct function call with no parameter parsing overhead. And the call
in its end, is a special call operation, which relates to the PyCbj ect _Cal | C-API.

"Nuitka Developer Manual - page 39 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

Assignment Expressions
In Python 3.8 or higher, you assign inside expressions.

if (x := cond()):
do_sormet hi ng()

this is the same as:

Doesn't exist with that nanme, and it is not really taking closure variabl es
it just shares the execution context.
def _outline_func():

nonl ocal x

X = cond()

return x

if (_outline_func()):
do_sonet hi ng

When we use this outline function, we are allowed statements, even assignments, in expressions. For
optimization, they of course pose a challenge to be removed ever, only happens when it becomes only a
return statement, but they do not cause much difficulties for code generation, since they are transparent.

Match Statements

In Python 3.10 or higher, you can write so called nat ch statements like this:

mat ch somet hi ng():
case [x] if x:

z =2

case _as y if y == x and y:
z =1

case 0:
z =0

This is the same as

tmp_mat ch_subj ect = sonet hi ng()

Indicator variable, once true, all matching stops.
tmp_handl ed = Fal se

First branch
X = tnp_match_subj ect

i f sequence_check(x)
if x:
z =2
tmp_handl ed = True

if tmp_handl ed is Fal se:
y = tnp_match_subj ect

"Nuitka Developer Manual - page 40 - Constant Preparation”

"Nuitka Developer Manual - Constant Preparation”

if x ==y and y:
z =1
tmp_handl ed = True

if tmp_handled is Fal se:
z =0

Print Statements

The pri nt statement exists only in Python2. It implicitly converts its arguments to strings before printing
them. In order to make this accessible and compile time optimized, this is made visible in the node tree.

print argl, "1", 1

This is in Nuitka converted so that the code generation for pri nt doesn't do any conversions itself
anymore and relies on the string nature of its input.

print str(argl), "1", str(1)
Only string objects are spared from the str built-in wrapper, because that would only cause noise in

optimization stage. Later optimization can then find it unnecessary for certain arguments.

Additionally, each pri nt may have a target, and multiple arguments, which we break down as well for
dumber code generation. The target is evaluated first and should be a file, kept referenced throughout the
whole print statement.

print >> target file, str(argl), "1", str(1)
This is being reformulated to:

try:
tnmp_target = target file

print >>tnp_target, str(argl), print >>tnp_target, "1", print
>>tnp_target, str(l), print >>tnp_target

finally:
del tnp_target

This allows code generation to not deal with arbitrary amount of arguments to pri nt . It also separates the
newline indicator from the rest of things, which makes sense too, having it as a special node, as it's
behavior with regards to soft-space is different of course.

And finally, for print without a target, we still assume that a target was given, which would be
sys. st dout in a rather hard-coded way (no variable look-ups involved).

"Nuitka Developer Manual - page 41 - Constant Preparation”

"Nuitka Developer Manual - Reformulations during Optimization"

Reformulations during Optimization
Builtin zi p for Python2

def _zip(a, b, c): # Potentially nore argunents.
First assign, to preserve the order of execution, the argunents m ght be
conpl ex expressions with side effects.

tnp_argl = a
tnp_arg2 = b
tnp_arg3 = ¢

Creation of iterators goes first.
try:
tnp_iter_1 = iter(tnp_argl)
except TypeError:
rai se TypeError("zip argunent #1 must support iteration")
try:
tnp_iter_2 = iter(tnp_arg2)
except TypeError:
rai se TypeError("zip argunment #2 nust support iteration")
try:
tnmp_iter_3 = iter(tnp_arg3)
except TypeError:
rai se TypeError("zip argunent #3 must support iteration")

could be nore

tmp_result =[]

try:
while 1:
tnp_resul t.append(
(
next (tnp_iter_1),
next (tnp_iter_2),
next (tnp_iter_3),
nore argunents here ..
)
)
except Stoplteration
pass

return tnp_result

Builtin zi p for Python3

for x, y, z in zip(a, b, c):

"Nuitka Developer Manual - page 42 - Reformulations during Optimization”

"Nuitka Developer Manual - Reformulations during Optimization"

def _zip_gen_ object(a, b, c, ...):
See Pyt hon2
coul d be nore

whil e 1:

yield (
next (tnmp_iter_1),
next (tnp_iter_2),
next (tnmp_iter_3),
)
except Stoplteration
br eak

for x, y, z in _zip_gen _object(a, b, c):

Builtin map for Python2

def _map():
TODO. Not done yet.
pass

"Nuitka Developer Manual - page 43 - Reformulations during Optimization"

"Nuitka Developer Manual - Reformulations during Optimization"

Builtin m n

TODO keyfunc (Python2/3), defaults (Python3)
def _nmin(a, b, c): # Potentially nore argunents

tnp_argl = a
tnmp_arg2 = b
tnmp_arg3 = ¢

nore argunents here ...

result = tnp_argl
if keyfunc is None: # can be decided during re-formulation
tnp_key_result = keyfunc(result)
tmp_key candi date = keyfunc(tnp_arg2)
i f tnp_key_candidate < tnp_key_result:
result = tnp_arg2
tnp_key_result = tnp_key_candi date
tmp_key candi date = keyfunc(tnp_arg3)
i f tnp_key_candidate < tnp_key_result:
result = tnp_arg3
tnp_key_result = tnp_key_candi date
nore argunents here ..
el se:
if tnmp_arg2 < result:
result = tnp_arg2
if tnmp_arg3 < result:
result = tnp_arg3
nore argunents here ..

return result
Builtin max
See mi n just with > instead of <.

Call to di r without arguments

This expression is reformulated to | ocal s() . keys() for Python2, and |i st (| ocal s. keys()) for
Python3.

Calls to functions with known signatures

As a necessary step for inlining function calls, we need to change calls to variable references to function
references.

def f(argl, arg2):
return some_op(argl, arg2)

... other code
x =f(a, b + ¢)

In the optimization it is turned into

"Nuitka Developer Manual - page 44 - Reformulations during Optimization"

"Nuitka Developer Manual - Reformulations during Optimization"

... other code

x = |l anbda argl, arg2: sone_op(argl, arg2)(a, b + c)

Note

The | anbda stands here for a reference to the function, rather than a variable reference, this is the
normal forward propagation of values, and does not imply duplicating or moving any code at all.

At this point, we still have not resolved the actual call arguments to the variable names, still a Python level
function is created, and called, and arguments are parsed to a tuple, and from a tuple. For simplicity sake,
we have left out keyword arguments out of the equation for now, but they are even more costly.

So now, what we want to do, is to re-formulate the call into what we call an outline body, which is a inline
function, and that does the parameter parsing already and contains the function code too. In this inlining,
there still is a function, but it's technically not a Python function anymore, just something that is an
expression whose value is determined by control flow and the function call.

... other code

def _f():
tnp_argl = argl
tnmp_arg2 = b + ¢
return tnp_argl + tnp_arg2

x = _f()

With this, a function is considered inlined, because it becomes part of the abstract execution, and the
actual code is duplicated.

The point is, that matching the signature of the function to the actual arguments given, is pretty straight
forward in many cases, but there are two forms of complications that can happen. One is default values,
because they need to assigned or not, and the other is keyword arguments, because they allow to reorder
arguments.

Let's consider an example with default values first.

def f(argl, arg2=sone_default()):
return some_op(argl, arg2)

... other code
x =f(a, b +¢)

Since the point, at which defaults are taken, we must execute them at that point and make them available.

"Nuitka Developer Manual - page 45 - Reformulations during Optimization"

"Nuitka Developer Manual - Nodes that serve special purposes

tnmp_defaults = (sone_default,) # that was f. defaults

... other code
def _f():
tnp_argl = argl
tnmp_arg2 = tnp_defaul ts[0]

return tnp_argl + tnp_arg2

x = _f()
Now, one where keyword arguments are ordered the other way.

def f(argl, arg2):
return some_op(argl, arg2)

... other code
x = f(arg2=b + c, argl=a) # "b+c" is evaluated before "a"

The solution is an extra level of temporary variables. We remember the argument order by names and
then assign parameters from it:

... other code

def _f():
tnmp_gi ven_val uel b +c
tnmp_given_value2 = a
tnmp_argl = tnp_given_val ue2
tnmp_arg2 = tnp_given_val uel
return tnp_argl + tnp_arg2

x = _f()

Obviously, optimization of Nuitka can decide, that e.g. should a or b+c not have side effects, to optimize
these with standard variable tracing away.

Nodes that serve special purposes

Try statements

In Python, there istry/except and try/fi nal | y. In Nuitka there is only a t ry, which then has blocks to
handle exceptions, cont i nue, or br eak, orr et ur n. There is no el se to this node type.

This is more low level and universal. Code for the different handlers can be different. User provided
final | y blocks become copied into the different handlers.

"Nuitka Developer Manual - page 46 - Nodes that serve special purposes"

"Nuitka Developer Manual - Nodes that serve special purposes”

Releases

When a function exits, the local variables are to be released. The same applies to temporary variables
used in re-formulations. These releases cause a reference to the object to the released, but no value
change. They are typically the last use of the object in the function.

The are similar to del , but make no value change. For shared variables this effect is most visible.

Side Effects

When an exception is bound to occur, and this can be determined at compile time, Nuitka will not generate
the code the leads to the exception, but directly just raise it. But not in all cases, this is the full thing.

Consider this code:
f(a(), 1/ 0)
The second argument will create a Zer oDi vi si onError exception, but before that a() must be

executed, but the call to f will never happen and no code is needed for that, but the name look-up must
still succeed. This then leads to code that is internally like this:

f(a(), raise_ZeroDivisionError())
which is then modeled as:
side_effect(a(), f, raise_ZerobDivisionError())
where we can consider si de_ef f ect to be a function that returns the last expression. Of course, if this is

not part of another expression, but close to statement level, side effects, can be converted to multiple
statements simply.

Another use case, is that the value of an expression can be predicted, but that the language still requires
things to happen, consider this:

a = len((f(), 9()))

We can tell that a will be 2, but the call to f and g must still be performed, so it becomes:
a = side effects(f(), g(), 2)

Modelling side effects explicitly has the advantage of recognizing them easily and allowing to drop the call
to the tuple building and checking its length, only to release it.

Caught Exception Type/Value References

When catching an exception, these are not directly put to sys. exc_i nfo(), but remain as mere C
variables. From there, they can be accessed with these nodes, or if published then from the thread state.
Hard Module Imports

These are module look-ups that don't depend on any local variable for the module to be looked up, but
with hard-coded names. These may be the result of optimization gaining such level of certainty.

Currently they are used to represent sys. st dout usage for pri nt statements, but other usages will
follow.

"Nuitka Developer Manual - page 47 - Nodes that serve special purposes"

"Nuitka Developer Manual - Optimizing Attribute Lookups into Method Calls for Built-ins types”

Locals Dict Update Statement

For the exec re-formulation, we apply an explicit sync back to locals as an explicit node. It helps us to tell
the affected local variable traces that they might be affected. It represents the bit of exec in Python2, that
treats None as the locals argument as an indication to copy back.

Optimizing Attribute Lookups into Method Calls for Built-ins
types

The attribute lookup node Expr essi onAttri but eLookup represents looking up an attribute name, that
is known to be a string. That's already a bit more special, than say what Expr essi onBui | ti nGetattr
does for get at t r, where it could be any object being looked up. From the Python syntax however, these
are what gets created, as it's not allowed in any other way. So, this is where this starts.

Then, when we are creating an attribute node with a fixed name, we dispatch it to generated node classes,
e.g. Expressi onAttri but eLookupFi xedAppend. This will be the same, except that the attribute
name is hardcoded.

There are generated, such that they can have code that is special for . append lookups. In their case, it
makes sense to ask the source, if they are a |l i st object exactly. It doesn't make sense to do this check
for names that the | i st does not contain. So at that stage, we are saving both a bit of memory and time.

Should this question succeed, i.e. the expression the attribute values is looked up upon, is known to be a
i st exactly, we persist this knowledge in the also generated nodes that represent | i st. append and
just that. It is called Expr essi onAttri but eLookupLi st Append and only represents the knowledge
gained so far.

We do not consider if Expressi onAttri but eLookupFi xedAppend is called, or not, passed as an
argument, assigned somewhere, it doesn't matter yet, but for
Expressi onAttri but eLookupLi st Append we know a hell of a lot more. We know its type, we know
attributes for it, say __nanme__, as itis a compile time constant, therefore much optimization can follow for
them, and code generation can specialize them too (not yet done).

Should these nodes then, and say this happens later after some inlining happens be seen as called, we
can then turn them into method call nodes, checking the arguments and such, this is then
Expressi onLi st Oper at i onAppend and at this point, will raising errors with wrong argument counts.

And then we have this Expr essi onLi st Qper at i onAppend which will influence the tracing of | i st
contents, i.e. it will be able to tell the | i st in question is no more empty after this append, and it will be
able to at least predict the last element value, truth value of the list, etc.

Plan to add "ctypes" support

Add interfacing to C code, so Nuitka can turn a ct ypes binding into an efficient binding as if it were written
manually with Python C-API or better.

Goals/Allowances to the task

1. Goal: Must not directly use any pre-existing C/C++ language file headers, only generate declarations
in generated C code ourselves. We would rather write or use tools that turn an existing a C header to
some ct ypes declarations if it needs to be, but not mix and use declarations from existing header
code.

"Nuitka Developer Manual - page 48 - Optimizing Attribute Lookups into Method Calls for Built-ins types"

"Nuitka Developer Manual - Type Inference - The Discussion”

Note

The "cffi" interface maybe won't have the issue, but it's not something we need to write or test
the code for.

2. Allowance: May use ct ypes module at compile time to ask things about ct ypes and its types.

3. Goal: Should make use of ct ypes, to e.g. not hard code in Nuitka what ct ypes. c_i nt () gives on
the current platform, unless there is a specific benefit.

4. Allowance: Not all ct ypes usages must be supported immediately.
5. Goal: Try and be as general as possible.

For the compiler, ctypes support should be hidden behind a generic interface of some sort.
Supporting mat h module should be the same thing.

Type Inference - The Discussion

Main initial goal is to forward value knowledge. When you have a = b, that means that a and b now
"alias". And if you know the value of b you can assume to know the value of a. This is called "aliasing".

When assigning a to something new, that won't change b at all. But when an attribute is set, a method
called of it, that might impact the actual value, referenced by both. We need to understand mutable vs.
immutable though, as some things are not affected by aliasing in any way.

a=3
b =a

b += 4 # a is not changed

88}
|

= [3]

b =a
b += [4] # a is changed i ndeed

If we cannot tell, we must assume that a might be changed. It's either b or what a was before. If the type is
not mutable, we can assume the aliasing to be broken up, and if it is, we can assume both to be the same
value still.

When that value is a compile time constant, we will want to push it forward, and we do that with
"(Constant) Value Propagation”, which is implemented already. We avoid too large constants, and we
properly trace value assignments, but not yet aliases.

In order to fully benefit from type knowledge, the new type system must be able to be fully friends with
existing built-in types, but for classes to also work with it, it should not be tied to them. The behavior of a
type | ong, st r, etc. ought to be implemented as far as possible with the built-in | ong, st r at compiled
time as well.

"Nuitka Developer Manual - page 49 - Type Inference - The Discussion”

"Nuitka Developer Manual - Type Inference - The Discussion”

Note

This "use the real thing" concept extends beyond builtin types, e.g. ct ypes. ¢_i nt () should also
be used, but we must be aware of platform dependencies. The maximum size of ct ypes. c_i nt
values would be an example of that. Of course that may not be possible for everything.

This approach has well proven itself with built-in functions already, where we use real built-ins
where possible to make computations. We have the problem though that built-ins may have
problems to execute everything with reasonable compile time cost.

Another example, consider the following code:
len("a" * 1000000000000)

To predict this code, calculating it at compile time using constant operations, while feasible, puts an
unacceptable burden on the compilation.

Esp. we wouldn't want to produce such a huge constant and stream it, the C++ code would become too
huge. So, we need to stop the * operator from being used at compile time and cope with reduced
knowledge, already here:

"a" * 10000000000000

Instead, we would probably say that for this expression:

e Theresultisastr oraClevel PyStri ngChj ect *.
» We know its length exactly, it's 270000000000000.

 Can predict every of its elements when sub-scripted, sliced, etc., if need be, with a function we may
create.

Similar is true for this horrible (in Python2) thing:
r ange(10000000000000)

So it's a rather general problem, this time we know:

*Theresultisal i st or Clevel PyLi st Cbj ect *.
* We know its length exactly, 10000000000000.

 Can predict every of its elements when index, sliced, etc., if need be, with a function.

Again, we wouldn't want to create the list. Therefore Nuitka avoids executing these calculation, when they
result in constants larger than a threshold of e.g. 256 elements. This concept has to be also applied to
large integers and more CPU and memory traps.

Now lets look at a more complete use case:

for x in range(10000000000000):
doSonet hi ng()

Looking at this example, one traditional way to look at it, would be to turn r ange into xr ange, and to note
that x is unused. That would already perform better. But really better is to notice that r ange() generated
values are not used at all, but only the length of the expression matters.

"Nuitka Developer Manual - page 50 - Type Inference - The Discussion”

"Nuitka Developer Manual - Applying this to "ctypes™

And even if x were used, only the ability to predict the value from a function would be interesting, so we
would use that computation function instead of having an iteration source. Being able to predict from a
function could mean to have Python code to do it, as well as C code to do it. Then code for the loop can be
generated without any CPython library usage at all.

Note

Of course, it would only make sense where such calculations are "O(1)" complexity, i.e. do not
require recursion like "n!" does.

The other thing is that CPython appears to at - run time - take length hints from objects for some
operations, and there it would help too, to track length of objects, and provide it, to outside code.

Back to the original example:
len("a" * 1000000000000)

The theme here, is that when we can't compute all intermediate expressions, and we sure can't do it in the
general case. But we can still, predict some of properties of an expression result, more or less.

Here we have | en to look at an argument that we know the size of. Great. We need to ask if there are any
side effects, and if there are, we need to maintain them of course. This is already done by existing
optimization if an operation generates an exception.

Note

The optimization of | en has been implemented and works for all kinds of container creation and
ranges.

Applying this to "ctypes"

The not so specific problem to be solved to understand ct ypes declarations is maybe as follows:
i mport ctypes

This leads to Nuitka in its tree to have an assignment from a __i nport __ expression to the variable
ct ypes. It can be predicted by default to be a module object, and even better, it can be known as ct ypes
from standard library with more or less certainty. See the section about "Importing".

So that part is "easy"”, and it's what will happen. During optimization, when the module __i nport
expression is examined, it should say:

e ct ypes is a module
 ct ypes is from standard library (if it is, might not be true)

e ct ypes then has code behind it, called Modul eFri end that knows things about it attributes, that
should be asked.

The later is the generic interface, and the optimization should connect the two, of course via package and
module full names. It will need a Modul eFri endRegi st ry, from which it can be pulled. It would be nice if

"Nuitka Developer Manual - page 51 - Applying this to "ctypes™

"Nuitka Developer Manual - Excursion to Functions”

we can avoid ct ypes to be loaded into Nuitka unless necessary, so these need to be more like a plug-in,
loaded only if necessary, i.e. the user code actually uses ct ypes.

Coming back to the original expression, it also contains an assignment expression, because it
re-formulated to be more like this:

ctypes = __inport__ ("ctypes")

The assigned to object, simply gets the type inferred propagated as part of an SSA form. Ideally, we could
be sure that nothing in the program changes the variable, and therefore have only one version of that
variable.

For module variables, when the execution leaves the module to unknown code, or unclear code, it might
change the variable. Therefore, likely we will often only assume that it could still be ct ypes, but also
something else.

Depending on how well we control module variable assignment, we can decide this more of less quickly.
With "compiled modules” types, the expectation is that it's merely a quick C == comparison check. The
module friend should offer code to allow a check if it applies, for uncertain cases.

Then when we come to uses of it:
ctypes.c_int()

At this point, using SSA, we are more of less sure, that ct ypes is at that point the module, and that we
know what it's c_i nt attribute is, at compile time, and what it's call result is. We will use the module friend
to help with that. It will attach knowledge about the result of that expression during the SSA collection
process.

This is more like a value forward propagation than anything else. In fact, constant propagation should only
be the special case of it, and one design goal of Nuitka was always to cover these two cases with the
same code.

Excursion to Functions

In order to decide what this means to functions and their call boundaries, if we propagate forward, how to
handle this:

def ny_append(a, b):
a. append(b)

return a

We annotate that a is first a "unknown but defined parameter object”, then later on something that
definitely has an append attribute, when returned, as otherwise an exception occurs.

The type of a changes to that after a. append look-up succeeds. It might be many kinds of an object, but
e.g. it could have a higher probability of being a PyLi st Cbj ect. And we would know it cannot be a
PySt ri ngQbj ect, as that one has no append method, and would have raised an exception therefore.

Note

If classes, i.e. other types in the program, have an append attribute, it should play a role too, there
needs to be a way to plug-in to this decisions.

"Nuitka Developer Manual - page 52 - Excursion to Functions"

"Nuitka Developer Manual - Excursion to Loops"

Note

On the other hand, types without append attribute can be eliminated.

Therefore, functions through SSA provide an automatic analysis on their return state, or return value types,
or a quick way to predict return value properties, based on input value knowledge.

So this could work:

b = ny_append([], 3)

assert b == [3] # Could be decided now

Goal: The structure we use makes it easy to tell what ny_append may be. So, there should be a means to
ask it about call results with given type/value information. We need to be able to tell, if evaluating
my_append makes sense with given parameters or not, if it does impact the return value.

We should e.g. be able to make nmy_append tell, one or more of these:

* Returns the first parameter value as return value (unless it raises an exception).
* The return value has the same type as a (unless it raises an exception).

* The return value has an append attribute.

» The return value might be al i st object.

* The return value may not be a st r object.

» The function will raise if first argument has no append attribute.

The exactness of statements may vary. But some things may be more interesting. If e.g. the aliasing of a
parameter value to the return value is known exactly, then information about it need to all be given up, but
some can survive.

It would be nice, if my_append had sufficient information, so we could specialize with | i st and i nt from
the parameters, and then e.g. know at least some things that it does in that case. Such specialization
would have to be decided if it makes sense. In the alternative, it could be done for each variant anyway, as
there won't be that many of them.

Doing this "forward" analysis appears to be best suited for functions and therefore long term. We will try it
that way.

Excursion to Loops

a =1

while 1: # think | oop: here
+

b = 1

a
a b

if cond():
br eak

print(a)

"Nuitka Developer Manual - page 53 - Excursion to Loops"

"Nuitka Developer Manual - Excursion to Conditions"

The handling of loops (both f or and whi | e are re-formulated to this kind of loops with br eak statements)
has its own problem. The loop start and may have an assumption from before it started, that a is constant,
but that is only true for the first iteration. So, we can't pass knowledge from outside loop forward directly
into the for loop body.

So the collection for loops needs to be two pass for loops. First, to collect assignments, and merge these
into the start state, before entering the loop body. The need to make two passes is special to loops.

For a start, it is done like this. At loop entry, all pre-existing, but written traces, are turned into loop merges.
Knowledge is not completely removed about everything assigned or changed in the loop, but then it's not
trusted anymore.

From that basis, the break exits are analysed, and merged, building up the post loop state, and
cont i nue exits of the loop replacing the unknown part of the loop entry state. The loop end is considered
a cont i nue for this purpose.

Excursion to Conditions

i f cond:
X =1
el se:
X = 2
b =x <3

The above code contains a condition, and these have the problem, that when exiting the conditional block,
a merge must be done, of the x versions. It could be either one. The merge may trace the condition under
which a choice is taken. That way, we could decide pairs of traces under the same condition.

These merges of SSA variable "versions", represent alternative values. They pose difficulties, and might
have to be reduced to commonality. In the above example, the < operator will have to check for each
version, and then to decide that both indeed give the same result.

The trace collection tracks variable changes in conditional branches, and then merges the existing state at
conditional statement exits.

Note
A branch is considered "exiting" if it is not abortive. Should it end in a r ai se, br eak, conti nue,
or r et ur n, there is no need to merge that branch, as execution of that branch is terminated.

Should both branches be abortive, that makes things really simple, as there is no need to even
continue.

Should only one branch exist, but be abortive, then no merge is needed, and the collection can
assume after the conditional statement, that the branch was not taken, and continue.

When exiting both the branches, these branches must both be merged, with their new information.

In the above case:

» The "yes" branch knows variable x is an i nt of constant value 1

* The "no" branch knows variable x is an i nt of constant value 2
That might be collapsed to:

"Nuitka Developer Manual - page 54 - Excursion to Conditions"

"Nuitka Developer Manual - Excursion to return statements"

» The variable x is an integer of value in (1, 2)
Given this, we then should be able to pre-compute the value of this:

b =x <3

The comparison operator can therefore decide and tell;

» The variable b is a boolean of constant value Tr ue.
Were it unable to decide, it would still be able to say:

» The variable b is a boolean.
For conditional statements optimization, it's also noteworthy, that the condition is known to pass or not

pass the truth check, inside branches, and in the case of non-exiting single branches, after the statement
it's not true.

We may want to take advantage of it. Consider e.g.

if type(a) is list:
a. append(x)

el se:
a += (x,)

In this case, the knowledge that a is a list, could be used to generate better code and with the definite
knowledge that a is of type list. With that knowledge the append attribute call will become the | i st
built-in type operation.

Excursion to r et ur n statements

The r et ur n statement (like br eak, cont i nue, rai se) is "aborting" to control flow. It is always the last
statement of inspected block. When there statements to follow it, optimization will remove it as "dead
code".

If all branches of a conditional statement are "aborting”, the statement is decided "aborting" too. If a loop
doesn't abort with a break, it should be considered "aborting" too.

Excursion to yi el d expressions

The yi el d expression can be treated like a normal function call, and as such invalidates some known
constraints just as much as they do. It executes outside code for an unknown amount of time, and then
returns, with little about the outside world known anymore, if it's accessible from there.

Mixed Types
Consider the following inside a function or module:
if cond is not None:

a =[x for x in sonething() if cond(x)]
el se:

a = ()

A programmer will often not make a difference between | i st andt upl e. In fact, using at upl e is a good
way to express that something won't be changed later, as these are mutable.

"Nuitka Developer Manual - page 55 - Excursion to return statements"

"Nuitka Developer Manual - Back to "ctypes

Note

Better programming style, would be to use this:

if cond is not None:
a = tuple(x for x in something() if cond(x))
el se:

a = ()

People don't do it, because they dislike the performance hit encountered by the generator
expression being used to initialize the tuple. But it would be more consistent, and so Nuitka is using
it, and of course one day Nuitka ought to be able to make no difference in performance for it.

To Nuitka though this means, that if cond is not predictable, after the conditional statement we may either
have atupl e or ali st type object in a. In order to represent that without resorting to "I know nothing
about it", we need a kind of mi n/max operating mechanism that is capable of say what is common with
multiple alternative values.

Note

At this time, we don't really have that mechanism to find the commonality between values.

Back to "ctypes"
v = ctypes.c_int()

Coming back to this example, we needed to propagate ct ypes, then we can propagate "something" from
ctypes. i nt and then known what this gives with a call and no arguments, so the walk of the nodes, and
diverse operations should be addressed by a module friend.

In case a module friend doesn't know what to do, it needs to say so by default. This should be enforced by
a base class and give a warning or note.

Now to the interface

The following is the intended interface:

* Iteration with node methods conput eSt at enent and conput eExpr essi on.

These traverse modules and functions (i.e. scopes) and visit everything in the order that Python
executes it. The visiting object is TraceCol | ecti on and pass forward. Some node types, e.g.
St at enent Condi ti onal new create branch trace collections and handle the SSA merging at exit.

» Replacing nodes during the visit.

Both conmput eSt at enent and conput eExpr essi on are tasked to return potential replacements of
themselves, together with "tags" (meaningless now), and a "message", used for verbose tracing.

The replacement node of + operator, may e.g. be the pre-computed constant result, wrapped in side
effects of the node, or the expression raised, again wrapped in side effects.

"Nuitka Developer Manual - page 56 - Back to "ctypes

"Nuitka Developer Manual - Back to "ctypes

 Assignments and references affect SSA.

The SSA tree is initialized every time a scope is visited. Then during traversal, traces are built up.
Every assignment and merge starts a new trace for that matter. References to a given variable
version are traced that way.

Value escapes are traced too.

When an operation hands over a value to outside code, it indicates so to the trace collection. This is
for it to know, when e.g. a constant value, might be mutated meanwhile.

Nodes can be queried about their properties.

There is a type shape and a value shape that each node can be asked about. The type shape offers
methods that allow to check if certain operations are at all supported or not. These can always return
Tr ue (yes), Fal se (no), and None (cannot decide). In the case of the later, optimizations may not be
able do much about it. Lets call these values "tri-state".

There is also the value shape of a node. This can go deeper, and be more specific to a given node.

The default implementation will be very pessimistic. Specific node types and shapes may then
declare, that they e.g. have no side effects, will not raise for certain operations, have a known truth
value, have a known iteration length, can predict their iteration values, etc.

Nodes are linked to certain states.

During the collect, a variable reference, is linked to a certain trace state, and that can be used by
parent operations.

a=1
b a+ a

In this example, the references to a, can look-up the 1 in the trace, and base value shape response
to + on it. For compile time evaluation, it may also ask i sConpi | eTi neConst ant () and if both
nodes will respond Tr ue, then "getCompileTimeConstant()" will return 1, which will be be used in
computation.

Then ext ract Si deEf f ect s() for the a reference will return () and therefore, the result 2 will not
be wrapped.

An alternative approach would be hasTypeSI ot Add() on the both nodes, and they both do, to see
if the selection mechanism used by CPython can be used to find which types + should be used.

Class for module import expression Expr essi onl npor t Modul e.

This one just knows that something is imported, but not how or what it is assigned to. It will be able in
a recursive compile, to provide the module as an assignment source, or the module variables or
submodules as an attribute source when referenced from a variable trace or in an expression.

Base class for module friend Modul eFri endBase.

This is intended to provide something to overload, which e.g. can handle mat h in a better way.

Module Modul eFri endRegi stry

Provides a register function with name and instances of Val ueFr i endMbdul eBase to be registered.
Recursed to modules should integrate with that too. The registry could well be done with a metaclass
approach.

* The module friends should each live in a module of their own.

"Nuitka Developer Manual - page 57 - Back to "ctypes

"Nuitka Developer Manual - Discussing with examples”

With a naming policy to be determined. These modules should add themselves via above mechanism
to Modul eFri endRegi st ry and all shall be imported and register. Importing of e.g. ct ypes should
be delayed to when the friend is actually used. A meta class should aid this task.

The delay will avoid unnecessary blot of the compiler at run time, if no such module is used. For "gt"
and other complex stuff, this will be a must.

» The walk should initially be single pass, and not maintain history.

Instead optimization that needs to look at multiple things, e.g. "unused assignment”, will look at the
whole SSA collection afterwards.

Discussing with examples

The following examples:

Assignnent, the source decides the type of the assigned expression
a=»>b

Operator "attribute |ook-up”, the | ooked up expression "ctypes" decides
via its trace.
ctypes.c_int

Call operator, the call ed expressions decides with help of argunents,
whi ch have been wal ked, before the call itself.
cal | ed_expressi on_of _any_conpl exity()

inmport gives a nodul e any case, and the "Mdul eRegi stry" may say nore.
i mport ctypes

Frominport need not give nodule, "x" decides what it is.

fromx inport y

Qperations are deci ded by argunents, and CPyt hon operator rul es between
argunent states.
a-+b

The optimization is mostly performed by walking of the tree and performing trace collection. When it
encounters assignments and references to them, it considers current state of traces and uses it for
conput eExpr essi on.

Note

Assignments to attributes, indexes, slices, etc. will also need to follow the flow of append, so it
cannot escape attention that a list may be modified. Usages of append that we cannot be sure
about, must be traced to exist, and disallow the list to be considered known value again.

Code Generation Impact

Right now, code generation assumes that everything is a PyChj ect *, i.e. a Python object, and does not
take knowledge of i nt or other types into consideration at all, and it should remain like that for some time
to come.

"Nuitka Developer Manual - page 58 - Discussing with examples"

"Nuitka Developer Manual - Initial Implementation”

Instead, ct ypes value friend will be asked give | denti fi er s, like other codes do too. And these need to
be able to convert themselves to objects to work with the other things.

But Code Generation should no longer require that operations must be performed on that level. Imagine
e.g. the following calls:

c_call (other_c_call())

Value returned by "other_c_call()" of say c_i nt type, should be possible to be fed directly into another
call. That should be easy by having a asl nt C() in the identifier classes, which the ct ypes Identifiers
handle without conversions.

Code Generation should one day also become able to tell that all uses of a variable have only ¢_i nt
value, and use i nt instead of PyChj ect Local Vari abl e more or less directly. We could consider
Pyl nt Local Vari abl e of similar complexity as i nt after the C++ compiler performed its in-lining.

Such decisions would be prepared by finalization, which then would track the history of values throughout
a function or part of it.

Initial Implementation

The basic interface will be added to all expressions and a node may override it, potentially using trace
collection state, as attached during conput eExpr essi on.

Goal 1 (Reached)

Initially most things will only be able to give up on about anything. And it will be little more than a tool to do
simple look-ups in a general form. It will then be the first goal to turn the following code into better
performing one:

a =3

b =7

c=alb

print(c)
to:

a=3

b =7

c =3/ 7

print(c)
and then:

a =3

b =7

c =0

print(c)
and then:

a =3

b =7

"Nuitka Developer Manual - page 59 - Initial Implementation”

"Nuitka Developer Manual - Initial Implementation”

c =0
print(0)

This depends on SSA form to be able to tell us the values of a, b, and c to be written to by constants,
which can be forward propagated at no cost.

Goal 2 (Reached)

The assignments to a, b, and c shall all become prey to "unused" assignment analysis in the next step.
They are all only assigned to, and the assignment source has no effect, so they can be simply dropped.

print(0)

In the SSA form, these are then assignments without references. These assignments, can be removed if
the assignment source has no side effect. Or at least they could be made "anonymous", i.e. use a
temporary variable instead of the named one. That would have to take into account though, that the old
version still needs a release.

The most general form would first merely remove assignments that have no impact, and leave the value as
a side effect, so we arrive at this first:

8
7
0
print(0)

When applying the removal of expression only statements without effect, this gives us:
print(0)

which is the perfect result. Doing it in one step would only be an optimization at the cost of generalization.

In order to be able to manipulate nodes related to a variable trace, we need to attach the nodes that did it.
Consider this:

if cond():
x =1
elif other():
X =3

Not wusing "x".

print(0)

In the above case, the merge of the value traces, should say that x may be undefined, or one of 1 or 3, but
since x is not used, apply the "dead value" trick to each branch.

The removal of the "merge" of the 3 x versions, should exhibit that the other versions are also only
assigned to, and can be removed. These merges of course appear as usages of the x versions.

Goal 3

Then third goal is to understand all of this:

"Nuitka Developer Manual - page 60 - Initial Implementation”

"Nuitka Developer Manual - Initial Implementation”

def f():
a =[]

print(a)

for i in range(1000):
print(a)

a. append(i)

return | en(a)

Note

There are many operations in this, and all of them should be properly handled, or at least ignored in
safe way.

The first goal code gave us that the | i st has an annotation from the assignment of [] and that it will be
copied to a until the for loop in encountered. Then it must be removed, because the f or loop somehow
says so.

The a may change its value, due to the unknown attribute look-up of it already, not even the call. The for
loop must be able to say "may change value" due to that, of course also due to the call of that attribute too.

The code should therefore become equivalent to:

def f():
a =[]

print([])

for i in range(1000):
print(a)

a. append(i)
return |l en(a)

But no other changes must occur, especially not to the r et ur n statement, it must not assume a to be
constant "[]" but an unknown a instead.

With that, we would handle this code correctly and have some form constant value propagation in place,
handle loops at least correctly, and while it is not much, it is important demonstration of the concept.

Goal 4

The fourth goal is to understand the following:

def f(cond):
y =3

"Nuitka Developer Manual - page 61 - Initial Implementation”

"Nuitka Developer Manual - Limitations for now"

i f cond:
x =1
el se:
X =2

return x <y

In this we have a branch, and we will be required to keep track of both the branches separately, and then
to merge with the original knowledge. After the conditional statement we will know that "x" is an "int" with
possible values in (1, 2) , which can be used to predict that the return value is always Tr ue.

The forth goal will therefore be that the "ValueFriendConstantList" knows that append changes a value,
but it remains a list, and that the size increases by one. It should provide an other value friend
"ValueFriendList" for "a" due to that.

In order to do that, such code must be considered:

a =[]

a. append(1)
a. append(2)

print(len(a))

It will be good, if I en still knows that a is a list object, but not the constant list anymore.

From here, work should be done to demonstrate the correctness of it with the basic tests applied to
discover undetected issues.

Fifth and optional goal: Extra bonus points for being able to track and predict append to update the
constant list in a known way. Using | i st . append that should be done and lead to a constant result of
| en being used.

The sixth and challenging goal will be to make the code generation be impacted by the value friends types.
It should have a knowledge that PyLi st _Append does the job of append and use PyLi st _Si ze for | en.
The "ValueFriends" should aid the code generation too.

Last and right now optional goal will be to make r ange have a value friend, that can interact with iteration
of the for loop, and append of the | i st value friend, so it knows it's possible to iterate 5000 times, and
that "a" has then after the "loop" this size, so | en(a) could be predicted. For during the loop, about a the
range of its length should be known to be less than 5000. That would make the code of goal 2 completely
analyzed at compile time.

Limitations for now

» Aim only for limited examples. For ct ypes that means to compile time evaluate:

print(ctypes.c_int(17) + ctypes.c_long(19))

Later then call to "libc" or something else universally available, e.g. "strlen()" or "strcmp()" from full
blown declarations of the callable.

* We won't have the ability to test that optimization are actually performed, we will check the generated
code by hand.

"Nuitka Developer Manual - page 62 - Limitations for now"

"Nuitka Developer Manual - How to make Features Experimental”

With time, we will add XML based checks with "xpath" queries, expressed as hints, but that is some
work that will be based on this work here. The "hints" fits into the "ValueFriends" concept nicely or so
the hope is.

* No inter-function optimization functions yet

Of course, once in place, it will make the ct ypes annotation even more usable. Using ct ypes
objects inside functions, while creating them on the module level, is therefore not immediately going
to work.

* No loops yet

Loops break value propagation. For the ct ypes use case, this won't be much of a difficulty. Due to
the strangeness of the task, it should be tackled later on at a higher priority.

* Not too much.

Try and get simple things to work now. We shall see, what kinds of constraints really make the most
sense. Understanding | i st subscript/slice values e.g. is not strictly useful for much code and should
not block us.

Note

This design is not likely to be the final one.

How to make Features Experimental

Every experimental feature needs a name. We have a rule to pick a name with lower case and _ as
separators. An example of with would be the name j i nj a_gener at ed_add that has been used in the
past.

Command Line

Experimental features are enabled with the command line argument

nui tka --experinental =jinja_generated_add ...

In C code

In Scons, all experimental features automatically are converted into C defines, and can be used like this:

#i fdef _NU TKA EXPERI MENTAL_JI NJA GENERATED_ADD
#i ncl ude "Hel persQper ati onCGener at edBi nar yAdd. c"
#el se

#i ncl ude "Hel persQperati onBi naryAdd. c"

#endi f

The C pre-processor is the only thing that makes an experimental feature usable.

In Python

You can query experimental features using Opt i ons. i sExperi nment al () with e.g. code like this:

"Nuitka Developer Manual - page 63 - How to make Features Experimental”

"Nuitka Developer Manual - When to use it"

if Options.isExperinental ("use feature"):
experi nental _code()

el se:
st andard_code()

When to use it

Often we need to keep feature in parallel because they are not finished, or need to be tested after merge
and should not break. Then we can do code changes that will not make a difference except when the
experimental flag is given on the command line to Nuitka.

The testing of Nuitka is very heavy weight when e.g. all Python code is compiled, and very often, it is
interesting to compare behavior with and without a change.

When to remove it

When a feature becomes default, we might choose to keep the old variant around, but normally we do not.
Then we remove the i f and #i f checks and drop the old code.

At this time, large scale testing will have demonstrated the viability of the code.

Adding dependencies to Nuitka

First of all, there is an important distinction to make, run time or development time. The first kind of
dependency is used when Nuitka is executing.

Adding a Run Time Dependency

This is the kind of dependency that is the most scrutinized. As we want Nuitka to run on latest greatest
Python as well as relatively old ones, we have to be very careful with these ones.

There is also a distinction of optional dependencies. Right now e.g. the | xnl package is relatively
optional, and Nuitka can work without it being installed, because e.g. on some platforms it will not be easy
to do so. That bar has lifted somewhat, but it means e.g. that XML based optimization tests are not run
with all Python versions.

The list of run time dependencies is in r equi renent s. t xt and it is for those the case, that they are not
really required to be installed by the user, consider this snippet:

Fol ders to use for cache fil es.
appdirs

Scons is the backend building tool to turn Cfiles to binaries.
scons

For both these dependencies, there is either an inline copy (Scons) that we handle to use in case, if Scons
is not available (in fact we have a version that works with Python 2.6 and 2.7 still), and also the same for
appdirs and every dependency.

But since inline copies are against the rules on some platforms that still do not contain the package, we
often even have our own wrapper which provides a minimal fallback or exposes a sane interface for the
subset of functionality that we use.

"Nuitka Developer Manual - page 64 - When to use it"

"Nuitka Developer Manual - Adding a Development Dependency"

Note

Therefore, please if you consider adding one of these, get in touch with @\ui t ka- pusher s first
and get a green light.

Adding a Development Dependency

A typical example of a development dependency is bl ack which is used by our autoformat tool, and then
in turn by the git pre-commit hook. It is used to format source code, and doesn't have a role at run time of
the actual compiler code of Nuitka.

Much less strict rules apply to these in comparison to runtime dependencies. Generally please take care
that the tool must be well maintained an available on newer Pythons. Then we can use it, no problem
normally. But if it's really big, say all of SciPy, we might want to justify it a bit better.

The list of development dependencies is in r equi r enent s- devel . t xt and it is for example like this:

Aut of ormat needs this
rstfm == 0.0.10 ; python_version >= "3.7

We always add the version, so that when tests run on as old versions as Python 2.6, the installation would
fail with that version, so we need to make a version requirement. Sometimes we use older versions for
Python2 than for Python3, Ji naj 2 being a notable candidate, but generally we ought to avoid that. For
many tools only being available for currently 3.7 or higher is good enough, esp. if they are run as
development tools, like aut of or mat - nui t ka- sour ce is.

Idea Bin

This an area where to drop random ideas on our minds, to later sort it out, and out it into action, which
could be code changes, plan changes, issues created, etc.

» Make "SELECT_METACLASS" meta class selection transparent.

Looking at the "SELECT_METACLASS" it should become an anonymous helper function. In that
way, the optimization process can remove choices at compile time, and e.g. in-line the effect of a
meta class, if it is known.

This of course makes most sense, if we have the optimizations in place that will allow this to actually
happen.

 Keeping track of iterations

The trace collection trace should become the place, where variables or values track their use state.
The iterator should keep track of the "next()" calls made to it, so it can tell which value to given in that
case.

That would solve the "iteration of constants" as a side effect and it would allow to tell that they can be
removed.

That would mean to go back in the tree and modify it long after.

iter((2, 3))
next (a)

next (a)

el a

a
b
c
d

"Nuitka Developer Manual - page 65 - Adding a Development Dependency"

"Nuitka Developer Manual - Adding a Development Dependency"

It would be sweet if we could recognize that as:

a=1iter((2, 3))

b = side_effect(next(a), 2)
c = side_effect(next(a), 3)
del a

That trivially becomes:

a =iter((2, 3))
next (a)
b =2
next (a)
c =3
del a

When the del a is examined at the end of scope, or due to another assignment to the same
variable, ending the trace, we would have to consider of the next uses, and retrofit the information
that they had no effect.

a =iter((2, 3))
b =2
b =3
del a
* Aliasing

Each time an assignment is made, an alias is created. A value may have different names.

a = iter(range(9))
b =a

¢ = next(b)

d = next(a)

If we fail to detect the aliasing nature, we will calculate d wrongly. We may incref and decref values to
trace it.

Aliasing is automatically traced already in SSA form. The b is assigned to version of a. So, that
should allow to replace it with this:

a = iter(range(9))
c next (a)
d next (a)

Which then will be properly handled.
» Talil recursion optimization.

Functions that return the results of calls, can be optimized. The Stackless Python does it already.
* Integrate with "upx" compression.

Calling "upx" on the created binaries, would be easy.

"Nuitka Developer Manual - page 66 - Adding a Development Dependency"

"Nuitka Developer Manual - Prongs of Action”

* In-lining constant "exec" and "eval".

It should be possible to re-formulate at least cases without "locals" or "globals" given.

def f():
a=1
b =2

exec("""a+=b; c=1""")

return a, ¢

Should become this here:

def f():
a=1
b =2

a+=b #
c 1 # Maybelocal Vari abl es for everything except known | ocal ones.

return a, c

If this holds up, inlining exec should be relatively easy.
« Original and overloaded built-ins

This is about making things visible in the node tree. In Nuitka things that are not visible in the node
tree tend to be wrong. We already pushed around information to the node tree a lot.

Later versions, Nuitka will become able to determine it has to be the original built-in at compile time,
then a condition that checks will be optimized away, together with the slow path. Or the other path, if
it won't be. Then it will be optimized away, or if doubt exists, it will be correct. That is the goal.

Right now, the change would mean to effectively disable all built-in call optimization, which is why we
don't immediately do it.

Making the compatible version, will also require a full listing of all built-ins, which is typing work
merely, but not needed now. And a way to stop built-in optimization from optimizing built-in calls that
it used in a wrap. Probably just some flag to indicate it when it visits it to skip it. That's for later.

But should we have that both, | figure, we could not raise a Runt i neErr or error, but just do the
correct thing, in all cases. An earlier step may raise Runt i neErr or error, when built-in module
values are written to, that we don't support.

Prongs of Action

In this chapter, we keep track of prongs of action currently ongoing. This can get detailed and shows
things we strive for.

Builtin optimization

Definitely want to get built-in names under full control, so that variable references to module variables do
not have a twofold role. Currently they reference the module variable and also the potential built-in as a
fallback.

"Nuitka Developer Manual - page 67 - Prongs of Action"

"Nuitka Developer Manual - Class Creation Overhead Reduction"

In terms of generated code size and complexity for modules with many variables and uses of them that is
horrible. But sorme_var (normally) cannot be a built-in and therefore needs no code to check for that each
time.

This is also critical to getting to whole program optimization. Being certain what is what there on module
level, will enable more definitely knowledge about data flows and module interfaces.

Class Creation Overhead Reduction

This is more of a meta goal. Some work for the metaclass has already been done, but that is Python2 only
currently. Being able to to decide built-ins and to distinguish between global only variables, and built-ins
more clearly will help this a lot.

In the end, empty classes should be able to be statically converted to calls to t ype with static dictionaries.
The inlining of class creation function is also needed for this, but on Python3 cannot happen yet.

Memory Usage at Compile Time

We will need to store more and more information in the future. Getting the tree to be tight shaped is
therefore an effort, where we will be spending time too.

The mix-ins prevent slots usage, so lets try and get rid of those. The "children having" should become
more simple and faster code. | am even thinking of even generating code in the meta class, so it's both
optimal and doesn't need that mix-in any more. This is going to be ugly then.

Coverage Testing

And then there is coverage, it should be taken and merged from all Python versions and OSes, but | never
managed to merge between Windows and Linux for unknown reasons.

Python3 Performance

The Python3 lock for thread state is making it slower by a lot. | have only experimental code that just
ignores the lock, but it likely only works on Linux, and | wonder why there is that lock in the first place.

Ignoring the locks cannot be good. But what updates that thread state pointer ever without a thread
change, and is this what ABI flags are about in this context, are there some that allow us to ignore the
locks.

An important bit would be to use a thread state once acquired for as much as possible, currently exception
helpers do not accept it as an argument, but that ought to become an option, that way saving and restoring
an exception will be much faster, not to mention checking and dropping non interesting, or rewriting
exceptions.

Caching of Python level compilation

While the C compilation result is already cached with ccache and friends now, we need to also cover our
bases and save the resulting node tree of potential expensive optimization on the module level.

Updates for this Manual

This document is written in REST. That is an ASCII format which is readable to human, but easily used to
generate PDF or HTML documents.

You will find the current source under:
https://github.com/Nuitka/Nuitka/blob/develop/Developer_Manual.rst

And the current PDF under: https://nuitka.net/doc/Developer_Manual.pdf

"Nuitka Developer Manual - page 68 - Class Creation Overhead Reduction"

https://github.com/Nuitka/Nuitka/blob/develop/Developer_Manual.rst
https://nuitka.net/doc/Developer_Manual.pdf

	Milestones
	Version Numbers
	Current State
	Setting up the Development Environment for Nuitka
	Visual Studio Code
	Eclipse / PyCharm

	Commit and Code Hygiene
	Coding Rules Python
	Tool to format
	Identifiers
	Classes
	Functions
	Module/Package Names
	Context Managers

	Prefer list contractions over built-ins

	Coding Rules C
	The "git flow" model
	Nuitka "git/github" Workflow
	API Documentation and Guidelines
	Use of Standard Python __doc__ Strings
	Special doxygen Anatomy of __doc__

	Checking the Source
	Running the Tests
	Running all Tests
	Basic Tests
	Syntax Tests
	Program Tests
	Generated Tests
	Compile Nuitka with Nuitka

	Internal/Plugin API
	Working with the CPython suites
	Design Descriptions
	Nuitka Logo
	Choice of the Target Language
	Use of Scons internally
	Locating Modules and Packages
	Hooking for module import process
	Supporting __class__ of Python3
	Frame Stack
	Parameter Parsing
	Input
	Keyword dictionary
	Argument tuple

	SSA form for Nuitka
	Loop SSA
	Python Slots in Optimization
	Basic Slot Idea
	Representation in Nuitka

	The C side
	Built-in call optimization
	Code Generation towards C
	Exceptions
	Statement Temporary Variables
	Local Variables Storage
	Exit Targets
	Frames
	Abortive Statements

	Constant Preparation
	Language Conversions to make things simpler
	The assert statement
	The "comparison chain" expressions
	The execfile built-in
	Generator expressions with yield
	Function Decorators
	Functions nested arguments
	In-place Assignments
	Complex Assignments
	Unpacking Assignments
	With Statements
	For Loops
	While Loops
	Exception Handlers
	Statement try/except with else
	Class Creation (Python2)
	Class Creation (Python3)
	Generator Expressions
	List Contractions
	Set Contractions
	Dictionary Contractions
	Boolean expressions and and or
	Simple Calls
	Complex Calls
	Assignment Expressions
	Match Statements
	Print Statements

	Reformulations during Optimization
	Builtin zip for Python2
	Builtin zip for Python3

	Builtin map for Python2
	Builtin min
	Builtin max
	Call to dir without arguments
	Calls to functions with known signatures

	Nodes that serve special purposes
	Try statements
	Releases
	Side Effects
	Caught Exception Type/Value References
	Hard Module Imports
	Locals Dict Update Statement

	Optimizing Attribute Lookups into Method Calls for Built-ins types

	Plan to add "ctypes" support
	Goals/Allowances to the task
	Type Inference - The Discussion
	Applying this to "ctypes"
	Excursion to Functions
	Excursion to Loops
	Excursion to Conditions
	Excursion to return statements
	Excursion to yield expressions
	Mixed Types
	Back to "ctypes"
	Now to the interface
	Discussing with examples
	Code Generation Impact
	Initial Implementation
	Goal 1 (Reached)
	Goal 2 (Reached)
	Goal 3
	Goal 4

	Limitations for now

	How to make Features Experimental
	Command Line
	In C code
	In Python
	When to use it
	When to remove it

	Adding dependencies to Nuitka
	Adding a Run Time Dependency
	Adding a Development Dependency

	Idea Bin
	Prongs of Action
	Builtin optimization
	Class Creation Overhead Reduction
	Memory Usage at Compile Time
	Coverage Testing
	Python3 Performance
	Caching of Python level compilation

	Updates for this Manual

