
Nuitka User Manual
Overview
This document is the recommended first read if you are interested in using Nuitka, understand its use
cases, check what you can expect, license, requirements, credits, etc.

Nuitka is the Python compiler. It is written in Python. It is a seamless replacement or extension to the
Python interpreter and compiles every construct that CPython 2.6, 2.7, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10
have, when itself run with that Python version.

It then executes uncompiled code and compiled code together in an extremely compatible manner.

You can use all Python library modules and all extension modules freely.

Nuitka translates the Python modules into a C level program that then uses libpython and static C files
of its own to execute in the same way as CPython does.

All optimization is aimed at avoiding overhead, where it's unnecessary. None is aimed at removing
compatibility, although slight improvements will occasionally be done, where not every bug of standard
Python is emulated, e.g. more complete error messages are given, but there is a full compatibility mode to
disable even that.

Usage
Requirements

• C Compiler: You need a compiler with support for C11 or alternatively for C++03 1

Currently this means, you need to use one of these compilers:

• The MinGW64 C11 compiler on Windows, must be based on gcc 11.2 or higher. It will be
automatically downloaded if no usable C compiler is found, which is the recommended way of
installing it, as Nuitka will also upgrade it for you.

• Visual Studio 2022 or higher on Windows 2, older versions will work but only supported for
commercial users. Configure to use the English language pack for best results (Nuitka filters
away garbage outputs, but only for English language). It will be used by default if installed.

• On all other platforms, the gcc compiler of at least version 5.1, and below that the g++ compiler
of at least version 4.4 as an alternative.

• The clang compiler on macOS X and most FreeBSD architectures.

• On Windows the clang-cl compiler on Windows can be used if provided by the Visual Studio
installer.

• Python: Version 2.6, 2.7 or 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10

Important

For Python 3.3/3.4 and only those, we need other Python version as a compile time
dependency.

Nuitka itself is fully compatible with all listed versions, but Scons as an internally used tool is
not.

For these versions, you need a Python2 or Python 3.5 or higher installed as well, but only
during the compile time only. That is for use with Scons (which orchestrates the C
compilation), which does not support the same Python versions as Nuitka.

In addition, on Windows, Python2 cannot be used because clcache does not work with it,
there a Python 3.5 or higher needs to be installed.

Nuitka finds these needed Python versions (e.g. on Windows via registry) and you shouldn't
notice it as long as they are installed.

Increasingly, other functionality is available when another Python has a certain package
installed. For example, onefile compression will work for a Python 2.x when another Python is
found that has the zstandard package installed.

Moving binaries to other machines

The created binaries can be made executable independent of the Python installation, with
--standalone and --onefile options.

Binary filename suffix

The created binaries have an .exe suffix on Windows. On other platforms they have no suffix
for standalone mode, or .bin suffix, that you are free to remove or change, or specify with the
-o option.

The suffix for acceleration mode is added just to be sure that the original script name and the
binary name do not ever collide, so we can safely do an overwrite without destroying the
original source file.

It has to be CPython, Anaconda Python.

You need the standard Python implementation, called "CPython", to execute Nuitka, because
it is closely tied to implementation details of it.

It cannot be from Windows app store

It is known that Windows app store Python definitely does not work, it's checked against. And
on macOS "pyenv" likely does not work.

• Operating System: Linux, FreeBSD, NetBSD, macOS X, and Windows (32/64 bits).
Others may work as well. The portability is expected to be generally good, but the e.g. Scons usage
may have to be adapted. Make sure to match Windows Python and C compiler architecture, or else
you will get cryptic error messages.

• Architectures: x86, x86_64 (amd64), and arm, likely many more

Other architectures are expected to also work, out of the box, as Nuitka is generally not using any
hardware specifics. These are just the ones tested and known to be good. Feedback is welcome.
Generally, the architectures that Debian supports can be considered good and tested too.

Command Line
The recommended way of executing Nuitka is <the_right_python> -m nuitka to be absolutely
certain which Python interpreter you are using, so it is easier to match with what Nuitka has.

The next best way of executing Nuitka bare that is from a source checkout or archive, with no environment
variable changes, most noteworthy, you do not have to mess with PYTHONPATH at all for Nuitka. You just
execute the nuitka and nuitka-run scripts directly without any changes to the environment. You may
want to add the bin directory to your PATH for your convenience, but that step is optional.

Moreover, if you want to execute with the right interpreter, in that case, be sure to execute
<the_right_python> bin/nuitka and be good.

Pick the right Interpreter

If you encounter a SyntaxError you absolutely most certainly have picked the wrong interpreter
for the program you are compiling.

Nuitka has a --help option to output what it can do:

nuitka --help

The nuitka-run command is the same as nuitka, but with a different default. It tries to compile and
directly execute a Python script:

nuitka-run --help

This option that is different is --run, and passing on arguments after the first non-option to the created
binary, so it is somewhat more similar to what plain python will do.

Installation
For most systems, there will be packages on the download page of Nuitka. But you can also install it from
source code as described above, but also like any other Python program it can be installed via the normal
python setup.py install routine.

License
Nuitka is licensed under the Apache License, Version 2.0; you may not use it except in compliance with
the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

https://nuitka.net/doc/download.html
http://www.apache.org/licenses/LICENSE-2.0

Tutorial Setup and build on Windows
This is basic steps if you have nothing installed, of course if you have any of the parts, just skip it.

Setup
Install Python

• Download and install Python from https://www.python.org/downloads/windows

• Select one of Windows x86-64 web-based installer (64 bits Python, recommended) or
x86 executable (32 bits Python) installer.

• Verify it's working using command python --version.

Install Nuitka

• python -m pip install nuitka

• Verify using command python -m nuitka --version

Write some code and test
Create a folder for the Python code

• mkdir HelloWorld

• make a python file named hello.py

def talk(message):
 return "Talk " + message

def main():
 print(talk("Hello World"))

if __name__ == "__main__":
 main()

Test your program
Do as you normally would. Running Nuitka on code that works incorrectly is not easier to debug.

python hello.py

Build it using

python -m nuitka hello.py

https://www.python.org/downloads/windows

Note

This will prompt you to download a C caching tool (to speed up repeated compilation of generated
C code) and a MinGW64 based C compiler unless you have a suitable MSVC installed. Say yes to
both those questions.

Run it
Execute the hello.exe created near hello.py.

Distribute
To distribute, build with --standalone option, which will not output a single executable, but a whole
folder. Copy the resulting hello.dist folder to the other machine and run it.

You may also try --onefile which does create a single file, but make sure that the mere standalone is
working, before turning to it, as it will make the debugging only harder, e.g. in case of missing data files.

Use Cases
Use Case 1 - Program compilation with all modules embedded
If you want to compile a whole program recursively, and not only the single file that is the main program,
do it like this:

python -m nuitka --follow-imports program.py

Note

There are more fine grained controls than --follow-imports available. Consider the output of
nuitka --help. Including less modules into the compilation, but instead using normal Python for
it will make it faster to compile.

In case you have a source directory with dynamically loaded files, i.e. one which cannot be found by
recursing after normal import statements via the PYTHONPATH (which would be the recommended way),
you can always require that a given directory shall also be included in the executable:

python -m nuitka --follow-imports --include-plugin-directory=plugin_dir program.py

Note

If you don't do any dynamic imports, simply setting your PYTHONPATH at compilation time is what
you should do.

Use --include-plugin-directory only if you make __import__() calls that Nuitka cannot
predict, because they e.g. depend on command line parameters. Nuitka also warns about these,
and point to the option.

Note

The resulting filename will be program.exe on Windows, program.bin on other platforms.

Note

The resulting binary still depend on CPython and used C extension modules being installed.

If you want to be able to copy it to another machine, use --standalone and copy the created
program.dist directory and execute the program.exe (Windows) or program (other platforms)
put inside.

Use Case 2 - Extension Module compilation
If you want to compile a single extension module, all you have to do is this:

python -m nuitka --module some_module.py

The resulting file some_module.so can then be used instead of some_module.py.

Note

It's left as an exercise to the reader, to find out what happens if both are present.

Note

The option --follow-imports and other variants work as well, but the included modules will
only become importable after you imported the some_module name.

Note

The resulting extension module can only be loaded into a CPython of the same version and doesn't
include other extension modules.

Use Case 3 - Package compilation
If you need to compile a whole package and embed all modules, that is also feasible, use Nuitka like this:

python -m nuitka --module some_package --include-package=some_package

Note

The inclusion of the package contents needs to be provided manually, otherwise, the package is
empty. You can be more specific if you want, and only include part of it. Data files located inside the
package will not be embedded by this process, you need to copy them yourself with this approach.

Use Case 4 - Program Distribution
For distribution to other systems, there is the standalone mode which produces a folder for which you can
specify --standalone.

python -m nuitka --standalone program.py

Follow all imports is default in this mode. You can selectively exclude modules by specifically saying
--nofollow-import-to, but then an ImportError will be raised when import of it is attempted at
program run time.

For data files to be included, use the option --include-data-files=<source>=<target> where the
source is a file system path, but target has to be specified relative. For standalone you can also copy them
manually, but this can do extra checks, and for onefile mode, there is no manual copying possible.

To copy some or all file in a directory, use the option --include-data-files=/etc/*.txt=etc/
where you get to specify shell patterns for the files, and a subdirectory where to put them, indicated by the
trailing slash.

To copy a whole folder with all files, you can use --include-data-dir=/path/to/images=images
which will copy all files including a potential subdirectory structure. You cannot filter here, i.e. if you want
only a partial copy, remove the files beforehand.

For package data, there is a better way, using --include-package-data which detects data files of
packages automatically and copies them over. It even accepts patterns in shell style.

With data files, you are largely on your own. Nuitka keeps track of ones that are needed by popular
packages, but it might be incomplete. Raise issues if you encounter something in these.

When that is working, you can use the onefile mode if you so desire.

python -m nuitka --onefile program.py

This will create a single binary, which on Linux will not even unpack itself, but instead loop back mount its
contents as a filesystem and use that.

Create a binary that unpacks into a temporary folder
python -m nuitka --onefile program.py

Note

There are more platform specific options, e.g. related to icons, splash screen, and version
information, consider the --help output for the details of these and check the section "Good
Looks".

Again, on Windows, for the temporary file directory, by default the user one is used, however this can be
overridden with a path specification given in
--windows-onefile-tempdir-spec=%TEMP%\onefile_%PID%_%TIME% which is the default and
asserts that the temporary directories created cannot collide.

Currently these expanded tokens are available:

Token What this Expands to Example

%TEMP
%

User temporary file directory C:Users...AppDataLocalsT
emp

%PID% Process ID 2772

%TIME
%

Time in seconds since the epoch. 1299852985

%PRO
GRAM
%

Full program run-time filename of executable. C:SomeWhereYourOnefile
.exe

%CACH
E_DIR
%

Cache directory for the user. C:UsersSomeBodyAppDat
aLocal

%COM
PANY%

Value given as --windows-company-name YourCompanyName

%PROD
UCT%

Value given as --windows-product-name YourProductName

%VERS
ION%

Combination of --windows-file-version &
--windows-product-version

3.0.0.0-1.0.0.0

%HOM
E%

Home directory for the user. /home/somebody

Note

It is your responsibility to make the path provided unique, on Windows a running program will be
locked, and while using a fixed folder name is possible, it can cause locking issues in that case,
where the program gets restarted.

Usually you need to use %TIME% or at least %PID% to make a path unique, and this is mainly
intended for use cases, where e.g. you want things to reside in a place you choose or abide your
naming conventions.

Use Case 5 - Setuptools Wheels
If you have a setup.py, setup.cfg or pyproject.toml driven creation of wheels for your software in
place, putting Nuitka to use is extremely easy.

Lets start with the most common setuptools approach, you can - having Nuitka installed of course,
simply execute the target bdist_nuitka rather than the bdist_wheel. It takes all the options and
allows you to specify some more, that are specific to Nuitka.

For setup.py if not you't use other build systems:
setup(
 ...,
 command_options={
 'nuitka': {
 # boolean option, e.g. if you cared for C compilation commands
 '--show-scons': True,
 # options without value, e.g. enforce using Clang
 '--clang': None,
 # options with single values, e.g. enable a plugin of Nuitka
 '--enable-plugin': "pyside2",
 # options with several values, e.g. avoiding including modules
 '--nofollow-import-to' : ["*.tests", "*.distutils"],
 }
 },
)

For setup.py with other build systems:
The tuple nature of the arguments is required by the dark nature of
"setuptools" and plugins to it, that insist on full compatibility,
e.g. "setuptools_rust"

setup(
 ...,
 command_options={
 'nuitka': {
 # boolean option, e.g. if you cared for C compilation commands
 '--show-scons': ("setup.py", True),
 # options without value, e.g. enforce using Clang
 '--clang': ("setup.py", None),
 # options with single values, e.g. enable a plugin of Nuitka
 '--enable-plugin': ("setup.py", "pyside2"),
 # options with several values, e.g. avoiding including modules
 '--nofollow-import-to' : ("setup.py", ["*.tests", "*.distutils"]),
 }
 },
)

If for some reason, you cannot or do not what to change the target, you can add this to your setup.py.

For setup.py
setup(
 ...,
 build_with_nuitka=True
)

Note

To temporarily disable the compilation, you could remove above line, or edit the value to False by
or take its value from an environment variable if you so choose, e.g.
bool(os.environ.get("USE_NUITKA", "True")). This is up to you.

Or you could put it in your setup.cfg

[metadata]
build_with_nuitka = True

And last, but not least, Nuitka also supports the new build meta, so when you have a pyproject.toml
already, simple replace or add this value:

[build-system]
requires = ["setuptools>=42", "wheel", "nuitka", "toml"]
build-backend = "nuitka.distutils.Build"

[nuitka]
These are not recommended, but they make it obvious to have effect.

boolean option, e.g. if you cared for C compilation commands, leading
dashes are omitted
show-scons = true

options with single values, e.g. enable a plugin of Nuitka
enable-plugin = pyside2

options with several values, e.g. avoiding including modules, accepts
list argument.
nofollow-import-to = ["*.tests", "*.distutils"]

Note

For the nuitka requirement above absolute paths like C:\Users...\Nuitka will also work on
Linux, use an absolute path with two leading slashes, e.g. //home/.../Nuitka.

Tweaks
Icons
For good looks, you may specify icons. On Windows, you can provide an icon file, a template executable,
or a PNG file. All of these will work and may even be combined:

These create binaries with icons:
python -m nuitka --onefile --windows-icon-from-ico=your-icon.png program.py

python -m nuitka --onefile --windows-icon-from-ico=your-icon.ico program.py
python -m nuitka --onefile --windows-icon-template-exe=your-icon.ico program.py

Splash screen
Splash screens are useful when program startup is slow. Onefile startup itself is not slow, but your
program may be, and you cannot really know how fast the computer used will be, so it might be a good
idea to have them. Luckily with Nuitka, they are easy to add for Windows.

For splash screen, you need to specify it as an PNG file, and then make sure to disable the splash screen
when your program is ready, e.g. has complete the imports, prepared the window, connected to the
database, and wants the splash screen to go away. Here we are using the project syntax to combine the
code with the creation, compile this:

nuitka-project: --onefile
nuitka-project: --onefile-windows-splash-screen-image={MAIN_DIRECTORY}/Splash-Screen.png

Whatever this is obviously
print("Delaying startup by 10s...")
import time
time.sleep(10)

Use this code to signal the splash screen removal.
if "NUITKA_ONEFILE_PARENT" in os.environ:
 splash_filename = os.path.join(
 tempfile.gettempdir(),
 "onefile_%d_splash_feedback.tmp" % int(os.environ["NUITKA_ONEFILE_PARENT"]),
)

 if os.path.exists(splash_filename):
 os.unlink(splash_filename)

print("Done... splash should be gone.")
...

Rest of your program goes here.

Typical Problems
Memory issues and compiler bugs
Sometimes the C compilers will crash saying they cannot allocate memory or that some input was
truncated, or similar error messages, clearly from it. There are several options you can explore here:

Ask Nuitka to use less memory
There is a dedicated option --low-memory which influences decisions of Nuitka, such that it avoids high
usage of memory during compilation at the cost of increased compile time.

Avoid 32 bit C compiler/assembler memory limits
Do not use a 32 bits compiler, but a 64 bit one. If you are using Python with 32 bits on Windows, you most
definitely ought to use MSVC as the C compiler, and not MinGW64. The MSVC is a cross compiler, and
can use more memory than gcc on that platform. If you are not on Windows, that is not an option of
course. Also using the 64 bits Python will work.

Use a minimal virtualenv
When you compile from a living installation, that may well have many optional dependencies of your
software installed. Some software, will then have imports on these, and Nuitka will compile them as well.
Not only may these be just the trouble makers, they also require more memory, so get rid of that. Of
course you do have to check that your program has all needed dependencies before you attempt to
compile, or else the compiled program will equally not run.

Use LTO compilation or not
With --lto=yes or --lto=no you can switch the C compilation to only produce bytecode, and not
assembler code and machine code directly, but make a whole program optimization at the end. This will
change the memory usage pretty dramatically, and if you error is coming from the assembler, using LTO
will most definitely avoid that.

Switch the C compiler to clang
People have reported that programs that fail to compile with gcc due to its bugs or memory usage work
fine with clang on Linux. On Windows, this could still be an option, but it needs to be implemented first for
the automatic downloaded gcc, that would contain it. Since MSVC is known to be more memory effective
anyway, you should go there, and if you want to use Clang, there is support for the one contained in
MSVC.

Add a larger swap file to your embedded Linux
On systems with not enough RAM, you need to use swap space. Running out of it is possibly a cause, and
adding more swap space, or one at all, might solve the issue, but beware that it will make things extremely
slow when the compilers swap back and forth, so consider the next tip first or on top of it.

Limit the amount of compilation jobs
With the --jobs option of Nuitka, it will not start many C compiler instances at once, each competing for
the scarce resource of RAM. By picking a value of one, only one C compiler instance will be running, and
on a 8 core system, that reduces the amount of memory by factor 8, so that's a natural choice right there.

Dynamic sys.path
If your script modifies sys.path to e.g. insert directories with source code relative to it, Nuitka will not be
able to see those. However, if you set the PYTHONPATH to the resulting value, it will be able to compile it
and find the used modules from these paths as well.

Manual Python File Loading
A very frequent pattern with private code is that it scans plugin directories of some kind, and uses
os.listdir, checks filenames, and then opens a file and does exec on them. This approach is working
for Python code, but for compiled code, you should use this much cleaner approach, that works for pure
Python code and is a lot less vulnerable.

Using a package name, to locate the plugins, but this can actually
be also a directory.
scan_path = scan_package.__path__

for item in pkgutil.iter_modules(scan_path):
 # You may want to do it recursively, but we don't do this here in
 # this example.
 if item.ispkg:
 continue

 # The loader object knows how to do it.
 module_loader = item.module_finder.find_module(item.name)

 # Ignore bytecode only left overs. Deleted files can cause
 # these things, so we just ignore it. Not every load has a
 # filename, so we need to catch that error.
 try:
 if module_loader.get_filename().endswith(".pyc"):
 continue
 except AttributeError:
 # Not a bytecode loader, but e.g. extension module, which is OK in case
 # it was compiled with Nuitka.
 pass

 plugin_module = module_loader.load_module(item.name)

 # At least for Python2, this is not set properly, but we use it for package
 # data loading, so this manual patching up allows these to use proper methods
 # for loading their stuff as well.
 plugin_module.__package__ = scan_package.__name__

Missing data files in standalone
If your program fails to file data, it can cause all kinds of different behaviors, e.g. a package might
complain it is not the right version, because a VERSION file check defaulted to unknown. The absence of
icon files or help texts, may raise strange errors.

Often the error paths for files not being present are even buggy and will reveal programming errors like
unbound local variables. Please look carefully at these exceptions keeping in mind that this can be the
cause. If you program works without standalone, chances are data files might be cause.

Missing DLLs in standalone
Nuitka has plugins that deal with copying DLLs. For NumPy, SciPy, Tkinter, etc.

These need special treatment to be able to run on other systems. Manually copying them is not enough
and will given strange errors. Sometimes newer version of packages, esp. NumPy can be unsupported. In
this case you will have to raise an issue, and use the older one.

Dependency creep in standalone
Some packages are a single import, but to Nuitka mean that more than a thousand packages (literally) are
to be included. The prime example of Pandas, which does want to plug and use just about everything you
can imagine. Multiple frameworks for syntax highlighting everything imaginable take time.

Nuitka will have to learn effective caching to deal with this in the future. Right now, you will have to deal
with huge compilation times for these.

A major weapon in fighting dependency creep should be applied, namely the anti-bloat plugin, which
offers interesting abilities, that can be put to use and block unneeded imports, giving an error for where
they occur. Use it e.g. like this --noinclude-pytest-mode=nofollow
--noinclude-setuptools-mode=nofollow and e.g. also
--noinclude-custom-mode=setuptools:error to get the compiler to error out for a specific
package. Make sure to check its help output. It can take for each module of your choice, e.g. forcing also
that e.g. PyQt5 is considered uninstalled for standalone mode.

It's also driven by a configuration file, anti-bloat.yml that you can contribute to, removing typical bloat
from packages. Feel free to enhance it and make PRs towards Nuitka with it.

Onefile: Finding files
There is a difference between sys.argv[0] and __file__ of the main module for onefile more, that is
caused by using a bootstrap to a temporary location. The first one will be the original executable path,
where as the second one will be the temporary or permanent path the bootstrap executable unpacks to.
Data files will be in the later location, your original environment files will be in the former location.

Given 2 files, one which you expect to be near your executable, and one which you expect to be inside the
onefile binary, access them like this.

This will find a file *near* your onefile.exe
open(os.path.join(os.path.dirname(sys.argv[0]), "user-provided-file.txt"))
This will find a file *inside* your onefile.exe
open(os.path.join(os.path.dirname(__file__), "user-provided-file.txt"))

Standalone: Finding files
The standard code that normally works, also works, you should refer to os.path.dirname(__file__)
or use all the packages like pkgutil, pkg_resources, importlib.resources to locate data files
near the standalone binary.

Important

What you should not do, is use the current directory os.getcwd, assuming that this is the script
directory, that is not generally true, and was never good code. Links, to a program, etc. will all fail in
bad ways.

Windows Programs without console give no errors
For debugging purposes, remove --windows-disable-console or use the options
--windows-force-stdout-spec and --windows-force-stderr-spec with paths as documented
for --windows-onefile-tempdir-spec above.

Deep copying uncompiled functions
Sometimes people use this kind of code, which for packages on PyPI, we deal with by doing source code
patches on the fly. If this is in your own code, here is what you can do:

def binder(func, name):
 result = types.FunctionType(func.__code__, func.__globals__, name=func.__name__, argdefs=func.__defaults__, closure=func.__closure__)
 result = functools.update_wrapper(result, func)
 result.__kwdefaults__ = func.__kwdefaults__
 result.__name__ = name
 return result

Compiled functions cannot be used to create uncompiled ones from, so the above code, will not work.
However, there is a dedicated clone method, that is specific to them, so use this instead.

def binder(func, name):
 try:
 result = func.clone()
 except AttributeError:
 result = types.FunctionType(func.__code__, func.__globals__, name=func.__name__, argdefs=func.__defaults__, closure=func.__closure__)
 result = functools.update_wrapper(result, func)
 result.__kwdefaults__ = func.__kwdefaults__

 result.__name__ = name
 return result

Tips
Nuitka Options in the code
There is support for conditional options, and options using pre-defined variables, this is an example:

Compilation mode, support OS specific.
nuitka-project-if: {OS} in ("Windows", "Linux", "Darwin", "FreeBSD"):
nuitka-project: --onefile
nuitka-project-if: {OS} not in ("Windows", "Linux", "Darwin", "FreeBSD"):
nuitka-project: --standalone

The PySide2 plugin covers qt-plugins
nuitka-project: --enable-plugin=pyside2
nuitka-project: --include-qt-plugins=sensible,qml

The comments must be a start of line, and indentation is to be used, to end a conditional block, much like
in Python. There are currently no other keywords than the used ones demonstrated above.

You can put arbitrary Python expressions there, and if you wanted to e.g. access a version information of a
package, you could simply use __import__("module_name").__version__ if that would be required
to e.g. enable or disable certain Nuitka settings. The only thing Nuitka does that makes this not Python
expressions, is expanding {variable} for a pre-defined set of variables:

Table with supported variables:

Variable What this Expands to Example

{OS} Name of the OS used Linux, Windows, Darwin, FreeBSD,
OpenBSD

{Version} Version of Nuitka e.g. (0, 6, 16)

{Commercial} Version of Nuitka Commercial e.g. (0, 9, 4)

{Arch} Architecture used x86_64, arm64, etc.

{MAIN_DIRECTO
RY}

Directory of the compiled file some_dir/maybe_relative

{Flavor} Variant of Python e.g. Debian Python, Anaconda Python

The use of {MAIN_DIRECTORY} is recommended when you want to specify a filename relative to the
main script, e.g. for use in data file options or user package configuration yaml files,

nuitka-project: --include-data-files={MAIN_DIRECTORY}/my_icon.png=my_icon.png
nuitka-project: --user-package-configuration-file={MAIN_DIRECTORY}/user.nuitka-package.config.yml

Python command line flags
For passing things like -O or -S to Python, to your compiled program, there is a command line option
name --python-flag= which makes Nuitka emulate these options.

The most important ones are supported, more can certainly be added.

Caching compilation results
The C compiler, when invoked with the same input files, will take a long time and much CPU to compile
over and over. Make sure you are having ccache installed and configured when using gcc (even on
Windows). It will make repeated compilations much faster, even if things are not yet not perfect, i.e.
changes to the program can cause many C files to change, requiring a new compilation instead of using
the cached result.

On Windows, with gcc Nuitka supports using ccache.exe which it will offer to download from an official
source and it automatically. This is the recommended way of using it on Windows, as other versions can
e.g. hang.

Nuitka will pick up ccache if it's in found in system PATH, and it will also be possible to provide if by setting
NUITKA_CCACHE_BINARY to the full path of the binary, this is for use in CI systems where things might be
non-standard.

For the MSVC compilers and ClangCL setups, using the clcache is automatic and included in Nuitka.

Control where Caches live
The storage for cache results of all kinds, downloads, cached compilation results from C and Nuitka, is
done in a platform dependent directory as determined by the appdirs package. However, you can
override it with setting the environment variable NUITKA_CACHE_DIR to a base directory. This is for use in
environments where the home directory is not persisted, but other paths are.

Runners
Avoid running the nuitka binary, doing python -m nuitka will make a 100% sure you are using what
you think you are. Using the wrong Python will make it give you SyntaxError for good code or
ImportError for installed modules. That is happening, when you run Nuitka with Python2 on Python3
code and vice versa. By explicitly calling the same Python interpreter binary, you avoid that issue entirely.

Fastest C Compilers
The fastest binaries of pystone.exe on Windows with 64 bits Python proved to be significantly faster
with MinGW64, roughly 20% better score. So it is recommended for use over MSVC. Using
clang-cl.exe of Clang7 was faster than MSVC, but still significantly slower than MinGW64, and it will
be harder to use, so it is not recommended.

On Linux for pystone.bin the binary produced by clang6 was faster than gcc-6.3, but not by a
significant margin. Since gcc is more often already installed, that is recommended to use for now.

Differences in C compilation times have not yet been examined.

Unexpected Slowdowns
Using the Python DLL, like standard CPython does can lead to unexpected slowdowns, e.g. in uncompiled
code that works with Unicode strings. This is because calling to the DLL rather than residing in the DLL
causes overhead, and this even happens to the DLL with itself, being slower, than a Python all contained
in one binary.

So if feasible, aim at static linking, which is currently only possible with Anaconda Python on
non-Windows, Debian Python2, self compiled Pythons (do not activate --enable-shared, not needed),
and installs created with pyenv.

Note

On Anaconda, you may need to execute conda install libpython-static

Standalone executables and dependencies
The process of making standalone executables for Windows traditionally involves using an external
dependency walker in order to copy necessary libraries along with the compiled executables to the
distribution folder.

There is plenty of ways to find that something is missing. Do not manually copy things into the folder, esp.
not DLLs, as that's not going to work. Instead make bug reports to get these handled by Nuitka properly.

Windows errors with resources
On Windows, the Windows Defender tool and the Windows Indexing Service both scan the freshly created
binaries, while Nuitka wants to work with it, e.g. adding more resources, and then preventing operations
randomly due to holding locks. Make sure to exclude your compilation stage from these services.

Windows standalone program redistribution
Whether compiling with MingW or MSVC, the standalone programs have external dependencies to Visual
C Runtime libraries. Nuitka tries to ship those dependent DLLs by copying them from your system.

Beginning with Microsoft Windows 10, Microsoft ships ucrt.dll (Universal C Runtime libraries) which
handles calls to api-ms-crt-*.dll.

With earlier Windows platforms (and wine/ReactOS), you should consider installing Visual C runtime
libraries before executing a Nuitka standalone compiled program.

Depending on the used C compiler, you'll need the following redist versions:

Visual C version Redist Year CPython

14.2 2019 3.5, 3.6, 3.7, 3.8, 3.9, 3.10

14.1 2017 3.5, 3.6, 3.7, 3.8

14.0 2015 3.5, 3.6, 3.7, 3.8

10.0 2010 3.3, 3.4

9.0 2008 2.6, 2.7

When using MingGW64, you'll need the following redist versions:

MingGW64 version Redist Year CPython

8.1.0 2015 3.5, 3.6, 3.7, 3.8, 3.9, 3.10

Once the corresponding runtime libraries are installed on the target system, you may remove all
api-ms-crt-*.dll files from your Nuitka compiled dist folder.

Detecting Nuitka at run time
Nuitka does not sys.frozen unlike other tools, because it usually triggers inferior code for no reason. For
Nuitka, we have the module attribute __compiled__ to test if a specific module was compiled, and the
function attribute __compiled__ to test if a specific function was compiled.

Providing extra Options to Nuitka C compilation
Nuitka will apply values from the environment variables CCFLAGS, LDFLAGS during the compilation on top
of what it determines to be necessary. Beware of course, that is this is only useful if you know what you
are doing, so should this pose an issues, raise them only with perfect information.

Producing a 32 bit binary on a 64 bit Windows system
Nuitka will automatically target the architecture of the Python you are using. If this is 64 bits, it will create a
64 bits binary, if it is 32 bits, it will create a 32 bits binary. You have the option to select the bits when you
download the Python. In the output of python -m nuitka --version there is a line for the
architecture. It Arch: x86_64 for 64 bits, and just Arch: x86 for 32 bits.

The C compiler will be picked to match that more or less automatically. If you specify it explicitly and it
mismatches, you will get a warning about the mismatch and informed that you compiler choice was
rejected.

Performance
This chapter gives an overview, of what to currently expect in terms of performance from Nuitka. It's a work
in progress and is updated as we go. The current focus for performance measurements is Python 2.7, but
3.x is going to follow later.

pystone results
The results are the top value from this kind of output, running pystone 1000 times and taking the minimal
value. The idea is that the fastest run is most meaningful, and eliminates usage spikes.

echo "Uncompiled Python2"
for i in {1..100}; do BENCH=1 python2 tests/benchmarks/pystone.py ; done | sort -n -r | head -n 1
python2 -m nuitka --lto=yes --pgo=yes tests/benchmarks/pystone.py
echo "Compiled Python2"
for i in {1..100}; do BENCH=1 ./pystone.bin ; done | sort -n -r | head -n 1

echo "Uncompiled Python3"
for i in {1..100}; do BENCH=1 python3 tests/benchmarks/pystone3.py ; done | sort -n -r | head -n 1
python3 -m nuitka --lto=yes --pgo=yes tests/benchmarks/pystone3.py
echo "Compiled Python3"
for i in {1..100}; do BENCH=1 ./pystone3.bin ; done | sort -n -r | head -n 1

Python Uncompiled Compiled LTO Compiled PGO

Debian Python 2.7 137497.87 (1.000) 460995.20 (3.353) 503681.91 (3.663)

Nuitka Python 2.7 144074.78 (1.048) 479271.51 (3.486) 511247.44 (3.718)

Where to go next
Remember, this project needs constant work. Although the Python compatibility is insanely high, and test
suite works near perfectly, there is still more work needed, esp. to make it do more optimization. Try it out,
and when popular packages do not work, please make reports on GitHub.

Follow me on Twitter
Nuitka announcements and interesting stuff is pointed to on the Twitter account, but obviously with not too
many details. @KayHayen.

https://twitter.com/KayHayen

Report issues or bugs
Should you encounter any issues, bugs, or ideas, please visit the Nuitka bug tracker and report them.

Best practices for reporting bugs:

• Please always include the following information in your report, for the underlying Python version. You
can easily copy&paste this into your report.

python -m nuitka --version

• Try to make your example minimal. That is, try to remove code that does not contribute to the issue
as much as possible. Ideally come up with a small reproducing program that illustrates the issue,
using print with different results when that programs runs compiled or native.

• If the problem occurs spuriously (i.e. not each time), try to set the environment variable
PYTHONHASHSEED to 0, disabling hash randomization. If that makes the problem go away, try
increasing in steps of 1 to a hash seed value that makes it happen every time, include it in your
report.

• Do not include the created code in your report. Given proper input, it's redundant, and it's not likely
that I will look at it without the ability to change the Python or Nuitka source and re-run it.

• Do not send screenshots of text, that is bad and lazy. Instead, capture text outputs from the console.

Word of Warning
Consider using this software with caution. Even though many tests are applied before releases, things are
potentially breaking. Your feedback and patches to Nuitka are very welcome.

Join Nuitka
You are more than welcome to join Nuitka development and help to complete the project in all minor and
major ways.

The development of Nuitka occurs in git. We currently have these 3 branches:

• main

This branch contains the stable release to which only hotfixes for bugs will be done. It is supposed to
work at all times and is supported.

• develop

This branch contains the ongoing development. It may at times contain little regressions, but also
new features. On this branch, the integration work is done, whereas new features might be
developed on feature branches.

• factory

This branch contains unfinished and incomplete work. It is very frequently subject to git rebase
and the public staging ground, where my work for develop branch lives first. It is intended for testing
only and recommended to base any of your own development on. When updating it, you very often
will get merge conflicts. Simply resolve those by doing git fetch && git reset --hard
origin/factory and switch to the latest version.

https://github.com/kayhayen/Nuitka/issues

Note

The Developer Manual explains the coding rules, branching model used, with feature branches and
hotfix releases, the Nuitka design and much more. Consider reading it to become a contributor.
This document is intended for Nuitka users.

Donations
Should you feel that you cannot help Nuitka directly, but still want to support, please consider making a
donation and help this way.

Unsupported functionality
The co_code attribute of code objects
The code objects are empty for native compiled functions. There is no bytecode with Nuitka's compiled
function objects, so there is no way to provide it.

PDB
There is no tracing of compiled functions to attach a debugger to.

Optimization
Constant Folding
The most important form of optimization is the constant folding. This is when an operation can be fully
predicted at compile time. Currently, Nuitka does these for some built-ins (but not all yet, somebody to look
at this more closely will be very welcome!), and it does it e.g. for binary/unary operations and comparisons.

Constants currently recognized:

5 + 6 # binary operations
not 7 # unary operations
5 < 6 # comparisons
range(3) # built-ins

Literals are the one obvious source of constants, but also most likely other optimization steps like constant
propagation or function inlining will be. So this one should not be underestimated and a very important
step of successful optimizations. Every option to produce a constant may impact the generated code
quality a lot.

Status

The folding of constants is considered implemented, but it might be incomplete in that not all
possible cases are caught. Please report it as a bug when you find an operation in Nuitka that has
only constants as input and is not folded.

https://nuitka.net/doc/developer-manual.html
https://nuitka.net/pages/donations.html
https://nuitka.net/pages/donations.html

Constant Propagation
At the core of optimizations, there is an attempt to determine the values of variables at run time and
predictions of assignments. It determines if their inputs are constants or of similar values. An expression,
e.g. a module variable access, an expensive operation, may be constant across the module of the function
scope and then there needs to be none or no repeated module variable look-up.

Consider e.g. the module attribute __name__ which likely is only ever read, so its value could be predicted
to a constant string known at compile time. This can then be used as input to the constant folding.

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

Status

From modules attributes, only __name__ is currently actually optimized. Also possible would be at
least __doc__. In the future, this may improve as SSA is expanded to module variables.

Built-in Name Lookups
Also, built-in exception name references are optimized if they are used as a module level read-only
variables:

try:
 something()
except ValueError: # The ValueError is a slow global name lookup normally.
 pass

Status

This works for all built-in names. When an assignment is done to such a name, or it's even local,
then, of course, it is not done.

Built-in Call Prediction
For built-in calls like type, len, or range it is often possible to predict the result at compile time, esp. for
constant inputs the resulting value often can be precomputed by Nuitka. It can simply determine the result
or the raised exception and replace the built-in call with that value, allowing for more constant folding or
code path reduction.

type("string") # predictable result, builtin type str.
len([1, 2]) # predictable result
range(3, 9, 2) # predictable result
range(3, 9, 0) # predictable exception, range raises due to 0.

Status

The built-in call prediction is considered implemented. We can simply during compile time emulate
the call and use its result or raised exception. But we may not cover all the built-ins there are yet.

Sometimes the result of a built-in should not be predicted when the result is big. A range() call e.g. may
give too big values to include the result in the binary. Then it is not done.

range(100000) # We do not want this one to be expanded

Status

This is considered mostly implemented. Please file bugs for built-ins that are pre-computed, but
should not be computed by Nuitka at compile time with specific values.

Conditional Statement Prediction
For conditional statements, some branches may not ever be taken, because of the conditions being
possible to predict. In these cases, the branch not taken and the condition check is removed.

This can typically predict code like this:

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

or

if False:
 # Your deactivated code might be here
 use_something_not_use_by_program()

It will also benefit from constant propagations, or enable them because once some branches have been
removed, other things may become more predictable, so this can trigger other optimization to become
possible.

Every branch removed makes optimization more likely. With some code branches removed, access
patterns may be more friendly. Imagine e.g. that a function is only called in a removed branch. It may be
possible to remove it entirely, and that may have other consequences too.

Status

This is considered implemented, but for the maximum benefit, more constants need to be
determined at compile time.

Exception Propagation
For exceptions that are determined at compile time, there is an expression that will simply do raise the
exception. These can be propagated upwards, collecting potentially "side effects", i.e. parts of expressions
that were executed before it occurred, and still have to be executed.

Consider the following code:

print(side_effect_having() + (1 / 0))
print(something_else())

The (1 / 0) can be predicted to raise a ZeroDivisionError exception, which will be propagated
through the + operation. That part is just Constant Propagation as normal.

The call side_effect_having() will have to be retained though, but the print does not and can be
turned into an explicit raise. The statement sequence can then be aborted and as such the
something_else call needs no code generation or consideration anymore.

To that end, Nuitka works with a special node that raises an exception and is wrapped with a so-called
"side_effects" expression, but yet can be used in the code as an expression having a value.

Status

The propagation of exceptions is mostly implemented but needs handling in every kind of
operations, and not all of them might do it already. As work progresses or examples arise, the
coverage will be extended. Feel free to generate bug reports with non-working examples.

Exception Scope Reduction
Consider the following code:

try:
 b = 8
 print(range(3, b, 0))
 print("Will not be executed")
except ValueError as e:
 print(e)

The try block is bigger than it needs to be. The statement b = 8 cannot cause a ValueError to be
raised. As such it can be moved to outside the try without any risk.

b = 8
try:
 print(range(3, b, 0))
 print("Will not be executed")
except ValueError as e:
 print(e)

Status

This is considered done. For every kind of operation, we trace if it may raise an exception. We do
however not track properly yet, what can do a ValueError and what cannot.

Exception Block Inlining
With the exception propagation, it then becomes possible to transform this code:

try:
 b = 8
 print(range(3, b, 0))
 print("Will not be executed!")
except ValueError as e:
 print(e)

try:
 raise ValueError("range() step argument must not be zero")
except ValueError as e:
 print(e)

Which then can be lowered in complexity by avoiding the raise and catch of the exception, making it:

e = ValueError("range() step argument must not be zero")
print(e)

Status

This is not implemented yet.

Empty Branch Removal
For loops and conditional statements that contain only code without effect, it should be possible to remove
the whole construct:

for i in range(1000):
 pass

The loop could be removed, at maximum, it should be considered an assignment of variable i to 999 and
no more.

Status

This is not implemented yet, as it requires us to track iterators, and their side effects, as well as
loop values, and exit conditions. Too much yet, but we will get there.

Another example:

if side_effect_free:
 pass

The condition check should be removed in this case, as its evaluation is not needed. It may be difficult to
predict that side_effect_free has no side effects, but many times this might be possible.

Status

This is considered implemented. The conditional statement nature is removed if both branches are
empty, only the condition is evaluated and checked for truth (in cases that could raise an
exception).

Unpacking Prediction
When the length of the right-hand side of an assignment to a sequence can be predicted, the unpacking
can be replaced with multiple assignments.

a, b, c = 1, side_effect_free(), 3

a = 1
b = side_effect_free()
c = 3

This is of course only really safe if the left-hand side cannot raise an exception while building the
assignment targets.

We do this now, but only for constants, because we currently have no ability to predict if an expression can
raise an exception or not.

Status

Not implemented yet. Will need us to see through the unpacking of what is an iteration over a tuple,
we created ourselves. We are not there yet, but we will get there.

Built-in Type Inference
When a construct like in xrange() or in range() is used, it is possible to know what the iteration
does and represent that so that iterator users can use that instead.

I consider that:

for i in xrange(1000):
 something(i)

could translate xrange(1000) into an object of a special class that does the integer looping more
efficiently. In case i is only assigned from there, this could be a nice case for a dedicated class.

Status

Future work, not even started.

Quicker Function Calls
Functions are structured so that their parameter parsing and tp_call interface is separate from the
actual function code. This way the call can be optimized away. One problem is that the evaluation order
can differ.

def f(a, b, c):
 return a, b, c

f(c=get1(), b=get2(), a=get3())

This will have to evaluate first get1(), then get2() and only then get3() and then make the function
call with these values.

Therefore it will be necessary to have a staging of the parameters before making the actual call, to avoid a
re-ordering of the calls to get1(), get2(), and get3().

Status

Not even started. A re-formulation that avoids the dictionary to call the function, and instead uses
temporary variables appears to be relatively straight forward once we do that kind of parameter
analysis.

Lowering of iterated Container Types
In some cases, accesses to list constants can become tuple constants instead.

Consider that:

for x in [a, b, c]:
 something(x)

Can be optimized into this:

for x in (a, b, c):
 something(x)

This allows for simpler, faster code to be generated, and fewer checks needed, because e.g. the tuple is
clearly immutable, whereas the list needs a check to assert that. This is also possible for sets.

Status

Implemented, even works for non-constants. Needs other optimization to become generally useful,
and will itself help other optimization to become possible. This allows us to e.g. only treat iteration
over tuples, and not care about sets.

In theory, something similar is also possible for dict. For the later, it will be non-trivial though to maintain
the order of execution without temporary values introduced. The same thing is done for pure constants of
these types, they change to tuple values when iterated.

Updates for this Manual
This document is written in REST. That is an ASCII format which is readable to human, but easily used to
generate PDF or HTML documents.

You will find the current version at: https://nuitka.net/doc/user-manual.html

1 Support for this C11 is a given with gcc 5.x or higher or any clang version.

The MSVC compiler doesn't do it yet. But as a workaround, as the C++03 language
standard is very overlapping with C11, it is then used instead where the C compiler is
too old. Nuitka used to require a C++ compiler in the past, but it changed.

2 Download for free from
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx (the
community editions work just fine).

The latest version is recommended but not required. On the other hand, there is no
need to except pre-Windows 10 support, and they might work for you, but support of
these configurations is only available to commercial users.

https://nuitka.net/doc/user-manual.html
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

	Overview
	Usage
	Requirements
	Command Line
	Installation
	License

	Tutorial Setup and build on Windows
	Setup
	Install Python
	Install Nuitka

	Write some code and test
	Create a folder for the Python code
	Test your program
	Build it using
	Run it
	Distribute

	Use Cases
	Use Case 1 - Program compilation with all modules embedded
	Use Case 2 - Extension Module compilation
	Use Case 3 - Package compilation
	Use Case 4 - Program Distribution
	Use Case 5 - Setuptools Wheels

	Tweaks
	Icons
	Splash screen

	Typical Problems
	Memory issues and compiler bugs
	Ask Nuitka to use less memory
	Avoid 32 bit C compiler/assembler memory limits
	Use a minimal virtualenv
	Use LTO compilation or not
	Switch the C compiler to clang
	Add a larger swap file to your embedded Linux
	Limit the amount of compilation jobs

	Dynamic sys.path
	Manual Python File Loading

	Missing data files in standalone
	Missing DLLs in standalone
	Dependency creep in standalone
	Onefile: Finding files
	Standalone: Finding files

	Windows Programs without console give no errors
	Deep copying uncompiled functions

	Tips
	Nuitka Options in the code
	Python command line flags
	Caching compilation results
	Control where Caches live
	Runners
	Fastest C Compilers
	Unexpected Slowdowns
	Standalone executables and dependencies
	Windows errors with resources
	Windows standalone program redistribution
	Detecting Nuitka at run time
	Providing extra Options to Nuitka C compilation
	Producing a 32 bit binary on a 64 bit Windows system

	Performance
	pystone results

	Where to go next
	Follow me on Twitter
	Report issues or bugs
	Word of Warning

	Join Nuitka
	Donations
	Unsupported functionality
	The co_code attribute of code objects
	PDB

	Optimization
	Constant Folding
	Constant Propagation
	Built-in Name Lookups
	Built-in Call Prediction
	Conditional Statement Prediction
	Exception Propagation
	Exception Scope Reduction
	Exception Block Inlining
	Empty Branch Removal
	Unpacking Prediction
	Built-in Type Inference
	Quicker Function Calls
	Lowering of iterated Container Types

	Updates for this Manual

