
Nuitka Release 0.4.6
This release includes progress on all fronts. The primary focus was to advance SSA optimization over
older optimization code that was already in place. In this domain, there are mostly cleanups.

Another focus has been to enhance Scons with MSVC on Windows. Nuitka now finds an installed MSVC
compiler automatically, properly handles architecture of Python and Windows. This improves usability a
lot.

Then this is also very much about bug fixes. There have been several hot fixes for the last release, but a
complicated and major issue forced a new release, and many other small issues.

And then there is performance. As can be seen in the performance graph, this release is the fastest so far.
This came mainly from examining the need for comparison slots for compiled types.

And last, but not least, this also expands the base of supported platforms, adding Gentoo, and self
compiled Python to the mix.

Bug Fixes

• Support Nuitka being installed to a path that contains spaces and handle main programs with spaces
in their paths. Issue#106. Fixed in 0.4.5.1 already.

• Support Python being installed to a path that contains spaces. Issue#106. Fixed in 0.4.5.2 already.

• Windows: User provided constants larger than 65k didn't work with MSVC. Issue#108
<http://bugs.nuitka.net/issue108>. Fixed in 0.4.5.3 already.

• Windows: The option --windows-distable-console was not effective with MSVC. Issue#107
<http://bugs.nuitka.net/issue107>. Fixed in 0.4.5.3 already.

• Windows: For some users, Scons was detecting their MSVC installation properly already from
registry, but it didn't honor the target architecture. Issue#99. Fixed in 0.4.5.3 already.

• When creating Python modules, these were marked as executable ("x" bit), which they are of course
not. Fixed in 0.4.5.3 already.

• Python3.3: On architectures where Py_ssize_t is not the same as long this could lead to errors.
Fixed in 0.4.5.3 already.

• Code that was using nested mutable constants and changed the nested ones was not executing
correctly. Issue#112.

• Python2: Due to list contractions being re-formulated as functions, del was rejected for the
variables assigned in the contraction. Issue#111.

[expr(x) for x in iterable()]

del x # Should work, was gave an unjustified SyntaxError.

New Features

• Compiled types when used in Python comparison now work. Code like this will work:

def f():
 pass

assert type(compiledFunction) == types.FunctionType

This of course also works for in operator, and is another step ahead in compatibility, and surprising
too. And best of all, this works even if the checking code is not compiled with Nuitka.

http://nuitka.net/pages/performance.html
http://bugs.nuitka.net/issue106
http://bugs.nuitka.net/issue106
http://bugs.nuitka.net/issue99
http://bugs.nuitka.net/issue112
http://bugs.nuitka.net/issue111

• Windows: Detecting MSVC installation from registry, if no compiler is already present in PATH.

• Windows: Now options --mingw to force compilation with MinGW.

New Optimization

• Rich comparisons (==, <, and the like) are now faster than ever before due to a full implementation
of its own in Nuitka that eliminates a bit of the overhead. In the future, we will aim at giving it type
hints to make it even faster. This gives a minor speed boost to PyStone of ca. 0.7% overall.

• Integer comparisons are now treated preferably, as they are in CPython, which gives 1.3% speed
boost to CPython.

• The SSA based analysis is now used to provide variable scopes for temporary variables as well as
reference count needs.

Cleanups

• Replaced "value friend" based optimization code with SSA based optimization, which allowed to
remove complicated and old code that was still used mainly in optimization of or and and
expressions.

• Delayed declaration of temp variables and their reference type is now performed based on
information from SSA, which may given more accurate results. Not using "variable usage" profiles for
this anymore.

• The Scons interface and related code got a massive overhaul, making it more consistent and better
documented. Also updated the internal copy to 2.3.0 for the platforms that use it, mostly Windows.

• Stop using os.system and subprocess.call(..., shell = True) as it is not really
portable at all, use subprocess.call(..., shell = False) instead.

• As usual lots of cleanups related to line length issues and PyLint.

Organizational

• Added support for Gentoo Linux.

• Added support for self compiled Python versions with and without debug enabled. Issue#110

• Added use of Nuitka fonts for headers in manuals.

• Does not install inline copy of Scons only on systems where it is not going to be used, that is mostly
non-Windows, and Linux where it is not already present. This makes for cleaner RPM packages.

Summary
While the SSA stuff is not yet bearing performance fruits, it starts to carry weight. Taking over the
temporary variable handling now also means we can apply the same stuff to local variables later.

To make up for the delay in SSA driven performance improvements, there is more traditional code
acceleration for rich comparisons, making it significant, and the bug fixes make Nuitka more compatible
than ever.

So give this a roll, it's worth it. And feel free to join the mailing list or make a donation to support Nuitka.

Nuitka Release 0.4.5
This release incorporates very many bug fixes, most of which were already part of hot fixes, usability
improvements, documentation improvements, new logo, simpler Python3 on Windows, warnings for
recursion options, and so on. So it's mostly a consolidation release.

http://bugs.nuitka.net/issue110
http://nuitka.net/pages/mailinglist.html
http://nuitka.net/pages/donations.html

Bug Fixes

• When targeting Python 3.x, Nuitka was using "python" to run Scons to run it under Python 2.x, which
is not good enough on systems, where that is already Python3. Improved to only do the guessing
where necessary (i.e. when using the inline copy of Scons) and then to prefer "python2". Issue#95.
Fixed in 0.4.4.1 already.

• When using Nuitka created binaries inside a "virtualenv", created programs would instantly crash.
The attempt to load and patch inspect module was not making sure that site module was
already imported, but inside the "virtualenv", it cannot be found unless. Issue#96. Fixed in 0.4.4.1
already.

• The option --recurse-directory to include plugin directories was broken. Issue#97. Fixed in
0.4.4.2 already.

• Python3: Files with "BOM" marker causes the compiler to crash. Issue#98. Fixed in 0.4.4.2 already.

• Windows: The generated code for try/return/finally was working with gcc (and therefore
MinGW), but not with MSVC, causing crashes. Issue#102. Fixed in 0.4.4.2 already.

• The option --recurse-all did not recurse to package __init__.py files in case from x.y
import z syntax was used. Issue#100. Fixed in 0.4.4.2 already.

• Python3 on MacOS: Corrected link time error. Fixed in 0.4.4.2 already.

• Python3.3 on Windows: Fixed crash with too many arguments to a kwonly argument using function.
Fixed in 0.4.4.2 already.

• Python3.3 on Windows: Using "yield from" resulted in a link time error. Fixed in 0.4.4.2 already.

• Windows: Added back XML manifest, found a case where it is needed to prevent clashes with binary
modules.

• Windows: Generators only worked in the main Python threads. Some unusual threading modules
therefore failed.

• Using sys.prefix to find the Python installation instead of hard coded paths. Issue#103.

New Features

• Windows: Python3 finds Python2 installation to run Scons automatically now.

Nuitka itself runs under Python3 just fine, but in order to build the generated C++ code into binaries,
it uses Scons which still needs Python2.

Nuitka will now find the Python2 installation searching Windows registry instead of requiring hard
coded paths.

• Windows: Python2 and Python3 find their headers now even if Python is not installed to specific
paths.

The installation path now is passed on to Scons which then uses it.

• Better error checking for --recurse-to and --recurse-not-to arguments, tell the user not to
use directory paths.

• Added a warning for --recurse-to arguments that end up having no effect to the final result.

Cleanups

• Import mechanism got cleaned up, stopped using "PyImport_ExtendInittab". It does not handle
packages, and the sys.meta_path based importer is now well proven.

• Moved some of the constraint collection code mess into proper places. It still remains a mess.

http://bugs.nuitka.net/issue95
http://bugs.nuitka.net/issue96
http://bugs.nuitka.net/issue97
http://bugs.nuitka.net/issue98
http://bugs.nuitka.net/issue102
http://bugs.nuitka.net/issue100
http://bugs.nuitka.net/issue103

Organizational

• Added LICENSE.txt file with Apache License 2.0 text to make it more immediately obvious which
license Nuitka is under.

• Added section about Nuitka license to the "User Manual".

• Added Nuitka Logo to the distribution.

• Use Nuitka Logo as the bitmap in the Windows installer.

• Use Nuitka Logo in the documentation ("User Manual" and "Developer Manual").

• Enhanced documentation to number page numbers starting after table of contents, removed
header/footer from cover pages.

Summary
This release is mostly the result of improvements made based on the surge of users after Europython
2013. Some people went to extents and reported their experience very detailed, and so I could aim at
making e.g. their misconceptions about how recursion options work, more obvious through warnings and
errors.

This release is not addressing performance improvements. The next release will be able to focus on that. I
am taking my claim of full compatibility very serious, so any time it's broken, it's the highest priority to
restore it.

Nuitka Release 0.4.4
This release marks the point, where Nuitka for the first time supports all major current Python versions
and all major features. It adds Python 3.3 support and it adds support for threading. And then there is a
massive amount of fixes that improve compatibility even further.

Aside of that, there is major performance work. One side is the optimization of call performance (to
CPython non-compiled functions) and to compiled functions, both. This gave a serious improvement to
performance.

Then of course, we are making other, long term performance progress, as in "--experimental" mode, the
SSA code starts to optimize unused code away. That code is not yet ready for prime time yet, but the
trace structure will hold.

New Features

• Python3.3 support.

The test suite of CPython3.3 passes now too. The yield from is now supported, but the improved
argument parsing error messages are not implemented yet.

• Tracing user provided constants, now Nuitka warns about too large constants produced during
optimization.

• Line numbers of expressions are now updates as evaluation progresses. This almost corrects.

Finally improves Issue#9. Now only expression parts that cannot raise, do not update, which can still
cause difference, but much less often, and then definitely useless.

• Experimental support for threads.

Threading appears to work just fine in the most cases. It's not as optimal as I wanted it to be, but
that's going to change with time.

New Optimization

http://nuitka.net/doc/user-manual.html#license
http://nuitka.net/doc/images/Nuitka-Logo-Symbol.png
http://nuitka.net/doc/user-manual.html
http://nuitka.net/doc/developer-manual.html
http://bugs.nuitka.net/issue9

• Previous corrections for ==, !=, and <=, caused a performance regression for these operations in
case of handling identical objects.

For built-in objects of sane types (not float), these operations are now accelerated again. The
overreaching acceleration of >= was still there (bug, see below) and has been adapted too.

• Calling non-compiled Python functions from compiled functions was slower than in CPython. It is now
just as fast.

• Calling compiled functions without keyword arguments has been accelerated with a dedicated entry
point that may call the implementation directly and avoid parameter parsing almost entirely.

• Making calls to compiled and non-compiled Python functions no longer requires to build a temporary
tuple and therefore is much faster.

• Parameter parsing code is now more compact, and re-uses error raises, or creates them on the fly,
instead of hard coding it. Saves binary size and should be more cache friendly.

Bug Fixes

• Corrected false optimization of a >= a on C++ level.

When it's not done during Nuitka compile time optimization, the rich comparison helper still contained
short cuts for >=. This is now the same for all the comparison operators.

• Calling a function with default values, not providing it, and not providing a value for a value without
default, was not properly detecting the error, and instead causing a run time crash.

def f(a, b = 2):
 pass

f(b = 2)

This now properly raises the TypeError exception.

• Constants created with + could become larger than the normally enforced limits. Not as likely to
become huge, but still potentially an issue.

• The vars built-in, when used on something without __dict__ attribute, was giving
AttributeError instead of TypeError.

• When re-cursing to modules at compile time, script directory and current directory were used last,
while at run time, it was the other way around, which caused overloaded standard library modules to
not be embedded. Corrects Issue#94.

Thanks for the patch to James Michael DuPont.

• Super without arguments was not raising the correct RuntimeError exception in functions that
cannot be methods, but UnboundLocalError instead.

def f():
 super() # Error, cannot refer to first argument of f

• Generators no longer use raise StopIteration for return statements, because that one is not
properly handled in try/except clauses, where it's not supposed to trigger, while try/finally
should be honored.

• Exception error message when throwing non-exceptions into generators was not compatible.

• The use of return with value in generators is a SyntaxError before Python3.3, but that was not
raised.

http://bugs.nuitka.net/issue94

• Variable names of the "__var" style need to be mangled. This was only done for classes, but not for
functions contained in classes, there they are now mangled too.

• Python3: Exceptions raised with causes were not properly chaining.

• Python3: Specifying the file encoding corrupted line numbers, making them all of by one.

Cleanups

• For containers (tuple, list, set, dict) defined on the source code level, Nuitka immediately
created constant references from them.

For function calls, class creations, slice objects, this code is now re-used, and its dictionaries and
tuples, may now become constants immediately, reducing noise in optimization steps.

• The parameter parsing code got cleaned up. There were a lot of relics from previously explored
paths. And error raises were part of the templates, but now are external code.

• Global variable management moved to module objects and out of "Variables" module.

• Make sure, nodes in the tree are not shared by accident.

This helped to find a case of duplicate use in the complex call helpers functions. Code generation will
now notice this kind of duplication in debug mode.

• The complex call helper functions were manually taking variable closure, which made these functions
inconsistent to other functions, e.g. no variable version was allocated to assignments.

Removing the manual setting of variables allowed a huge reduction of code volume, as it became
more generic code.

• Converting user provided constants to create containers into constants immediately, to avoid noise
from doing this in optimization.

• The site module is now imported explicitly in the __main__ module, so it can be handled by the
recursion code as well. This will help portable mode.

• Many line length 80 changes, improved comments.

New Tests

• The CPython3.3 test suite was added, and run with both Python3.2 and Python3.3, finding new
bugs.

• The doctest to code generation didn't successfully handle all tests, most notably,
"test_generators.py" was giving a SyntaxError and therefore not actually active. Correcting that
improved the coverage of generator testing.

Organizational

• The portable code is still delayed.

Support for Python3.3 was a higher priority, but the intention is to get it into shape for Europython
still.

Added notes about it being disabled it in the "User Manual" documentation.

Summary
This release is in preparation for Europython 2013. Wanted to get this much out, as it changes the status
slides quite a bit, and all of that was mostly done in my Cyprus holiday a while ago.

The portable code has not seen progress. The idea here is to get this into a development version later.

http://nuitka.net/doc/user-manual.html

Nuitka Release 0.4.3
This release expands the reach of Nuitka substantially, as new platforms and compilers are now
supported. A lot of polish has been applied. Under the hood there is the continued and in-progress effort
to implement SSA form in Nuitka.

New Features

• Support for new compiler: Microsoft Visual C++.

You can now use Visual Studio 2008 or Visual Studio 2010 for compiling under Windows.

• Support for NetBSD.

Nuitka works for at least NetBSD 6.0, older versions may or may not work. This required fixing bugs
in the generic "fibers" implementation.

• Support for Python3 under Windows too.

Nuitka uses Scons to build the generated C++ files. Unfortunately it requires Python2 to execute,
which is not readily available to call from Python3. It now guesses the default installation paths of
CPython 2.7 or CPython 2.6 and it will use it for running Scons instead. You have to install it to
C:\Python26 or C:\Python27 for Nuitka to be able to find it.

• Enhanced Python 3.3 compatibility.

The support the newest version of Python has been extended, improving compatibility for many
minor corner cases.

• Added warning when a user compiles a module and executes it immediately when that references
__name__.

Because very likely the intention was to create an executable. And esp. if there is code like this:

if __name__ == "__main__":
 main()

In module mode, Nuitka will optimize it away, and nothing will happen on execution. This is because
the command

nuitka --execute module

is behavioral more like

python -c "import module"

and that was a trap for new users.

• All Linux architectures are now supported. Due to changes in how evaluation order is enforced, we
don't have to implement for specific architectures anymore.

Bug Fixes

• Dictionary creation was not fully compatible.

As revealed by using Nuitka with CPython3.3, the order in which dictionaries are to be populated
needs to be reversed, i.e. CPython adds the last item first. We didn't observe this before, and it's
likely the new dictionary implementation that finds it.

Given that hash randomization makes dictionaries item order undetermined anyway, this is more an
issue of testing.

• Evaluation order for arguments of calls was not effectively enforced. It is now done in a standards
compliant and therefore fully portable way. The compilers and platforms so far supported were not
affected, but the newly supported Visual Studio C++ compiler was.

• Using a __future__ import inside a function was giving an assertion, instead of the proper syntax
error.

• Python3: Do not set the attributes sys.exc_type, sys.exc_value, sys.exc_traceback.

• Python3: Annotations of function worked only as long as their definition was not referring to local
variables.

New Optimization

• Calls with no positional arguments are now using the faster call methods.

The generated C++ code was using the () constant at call site, when doing calls that use no
positional arguments, which is of course useless.

• For Windows now uses OS "Fibers" for Nuitka "Fibers".

Using threads for fibers was causing only overhead and with this API, MSVC had less issues too.

Organizational

• Accepting Donations via Paypal, please support funding travels, website, etc.

• The "User Manual" has been updated with new content. We now do support Visual Studio,
documented the required LLVM version for clang, Win64 and modules may include modules too, etc.
Lots of information was no longer accurate and has been updated.

• The Changelog has been improved for consistency, wordings, and styles.

• Nuitka is now available on the social code platforms as well

• Bitbucket

• Github

• Gitorious

• Google Code

• Removed "clean-up.sh", which is practically useless, as tests now clean up after themselves
reasonably, and with git clean -dfx working better.

• Removed "create-environment.sh" script, which was only setting the PATH variable, which is not
necessary.

• Added check-with-pylint --emacs option to make output its work with Emacs compilation
mode, to allow easier fixing of warnings from PyLint.

• Documentation is formatted for 80 columns now, source code will gradually aim at it too. So far 90
columns were used, and up to 100 tolerated.

Cleanups

• Removed useless manifest and resource file creation under Windows.

Turns out this is no longer needed at all. Either CPython, MinGW, or Windows improved to no longer
need it.

• PyLint massive cleanups and annotations bringing down the number of warnings by a lot.

http://nuitka.net/pages/donations.html
http://nuitka.net/doc/user-manual.html
https://bitbucket.org/kayhayen/nuitka
https://github.com/kayhayen/Nuitka
https://gitorious.org/nuitka/nuitka
https://code.google.com/p/nuitka/

• Avoid use of strings and built-ins as run time pre-computed constants that are not needed for specific
Python versions, or Nuitka modes.

• Do not track needed tuple, list, and dict creation code variants in context, but e.g. in
nuitka.codegen.TupleCodes module instead.

• Introduced an "internal" module to host the complex call helper functions, instead of just adding it to
any module that first uses it.

New Tests

• Added basic tests for order evaluation, where there currently were None.

• Added support for "2to3" execution under Windows too, so we can run tests for Python3 installations
too.

Summary
The release is clearly major step ahead. The new platform support triggered a whole range of
improvements, and means this is truly complete now.

Also there is very much polish in this release, reducing the number of warnings, updated documentation,
the only thing really missing is visible progress with optimization.

Nuitka Release 0.4.2
This release comes with many bug fixes, some of which are severe. It also contains new features, like
basic Python 3.3 support. And the performance diagrams got expanded.

New Features

• Support for FreeBSD.

Nuitka works for at least FreeBSD 9.1, older versions may or may not work. This required only fixing
some "Linuxisms" in the build process.

• New option for warning about compile time detected exception raises.

Nuitka can now warn about exceptions that will be raised at run time.

• Basic Python3.3 support.

The test suite of CPython3.2 passes and fails in a compatible way. New feature yield from is not
yet supported, and the improved argument parsing error messages are not implemented yet.

Bug Fixes

• Nuitka already supported compilation of "main directories", i.e. directories with a "__main__.py" file
inside. The resulting binary name was "__main__.exe" though, but now it is "directory.exe"

ls directory
__main__.py

nuitka --exe directory
ls
directory directory.exe

This makes this usage more obvious, and fixes the older issue Issue#49 for this feature.

http://nuitka.net/pages/performance.html
http://bugs.nuitka.net/issue49

• Evaluation order of binary operators was not enforced.

Nuitka already enforces evaluation order for just about everything. But not for binary operators it
seems. Corrects Issue#61.

• Providing an # coding: no-exist was crashing under Python2, and ignored under Python3,
now it does the compatible thing for both.

• Global statements on the compiler level are legal in Python, and were not handled by Nuitka, they
now are.

global a # Not in a function, but on module level. Pointless but legal!
a = 1

Effectively these statements can be ignored. Corrects part of Issue#65.

• Future imports are only legal when they are at the start of the file. This was not enforced by Nuitka,
making it accept code, which CPython would reject. It now properly raises a syntax error. Corrects
part of Issue#65.

• Raising exceptions from context was leaking references.

raise ValueError() from None

Under CPython3.2 the above is not allowed (it is acceptable starting CPython3.3), and was also
leaking references to its arguments. Corrects Issue#76.

• Importing the module that became __main__ through the module name, didn't recurse to it.

This also gives a warning. PyBench does it, and then stumbles over the non-found "pybench"
module. Of course, programmers should use sys.modules["__main__"] to access main
module code. Not only because the duplicated modules don't share data. Corrects Issue#68.

• Compiled method repr leaked references when printed.

When printing them, they would not be freed, and subsequently hold references to the object (and
class) they belong to. This could trigger bugs for code that expects __del__ to run at some point.
Corrects Issue#81.

• The super built-in leaked references to given object.

This was added, because Python3 needs it. It supplies the arguments to super automatically,
whereas for Python2 the programmer had to do it. And now it turns out that the object lost a
reference, causing similar issues as above, preventing __del__ to run. Corrects Issue#81.

• The raise statement didn't enforce type of third argument.

This Python2-only form of exception raising now checks the type of the third argument before using
it. Plus, when it's None (which is also legal), no reference to None is leaked.

• Python3 built-in exceptions were strings instead of exceptions.

A gross mistake that went uncaught by test suites. I wonder how. Them being strings doesn't help
their usage of course, fixed. Corrects Issue#82.

• The -nan and nan both exist and make a difference.

A older story continued. There is a sign to nan, which can be copied away and should be present.
This is now also supported by Nuitka. Corrects Issue#75.

• Wrong optimization of a == a, a != a, a <= a on C++ level.

While it's not done during Nuitka optimization, the rich comparison helpers still contained short cuts
for ==, !=, and <=.

http://bugs.nuitka.net/issue61
http://bugs.nuitka.net/issue65
http://bugs.nuitka.net/issue65
http://bugs.nuitka.net/issue76
http://bugs.nuitka.net/issue68
http://bugs.nuitka.net/issue81
http://bugs.nuitka.net/issue81
http://bugs.nuitka.net/issue82
http://bugs.nuitka.net/issue75

• The sys.executable for nuitka-python --python-version 3.2 was still python.

When determining the value for sys.executable the CPython library code looks at the name
exec had received. It was python in all cases, but now it depends on the running version, so it
propagates.

• Keyword only functions with default values were loosing references to defaults.

def f(*, a = X())
 pass

f()
f() # Can crash, X() should already be released.

This is now corrected. Of course, a Python3 only issue.

• Pressing CTRL-C didn't generate KeyboardInterrupt in compiled code.

Nuitka never executes "pending calls". It now does, with the upside, that the solution used, appears
to be suitable for threading in Nuitka too. Expect more to come out of this.

• For with statements with return, break, or continue to leave their body, the __exit__ was
not called.

with a: # This called a.__enter__().
 return 2 # This didn't call a.__exit__(None, None, None).

This is of course quite huge, and unfortunately wasn't covered by any test suite so far. Turns out, the
re-formulation of with statements, was wrongly using try/except/else, but these ignore the
problematic statements. Only try/finally does. The enhanced re-formulation now does the
correct thing. Corrects Issue#59.

• Starting with Python3, absolute imports are now the default.

This was already present for Python3.3, and it turns out that all of Python3 does it.

New Optimization

• Constants are now much less often created with pickle module, but created directly.

This esp. applies for nested constants, now more values become is identical instead of only ==
identical, which indicates a reduced memory usage.

a = ("something_special",)
b = "something_special"

assert a[0] is b # Now true

This is not only about memory efficiency, but also about performance. Less memory usage is more
cache friendly, and the "==" operator will be able to shortcut dramatically in cases of identical
objects.

Constants now created without pickle usage, cover float, list, and dict, which is enough for
PyStone to not use it at all, which has been added support for as well.

• Continue statements might be optimized away.

A terminal continue in a loop, was not optimized away:

http://bugs.nuitka.net/issue59

while 1:
 something
 continue # Now optimized away

The trailing continue has no effect and can therefore be removed.

while 1:
 something

• Loops with only break statements are optimized away.

while 1:
 break

A loop immediately broken has of course no effect. Loop conditions are re-formulated to immediate
"if ... : break" checks. Effectively this means that loops with conditions detected to be always false to
see the loop entirely removed.

New Tests

• Added tests for the found issues.

• Running the programs test suite (i.e. recursion) for Python3.2 and Python3.2 as well, after making
adaptation so that the absolute import changes are now covered.

• Running the "CPython3.2" test suite with Python3.3 based Nuitka works and found a few minor
issues.

Organizational

• The Downloads page now offers RPMs for RHEL6, CentOS6, F17, F18, and openSUSE 12.1, 12.2,
12.3. This large coverage is thanks to openSUSE build service and "ownssh" for contributing an
RPM spec file.

The page got improved with logos for the distributions.

• Added "ownssh" as contributor.

• Revamped the "User Manual" in terms of layout, structure, and content.

Summary
This release is the result of much validation work. The amount of fixes the largest of any release so far.
New platforms, basic Python3.3 support, consolidation all around.

Nuitka Release 0.4.1
This release is the first follow-up with a focus on optimization. The major highlight is progress towards
SSA form in the node tree.

Also a lot of cleanups have been performed, for both the tree building, which is now considered mostly
finished, and will be only reviewed. And for the optimization part there have been large amounts of
changes.

New Features

http://nuitka.net/pages/download.html
http://nuitka.net/doc/user-manual.html

• Python 3.3 experimental support

• Now compiles many basic tests. Ported the dictionary quick access and update code to a more
generic and useful interface.

• Added support for __qualname__ to classes and functions.

• Small compatibility changes. Some exceptions changed, absolute imports are now default, etc.

• For comparison tests, the hash randomization is disabled.

• Python 3.2 support has been expanded.

The Python 3.2 on Ubuntu is not providing a helper function that was used by Nuitka, replaced it with
out own code.

Bug fixes

• Default values were not "is" identical.

def defaultKeepsIdentity(arg = "str_value"):
 print arg is "str_value"

defaultKeepsIdentity()

This now prints "True" as it does with CPython. The solution is actually a general code optimization,
see below. Issue#55

• Usage of unicode built-in with more than one argument could corrupt the encoding argument
string.

An implementation error of the unicode was releasing references to arguments converted to
default encoding, which could corrupt it.

• Assigning Python3 function annotations could cause a segmentation fault.

New Optimization

• Improved propagation of exception raise statements, eliminating more code. They are now also
propagated from all kinds of expressions. Previously this was more limited. An assertion added will
make sure that all raises are propagated. Also finally, raise expressions are converted into raise
statements, but without any normalization.

Now optimizing:
raise TypeError, 1/0
into (minus normalization):
raise ZeroDivisionError, "integer division or modulo by zero"

Now optimizing:
(1/0).something
into (minus normalization):
raise ZeroDivisionError, "integer division or modulo by zero"

Now optimizing:
function(a, 1/0).something
into (minus normalization), notice the side effects of first checking
function and a as names to be defined, these may be removed only if
they can be demonstrated to have no effect.
function

http://bugs.nuitka.net/issue55

a
raise ZeroDivisionError, "integer division or modulo by zero"

There is more examples, where the raise propagation is new, but you get the idea.

• Conditional expression nodes are now optimized according to the truth value of the condition, and
not only for compile time constants. This covers e.g. container creations, and other things.

This was already optimized, as it's a compile time constant.
a if ("a",) else b
a if True else b

These are now optimized, as their truth value is known.
a if (c,) else b
a if not (c,) else b

This is simply taking advantage of infrastructure that now exists. Each node kind can overload
"getTruthValue" and benefit from it. Help would be welcome to review which ones can be added.

• Function creations only have side effects, when their defaults or annotations (Python3) do. This
allows to remove them entirely, should they be found to be unused.

• Code generation for constants now shares element values used in tuples.

The general case is currently too complex to solve, but we now make sure constant tuples (as e.g.
used in the default value for the compiled function), and string constants share the value. This should
reduce memory usage and speed up program start-up.

Cleanups

• Optimization was initially designed around visitors that each did one thing, and did it well. It turns out
though, that this approach is unnecessary, and constraint collection, allows for the most consistent
results. All remaining optimization has been merged into constraint collection.

• The names of modules containing node classes were harmonized to always be plural. In the
beginning, this was used to convey the information that only a single node kind would be contained,
but that has long changed, and is unimportant information.

• The class names of nodes were stripped from the "CPython" prefix. Originally the intent was to
express strict correlation to CPython, but with increasing amounts of re-formulations, this was not
used at all, and it's also not important enough to dominate the class name.

• The re-formulations performed in tree building have moved out of the "Building" module, into names
"ReformulationClasses" e.g., so they are easier to locate and review. Helpers for node building are
now in a separate module, and generally it's much easier to find the content of interest now.

• Added new re-formulation of print statements. The conversion to strings is now made explicit in
the node tree.

New Tests

• Added test to cover default value identity.

Organizational

• The upload of Nuitka to PyPI has been repaired and now properly displays project information again.

http://pypi.python.org/pypi/Nuitka/

Summary
The quicker release is mostly a consolidation effort, without actual performance progress. The progress
towards SSA form matter a lot on the outlook front. Once this is finished, standard compiler algorithms can
be added to Nuitka which go beyond the current peephole optimization.

Nuitka Release 0.4.0
This release brings massive progress on all fronts. The big highlight is of course: Full Python3.2 support.
With this release, the test suite of CPython3.2 is considered passing when compiled with Nuitka.

Then lots of work on optimization and infrastructure. The major goal of this release was to get in shape for
actual optimization. This is also why for the first time, it is tested that some things are indeed compile time
optimized to spot regressions easier. And we are having performance diagrams, even if weak ones:

New Features

• Python3.2 is now fully supported.

• Fully correct metaclass = semantics now correctly supported. It had been working
somewhat previously, but now all the corner cases are covered too.

• Keyword only parameters.

• Annotations of functions return value and their arguments.

• Exception causes, chaining, automatic deletion of exception handlers as values.

• Added support for starred assigns.

• Unicode variable names are also supported, although it's of course ugly, to find a way to
translate these to C++ ones.

Bug fixes

• Checking compiled code with instance(some_function, types.FunctionType) as
"zope.interfaces" does, was causing compatibility problems. Now this kind of check passes for
compiled functions too. Issue#53

• The frame of modules had an empty locals dictionary, which is not compatible to CPython which puts
the globals dictionary there too. Also discussed in Issue#53

• For nested exceptions and interactions with generator objects, the exceptions in "sys.exc_info()"
were not always fully compatible. They now are.

• The range builtin was not raising exceptions if given arguments appeared to not have side effects,
but were still illegal, e.g. range([], 1, -1) was optimized away if the value was not used.

• Don't crash on imported modules with syntax errors. Instead, the attempted recursion is simply not
done.

• Doing a del on __defaults and __module__ of compiled functions was crashing. This was
noticed by a Python3 test for __kwdefaults__ that exposed this compiled functions weakness.

• Wasn't detecting duplicate arguments, if one of them was not a plain arguments. Star arguments
could collide with normal ones.

• The __doc__ of classes is now only set, where it was in fact specified. Otherwise it only polluted
the name space of locals().

• When return from the tried statements of a try/finally block, was overridden, by the final
block, a reference was leaked. Example code:

http://nuitka.net/pages/performance.html
http://bugs.nuitka.net/issue53
http://bugs.nuitka.net/issue53

try:
 return 1
finally:
 return 2

• Raising exception instances with value, was leaking references, and not raising the TypeError
error it is supposed to do.

• When raising with multiple arguments, the evaluation order of them was not enforced, it now is. This
fixes a reference leak when raising exceptions, where building the exception was raising an
exception.

New Optimization

• Optimizing attribute access to compile time constants for the first time. The old registry had no actual
user yet.

• Optimizing subscript and slices for all compile time constants beyond constant values, made easy by
using inheritance.

• Built-in references now convert to strings directly, e.g. when used in a print statement. Needed for
the testing approach "compiled file contains only prints with constant value".

• Optimizing calls to constant nodes directly into exceptions.

• Optimizing built-in bool for arguments with known truth value. This would be creations of tuples,
lists, and dictionaries.

• Optimizing a is b and a is not b based on aliasing interface, which at this time effectively is
limited to telling that a is a is true and a is not a is false, but this will expand.

• Added support for optimizing hasattr, getattr, and setattr built-ins as well. The hasattr
was needed for the class re-formulation of Python3 anyway.

• Optimizing getattr with string argument and no default to simple attribute access.

• Added support for optimizing isinstance built-in.

• Was handling "BreakException" and "ContinueException" in all loops that used break or
continue instead of only where necessary.

• When catching "ReturnValueException", was raising an exception where a normal return was
sufficient. Raising them now only where needed, which also means, function need not catch them
ever.

Cleanups

• The handling of classes for Python2 and Python3 have been re-formulated in Python more
completely.

• The calling of the determined "metaclass" is now in the node tree, so this call may possible to
inline in the future. This eliminated some static C++ code.

• Passing of values into dictionary creation function is no longer using hard coded special
parameters, but temporary variables can now have closure references, making this normal and
visible to the optimization.

• Class dictionary creation functions are therefore no longer as special as they used to be.

• There is no class creation node anymore, it's merely a call to type or the metaclass detected.

• Re-formulated complex calls through helper functions that process the star list and dict arguments
and do merges, checks, etc.

• Moves much C++ code into the node tree visibility.

• Will allow optimization to eliminate checks and to compile time merge, once inline functions and
loop unrolling are supported.

• Added "return None" to function bodies without a an aborting statement at the end, and removed the
hard coded fallback from function templates. Makes it explicit in the node tree and available for
optimization.

• Merged C++ classes for frame exception keeper with frame guards.

• The exception is now saved in the compiled frame object, making it potentially more compatible
to start with.

• Aligned module and function frame guard usage, now using the same class.

• There is now a clear difference in the frame guard classes. One is for generators and one is for
functions, allowing to implement their different exception behavior there.

• The optimization registries for calls, subscripts, slices, and attributes have been replaced with
attaching them to nodes.

• The ensuing circular dependency has been resolved by more local imports for created nodes.

• The package "nuitka.transform.optimization.registries" is no more.

• New per node methods "computeNodeCall", "computeNodeSubscript", etc. dispatch the
optimization process to the nodes directly.

• Use the standard frame guard code generation for modules too.

• Added a variant "once", that avoids caching of frames entirely.

• The variable closure taking has been cleaned up.

• Stages are now properly numbered.

• Python3 only stage is not executed for Python2 anymore.

• Added comments explaining things a bit better.

• Now an early step done directly after building a tree.

• The special code generation used for unpacking from iterators and catching "StopIteration" was
cleaned up.

• Now uses template, Generator functions, and proper identifiers.

• The return statements in generators are now re-formulated into raise StopIteration for
generators, because that's what they really are. Allowed to remove special handling of return
nodes in generators.

• The specialty of CPython2.6 yielding non-None values of lambda generators, was so far
implemented in code generation. This was moved to tree building as a re-formulation, making it
subject to normal optimization.

• Mangling of attribute names in functions contained in classes, has been moved into the early tree
building. So far it was done during code generation, making it invisible to the optimization stages.

• Removed tags attribute from node classes. This was once intended to make up for non-inheritance
of similar node kinds, but since we have function references, the structure got so clean, it's no more
needed.

• Introduced new package nuitka.tree, where the building of node trees, and operations on them
live, as well as recursion and variable closure.

• Removed nuitka.transform and move its former children nuitka.optimization and
nuitka.finalization one level up. The deeply nested structure turned out to have no
advantage.

• Checks for Python version was sometimes "> 300", where of course ">= 300" is the only thing that
makes sense.

• Split out helper code for exception raising from the handling of exception objects.

New Tests

• The complete CPython3.2 test suite was adapted (no __code__, no __closure__, etc.) and is
now passing, but only without "--debug", because otherwise some of the generated C++ triggers
(harmless) warnings.

• Added new test suite designed to prove that expressions that are known to be compile time constant
are indeed so. This works using the XML output done with "--dump-xml" and then searching it to only
have print statements with constant values.

• Added new basic CPython3.2 test "Functions32" and "ParameterErrors32" to cover keyword only
parameter handling.

• Added tests to cover generator object and exception interactions.

• Added tests to cover try/finally and return in one or both branches correctly handling the
references.

• Added tests to cover evaluation order of arguments when raising exceptions.

Organizational

• Changed my email from GMX over to Gmail, the old one will still continue to work. Updated the
copyright notices accordingly.

• Uploaded Nuitka to PyPI as well.

Summary
This release marks a milestone. The support of Python3 is here. The re-formulation of complex calls, and
the code generation improvements are quite huge. More re-formulation could be done for argument
parsing, but generally this is now mostly complete.

The 0.3.x series had a lot releases. Many of which brought progress with re-formulations that aimed at
making optimization easier or possible. Sometimes small things like making "return None" explicit.
Sometimes bigger things, like making class creations normal functions, or getting rid of or and and. All of
this was important ground work, to make sure, that optimization doesn't deal with complex stuff.

So, the 0.4.x series begins with this. The focus from now on can be almost purely optimization. This
release contains already some of it, with frames being optimized away, with the assignment keepers from
the or and and re-formulation being optimized away. This will be about achieving goals from the
"ctypes" plan as discussed in the developer manual.

Also the performance page will be expanded with more benchmarks and diagrams as I go forward. I have
finally given up on "codespeed", and do my own diagrams.

Nuitka Release 0.3.25
This release brings about changes on all fronts, bug fixes, new features. Also very importantly Nuitka no
longer uses C++11 for its code, but mere C++03. There is new re-formulation work, and re-factoring of
functions.

But the most important part is this: Mercurial unit tests are working. Nearly. With the usual disclaimer of
me being wrong, all remaining errors are errors of the test, or minor things. Hope is that these unit tests
can be added as release tests to Nuitka. And once that is done, the next big Python application can come.

http://pypi.python.org/pypi/Nuitka/

Bug fixes

• Local variables were released when an exception was raised that escaped the local function. They
should only be released, after another exception was raised somewhere. Issue#39.

• Identifiers of nested tuples and lists could collide.

a = ((1, 2), 3)
b = ((1,), 2, 3)

Both tuples had the same name previously, not the end of the tuple is marked too. Fixed in 0.3.24.1
already.

• The __name__ when used read-only in modules in packages was optimized to a string value that
didn't contain the package name.

• Exceptions set when entering compiled functions were unset at function exit.

New Features

• Compiled frames support. Before, Nuitka was creating frames with the standard CPython C/API
functions, and tried its best to cache them. This involved some difficulties, but as it turns out, it is
actually possible to instead provide a compatible type of our own, that we have full control over.

This will become the base of enhanced compatibility. Keeping references to local variables attached
to exception tracebacks is something we may be able to solve now.

• Enhanced Python3 support, added support for nonlocal declarations and many small corrections
for it.

• Writable __defaults__ attribute for compiled functions, actually changes the default value used at
call time. Not supported is changing the amount of default parameters.

Cleanups

• Keep the functions along with the module and added "FunctionRef" node kind to point to them.

• Reformulated or and and operators with the conditional expression construct which makes the
"short-circuit" branch.

• Access self in methods from the compiled function object instead of pointer to context object,
making it possible to access the function object.

• Removed "OverflowCheck" module and its usage, avoids one useless scan per function to determine
the need for "locals dictionary".

• Make "compileTree" of "MainControl" module to only do what the name says and moved the rest out,
making the top level control clearer.

• Don't export module entry points when building executable and not modules. These exports cause
MinGW and MSVC compilers to create export libraries.

New Optimization

• More efficient code for conditional expressions in conditions:

 if a if b else c

See above, this code is now the typical pattern for each ``or`` and ``and``,

http://bugs.nuitka.net/issue39

so this was much needed now.

Organizational

• The remaining uses of C++11 have been removed. Code generated with Nuitka and complementary
C++ code now compile with standard C++03 compilers. This lowers the Nuitka requirements and
enables at least g++ 4.4 to work with Nuitka.

• The usages of the GNU extension operation a ?: b have replaced with standard C++ constructs.
This is needed to support MSVC which doesn't have this.

• Added examples for the typical use cases to the "User Manual".

• The "compare_with_cpython" script has gained an option to immediately remove the Nuitka outputs
(build directory and binary) if successful. Also the temporary files are now put under "/var/tmp" if
available.

• Debian package improvements, registering with "doc-base" the "User Manual" so it is easier to
discover. Also suggest "mingw32" package which provides the cross compiler to Windows.

• Partial support for MSVC (Visual Studio 2008 to be exact, the version that works with CPython2.6
and CPython2.7).

All basic tests that do not use generators are working now, but those will currently cause crashes.

• Renamed the --g++-only option to --c++-only.

The old name is no longer correct after clang and MSVC have gained support, and it could be
misunderstood to influence compiler selection, rather than causing the C++ source code to not be
updated, so manual changes will the used. This solves Issue#47.

• Catch exceptions for continue, break, and return only where needed for try/finally and
loop constructs.

New Tests

• Added CPython3.2 test suite as "tests/CPython32" from 3.2.3 and run it with CPython2.7 to check
that Nuitka gives compatible error messages. It is not expected to pass yet on Python3.2, but work
will be done towards this goal.

• Make CPython2.7 test suite runner also execute the generated "doctest" modules.

• Enabled tests for default parameters and their reference counts.

Summary
This release marks an important point. The compiled frames are exciting new technology, that will allow
even better integration with CPython, while improving speed. Lowering the requirements to C++03 means,
we will become usable on Android and with MSVC, which will make adoption of Nuitka on Windows easier
for many.

Structurally the outstanding part is the function as references cleanup. This was a blocker for value
propagation, because now functions references can be copied, whereas previously this was duplicating
the whole function body, which didn't work, and wasn't acceptable. Now, work can resume in this domain.

Also very exciting when it comes to optimization is the remove of special code for or and and operators,
as these are now only mere conditional expressions. Again, this will make value propagation easier with
two special cases less.

And then of course, with Mercurial unit tests running compiled with Nuitka, an important milestone has
been hit.

http://nuitka.net/doc/user-manual.html
http://nuitka.net/doc/user-manual.html
http://bugs.nuitka.net/issue47

For a while now, the focus will be on completing Python3 support, XML based optimization regression
tests, benchmarks, and other open ends. Once that is done, and more certainty about Mercurial tests
support, I may call it a 0.4 and start with local type inference for actual speed gains.

Nuitka Release 0.3.24
This release contains progress on many fronts, except performance.

The extended coverage from running the CPython 2.7 and CPython 3.2 (partially) test suites shows in a
couple of bug fixes and general improvements in compatibility.

Then there is a promised new feature that allows to compile whole packages.

Also there is more Python3 compatibility, the CPython 3.2 test suite now succeeds up to "test_builtin.py",
where it finds that str doesn't support the new parameters it has gained, future releases will improve on
this.

And then of course, more re-formulation work, in this case, class definitions are now mere simple
functions. This and later function references, is the important and only progress towards type inference.

Bug fixes

• The compiled method type can now be used with copy module. That means, instances with
methods can now be copied too. Issue#40. Fixed in 0.3.23.1 already.

• The assert statement as of Python2.7 creates the AssertionError object from a given value
immediately, instead of delayed as it was with Python2.6. This makes a difference for the form with 2
arguments, and if the value is a tuple. Issue#41. Fixed in 0.3.23.1 already.

• Sets written like this didn't work unless they were predicted at compile time:

{ value }

This apparently rarely used Python2.7 syntax didn't have code generation yet and crashed the
compiler. Issue#42. Fixed in 0.3.23.1 already.

• For Python2, the default encoding for source files is ascii, and it is now enforced by Nuitka as well,
with the same SyntaxError.

• Corner cases of exec statements with nested functions now give proper SyntaxError exceptions
under Python2.

• The exec statement with a tuple of length 1 as argument, now also gives a TypeError exception
under Python2.

• For Python2, the del of a closure variable is a SyntaxError.

New Features

• Added support creating compiled packages. If you give Nuitka a directory with an "__init__.py" file, it
will compile that package into a ".so" file. Adding the package contents with --recurse-dir allows
to compile complete packages now. Later there will be a cleaner interface likely, where the later is
automatic.

• Added support for providing directories as main programs. It's OK if they contain a "__main__.py"
file, then it's used instead, otherwise give compatible error message.

• Added support for optimizing the super built-in. It was already working correctly, but not optimized
on CPython2. But for CPython3, the variant without any arguments required dedicated code.

http://bugs.nuitka.net/issue40
http://bugs.nuitka.net/issue41
http://bugs.nuitka.net/issue42

• Added support for optimizing the unicode built-in under Python2. It was already working, but will
become the basis for the str built-in of Python3 in future releases.

• For Python3, lots of compatibility work has been done. The Unicode issues appear to be ironed out
now. The del of closure variables is allowed and supported now. Built-ins like ord and chr work
more correctly and attributes are now interned strings, so that monkey patching classes works.

Organizational

• Migrated "bin/benchmark.sh" to Python as "misc/run-valgrind.py" and made it a bit more portable that
way. Prefers "/var/tmp" if it exists and creates temporary files in a secure manner. Triggered by the
Debian "insecure temp file" bug.

• Migrated "bin/make-dependency-graph.sh" to Python as "misc/make-dependency-graph.py" and
made a more portable and powerful that way.

The filtering is done a more robust way. Also it creates temporary files in a secure manner, also
triggered by the Debian "insecure temp file" bug.

And it creates SVG files and no longer PostScript as the first one is more easily rendered these days.

• Removed the "misc/gist" git sub-module, which was previously used by "misc/make-doc.py" to
generate HTML from "User Manual" and "Developer Manual".

These are now done with Nikola, which is much better at it and it integrates with the web site.

• Lots of formatting improvements to the change log, and manuals:

• Marking identifiers with better suited ReStructured Text markup.

• Added links to the bug tracker all Issues.

• Unified wordings, quotation, across the documents.

Cleanups

• The creation of the class dictionaries is now done with normal function bodies, that only needed to
learn how to throw an exception when directly called, instead of returning NULL.

Also the assignment of __module__ and __doc__ in these has become visible in the node tree,
allowing their proper optimization.

These re-formulation changes allowed to remove all sorts of special treatment of class code in the
code generation phase, making things a lot simpler.

• There was still a declaration of PRINT_ITEMS and uses of it, but no definition of it.

• Code generation for "main" module and "other" modules are now merged, and no longer special.

• The use of raw strings was found unnecessary and potentially still buggy and has been removed.
The dependence on C++11 is getting less and less.

New Tests

• Updated CPython2.6 test suite "tests/CPython26" to 2.6.8, adding tests for recent bug fixes in
CPython. No changes to Nuitka were needed in order to pass, which is always good news.

• Added CPython2.7 test suite as "tests/CPython27" from 2.7.3, making it public for the first time.
Previously a private copy of some age, with many no longer needed changes had been used by me.
Now it is up to par with what was done before for "tests/CPython26", so this pending action is finally
done.

• Added test to cover Python2 syntax error of having a function with closure variables nested inside a
function that is an overflow function.

http://nuitka.net/doc/user-manual.html
http://nuitka.net/doc/developer-manual.html

• Added test "BuiltinSuper" to cover super usage details.

• Added test to cover del on nested scope as syntax error.

• Added test to cover exec with a tuple argument of length 1.

• Added test to cover barry_as_FLUFL future import to work.

• Removed "Unicode" from known error cases for CPython3.2, it's now working.

Summary
This release brought forward the most important remaining re-formulation changes needed for Nuitka.
Removing class bodies, makes optimization yet again simpler. Still, making function references, so they
can be copied, is missing for value propagation to progress.

Generally, as usual, a focus has been laid on correctness. This is also the first time, I am release with a
known bug though: That is Issue#39 which I believe now, may be the root cause of the mercurial tests not
yet passing.

The solution will be involved and take a bit of time. It will be about "compiled frames" and be a (invasive)
solution. It likely will make Nuitka faster too. But this release includes lots of tiny improvements, for
Python3 and also for Python2. So I wanted to get this out now.

As usual, please check it out, and let me know how you fare.

Nuitka Release 0.3.23
This release is the one that completes the Nuitka "sun rise phase".

All of Nuitka is now released under Apache License 2.0 which is a very liberal license, and compatible
with basically all Free Software licenses there are. It's only asking to allow integration, of what you send
back, and patent grants for the code.

In the first phase of Nuitka development, I wanted to keep control over Nuitka, so it wouldn't repeat
mistakes of other projects. This is no longer a concern for me, it's not going to happen anymore.

I would like to thank Debian Legal team, for originally bringing to my attention, that this license will be
better suited, than any copyright assignment could be.

Bug fixes

• The compiled functions could not be used with multiprocessing or copy.copy. Issue#19. Fixed
in 0.3.22.1 already.

• In-place operations for slices with not both bounds specified crashed the compiler. Issue#36. Fixed in
0.3.22.1 already.

• Cyclic imports could trigger an endless loop, because module import expressions became the parent
of the imported module object. Issue#37. Fixed in 0.3.22.2 already.

• Modules named proc or func could not be compiled to modules or embedded due to a collision
with identifiers of CPython2.7 includes. Issue#38. Fixed in 0.3.22.2 already.

New Features

• The fix for Issue#19 also makes pickling of compiled functions available. As it is the case for
non-compiled functions in CPython, no code objects are stored, only names of module level
variables.

Organizational

http://bugs.nuitka.net/issue39
http://www.apache.org/licenses/LICENSE-2.0
http://bugs.nuitka.net/issue19
http://bugs.nuitka.net/issue36
http://bugs.nuitka.net/issue37
http://bugs.nuitka.net/issue38
http://bugs.nuitka.net/issue19

• Using the Apache License 2.0 for all of Nuitka now.

• Speedcenter has been re-activated, but is not yet having a lot of benchmarks yet, subject to change.

Update

We have given up on speedcenter meanwhile, and generate static pages with graphs instead.

New Tests

• Changed the "CPython26" tests to no longer disable the parts that relied on copying of functions to
work, as Issue#19 is now supported.

• Extended in-place assignment tests to cover error cases of Issue#36.

• Extended compile library test to also try and compile the path where numpy lives. This is apparently
another path, where Debian installs some modules, and compiling this would have revealed
Issue#36 sooner.

Summary
The release contains bug fixes, and the huge step of changing the license. It is made in preparation to
PyCON EU.

Nuitka Release 0.3.22
This release is a continuation of the trend of previous releases, and added more re-formulations of Python
that lower the burden on code generation and optimization.

It also improves Python3 support substantially. In fact this is the first release to not only run itself under
Python3, but for Nuitka to compile itself with Nuitka under Python3, which previously only worked for
Python2. For the common language subset, it's quite fine now.

Bug fixes

• List contractions produced extra entries on the call stack, after they became functions, these are no
more existent. That was made possible my making frame stack entries an optional element in the
node tree, left out for list contractions.

• Calling a compiled function in an exception handler cleared the exception on return, it no longer does
that.

• Reference counter handling with generator throw method is now correct.

• A module "builtins" conflicted with the handling of the Python builtins module. Those now use
different identifiers.

New Features

• New metaclass syntax for the class statement works, and the old __metaclass__ attribute is
properly ignored.

Metaclass syntax in Python3, illegal in Python2
class X(metaclass = Y):
 pass

http://bugs.nuitka.net/issue19
http://bugs.nuitka.net/issue36
http://bugs.nuitka.net/issue36
http://www.apache.org/licenses/LICENSE-2.0
https://ep2012.europython.eu

Metaclass syntax in Python2, no effect in Python3
class X:
 __metaclass__ = Y

Note

The way to make a use of a metaclass in a portable way, is to create a based class that has it and then inherit from it. Sad,
isn' it. Surely, the support for __metaclass__ could still live.

For Python2/3 compatible source, we create a base class that has the
metaclass used and doesn't require making a choice.

CPythonNodeMetaClassBase = NodeCheckMetaClass("CPythonNodeMetaClassBase", (object,), {})

• The --dump-xml option works with Nuitka running under Python3. This was not previously
supported.

• Python3 now also has compatible parameter errors and compatible exception error messages.

• Python3 has changed scope rules for list contractions (assignments don't affect outside values) and
this is now respected as well.

• Python3 has gained support for recursive programs and stand alone extension modules, these are
now both possible as well.

New Optimization

• Avoid frame stack entries for functions that cannot raise exceptions, i.e. where they would not be
used.

This avoids overhead for the very simple functions. And example of this can be seen here:

def simple():
 return 7

• Optimize len built-in for non-constant, but known length values.

An example can be seen here:

The range isn't constructed at compile time, but we still know its length.
len(range(10000000))

The string isn't constructed at compile time, but we still know its length.
len("*" * 1000)

The tuple isn't constructed, instead it's known length is used, and side effects
are maintained.
len((a(), b()))

This new optimization applies to all kinds of container creations and the range built-in initially.

• Optimize conditions for non-constant, but known truth values.

At this time, known truth values of non-constants means range built-in calls with know size and
container creations.

An example can be seen here:

if (a,):
 print "In Branch"

It's clear, that the tuple will be true, we just need to maintain the side effect, which we do.

• Optimize or and and operators for known truth values.

See above for what has known truth values currently. This will be most useful to predict conditions
that need not be evaluated at all due to short circuit nature, and to avoid checking against constant
values. Previously this could not be optimized, but now it can:

The access and call to "something()" cannot possibly happen
0 and something()

Can be replaced with "something()", as "1" is true. If it had a side effect, it
would be maintained.
1 and something()

The access and call to "something()" cannot possibly happen, the value is already
decided, it's "1".
1 or something()

Can be replaced with "something()", as "0" is false. If it had a side effect, it
would be maintained.
0 or something()

• Optimize print arguments to become strings.

The arguments to print statements are now converted to strings at compile time if possible.

print 1

becomes:

print "1"

• Combine print arguments to single ones.

When multiple strings are printed, these are now combined.

print "1+1=", 1+1

becomes:

print "1+1= 2"

Organizational

• Enhanced Python3 support, enabling support for most basic tests.

• Check files with PyLint in deterministic (alphabetical) order.

Cleanups

• Frame stack entries are now part of the node tree instead of part of the template for every function,
generator, class or module.

• The try/except/else has been re-formulated to use an indicator variable visible in the node tree,
that tells if a handler has been executed or not.

• Side effects are now a dedicated node, used in several optimization to maintain the effect of an
expression with known value.

New Tests

• Expanded and adapted basic tests to work for Python3 as well.

• Added reference count tests for generator functions throw, send, and close methods.

• Cover calling a function with try/except in an exception handler twice. No test was previously
doing that.

Summary
This release offers enhanced compatibility with Python3, as well as the solution to many structural
problems. Calculating lengths of large non-constant values at compile time, is technically a break through,
as is avoiding lengthy calculations. The frame guards as nodes is a huge improvement, making that costly
operational possible to be optimized away.

There still is more work ahead, before value propagation will be safe enough to enable, but we are seeing
the glimpse of it already. Not for long, and looking at numbers will make sense.

Nuitka Release 0.3.21
This releases contains some really major enhancements, all heading towards enabling value propagation
inside Nuitka. Assignments of all forms are now all simple and explicit, and as a result, now it will be easy
to start tracking them.

Contractions have become functions internally, with statements use temporary variables, complex
unpacking statement were reduced to more simple ones, etc.

Also there are the usual few small bug fixes, and a bunch of organizational improvements, that make the
release complete.

Bug fixes

• The built-in next could causes a program crash when iterating past the end of an iterator. Issue#34.
Fixed in 0.3.20.1 already.

• The set constants could cause a compiler error, as that type was not considered in the "mutable"
check yet. Fixed in 0.3.20.2 already.

• Performance regression. Optimize expression for exception types caught as well again, this was lost
in last release.

• Functions that contain exec, are supposed to have a writable locals. But when removing that exec
statement as part of optimization, this property of the function could get lost.

• The so called "overflow functions" are once again correctly handled. These once were left behind in
some refactoring and had not been repaired until now. An overflow function is a nested function with
an exec or a star import.

• The syntax error for return outside of a function, was not given, instead the code returned at run
time. Fixed to raise a SyntaxError at compile time.

http://bugs.nuitka.net/issue34

New Optimization

• Avoid tuple objects to be created when catching multiple exception types, instead call exception
match check function multiple times.

• Removal of dead code following break, continue, return, and raise. Code that follows these
statements, or conditional statements, where all branches end with it.

Note

These may not actually occur often in actual code, but future optimization may produce them
more frequently, and their removal may in turn make other possible optimization.

• Detect module variables as "read only" after all writes have been detected to not be executed as
removed. Previously the "read only indicator" was determined only once and then stayed the same.

• Expanded conditional statement optimization to detect cases, where condition is a compile time
constant, not just a constant value.

• Optimize away assignments from a variable to the same variable, they have no effect. The potential
side effect of accessing the variable is left intact though, so exceptions will be raised still.

Note

An exception is where len = len actually does have an impact, because that variable
becomes assignable. The "compile itself" test of Nuitka found that to happen with long from
the nuitka.__past__ module.

• Created Python3 variant of quick unicode string access, there was no such thing in the CPython
C/API, but we make the distinction in the source code, so it makes sense to have it.

• Created an optimized implementation for the built-in iter with 2 parameters as well. This allows for
slightly more efficient code to be created with regards to reference handling, rather than using the
CPython C/API.

• For all types of variable assigned in the generated code, there are now methods that accept already
taken references or not, and the code generator picks the optimal variant. This avoids the drop of
references, that e.g. the local variable will insist to take.

• Don't use a "context" object for generator functions (and generator expressions) that don't need one.
And even if it does to store e.g. the given parameter values, avoid to have a "common context" if
there is no closure taken. This avoids useless malloc calls and speeds up repeated generator
object creation.

Organizational

• Changed the Scons build file database to reside in the build directory as opposed to the current
directory, not polluting it anymore. Thanks for the patch go to Michael H Kent, very much
appreciated.

• The --experimental option is no longer available outside of checkouts of git, and even there not
on stable branches (master, hotfix/...). It only pollutes --help output as stable releases have
no experimental code options, not even development version will make a difference.

• The binary "bin/Nuitka.py" has been removed from the git repository. It was deprecated a while ago,
not part of the distribution and served no good use, as it was a symbolic link only anyway.

• The --python-version option is applied at Nuitka start time to re-launch Nuitka with the given
Python version, to make sure that the Python run time used for computations and link time Python
versions are the same. The allowed values are now checked (2.6, 2.7 and 3.2) and the user gets a
nice error with wrong values.

• Added --keep-pythonpath alias for --execute-with-pythonpath option, probably easier to
remember.

• Support --debug with clang, so it can also be used to check the generated code for all warnings,
and perform assertions. Didn't report anything new.

• The contents environment variable CXX determines the default C++ compiler when set, so that
checking with CXX=g++-4.7 nuitka-python ... has become supported.

• The check-with-pylint script now has a real command line option to control the display of
TODO items.

Cleanups

• Changed complex assignments, i.e. assignments with multiple targets to such using a temporary
variable and multiple simple assignments instead.

a = b = c

_tmp = c
b = _tmp
a = _tmp

In CPython, when one assignment raises an exception, the whole thing is aborted, so the complexity
of having multiple targets is no more needed, now that we have temporary variables in a block.

All that was really needed, was to evaluate the complete source expression only once, but that made
code generation contain ugly loops that are no more needed.

• Changed unpacking assignments to use temporary variables. Code like this:

a, b = c

Is handled more like this:

_tmp_iter = iter(c)
_tmp1 = next(_tmp_iter)
_tmp2 = next(_tmp_iter)
if not finished(_tmp_iter):
 raise ValueError("too many values to unpack")
a = _tmp1
b = _tmp2

In reality, not really next is used, as it wouldn't raise the correct exception for unpacking, and the
finished check is more condensed into it.

Generally this cleanup allowed that the AssignTargetTuple and associated code generation was
removed, and in the future value propagation may optimize these next and iter calls away where
possible. At this time, this is not done yet.

• Exception handlers assign caught exception value through assignment statement.

Previously the code generated for assigning from the caught exception was not considered part of
the handler. It now is the first statement of an exception handler or not present, this way it may be
optimized as well.

• Exception handlers now explicitly catch more than one type.

Catching multiple types worked by merits of the created tuple object working with the Python C/API
function called, but that was not explicit at all. Now every handler has a tuple of exceptions it
catches, which may only be one, or if None, it's all.

• Contractions are now functions as well.

Contractions (list, dict, and set) are now re-formulated as function bodies that contain for loops and
conditional statements. This allowed to remove a lot of special code that dealt with them and will
make these easier to understand for optimization and value propagation.

• Global is handled during tree building.

Previously the global statement was its own node, which got removed during the optimization phase
in a dedicated early optimization that applied its effect, and then removed the node.

It was determined, that there is no reason to not immediately apply the effect of the global variable
and take closure variables and add them to the provider of that global statement, allowing to
remove the node class.

• Read only module variable detection integrated to constraint collection.

The detection of read only module variables was so far done as a separate step, which is no more
necessary as the constraint collection tracks the usages of module variables anyway, so this
separate and slow step could be removed.

New Tests

• Added test to cover order of calls for complex assignments that unpack, to see that they make a
fresh iterator for each part of a complex assignment.

• Added test that unpacks in an exception catch. It worked, due to the generic handling of assignment
targets by Nuitka, and I didn't even know it can be done, example:

try:
 raise ValueError(1,2)
except ValueError as (a,b):
 print "Unpacking caught exception and unpacked", a, b

Will assign a=1 and b=2.

• Added test to cover return statements on module level and class level, they both must give syntax
errors.

• Cover exceptions from accessing unassigned global names.

• Added syntax test to show that star imports do not allow other names to be imported at the same
time as well.

• Python3 is now also running the compile itself test successfully.

Summary
The progress made towards value propagation and type inference is very significant, and makes those
appears as if they are achievable.

Nuitka Release 0.3.20
This time there are a few bug fixes and some really major cleanups, lots of new optimization and
preparations for more. And then there is a new compiler clang and a new platform supported. MacOS X
appears to work mostly, thanks for the patches from Pete Hunt.

Bug fixes

• The use of a local variable name as an expression was not covered and lead to a compiler crash.
Totally amazing, but true, nothing in the test suite of CPython covered this. Issue#30. Fixed in
release 0.3.19.1 already.

• The use of a closure variable name as an expression was not covered as well. And in this case
corrupted the reference count. Issue#31. Fixed in release 0.3.19.1 already.

• The from x import * attempted to respect __all__ but failed to do so. Issue#32. Fixed in
release 0.3.19.2 already.

• The from x import * didn't give a SyntaxError when used on Python3. Fixed in release
0.3.19.2 already.

• The syntax error messages for "global for function argument name" and "duplicate function argument
name" are now identical as well.

• Parameter values of generator function could cause compilation errors when used in the closure of
list contractions. Fixed.

New Features

• Added support for disabling the console for Windows binaries. Thanks for the patch go to Michael H
Kent.

• Enhanced Python3 support for syntax errors, these are now also compatible.

• Support for MacOS X was added.

http://bugs.nuitka.net/issue30
http://bugs.nuitka.net/issue31
http://bugs.nuitka.net/issue32

• Support for using the clang compiler was added, it can be enforced via --clang option. Currently
this option is mainly intended to allow testing the "MacOS X" support as good as possible under
Linux.

New Optimization

• Enhanced all optimization that previously worked on "constants" to work on "compile time constants"
instead. A "compile time constant" can currently also be any form of a built-in name or exception
reference. It is intended to expand this in the future.

• Added support for built-ins bin, oct, and hex, which also can be computed at compile time, if their
arguments are compile time constant.

• Added support for the iter built-in in both forms, one and two arguments. These cannot be
computed at compile time, but now will execute faster.

• Added support for the next built-in, also in its both forms, one and two arguments. These also
cannot be computed at compile time, but now will execute faster as well.

• Added support for the open built-in in all its form. We intend for future releases to be able to track
file opens for including them into the executable if data files.

• Optimize the __debug__ built-in constant as well. It cannot be assigned, yet code can determine a
mode of operation from it, and apparently some code does. When compiling the mode is decided.

• Optimize the Ellipsis built-in constant as well. It falls in the same category as True, False,
None, i.e. names of built-in constants that a singletons.

• Added support for anonymous built-in references, i.e. built-ins which have names that are not
normally accessible. An example is type(None) which is not accessible from anywhere. Other
examples of such names are compiled_method_or_function.

Having these as represented internally, and flagged as "compile time constants", allows the compiler
to make more compile time optimization and to generate more efficient C++ code for it that won't e.g.
call the type built-in with None as an argument.

• All built-in names used in the program are now converted to "built-in name references" in a first step.
Unsupported built-ins like e.g. zip, for which Nuitka has no own code or understanding yet,
remained as "module variables", which made access to them slow, and difficult to recognize.

• Added optimization for module attributes __file__, __doc__ and __package__ if they are read
only. It's the same as __name__.

• Added optimization for slices and subscripts of "compile time constant" values. These will play a
more important role, once value propagation makes them more frequent.

Organizational

• Created a "change log" from the previous release announcements. It's as ReStructured Text and
converted to PDF for the release as well, but I chose not to include that in Debian, because it's so
easy to generate the PDF on that yourself.

• The posting of release announcements is now prepared by a script that converts the ReStructured
Text to HTML and adds it to Wordpress as a draft posting or updates it, until it's release time. Simple,
sweet and elegant.

Cleanups

• Split out the nuitka.nodes.Nodes module into many topic nodes, so that there are now
nuitka.nodes.BoolNodes or nuitka.nodes.LoopNodes to host nodes of similar kinds, so
that it is now cleaner.

• Split del statements into their own node kind, and use much simpler node structures for them. The
following blocks are absolutely the same:

del a, b.c, d

del a
del b.c
del d

So that's now represented in the node tree. And even more complex looking cases, like this one,
also the same:

del a, (b.c, d)

This one gives a different parse tree, but the same bytecode. And so Nuitka need no longer concern
itself with this at all, and can remove the tuple from the parse tree immediately. That makes them
easy to handle. As you may have noted already, it also means, there is no way to enforce that two
things are deleted or none at all.

• Turned the function and class builder statements into mere assignment statements, where defaults
and base classes are handled by wrapping expressions.

Previously they are also kind of assignment statements too, which is not needed. Now they were
reduced to only handle the bases for classes and the defaults for functions and make optional.

• Refactored the decorator handling to the tree building stage, presenting them as function calls on
"function body expression" or class body expression".

This allowed to remove the special code for decorators from code generation and C++ templates,
making decorations easy subjects for future optimization, as they practically are now just function
calls.

@some_classdecorator
class C:
 @staticmethod
 def f():
 pass

It's just a different form of writing things. Nothing requires the implementation of decorators, it's just
functions calls with function bodies before the assignment.

The following is only similar:

class C:
 def f():
 pass

 f = staticmethod(f)

C = some_classdecorator(C)

It's only similar, because the assignment to an intermediate value of C and f is not done, and if an
exception was raised by the decoration, that name could persist. For Nuitka, the function and class
body, before having a name, are an expression, and so can of course be passed to decorators
already.

• The in-place assignments statements are now handled using temporary variable blocks

Adding support for scoped temporary variables and references to them, it was possible to
re-formulate in-place assignments expressions as normal look-ups, in-place operation call and then
assignment statement. This allowed to remove static templates and will yield even better generated
code in the future.

• The for loop used to have has a "source" expression as child, and the iterator over it was only taken
at the code generation level, so that step was therefore invisible to optimization. Moved it to tree
building stage instead, where optimization can work on it then.

• Tree building now generally allows statement sequences to be None everywhere, and pass
statements are immediately eliminated from them immediately. Empty statement sequences are now
forbidden to exist.

• Moved the optimization for __name__ to compute node of variable references, where it doesn't
need anything complex to replace with the constant value if it's only read.

• Added new bases classes and mix-in classes dedicated to expressions, giving a place for some
defaults.

• Made the built-in code more reusable.

New Tests

• Added some more diagnostic tests about complex assignment and del statements.

• Added syntax test for star import on function level, that must fail on Python3.

• Added syntax test for duplicate argument name.

• Added syntax test for global on a function argument name.

Summary
The decorator and building changes, the assignment changes, and the node cleanups are all very
important progress for the type inference work, because they remove special casing the that previously
would have been required. Lambdas and functions now really are the same thing right after tree building.
The in-place assignments are now merely done using standard assignment code, the built functions and
classes are now assigned to names in assignment statements, much more consistency there.

Yet, even more work will be needed in the same direction. There may e.g. be work required to cover
with statements as well. And assignments will become no more complex than unpacking from a
temporary variable.

For this release, there is only minimal progress on the Python3 front, despite the syntax support, which is
only miniscule progress. The remaining tasks appear all more or less difficult work that I don't want to
touch now.

There are still remaining steps, but we can foresee that a release may be done that finally actually does
type inference and becomes the effective Python compiler this project is all about.

Nuitka Release 0.3.19
This time there are a few bug fixes, major cleanups, more Python3 support, and even new features. A lot
things in this are justifying a new release.

Bug fixes

• The man pages of nuitka and nuitka-python had no special layout for the option groups and
broken whitespace for --recurse-to option. Also --g++-only was only partially bold. Released
as 0.3.18.1 hot fix already.

• The command line length improvement we made to Scons for Windows was not portable to
Python2.6. Released as 0.3.18.2 hot fix already.

• Code to detect already considered packages detection was not portable to Windows, for one case,
there was still a use of / instead of using a joinpath call. Released as 0.3.18.3 already.

• A call to the range built-in with no arguments would crash the compiler, see Issue#29. Released as
0.3.18.4 already.

• Compatibility Fix: When rich comparison operators returned false value other False, for comparison
chains, these would not be used, but False instead, see .

• The support for __import__ didn't cover keyword arguments, these were simply ignored. See
Issue#28. Fixed, but no warning is given yet.

New Features

• A new option has been added, one can now specify --recurse-directory and Nuitka will
attempt to embed these modules even if not obviously imported. This is not yet working perfect yet,
but will receive future improvements.

• Added support for the exec built-in of Python3, this enables us to run one more basic test,
GlobalStatement.py with Python3. The test ExecEval.py nearly works now.

New Optimization

http://bugs.nuitka.net/issue29
http://bugs.nuitka.net/issue28

• The no arguments range() call now optimized into the static CPython exception it raises.

• Parts of comparison chains with constant arguments are now optimized away.

Cleanups

• Simplified the CPythonExpressionComparison node, it now always has only 2 operands.

If there are more, the so called "comparison chain", it's done via and with assignments to temporary
variables, which are expressed by a new node type CPythonExpressionTempVariableRef. This
allowed to remove expression_temps from C++ code templates and generation, reducing the
overall complexity.

• When executing a module (--execute but not --exe), no longer does Nuitka import it into itself,
instead a new interpreter is launched with a fresh environment.

• The calls to the variadic MAKE_TUPLE were replaced with calls the MAKE_TUPLExx (where xx is
the number of arguments), that are generated on a as-needed basis. This gives more readable code,
because no EVAL_ORDERED_xx is needed at call site anymore.

• Many node classes have moved to new modules in nuitka.nodes and grouped by theme. That
makes them more accessible.

• The choosing of the debug python has moved from Scons to Nuitka itself. That way it can respect
the sys.abiflags and works with Python3.

• The replacing of .py in filenames was made more robust. No longer is str.replace used, but
instead proper means to assure that having .py as other parts of the filenames won't be a trouble.

• Module recursion was changed into its own module, instead of being hidden in the optimization that
considers import statements.

• As always, some PyLint work, and some minor TODO were solved.

Organizational

• Added more information to the "Developer Manual", e.g. documenting the tree changes for assert
to become a conditional statement with a raise statement, etc.

• The Debian package is as of this version verified to be installable and functional on to Ubuntu Natty,
Maverick, Oneiric, and Precise.

• Added support to specify the binary under test with a NUITKA environment, so the test framework
can run with installed version of Nuitka too.

• Made sure the test runners work under Windows as well. Required making them more portable. And
a workaround for os.execl not propagating exit codes under Windows. See Issue#26 for more
information.

• For windows target the MinGW library is now linked statically. That means there is no requirement for
MinGW to be in the PATH or even installed to execute the binary.

New Tests

• The basic, programs, syntax, and reflected were made executable under Windows.
Occasionally this meant to make the test runners more portable, or to work around limitations.

• Added test to cover return values of rich comparisons in comparison chains, and order of argument
evaluation for comparison chains.

• The Referencing.py test was made portable to Python3.

• Cover no arguments range() exception as well.

http://nuitka.net/doc/developer-manual.html
http://bugs.nuitka.net/issue26

• Added test to demonstrate that --recurse-directory actually works. This is using an
__import__ that cannot be predicted at run time (yet).

• The created source package is now tested on pbuilder chroots to be pass installation and the basic
tests, in addition to the full tests during package build time on these chroots. This will make sure, that
Nuitka works fine on Ubuntu Natty and doesn't break without notice.

Summary
This releases contains many changes. The "temporary variable ref" and "assignment expression" work is
ground breaking. I foresee that it will lead to even more simplifications of code generation in the future,
when e.g. in-place assignments can be reduced to assignments to temporary variables and conditional
statements.

While there were many improvements related to Windows support and fixing portability bugs, or the
Debian package, the real focus is the optimization work, which will ultimately end with "value propagation"
working.

These are the real focus. The old comparison chain handling was a big wart. Working, but no way
understood by any form of analysis in Nuitka. Now they have a structure which makes their code
generation based on semantics and allows for future optimization to see through them.

Going down this route is an important preparatory step. And there will be more work like this needed.
Consider e.g. handling of in-place assignments. With an "assignment expression" to a "temporary variable
ref", these become the same as user code using such a variable. There will be more of these to find.

So, that is where the focus is. The release now was mostly aiming at getting involved fixes out. The bug
fixed by comparison chain reworking, and the __import__ related one, were not suitable for hot fix
releases, so that is why the 0.3.19 release had to occur now. But with plugin support, with this comparison
chain cleanup, with improved Python3 support, and so on, there was plenty of good stuff already, also
worth to get out.

Nuitka Release 0.3.18
This is to inform you about the new stable release of Nuitka. This time there are a few bug fixes, and the
important step that triggered the release: Nuitka has entered Debian Unstable. So you if want, you will get
stable Nuitka releases from now on via apt-get install nuitka.

The release cycle was too short to have much focus. It merely includes fixes, which were available as hot
fixes, and some additional optimization and node tree cleanups, as well as source cleanups. But not much
else.

Bug fixes

• Conditional statements with both branches empty were not optimized away in all cases, triggering an
assertion of code generation. Issue#16. Released as 0.3.17a hot fix already.

• Nuitka was considering directories to contain packages that had no "__init__.py" which could lead to
errors when it couldn't find the package later in the compilation process. Released as 0.3.17a hot fix
already.

• When providing locals() to exec statements, this was not making the locals() writable. The
logic to detect the case that default value is used (None) and be pessimistic about it, didn't consider
the actual value locals(). Released as 0.3.17b hot fix already.

• Compatibility Fix: When no defaults are given, CPython uses None for func.func_defaults, but
Nuitka had been using None.

New Optimization

http://bugs.nuitka.net/issue16

• If the condition of assert statements can be predicted, these are now optimized in a static raise or
removed.

• For built-in name references, there is now dedicated code to look them up, that doesn't check the
module level at all. Currently these are used in only a few cases though.

• Cleaner code is generated for the simple case of print statements. This is not only faster code, it's
also more readable.

Cleanups

• Removed the CPythonStatementAssert node.

It's not needed, instead at tree building, assert statements are converted to conditional statements
with the asserted condition result inverted and a raise statement with AssertionError and the
assertion argument.

This allowed to remove code and complexity from the subsequent steps of Nuitka, and enabled
existing optimization to work on assert statements as well.

• Moved built-in exception names and built-in names to a new module nuitka.Builtins instead of
having in other places. This was previously a bit spread-out and misplaced.

• Added cumulative tags to node classes for use in checks. Use it annotate which node kinds to visit
in e.g. per scope finalization steps. That avoids kinds and class checks.

• New node for built-in name loopups, which allowed to remove tricks played with adding module
variable lookups for staticmethod when adding them for __new__ or module variable lookups
for str when predicting the result of type('a'), which was unlikely to cause a problem, but an
important TODO item still.

Organizational

• The "Download" page is now finally updated for releases automatically. This closes Issue#7
<http://bugs.nuitka.net/issue7> completely. Up to this release, I had to manually edit that page, but I
now mastered the art of upload via XMLRCP and a Python script, so that I don't loose as much time
with editing, checking it, etc.

• The Debian package is backportable to Ubuntu Natty, Maverick, Oneiric, I expect to make a separate
announcement with links to packages.

• Made sure the test runners worth with bare python2.6 as well.

New Tests

• Added some tests intended for type inference development.

Summary
This releases contains not as much changes as others, mostly because it's the intended base for a
Debian upload.

The exec fix was detected by continued work on the branch
feature/minimize_CPython26_tests_diff branch, but that work is now complete.

It is being made pretty (many git rebase iterations) with lots of Issues being added to the bug tracker and
referenced for each change. The intention is to have a clean commits repository with the changed made.

But of course, the real excitement is the "type inference" work. It will give a huge boost to Nuitka. With this
in place, new benchmarks may make sense. I am working on getting it off the ground, but also to make us
more efficient.

file:///home/hayen/Py2C/pages/download.html

So when I learn something. e.g. assert is not special, I apply it to the develop branch immediately, to
keep the differences as small as possible, and to immediately benefit from such improvements.

Nuitka Release 0.3.17
This is to inform you about the new stable release of Nuitka. This time there are a few bug fixes, lots of
very important organisational work, and yet again improved compatibility and cleanups. Also huge is the
advance in making --deep go away and making the recursion of Nuitka controllable, which means a lot
for scalability of projects that use a lot of packages that use other packages, because now you can
choose which ones to embed and which ones one.

The release cycle had a focus on improving the quality of the test scripts, the packaging, and generally to
prepare the work on "type inference" in a new feature branch.

I have also continued to work towards CPython3.2 compatibility, and this version, while not there,
supports Python3 with a large subset of the basic tests programs running fine (of course via 2to3
conversion) without trouble. There is still work to do, exceptions don't seem to work fully yet, parameter
parsing seems to have changed, etc. but it seems that CPython3.2 is going to work one day.

And there has been a lot of effort, to address the Debian packaging to be cleaner and more complete,
addressing issues that prevented it from entering the Debian repository.

Bug fixes

• Fixed the handling of modules and packages of the same name, but with different casing. Problem
showed under Windows only. Released as 0.3.16a hot fix already.

• Fixed an error where the command line length of Windows was exceeded when many modules were
embedded, Christopher Tott provided a fix for it. Released as 0.3.16a hot fix already.

• Fix, avoid to introduce new variables for where built-in exception references are sufficient. Released
as 0.3.16b hot fix already.

• Fix, add the missing staticmethod decorator to __new__ methods before resolving the scopes
of variables, this avoids the use of that variable before it was assigned a scope. Released as 0.3.16b
hot fix already.

New Features

• Enhanced compatibility again, provide enough co_varnames in the code objects, so that slicing
them up to code_object.co_argcount will work. They are needed by inspect module and
might be used by some decorators as well.

• New options to control the recursion:

--recurse-none (do not warn about not-done recursions) --recurse-all (recurse to all
otherwise warned modules) --recurse-to (confirm to recurse to those modules)
--recurse-not-to (confirm to not recurse to those modules)

New Optimization

• The optimization of constant conditional expressions was not done yet. Added this missing constant
propagation case.

• Eliminate near empty statement sequences (only contain a pass statement) in more places, giving a
cleaner node structure for many constructs.

• Use the pickle "protocol 2" on CPython2 except for unicode strings where it does not work well. It
gives a more compressed and binary representation, that is generally more efficient to un-stream as
well. Also use the cPickle protocol, the use of pickle was not really necessary anymore.

Organizational

• Added a "Developer Manual" to the release. It's incomplete, but it details some of the existing stuff,
coding rules, plans for "type inference", etc.

• Improved the --help output to use metavar where applicable. This makes it more readable for
some options.

• Instead of error message, give help output when no module or program file name was given. This
makes Nuitka help out more convenient.

• Consistently use #!/usr/bin/env python for all scripts, this was previously only done for some
of them.

• Ported the PyLint check script to Python as well, enhancing it on the way to check the exit code, and
to only output changes things, as well as making the output of warnings for TODO items optional.

• All scripts used for testing, PyLint checking, etc. now work with Python3 as well. Most useful on Arch
Linux, where it's also already the default for Python.

• The help output of Nuitka was polished a lot more. It is now more readable and uses option groups
to combine related options together.

• Make the tests run without any dependence on PATH to contain the executables of Nuitka. This
makes it easier to use.

• Add license texts to 3rd party file that were missing them, apply licensecheck results to cleanup
Nuitka. Also removed own copyright statement from inline copy of Scons, it had been added by
accident only.

• Release the tests that I own as well as the Debian packaging I created under "Apache License 2.0"
which is very liberal, meaning every project will be able to use it.

• Don't require copyright assignment for contributions anymore, instead only "Apache License 2.0", the
future Nuitka license, so that the code won't be a problem when changing the license of all of Nuitka
to that license.

• Give contributors listed in the "User Manual" an exception to the GPL terms until Nuitka is licensed
under "Apache License 2.0" as well.

• Added an --experimental option which can be used to control experimental features, like the
one currently being added on feature/ctypes_annotation, where "type inference" is currently
only activated when that option is given. For this stable release, it does nothing.

• Check the static C++ files of Nuitka with cppcheck as well. Didn't find anything.

• Arch Linux packages have been contributed, these are linked for download, but the stable package
may lag behind a bit.

Cleanups

• Changed not boolean operation to become a normal operator. Changed and and or boolean
operators to a new base class, and making their interface more similar to that of operations.

• Added cumulative tags to node classes for use in checks. Use it annotate which node kinds to visit
in e.g. per scope finalization steps. That avoids kinds and class checks.

• Enhanced the "visitor" interface to provide more kinds of callbacks, enhanced the way "each scope"
visiting is achieved by generalizing is as "child has not tag 'closure_taker'" and that for every "node
that has tag 'closure_taker'".

• Moved SyntaxHighlighting module to nuitka.gui package where it belongs.

http://nuitka.net/doc/developer-manual.html
http://nuitka.net/doc/user-manual.html

• More white listing work for imports. As recursion is now the default, and leads to warnings for
non-existent modules, the CPython tests gave a lot of good candidates for import errors that were
white listed.

• Consistently use nuitka in test scripts, as there isn't a Nuitka.py on all platforms. The later is
scheduled for removal.

• Some more PyLint cleanups.

New Tests

• Make sure the basic tests pass with CPython or else fail the test. This is to prevent false positives,
where a test passes, but only because it fails in CPython early on and then does so with Nuitka too.
For the syntax tests we make sure they fail.

• The basic tests can now be run with PYTHON=python3.2 and use 2to3 conversion in that case.
Also the currently not passing tests are not run, so the passing tests continue to do so, with this run
from the release test script check-release.

• Include the syntax tests in release tests as well.

• Changed many existing tests so that they can run under CPython3 too. Of course this is via 2to3
conversion.

• Don't fail if the CPython test suites are not there.

Currently they remain largely unpublished, and as such are mostly only available to me (exception,
feature/minimize_CPython26_tests_diff branch references the CPython2.6 tests
repository, but that remains work in progress).

• For the compile itself test: Make the presence of the Scons inline copy optional, the Debian package
doesn't contain it.

• Also make it more portable, so it runs under Windows too, and allow to choose the Python version to
test. Check this test with both CPython2.6 and CPython2.7 not only the default Python.

• Before releasing, test that the created Debian package builds fine in a minimal Debian unstable
chroot, and passes all the tests included in the package (basics, syntax, programs,
reflected). Also many other Debian packaging improvements.

Summary
The "git flow" was used again in this release cycle and proved to be useful not only for hot fix, but also for
creating the branch feature/ctypes_annotation and rebasing it often while things are still flowing.

The few hot fixes didn't require a new release, but the many organizational improvements and the new
features did warrant the new release, because of e.g. the much better test handling in this release and the
improved recursion control.

The work on Python3 support has slowed down a bit. I mostly only added some bits for compatibility, but
generally it has slowed down. I wanted to make sure it doesn't regress by accident, so running with
CPython3.2 is now part of the normal release tests.

What's still missing is more "hg" completeness. Only the co_varnames work for inspect was going in
that direction, and this has slowed down. It was more important to make Nuitka's recursion more
accessible with the new options, so that was done first.

And of course, the real excitement is the "type inference" work. It will give a huge boost to Nuitka, and I
am happy that it seems to go well. With this in place, new benchmarks may make sense. I am working on
getting it off the ground, so other people can work on it too. My idea of ctypes native calls may become
true sooner than expected. To support that, I would like to add more tools to make sure we discover
changes earlier on, checking the XML representations of tests to discover improvements and regressions
more clearly.

Nuitka Release 0.3.16
This time there are many bug fixes, some important scalability work, and again improved compatibility and
cleanups.

The release cycle had a focus on fixing the bug reports I received. I have also continued to look at
CPython3 compatibility, and this is the first version to support Python3 somewhat, at least some of the
basic tests programs run (of course via 2to3 conversion) without trouble. I don't know when, but it seems
that it's going to work one day.

Also there has an effort to make the Debian packaging cleaner, addressing all kinds of small issues that
prevented it from entering the Debian repository. It's still not there, but it's making progress.

Bug fixes

• Fixed a packaging problem for Linux and x64 platform, the new swapFiber.S file for the fiber
management was not included. Released as 0.3.15a hot fix already.

• Fixed an error where optimization was performed on removed unreachable code, which lead to an
error. Released as 0.3.15b hot fix already.

• Fixed an issue with __import__ and recursion not happening in any case, because when it did, it
failed due to not being ported to new internal APIs. Released as 0.3.15c hot fix already.

• Fixed eval() and locals() to be supported in generator expressions and contractions too.
Released as 0.3.15d hot fix already.

• Fixed the Windows batch files nuitka.bat and nuitka-python.bat to not output the rem
statements with the copyright header. Released as 0.3.15d hot fix already.

• Fixed re-raise with raise, but without a current exception set. Released as 0.3.15e hot fix already.

• Fixed vars() call on the module level, needs to be treated as globals(). Released as 0.3.15e
hot fix already.

• Fix handling of broken new lines in source files. Read the source code in "universal line ending
mode". Released as 0.3.15f hot fix already.

• Fixed handling of constant module attribute __name__ being replaced. Don't replace local variables
of the same name too. Released as 0.3.15g hot fix already.

• Fixed assigning to True, False or None. There was this old TODO, and some code has
compatibility craft that does it. Released as 0.3.15g hot fix already.

• Fix constant dictionaries not always being recognized as shared. Released as 0.3.15g hot fix
already.

• Fix generator function objects to not require a return frame to exist. In finalize cleanup it may not.

• Fixed non-execution of cleanup codes that e.g. flush sys.stdout, by adding Py_Finalize().

• Fix throw() method of generator expression objects to not check arguments properly.

• Fix missing fallback to subscript operations for slicing with non-indexable objects.

• Fix, in-place subscript operations could fail to apply the update, if the intermediate object was e.g. a
list and the handle just not changed by the operation, but e.g. the length did.

• Fix, the future spec was not properly preserving the future division flag.

New Optimization

• The optimization scales now much better, because per-module optimization only require the module
to be reconsidered, but not all modules all the time. With many modules recursed into, this makes a
huge difference in compilation time.

• The creation of dictionaries from constants is now also optimized.

New Features

• As a new feature functions now have the func_defaults and __defaults__ attribute. It works
only well for non-nested parameters and is not yet fully integrated into the parameter parsing. This
improves the compatibility somewhat already though.

• The names True, False and None are now converted to constants only when they are read-only
module variables.

• The PYTHONPATH variable is now cleared when immediately executing a compiled binary unless
--execute-with-pythonpath is given, in which case it is preserved. This allows to make sure
that a binary is in fact containing everything required.

Organizational

• The help output of Nuitka was polished a lot more. It is now more readable and uses option groups
to combine related options together.

• The inline copy of Scons is not checked with PyLint anymore. We of course don't care.

• Program tests are no longer executed in the program directory, so failed module inclusions become
immediately obvious.

• The basic tests can now be run with PYTHON=python3.2 and use 2to3 conversion in that case.

Cleanups

• Moved tags to a separate module, make optimization emit only documented tags, checked against
the list of allowed ones.

• The Debian package has seen lots of improvements, to make it "lintian clean", even in pedantic
mode. The homepage of Nuitka is listed, a watch file can check for new releases, the git repository
and the gitweb are referenced, etc.

• Use os.path.join in more of the test code to achieve more Windows portability for them.

• Some more PyLint cleanups.

New Tests

• There is now a Crasher test, for tests that crashed Nuitka previously.

• Added a program test where the imported module does a sys.exit() and make sure it really
doesn't continue after the SystemExit exception that creates.

• Cover the type of __builtins__ in the main program and in imported modules in tests too. It's
funny and differs between module and dict in CPython2.

• Cover a final print statement without newline in the test. Must still receive a newline, which only
happens when Py_Finalize() is called.

• Added test with functions that makes a raise without an exception set.

• Cover the calling of vars() on module level too.

• Cover the use of eval in contractions and generator expressions too.

• Cover func_defaults and __default__ attributes for a function too.

• Added test function with two raise in an exception handler, so that one becomes dead code and
removed without the crash.

Summary
The "git flow" was really great in this release cycle. There were many hot fix releases being made, so that
the bugs could be addressed immediately without requiring the overhead of a full release. I believe that
this makes Nuitka clearly one of the best supported projects.

This quick turn-around also encourages people to report more bugs, which is only good. And the structure
is there to hold it. Of course, the many bug fixes meant that there is not as much new development, but
that is not the priority, correctness is.

The work on Python3 is a bit strange. I don't need Python3 at all. I also believe it is that evil project to
remove cruft from the Python core and make developers of all relevant Python software, add compatibility
cruft to their software instead. Yet, I can't really stop to work on it. It has that appeal of small fixups here
and there, and then something else works too.

Python3 work is like when I was first struggling with Nuitka to pass the CPython2 unit tests for a first time.
It's fun. And then it finds real actual bugs that apply to CPython2 too. Not doing Py_Finalize (but
having to), the slice operations shortcomings, the bug of subscript in-place, and so on. There is likely
more things hidden, and the earlier Python3 is supported, the more benefit from increased test covered.

What's missing is more "hg" completeness. I think only the raise without exception set and the
func_defaults issue were going into its direction, but it won't be enough yet.

Nuitka Release 0.3.15
This is to inform you about the new stable release of Nuitka. This time again many organizational
improvements, some bug fixes, much improved compatibility and cleanups.

This release cycle had a focus on packaging Nuitka for easier consumption, i.e. automatic packaging,
making automatic uploads, improvement documentation, and generally cleaning things up, so that Nuitka
becomes more compatible and ultimately capable to run the "hg" test suite. It's not there yet, but this is a
huge jump for usability of Nuitka and its compatibility, again.

Then lots of changes that make Nuitka approach Python3 support, the generated C++ for at least one
large example is compiling with this new release. It won't link, but there will be later releases.

And there is a lot of cleanup going on, geared towards compatibility with line numbers in the frame object.

Bug fixes

• The main module was using __main__ in tracebacks, but it must be <module>. Released as
0.3.14a hot fix already.

• Workaround for "execfile cannot be used as an expression". It wasn't possible to use execfile in
an expression, only as a statement.

But then there is crazy enough code in e.g. mercurial that uses it in a lambda function, which made
the issue more prominent. The fix now allows it to be an expression, except on the class level, which
wasn't seen yet.

• The inline copy of Scons was not complete enough to work for "Windows" or with
--windows-target for cross compile. Fixed.

• Cached frames didn't release the "back" frame, therefore holding variables of these longer than
CPython does, which could cause ordering problems. Fixed for increased compatibility.

• Handle "yield outside of function" syntax error in compiled source correctly. This one was giving a
Nuitka backtrace, now it gives a SyntaxError as it needs to.

• Made syntax/indentation error output absolutely identical to CPython.

• Using the frame objects f_lineno may fix endless amounts bugs related to traceback line
numbers.

New Features

• Guesses the location of the MinGW compiler under Windows to default install location, so it need not
be added to PATH environment variable. Removes the need to modify PATH environment just for
Nuitka to find it.

• Added support for "lambda generators". You don't want to know what it is. Lets just say, it was the
last absurd language feature out there, plus that didn't work. It now works perfect.

Organizational

• You can now download a Windows installer and a Debian package that works on Debian Testing,
current Ubuntu and Mint Linux.

• New release scripts give us the ability to have hot fix releases as download packages immediately.
That means the "git flow" makes even more beneficial to the users.

• Including the generated "README.pdf" in the distribution archives, so it can be read instead of
"README.txt". The text file is fairly readable, due to the use of ReStructured Text, but the PDF is
even nicer to read, due to e.g. syntax highlighting of the examples.

• Renamed the main binaries to nuitka and nuitka-python, so that there is no dependency on
case sensitive file systems.

• For Windows there are batch files nuitka.bat and nuitka-python.bat to make Nuitka directly
executable without finding the Python.exe, which the batch files can tell from their own location.

• There are now man pages of nuitka and nuitka-python with examples for the most common
use cases. They are of course included in the Debian package.

• Don't strip the binary when executing it to analyse compiled binary with valgrind. It will give better
information that way, without changing the code.

New Optimization

• Implemented swapcontext alike (swapFiber) for x64 to achieve 8 times speedup for Generators.
It doesn't do useless syscalls to preserve signal masks. Now Nuitka is faster at frame switching than
CPython on x64, which is already good by design.

Cleanups

• Using the frame objects to store current line of execution avoids the need to store it away in helper
code at all. It ought to also help a lot with threading support, and makes Nuitka even more
compatible, because now line numbers will be correct even outside tracebacks, but for mere stack
frame dumps.

• Moved the for_return detection from code generation to tree building where it belongs. Yield
statements used as return statements need slightly different code for Python2.6 difference. That
solved an old TODO.

• Much Python3 portability work. Sometimes even improving existing code, the Python compiler code
had picked up a few points, where the latest Nuitka didn't work with Python3 anymore, when put to
actual compile.

The test covered only syntax, but e.g. meta classes need different code in CPython3, and that's now
supported. Also helper code was made portable in more places, but not yet fully. This will need more
work.

• Cleaned up uses of debug defines, so they are now more consistent and in one place.

• Some more PyLint cleanups.

New Tests

• The tests are now executed by Python scripts and cover stderr output too. Before we only
checked stdout. This unveiled a bunch of issues Nuitka had, but went unnoticed so far, and
triggered e.g. the frame line number improvements.

• Separate syntax tests.

• The scripts to run the tests now are all in pure Python. This means, no more MinGW shell is needed
to execute the tests.

Summary
The Debian package, Windows installer, etc. are now automatically updated and uploaded. From here on,
there can be such packages for the hot fix releases too.

The exception tracebacks are now correct by design, and better covered.

The generator performance work showed that the approach taken by Nuitka is in fact fast. It was fast on
ARM already, but it's nice to see that it's now also fast on x64. Programs using generators will be affected
a lot by this.

Overall, this release brings Nuitka closer to usability. Better binary names, man pages, improved
documentation, issue tracker, etc. all there now. I am in fact now looking for a sponsor for the Debian
package to upload it into Debian directly.

Update

The upload to Debian happened for 0.3.18 and was done by Yaroslav Halchenko.

What's missing is more "hg" completeness. The frame release issue helped it, but inspect.getargs()
doesn't work yet, and is a topic for a future release. Won't be easy, as func_defaults will be an
invasive change too.

Nuitka Release 0.3.14
This is to inform you about the new stable release of Nuitka. This time it contains mostly organisational
improvements, some bug fixes, improved compatibility and cleanups.

It is again the result of working towards compilation of a real program (Mercurial). This time, I have added
support for proper handling of compiled types by the inspect module.

Bug fixes

• Fix for "Missing checks in parameter parsing with star list, star dict and positional arguments". There
was whole in the checks for argument counts, now the correct error is given. Fixed in 0.3.13a
already.

• The simple slice operations with 2 values, not extended with 3 values, were not applying the correct
order for evaluation. Fixed in 0.3.13a already.

• The simple slice operations couldn't handle None as the value for lower or upper index. Fixed in
0.3.11a already.

• The in-place simple slice operations evaluated the slice index expressions twice, which could cause
problems if they had side effects. Fixed in 0.3.11a already.

New Features

• Run time patching the inspect module so it accepts compiled functions, compiled methods, and
compiled generator objects. The test_inspect test of CPython is nearly working unchanged with
this.

• The generator functions didn't have CO_GENERATOR set in their code object, setting it made
compatible with CPython in this regard too. The inspect module will therefore return correct value for
inspect.isgeneratorfunction() too.

New Optimization

• Slice indexes that are None are now constant propagated as well.

• Slightly more efficient code generation for dual star arg functions, removing useless checks.

Cleanups

• Moved the Scons, static C++ files, and assembler files to new package nuitka.build where also
now SconsInterface module lives.

• Moved the Qt dialog files to nuitka.gui

• Moved the "unfreezer" code to its own static C++ file.

• Some PyLint cleanups.

New Tests

• New test Recursion to cover recursive functions.

• New test Inspection to cover the patching of inspect module.

• Cover execfile on the class level as well in ExecEval test.

• Cover evaluation order of simple slices in OrderCheck too.

Organizational

• There is a new issue tracker available under http://bugs.nuitka.net

Please register and report issues you encounter with Nuitka. I have put all the known issues there
and started to use it recently. It's Roundup based like http://bugs.python.org is, so people will find it
familiar.

• The setup.py is now apparently functional. The source releases for download are made it with,
and it appears the binary distributions work too. We may now build a windows installer. It's currently
in testing, we will make it available when finished.

Summary
The new source organisation makes packaging Nuitka really easy now. From here, we can likely provide
"binary" package of Nuitka soon. A windows installer will be nice.

The patching of inspect works wonders for compatibility for those programs that insist on checking
types, instead of doing duck typing. The function call problem, was an issue found by the Mercurial test
suite.

For the "hg.exe" to pass all of its test suite, more work may be needed, this is the overall goal I am
currently striving for. Once real world programs like Mercurial work, we can use these as more meaningful

http://bugs.nuitka.net
http://bugs.python.org

benchmarks and resume work on optimization.

Nuitka Release 0.3.13
This release is mostly the result of working towards compilation of a real programs (Mercurial) and to
merge and finalize the frame stack work. Now Nuitka has a correct frame stack at all times, and supports
func_code and gi_code objects, something previously thought to be impossible.

Actually now it's only the "bytecode" objects that won't be there. And not attributes of func_code are
meaningful yet, but in theory can be supported.

Due to the use of the "git flow" for Nuitka, most of the bugs listed here were already fixed in on the stable
release before this release. This time there were 5 such hot fix releases, sometimes fixing multiple bugs.

Bug fixes

• In case of syntax errors in the main program, an exception stack was giving that included Nuitka
code. Changed to make the same output as CPython does. Fixed in 0.3.12a already.

• The star import (from x import *) didn't work for submodules. Providing * as the import list to
the respective code allowed to drop the complex lookups we were doing before, and to simply trust
CPython C/API to do it correctly. Fixed in 0.3.12 already.

• The absolute import is not the default of CPython 2.7 it seems. A local posix package shadows the
standard library one. Fixed in 0.3.12 already.

• In --deep mode, a module may contain a syntax error. This is e.g. true of "PyQt" with port_v3
included. These files contain Python3 syntax and fail to be imported in Python2, but that is not to be
considered an error. These modules are now skipped with a warning. Fixed in 0.3.12b already.

• The code to import modules wasn't using the __import__ built-in, which prevented __import__
overriding code to work. Changed import to use the built-in. Fixed in 0.3.12c already.

• The code generated for the __import__ built-in with constant values was doing relative imports
only. It needs to attempt relative and absolut imports. Fixed in 0.3.12c already.

• The code of packages in "__init__.py" believed it was outside of the package, giving problems for
package local imports. Fixed in 0.3.12d already.

• It appears that "Scons", which Nuitka uses internally and transparent to you, to execute the
compilation and linking tasks, was sometimes not building the binaries or shared libraries, due to a
false caching. As a workaround, these are now erased before doing the build. Fixed in 0.3.12d
already.

• The use of in and not in in comparison chains (e.g. a < b < c is one), wasn't supported yet.
The use of these in comparison chains a in b in c is very strange.

Only in the test_grammar.py it was ever used I believe. Anyway, it's supported now, solving this
TODO and reducing the difference. Fixed in 0.3.12e already.

• The order of evaluation for in and not in operators wasn't enforced in a portable way. Now it is
correct on "ARM" too. Fixed in 0.3.12e already.

New Optimization

• The built-ins GeneratorExit and StopIteration are optimized to their Python C/API names
where possible as well.

Cleanups

• The __file__ attribute of modules was the relative filename, but for absolute filenames these
become a horrible mess at least on Linux.

• Added assertion helpers for sane frame and code objects and use them.

• Make use of assertObject in more places.

• Instead of using os.path.sep all over, added a helper Utils.joinpath that hides this and
using os.path.join. This gives more readable code.

• Added traces to the "unfreezer" guarded by a define. Helpful in analyzing import problems.

• Some PyLint cleanups removing dead code, unused variables, useless pass statement, etc.

New Tests

• New tests to cover SyntaxError and IndentationError from --deep imports and in main
program.

• New test to cover evaluation order of in and not in comparisons.

• New test to cover package local imports made by the "__init__.py" of the package.

Organizational

• Drop "compile_itself.sh" in favor of the new "compile_itself.py", because the later is more portable.

• The logging output is now nicer, and for failed recursions, outputs the line that is having the problem.

Summary
The frame stack work and the func_code are big for compatibility.

The func_code was also needed for "hg" to work. For Mercurial to pass all of its test suite, more work
will be needed, esp. the inspect module needs to be run-time patched to accept compiled functions
and generators too.

Once real world programs like Mercurial work, we can use these as more meaningful benchmarks and
resume work on optimization.

Nuitka Release 0.3.12
This is to inform you about the new release of Nuitka many bug fixes, and substantial improvements
especially in the organizational area. There is a new "User Manual" (PDF), with much improved content, a
sys.meta_path based import mechanism for --deep mode, git flow goodness.

This release is generally also the result of working towards compilation of a real programs (Mercurial) and
to get things work more nicely on Windows by default. Thanks go to Liu Zhenhai for helping me with this
goal.

Due to the use of the "git flow", most of the bugs listed here were already fixed in on the stable release
before this release. And there were many of these.

Bug fixes

• The order of evaluation for base classes and class dictionaries was not enforced.

Apparently nothing in the CPython test suite did that, I only noticed during debugging that Nuitka
gave a different error than CPython did, for a class that had an undefined base class, because both
class body and base classes were giving an error. Fixed in 0.3.11a already.

• Method objects didn't hold a reference to the used class.

http://nuitka.net/doc/user-manual.html
http://nuitka.net/doc/user-manual.pdf

The effect was only noticed when --python-debug was used, i.e. the debug version of Python
linked, because then the garbage collector makes searches. Fixed in 0.3.11b already.

• Set sys.executable on Linux as well. On Debian it is otherwise /usr/bin/python which
might be a different version of Python entirely. Fixed in 0.3.11c already.

• Embedded modules inside a package could hide package variables of the same name. Learned
during PyCON DE about this corner case. Fixed in 0.3.11d already.

• Packages could be duplicated internally. This had no effect on generated code other than appearing
twice in the list if frozen modules. Fixed in 0.3.11d already.

• When embedding modules from outside current directory, the look-up failed. The embedding only
ever worked for the compile itself and programs test cases, because they are all in the current
directory then. Fixed in 0.3.11e already.

• The check for ARM target broke Windows support in the Scons file. Fixed in 0.3.11f already.

• The star import from external modules failed with an error in --deep mode. Fixed in 0.3.11g
already.

• Modules with a parent package could cause a problem under some circumstances. Fixed in 0.3.11h
already.

• One call variant, with both list and dict star arguments and keyword arguments, but no positional
parameters, didn't have the required C++ helper function implemented. Fixed in 0.3.11h already.

• The detection of the CPU core count was broken on my hexacore at least. Gave 36 instead of 6,
which is a problem for large programs. Fixed in 0.3.11h already.

• The inline copy of Scons didn't really work on Windows, which was sad, because we added it to
simplify installation on Windows precisely because of this.

• Cleaning up the build directory from old sources and object files wasn't portable to Windows and
therefore wasn't effective there.

• From imports where part of the imported were found modules and parts were not, didn't work. Solved
by the feature branch meta_path_import that was merged for this release.

• Newer MinGW gave warnings about the default visibility not being possible to apply to class
members. Fixed by not setting this default visibility anymore on Windows.

• The sys.executable gave warnings on Windows because of backslashes in the path. Using a
raw string to prevent such problems.

• The standard library path was hard coded. Changed to run time detection.

Cleanups

• Version checks on Python runtime now use a new define PYTHON_VERSION that makes it easier. I
don't like PY_VERSION_HEX, because it is so unreadable. Makes some of the checks a lot more
safe.

• The sys.meta_path based import from the meta_path_import feature branch allowed the
cleanup the way importing is done. It's a lot less code now.

• Removed some unused code. We will aim at making Nuitka the tool to detect dead code really.

• Moved nuitka.Nodes to nuitka.nodes.Nodes, that is what the package is intended for, the
split will come later.

New Tests

• New tests for import variants that previously didn't work: Mixed imports. Imports from a package one
level up. Modules hidden by a package variable, etc.

• Added test of function call variant that had no test previously. Only found it when compiling "hg".
Amazing how nothing in my tests, CPython tests, etc. used it.

• Added test to cover the partial success of import statements.

• Added test to cover evaluation order of class definitions.

Organizational

• Migrated the "README.txt" from org-mode to ReStructured Text, which allows for a more readable
document, and to generate a nice "User Manual" in PDF form.

• The amount of information in "README.txt" was increased, with many more subjects are now
covered, e.g. "git flow" and how to join Nuitka development. It's also impressive to see what code
blocks and syntax highlighting can do for readability.

• The Nuitka git repository has seen multiple hot fixes.

These allowed to publish bug fixes immediately after they were made, and avoided the need for a
new release just to get these out. This really saves me a lot of time too, because I can postpone
releasing the new version until it makes sense because of other things.

• Then there was a feature branch meta_path_import that lived until being merged to develop to
improve the import code, which is now released on master as stable. Getting that feature right took
a while.

• And there is the feature branch minimize_CPython26_tests_diff which has some success
already in documenting the required changes to the "CPython26" test suite and in reducing the
amount of differences, while doing it. We have a frame stack working there, albeit in too ugly code
form.

• The release archives are now built using setuptools. You can now also download a zip file, which
is probably more Windows friendly. The intention is to work on that to make setup.py produce a
Nuitka install that won't rely on any environment variables at all. Right now setup.py won't even
allow any other options than sdist to be given.

• Ported "compile_itself.sh" to "compile_itself.py", i.e. ported it to Python. This way, we can execute it
easily on Windows too, where it currently still fails. Replacing diff, rm -rf, etc. is a challenge, but
it reduces the dependency on MSYS tools on Windows.

• The compilation of standard library is disabled by default, but site or dist packages are now
embedded. To include even standard library, there is a --really-deep option that has to be given
in addition to --deep, which forces this.

Summary
Again, huge progress. The improved import mechanism is very beautiful. It appears that little is missing to
compile real world programs like "hg" with Nuitka. The next release cycle will focus on that and continue to
improve the Windows support which appears to have some issues.

Nuitka Release 0.3.11
This is to inform you about the new release of Nuitka with some bug fixes and portability work.

This release is generally cleaning up things, and makes Nuitka portable to ARM Linux. I used to host the
Nuitka homepage on that machine, but now that it's no longer so, I can run heavy compile jobs on it. To
my surprise, it found many portability problems. So I chose to fix that first, the result being that Nuitka now
works on ARM Linux too.

Bug fixes

http://nuitka.net/doc/user-manual.html

• The order of slice expressions was not correct on x86 as well, and I found that with new tests only.
So the porting to ARM revealed a bug category, I previously didn't consider.

• The use of linux2 in the Scons file is potentially incompatible with Linux 3.0, although it seems that
at least on Debian the sys.platform was changed back to linux2. Anyway, it's probably best to
allow just anything that starts with linux these days.

• The print statement worked like a print function, i.e. it first evaluated all printed expressions,
and did the output only then. That is incompatible in case of exceptions, where partial outputs need
to be done, and so that got fixed.

New Optimization

• Function calls now each have a dedicated helper function, avoiding in some cases unnecessary
work. We will may build further on this and inline PyObject_Call differently for the special cases.

Cleanups

• Moved many C++ helper declarations and inline implementations to dedicated header files for better
organisation.

• Some dependencies were removed and consolidated to make the dependency graph sane.

• Multiple decorators were in reverse order in the node tree. The code generation reversed it back, so
no bug, yet that was a distorted tree.

Finding this came from the ARM work, because the "reversal" was in fact just the argument
evaluation order of C++ under x86/x64, but on ARM that broke. Correcting it highlighted this issue.

• The deletion of slices, was not using Py_ssize for indexes, disallowing some kinds of optimization,
so that was harmonized.

• The function call code generation got a general overhaul. It is now more consistent, has more
helpers available, and creates more readable code.

• PyLint is again happier than ever.

New Tests

• There is a new basic test OrderChecks that covers the order of expression evaluation. These
problems were otherwise very hard to detect, and in some cases not previously covered at all.

• Executing Nuitka with Python3 (it won't produce correct Python3 C/API code) is now part of the
release tests, so non-portable code of Nuitka gets caught.

Organizational

• Support for ARM Linux. I will make a separate posting on the challenges of this. Suffice to say now,
that C++ leaves way too much things unspecified.

• The Nuitka git repository now uses "git flow". The new git policy will be detailed in another separate
posting.

• There is an unstable develop branch in which the development occurs. For this release ca. 40
commits were done to this branch, before merging it. I am also doing more fine grained commits
now.

• Unlike previously, there is master branch for the stable release.

• There is a script "make-dependency-graph.sh" (Update: meanwhile it was renamed to
"make-dependency-graph.py") to produce a dependency graphs of Nuitka. I detected a couple of

http://nuitka.net/posts/nuitka-git-flow.html
http://nuitka.net/posts/nuitka-git-flow.html

strange things through this.

• The Python3 __pycache__ directories get removed too by the cleanup script.

Numbers
We only have "PyStone" now, and on a new machine, so the numbers cannot be compared to previous
releases:

python 2.6:

Pystone(1.1) time for 50000 passes = 0.48
This machine benchmarks at 104167 pystones/second

Nuitka 0.3.11 (driven by python 2.6):

Pystone(1.1) time for 50000 passes = 0.19
This machine benchmarks at 263158 pystones/second

So this a speedup factor of 258%, last time on another machine it was 240%. Yet it only proves that the
generated and compiled are more efficient than bytecode, but Nuitka doesn't yet do the relevant
optimization. Only once it does, the factor will be significantly higher.

Summary
Overall, there is quite some progress. Nuitka is a lot cleaner now, which will help us later only. I wanted to
get this out, mostly because of the bug fixes, and of course just in case somebody attempts to use it on
ARM.

Nuitka Release 0.3.10
This new release is major milestone 2 work, enhancing practically all areas of Nuitka. The focus was
roundup and breaking new grounds with structural optimization enhancements.

Bug fixes

• Exceptions now correctly stack.

When you catch an exception, there always was the exception set, but calling a new function, and it
catching the exception, the values of sys.exc_info() didn't get reset after the function returned.

This was a small difference (of which there are nearly none left now) but one that might effect
existing code, which affects code that calls functions in exception handling to check something about
it.

So it's good this is resolved now too. Also because it is difficult to understand, and now it's just like
CPython behaves, which means that we don't have to document anything at all about it.

• Using exec in generator functions got fixed up. I realized that this wouldn't work while working on
other things. It's obscure yes, but it ought to work.

• Lambda generator functions can now be nested and in generator functions. There were some
problems here with the allocation of closure variables that got resolved.

• List contractions could not be returned by lambda functions. Also a closure issue.

• When using a mapping for globals to exec or eval that had a side effect on lookup, it was evident
that the lookup was made twice. Correcting this also improves the performance for the normal case.

New Optimization

• Statically raised as well as predicted exceptions are propagated upwards, leading to code and block
removal where possible, while maintaining the side effects.

This is brand new and doesn't do everything possible yet. Most notable, the matching of raised
exception to handlers is not yet performed.

• Built-in exception name references and creation of instances of them are now optimized as well,
which leads to faster exception raising/catching for these cases.

• More kinds of calls to built-ins are handled, positional parameters are checked and more built-ins are
covered.

Notable is that now checks are performed if you didn't potentially overload e.g. the len with your
own version in the module. Locally it was always detected already. So it's now also safe.

• All operations and comparisons are now simulated if possible and replaced with their result.

• In the case of predictable true or false conditions, not taken branches are removed.

• Empty branches are now removed from most constructs, leading to sometimes cleaner code
generated.

Cleanups

• Removed the lambda body node and replaced it with function body. This is a great win for the split
into body and builder. Regular functions and lambda functions now only differ in how the created
body is used.

• Large cleanup of the operation/comparison code. There is now only use of a simulator function,
which exists for every operator and comparison. This one is then used in a prediction call, shared
with the built-in predictions.

• Added a Tracing module to avoid future imports of print_function, which annoyed me many
times by causing syntax failures for when I quickly added a print statement, not noting it must have
the braces.

• PyLint is happier than ever.

New Tests

• Enhanced OverflowFunctions test to cover even deeper nesting of overflow functions taking
closure from each level. While it's not yet working, this makes clearer what will be needed. Even if
this code is obscure, I would like to be that correct here.

• Made Operators test to cover the `` operator as well.

• Added to ListContractions the case where a contraction is returned by a lambda function, but
still needs to leak its loop variable.

• Enhanced GeneratorExpressions test to cover lambda generators, which is really crazy code:

def y():
 yield((yield 1),(yield 2))

• Added to ExecEval a case where the exec is inside a generator, to cover that too.

• Activated the testing of sys.exc_info() in ExceptionRaising test. This was previously
commented out, and now I added stuff to illustrate all of the behaviour of CPython there.

• Enhanced ComparisonChains test to demonstrate that the order of evaluations is done right and
that side effects are maintained.

• Added BuiltinOverload test to show that overloaded built-ins are actually called and not the
optimized version. So code like this has to print 2 lines:

from __builtin__ import len as _len

def len(x):
 print x

return _len(x)

print len(range(9))

Organizational

• Changed "README.txt" to no longer say that "Scons" is a requirement. Now that it's included
(patched up to work with ctypes on Windows), we don't have to say that anymore.

• Documented the status of optimization and added some more ideas.

• There is now an option to dump the node tree after optimization as XML. Not currently use, but is for
regression testing, to identify where new optimization and changes have an impact. This make it
more feasible to be sure that Nuitka is only becoming better.

• Executable with Python3 again, although it won't do anything, the necessary code changes were
done.

Summary
It's nice to see, that I some long standing issues were resolved, and that structural optimization has
become almost a reality.

The difficult parts of exception propagation are all in place, now it's only details. With that we can eliminate
and predict even more of the stupid code of "pybench" at compile time, achieving more infinite speedups.

Nuitka Release 0.3.9
This is about the new release of Nuitka which some bug fixes and offers a good speed improvement.

This new release is major milestone 2 work, enhancing practically all areas of Nuitka. The main focus was
on faster function calls, faster class attributes (not instance), faster unpacking, and more built-ins detected
and more thoroughly optimizing them.

Bug fixes

• Exceptions raised inside with statements had references to the exception and traceback leaked.

• On Windows the binaries sys.executable pointed to the binary itself instead of the Python
interpreter. Changed, because some code uses sys.executable to know how to start Python
scripts.

• There is a bug (fixed in their repository) related to C++ raw strings and C++ "trigraphs" that affects
Nuitka, added a workaround that makes Nuitka not emit "trigraphs" at all.

• The check for mutable constants was erroneous for tuples, which could lead to assuming a tuple with
only mutable elements to be not mutable, which is of course wrong.

New Optimization
This time there are so many new optimization, it makes sense to group them by the subject.

Exceptions

• The code to add a traceback is now our own, which made it possible to use frames that do not
contain line numbers and a code object capable of lookups.

• Raising exceptions or adding to tracebacks has been made way faster by reusing a cached frame
objects for the task.

• The class used for saving exceptions temporarily (e.g. used in try/finally code, or with
statement) has been improved so it doesn't make a copy of the exception with a C++ new call, but it
simply stores the exception properties itself and creates the exception object only on demand, which
is more efficient.

• When catching exceptions, the addition of tracebacks is now done without exporting and re-importing
the exception to Python, but directly on the exception objects traceback, this avoids a useless round
trip.

Function Calls

• Uses of PyObject_Call provide NULL as the dictionary, instead of an empty dictionary, which is
slightly faster for function calls.

• There are now dedicated variants for complex function calls with * and ** arguments in all forms.
These can take advantage of easier cases. For example, a merge with star arguments is only
needed if there actually were any of these.

• The check for non-string values in the ** arguments can now be completely short-cut for the case
of a dictionary that has never had a string added. There is now code that detects this case and skips
the check, eliminating it as a performance concern.

Parameter Parsing

• Reversed the order in which parameters are checked.

Now the keyword dictionary is iterated first and only then the positional arguments after that is done.
This iteration is not only much faster (avoiding repeated lookups for each possible parameter), it also
can be more correct, in case the keyword argument is derived from a dictionary and its keys mutate it
when being compared.

• Comparing parameter names is now done with a fast path, in which the pointer values are compare
first. This can avoid a call to the comparison at all, which has become very likely due to the interning
of parameter name strings, see below.

• Added a dedicated call to check for parameter equality with rich equality comparison, which doesn't
raise an exception.

• Unpacking of tuples is now using dedicated variants of the normal unpacking code instead of rolling
out everything themselves.

Attribute Access

• The class type (in executables, not yet for extension modules) is changed to a faster variant of our
own making that doesn't consider the restricted mode a possibility. This avoids very expensive calls,
and makes accessing class attributes in compiled code and in non-compiled code faster.

• Access to attributes (but not of instances) got inlined and therefore much faster. Due to other
optimization, a specific step to intern the string used for attribute access is not necessary with Nuitka
at all anymore. This made access to attributes about 50% faster which is big of course.

Constants

• The bug for mutable tuples also caused non-mutable tuples to be considered as mutable, which lead
to less efficient code.

• The constant creation with the g++ bug worked around, can now use raw strings to create string
constants, without resorting to un-pickling them as a work around. This allows us to use
PyString_FromStringAndSize to create strings again, which is obviously faster, and had not
been done, because of the confusion caused by the g++ bug.

• For string constants that are usable as attributes (i.e. match the identifier regular expression), these
are now interned, directly after creation. With this, the check for identical value of pointers for
parameters has a bigger chance to succeed, and this saves some memory too.

• For empty containers (set, dict, list, tuple) the constants created are now are not unstreamed, but
created with the dedicated API calls, saving a bit of code and being less ugly.

• For mutable empty constant access (set, dict, list) the values are no longer made by copying the
constant, but instead with the API functions to create new ones. This makes code like a = [] a tiny
bit faster.

• For slice indices the code generation now takes advantage of creating a C++ Py_ssize_t from
constant value if possible. Before it was converting the integer constant at run time, which was of
course wasteful even if not (very) slow.

Iteration

• The creation of iterators got our own code. This avoids a function call and is otherwise only a small
gain for anything but sequence iterators. These may be much faster to create now, as it avoids
another call and repeated checks.

• The next on iterator got our own code too, which has simpler code flow, because it avoids the double
check in case of NULL returned.

• The unpack check got simlar code to the next iterator, it also has simpler code flow now and avoids
double checks.

Built-ins

• Added support for the list, tuple, dict, str, float and bool built-ins along with optimizing
their use with constant parameter.

• Added support for the int and long built-ins, based on a new "call spec" object, that detects
parameter errors at compile time and raises appropriate exceptions as required, plus it deals with
keyword arguments just as well.

So, to Nuitka it doesn't matter now it you write int(value) ``or ``int(x = value)
anymore. The base parameter of these built-ins is also supported.

The use of this call spec mechanism will the expanded, currently it is not applied to the built-ins that
take only one parameter. This is a work in progress as is the whole built-ins business as not all the
built-ins are covered yet.

Cleanups

• In 0.3.8 per module global classes were introduced, but the IMPORT_MODULE kept using the old
universal class, this got resolved and the old class is now fully gone.

• Using assertObject in more cases, and in more places at all, catches errors earlier on.

• Moved the addition to tracebacks into the _PythonException class, where it works directly on the
contained traceback. This is cleaner as it no longer requires to export exceptions to Python, just to
add a traceback entry.

• Some PyLint cleanups were done, reducing the number of reports a bit, but there is still a lot to do.

• Added a DefaultValueIdentifier class that encapsulates the access to default values in the
parameter parsing more cleanly.

• The module CodeTemplatesListContractions was renamed to
CodeTemplatesContractions to reflect the fact that it deals with all kinds of contractions (also
set and dict contractions), not just list contractions.

• Moved the with related template to its own module CodeTemplatesWith, so its easier to find.

• The options handling for g++ based compilers was cleaned up, so that g++ 4.6 and MinGW are
better supported now.

• Documented more aspects of the Scons build file.

• Some more generated code white space fixes.

• Moved some helpers to dedicated files. There is now calling.hpp for function calls, an
importing.cpp for import related stuff.

• Moved the manifest generation to the scons file, which now produces ready to use executables.

New Tests

• Added a improved version of "pybench" that can cope with the "0 ms" execution time that Nuitka has
for some if its sub-tests.

• Reference counting test for with statement was added.

• Micro benchmarks to demonstrate try finally performance when an exception travels through it.

• Micro benchmark for with statement that eats up exceptions raised inside the block.

• Micro benchmarks for the read and write access to class attributes.

• Enhanced Printing test to cover the trigraphs constant bug case. Output is required to make the
error detectable.

• Enhanced Constants test to cover repeated mutation of mutable tuple constants, this covers the
bug mentioned.

Organizational

• Added a credits section to the "README.txt" where I give credit to the people who contributed to
Nuitka, and the projects it is using. I will make it a separate posting to cite these.

• Documented the requirements on the compiler more clearly, document the fact that we require scons
and which version of Python (2.6 or 2.7).

• The is now a codespeed implementation up and running with historical data for up to Nuitka 0.3.8
runs of "PyStone" and with pybench. It will be updated for 0.3.9 once I have the infrastructure in
place to do that automatically.

• The cleanup script now also removes .so files.

• The handling of options for g++ got improved, so it's the same for g++ and MinGW compilers, plus
adequate errors messages are given, if the compiler version is too low.

• There is now a --unstriped option that just keeps the debug information in the file, but doesn't
keep the assertions. This will be helpful when looking at generated assembler code from Nuitka to
not have the distortions that --debug causes (reduced optimization level, assertions, etc.) and
instead a clear view.

Nuitka Release 0.3.8
This is to inform you about the new release of Nuitka with some real news and a slight performance
increase. The significant news is added "Windows Support". You can now hope to run Nuitka on Windows
too and have it produce working executables against either the standard Python distribution or a MinGW
compiled Python.

There are still some small things to iron out, and clearly documentation needs to be created, and esp. the
DLL hell problem of msvcr90.dll vs. msvcrt.dll, is not yet fully resolved, but appears to be not as
harmful, at least not on native Windows.

I am thanking Khalid Abu Bakr for making this possible. I was surprised to see this happen. I clearly didn't
make it easy. He found a good way around ucontext, identifier clashes, and a very tricky symbol
problems where the CPython library under Windows exports less than under Linux. Thanks a whole lot.

Currently the Windows support is considered experimental and works with MinGW 4.5 or higher only.

Otherwise there have been the usual round of performance improvements and more cleanups. This
release is otherwise milestone 2 work only, which will have to continue for some time more.

Bug fixes

• Lambda generators were not fully compatible, their simple form could yield an extra value. The
behavior for Python 2.6 and 2.7 is also different and Nuitka now mimics both correctly, depending on
the used Python version

• The given parameter count cited in the error message in case of too many parameters, didn't include
the given keyword parameters in the error message.

• There was an assert False right after warning about not found modules in the --deep mode,
which was of course unnecessary.

New Optimization

• When unpacking variables in assignments, the temporary variables are now held in a new temporary
class that is designed for the task specifically.

This avoids the taking of a reference just because the PyObjectTemporary destructor insisted on
releasing one. The new class PyObjectTempHolder hands the existing reference over and
releases only in case of exceptions.

• When unpacking variable in for loops, the value from the iterator may be directly assigned, if it's to a
variable.

In general this would be possible for every assignment target that cannot raise, but the infrastructure
cannot tell yet, which these would be. This will improve with more milestone 3 work.

• Branches with only pass inside are removed, pass statements are removed before the code
generation stage. This makes it easier to achieve and decide empty branches.

• There is now a global variable class per module. It appears that it is indeed faster to roll out a class
per module accessing the module * rather than having one class and use a module **, which is
quite disappointing from the C++ compiler.

• Also MAKE_LIST and MAKE_TUPLE have gained special cases for the 0 arguments case. Even
when the size of the variadic template parameters should be known to the compiler, it seems, it
wasn't eliminating the branch, so this was a speedup measured with valgrind.

• Empty tried branches are now replaced when possible with try/except statements, try/finally
is simplified in this case. This gives a cleaner tree structure and less verbose C++ code which the
compiler threw away, but was strange to have in the first place.

• In conditions the or and and were evaluated with Python objects instead of with C++ bool, which
was unnecessary overhead.

• List contractions got more clever in how they assign from the iterator value.

It now uses a PyObjectTemporary if it's assigned to multiple values, a PyObjectTempHolder if
it's only assigned once, to something that could raise, or a PyObject * if an exception cannot be
raised. This avoids temporary references completely for the common case.

Cleanups

• The if, for, and while statements had always empty else nodes which were then also in the
generated C++ code as empty branches. No harm to performance, but this got cleaned up.

• Some more generated code white space fixes.

New Tests

• The CPython 2.7 test suite now also has the doctests extracted to static tests, which improves
test coverage for Nuitka again.

This was previously only done for CPython 2.6 test suite, but the test suites are different enough to
make this useful, e.g. to discover newly changed behavior like with the lambda generators.

• Added Shed Skin 0.7.1 examples as benchmarks, so we can start to compare Nuitka performance in
these tests. These will be the focus of numbers for the 0.4.x release series.

• Added a micro benchmark to check unpacking behavior. Some of these are needed to prove that a
change is an actual improvement, when its effect can go under in noise of inline vs. no-inline
behavior of the C++ compiler.

• Added "pybench" benchmark which reveals that Nuitka is for some things much faster, but there are
still fields to work on. This version needed changes to stand the speed of Nuitka. These will be
subject of a later posting.

Organizational

• There is now a "tests/benchmarks/micro" directory to contain tiny benchmarks that just look at a
single aspect, but have no other meaning, e.g. the "PyStone" extracts fall into this category.

• There is now a --windows-target option that attempts a cross-platform build on Linux to
Windows executable. This is using "MingGW-cross-env" cross compilation tool chain. It's not yet
working fully correctly due to the DLL hell problem with the C runtime. I hope to get this right in
subsequent releases.

• The --execute option uses wine to execute the binary if it's a cross-compile for windows.

• Native windows build is recognized and handled with MinGW 4.5, the VC++ is not supported yet due
to missing C++0x support.

• The basic test suite ran with Windows so far only and some adaptations were necessary. Windows
new lines are now ignored in difference check, and addresses under Windows are upper case, small
things.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.8 (driven by python 2.6):

Pystone(1.1) time for 50000 passes = 0.27
This machine benchmarks at 185185 pystones/second

This is a 140% speed increase of 0.3.8 compared to CPython, up from 132% compared to the previous
release.

Nuitka Release 0.3.7
This is about the new release with focus on performance and cleanups. It indicates significant progress
with the milestone this release series really is about as it adds a compiled_method type.

So far functions, generator function, generator expressions were compiled objects, but in the context of
classes, functions were wrapped in CPython instancemethod objects. The new compiled_method
is specifically designed for wrapping compiled_function and therefore more efficient at it.

Bug fixes

• When using Python or Nuitka.py to execute some script, the exit code in case of "file not found"
was not the same as CPython. It should be 2, not 1.

• The exit code of the created programs (--deep mode) in case of an uncaught exception was 0,
now it an error exit with value 1, like CPython does it.

• Exception tracebacks created inside with statements could contain duplicate lines, this was
corrected.

New Optimization

• Global variable assignments now also use assign0 where no reference exists.

The assignment code for module variables is actually faster if it needs not drop the reference, but
clearly the code shouldn't bother to take it on the outside just for that. This variant existed, but wasn't
used as much so far.

• The instance method objects are now Nuitka's own compiled type too. This should make things
slightly faster by itself.

• Our new compiled method objects support dedicated method parsing code, where self is passed
directly, allowing to make calls taking a fast path in parameter parsing.

This avoids allocating/freeing a tuple object per method call, while reduced 3% ticks in "PyStone"
benchmark, so that's significant.

• Solved a TODO of BUILTIN_RANGE to change it to pre-allocating the list in the final size as we
normally do everywhere else. This was a tick reduction of 0.4% in "PyStone" benchmark, but the
measurement method normalizes on loop speed, so it's not visible in the numbers output.

• Parameter variables cannot possibly be uninitialized at creation and most often they are never
subject to a del statement. Adding dedicated C++ variable classes gave a big speedup, around 3%
of "PyStone" benchmark ticks.

• Some abstract object operations were re-implemented, which allows to avoid function calls e.g. in the
ITERATOR_NEXT case, this gave a few percent on "PyStone" as well.

Cleanups

• New package nuitka.codegen to contain all code generation related stuff, moved
nuitka.templates to nuitka.codegen.templates as part of that.

• Inside the nuitka.codegen package the MainControl module now longer reaches into
Generator for simple things, but goes through CodeGeneration for everything now.

• The Generator module uses almost no tree nodes anymore, but instead gets information passed
in function calls. This allows for a cleanup of the interface towards CodeGeneration. Gives a
cleaner view on the C++ code generation, and generally furthers the goal of other than C++
language backends.

• More "PyLint" work, many of the reported warnings have been addressed, but it's not yet happy.

• Defaults for yield and return are None and these values are now already added (as constants)
during tree building so that no such special cases need to be dealt with in CodeGeneration and
future analysis steps.

• Parameter parsing code has been unified even further, now the whole entry point is generated by
one of the function in the new nuitka.codegen.ParameterParsing module.

• Split variable, exception, built-in helper classes into separate header files.

New Tests

• The exit codes of CPython execution and Nuitka compiled programs are now compared as well.

• Errors messages of methods are now covered by the ParameterErrors test as well.

Organizational

• A new script "benchmark.sh" (now called "run-valgrind.py") script now starts "kcachegrind" to display
the valgrind result directly.

One can now use it to execute a test and inspect valgrind information right away, then improve it.
Very useful to discover methods for improvements, test them, then refine some more.

• The "check-release.sh" script needs to unset NUITKA_EXTRA_OPTIONS or else the reflection test
will trip over the changed output paths.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.7 (driven by python 2.6):

Pystone(1.1) time for 50000 passes = 0.28
This machine benchmarks at 178571 pystones/second

This is a 132% speed of 0.3.7 compared to CPython, up from 109% compare to the previous release. This
is a another small increase, that can be fully attributed to milestone 2 measures, i.e. not analysis, but
purely more efficient C++ code generation and the new compiled method type.

One can now safely assume that it is at least twice as fast, but I will try and get the PyPy or Shedskin test
suite to run as benchmarks to prove it.

No milestone 3 work in this release. I believe it's best to finish with milestone 2 first, because these are
quite universal gains that we should have covered.

Nuitka Release 0.3.6
The major point this for this release is cleanup work, and generally bug fixes, esp. in the field of importing.
This release cleans up many small open ends of Nuitka, closing quite a bunch of consistency TODO
items, and then aims at cleaner structures internally, so optimization analysis shall become "easy". It is a
correctness and framework release, not a performance improvement at all.

Bug fixes

• Imports were not respecting the level yet. Code like this was not working, now it is:

from .. import something

• Absolute and relative imports were e.g. both tried all the time, now if you specify absolute or relative
imports, it will be attempted in the same way than CPython does. This can make a difference with
compatibility.

• Functions with a "locals dict" (using locals built-in or exec statement) were not 100% compatible
in the way the locals dictionary was updated, this got fixed. It seems that directly updating a dict is
not what CPython does at all, instead it only pushes things to the dictionary, when it believes it has
to. Nuitka now does the same thing, making it faster and more compatible at the same time with
these kind of corner cases.

• Nested packages didn't work, they do now. Nuitka itself is now successfully using nested packages
(e.g. nuitka.transform.optimizations)

New Features

• The --lto option becomes usable. It's not measurably faster immediately, and it requires g++ 4.6
to be available, but then it at least creates smaller binaries and may provide more optimization in the
future.

New Optimization

• Exceptions raised by pre-computed built-ins, unpacking, etc. are now transformed to raising the
exception statically.

Cleanups

• There is now a getVariableForClosure that a variable provider can use. Before that it guessed
from getVariableForReference or getVariableForAssignment what might be the
intention. This makes some corner cases easier.

• Classes, functions and lambdas now also have separate builder and body nodes, which enabled to
make getSameScopeNodes() really simple. Either something has children which are all in a new
scope or it has them in the same scope.

• Twisted workarounds like TransitiveProvider are no longer needed, because class builder and
class body were separated.

• New packages nuitka.transform.optimizations and
nuitka.transform.finalizations, where the first was nuitka.optimizations before.
There is also code in nuitka.transform that was previously in a dedicated module. This allowed
to move a lot of displaced code.

• TreeBuilding now has fast paths for all 3 forms, things that need a "provider", "node", and
"source_ref"; things that need "node" and "source_ref"; things that need nothing at all, e.g. pass.

• Variables now avoid building duplicated instances, but instead share one. Better for analysis of them.

New Tests

• The Python 2.7 test suite is no longer run with Python 2.6 as it will just crash with the same exception
all the time, there is no importlib in 2.6, but every test is using that through test_support.

• Nested packages are now covered with tests too.

• Imports of upper level packages are covered now too.

Organizational

• Updated the "README.txt" with the current plan on optimization.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.6 (driven by python 2.6):

Pystone(1.1) time for 50000 passes = 0.31
This machine benchmarks at 161290 pystones/second

This is 109% for 0.3.6, but no change from the previous release. No surprise, because no new effective
new optimization means have been implemented. Stay tuned for future release for actual progress.

Nuitka Release 0.3.5
This new release of Nuitka is an overall improvement on many fronts, there is no real focus this time, likely
due to the long time it was in the making.

The major points are more optimization work, largely enhanced import handling and another improvement
on the performance side. But there are also many bug fixes, more test coverage, usability and
compatibility.

Something esp. noteworthy to me and valued is that many important changes were performed or at least
triggered by Nicolas Dumazet, who contributed a lot of high quality commits as you can see from the
gitweb history. He appears to try and compile Mercurial and Nuitka, and this resulted in important
contributions.

Bug fixes

• Nicolas found a reference counting bug with nested parameter calls. Where a function had
parameters of the form a, (b,c) it could crash. This got fixed and covered with a reference count
test.

• Another reference count problem when accessing the locals dictionary was corrected.

• Values 0.0 and -0.0 were treated as the same. They are not though, they have a different sign
that should not get lost.

• Nested contractions didn't work correctly, when the contraction was to iterate over another
contraction which needs a closure. The problem was addressing by splitting the building of a

contraction from the body of the contraction, so that these are now 2 nodes, making it easy for the
closure handling to get things right.

• Global statements in function with local exec() would still use the value from the locals dictionary.
Nuitka is now compatible to CPython with this too.

• Nicolas fixed problems with modules of the same name inside different packages. We now use the
full name including parent package names for code generation and look-ups.

• The __module__ attribute of classes was only set after the class was created. Now it is already
available in the class body.

• The __doc__ attribute of classes was not set at all. Now it is.

• The relative import inside nested packages now works correctly. With Nicolas moving all of Nuitka to
a package, the compile itself exposed many weaknesses.

• A local re-raise of an exception didn't have the original line attached but the re-raise statement line.

New Features

• Modules and packages have been unified. Packages can now also have code in "__init__.py" and
then it will be executed when the package is imported.

• Nicolas added the ability to create deep output directory structures without having to create them
beforehand. This makes --output-dir=some/deep/path usable.

• Parallel build by Scons was added as an option and enabled by default, which enhances scalability
for --deep compilations a lot.

• Nicolas enhanced the CPU count detection used for the parallel build. Turned out that
multithreading.cpu_count() doesn't give us the number of available cores, so he contributed
code to determine that.

• Support for upcoming g++ 4.6 has been added. The use of the new option --lto has been been
prepared, but right now it appears that the C++ compiler will need more fixes, before we can this
feature with Nuitka.

• The --display-tree feature got an overhaul and now displays the node tree along with the
source code. It puts the cursor on the line of the node you selected. Unfortunately I cannot get it to
work two-way yet. I will ask for help with this in a separate posting as we can really use a "python-qt"
expert it seems.

• Added meaningful error messages in the "file not found" case. Previously I just didn't care, but we
sort of approach end user usability with this.

New Optimization

• Added optimization for the built-in range() which otherwise requires a module and builtin
module lookup, then parameter parsing. Now this is much faster with Nuitka and small ranges (less
than 256 values) are converted to constants directly, avoiding run time overhead entirely.

• Code for re-raise statements now use a simple re-throw of the exception where possible, and only do
the hard work where the re-throw is not inside an exception handler.

• Constant folding of operations and comparisons is now performed if the operands are constants.

• Values of some built-ins are pre-computed if the operands are constants.

• The value of module attribute __name__ is replaced by a constant unless it is assigned to. This is
the first sign of upcoming constant propagation, even if only a weak one.

• Conditional statement and/or their branches are eliminated where constant conditions allow it.

Cleanups

• Nicolas moved the Nuitka source code to its own nuitka package. That is going to make
packaging it a lot easier and allows cleaner code.

• Nicolas introduced a fast path in the tree building which often delegates (or should do that) to a
function. This reduced a lot of the dispatching code and highlights more clearly where such is
missing right now.

• Together we worked on the line length issues of Nuitka. We agreed on a style and very long lines will
vanish from Nuitka with time. Thanks for pushing me there.

• Nicolas also did provide many style fixes and general improvements, e.g. using
PyObjectTemporary in more places in the C++ code, or not using str.find where x in y is a
better choice.

• The node structure got cleaned up towards the direction that assigments always have an assignment
as a child. A function definition, or a class definition, are effectively assignments, and in order to not
have to treat this as special cases everywhere, they need to have assignment targets as child nodes.

Without such changes, optimization will have to take too many things into account. This is not yet
completed.

• Nicolas merged some node tree building functions that previously handled deletion and assigning
differently, giving us better code reuse.

• The constants code generation was moved to a __constants.cpp where it doesn't make
__main__.cpp so much harder to read anymore.

• The module declarations have been moved to their own header files.

• Nicolas cleaned up the scripts used to test Nuitka big time, removing repetitive code and improving
the logic. Very much appreciated.

• Nicolas also documented a things in the Nuitka source code or got me to document things that
looked strange, but have reasons behind it.

• Nicolas solved the TODO related to built-in module accesses. These will now be way faster than
before.

• Nicolas also solved the TODO related to the performance of "locals dict" variable accesses.

• Generator.py no longer contains classes. The Contexts objects are supposed to contain the state,
and as such the generator objects never made much sense.

• Also with the help of Scons community, I figured out how to avoid having object files inside the src
directory of Nuitka. That should also help packaging, now all build products go to the .build directory
as they should.

• The vertical white space of the generated C++ got a few cleanups, trailing/leading new line is more
consistent now, and there were some assertions added that it doesn't happen.

New Tests

• The CPython 2.6 tests are now also run by CPython 2.7 and the other way around and need to
report the same test failure reports, which found a couple of issues.

• Now the test suite is run with and without --debug mode.

• Basic tests got extended to cover more topics and catch more issues.

• Program tests got extended to cover code in packages.

• Added more exec scope tests. Currently inlining of exec statements is disabled though, because it
requires entirely different rules to be done right, it has been pushed back to the next release.

Organizational

• The g++-nuitka script is no more. With the help of the Scons community, this is now performed
inside the scons and only once instead of each time for every C++ file.

• When using --debug, the generated C++ is compiled with -Wall and -Werror so that some form
of bugs in the generated C++ code will be detected immediately. This found a few issues already.

• There is a new git merge policy in place. Basically it says, that if you submit me a pull request, that I
will deal with it before publishing anything new, so you can rely on the current git to provide you a
good base to work on. I am doing more frequent pre-releases already and I would like to merge from
your git.

• The "README.txt" was updated to reflect current optimization status and plans. There is still a lot to
do before constant propagation can work, but this explains things a bit better now. I hope to expand
this more and more with time.

• There is now a "misc/clean-up.sh" script that prints the commands to erase all the temporary files
sticking around in the source tree. That is for you if you like me, have other directories inside,
ignored, that you don't want to delete.

• Then there is now a script that prints all source filenames, so you can more easily open them all in
your editor.

• And very important, there is now a "check-release.sh" script that performs all the tests I think should
be done before making a release.

• Pylint got more happy with the current Nuitka source. In some places, I added comments where rules
should be granted exceptions.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.5 (driven by python 2.6):

Pystone(1.1) time for 50000 passes = 0.31
This machine benchmarks at 161290 pystones/second

This is 109% for 0.3.5, up from 91% before.

Overall this release is primarily an improvement in the domain of compatibility and contains important bug
and feature fixes to the users. The optimization framework only makes a first showing of with the
framework to organize them. There is still work to do to migrate optimization previously present

It will take more time before we will see effect from these. I believe that even more cleanups of
TreeBuilding, Nodes and CodeGeneration will be required, before everything is in place for the big
jump in performance numbers. But still, passing 100% feels good. Time to rejoice.

Nuitka Release 0.3.4
This new release of Nuitka has a focus on re-organizing the Nuitka generated source code and a modest
improvement on the performance side.

For a long time now, Nuitka has generated a single C++ file and asked the C++ compiler to translate it to
an executable or shared library for CPython to load. This was done even when embedding many modules
into one (the "deep" compilation mode, option --deep).

This was simple to do and in theory ought to allow the compiler to do the most optimization. But for large
programs, the resulting source code could have exponential compile time behavior in the C++ compiler. At
least for the GNU g++ this was the case, others probably as well. This is of course at the end a scalability
issue of Nuitka, which now has been addressed.

So the major advancement of this release is to make the --deep option useful. But also there have been
a performance improvements, which end up giving us another boost for the "PyStone" benchmark.

Bug fixes

• Imports of modules local to packages now work correctly, closing the small compatibility gap that
was there.

• Modules with a "-" in their name are allowed in CPython through dynamic imports. This lead to wrong
C++ code created. (Thanks to Li Xuan Ji for reporting and submitting a patch to fix it.)

• There were warnings about wrong format used for Ssize_t type of CPython. (Again, thanks to Li
Xuan Ji for reporting and submitting the patch to fix it.)

• When a wrong exception type is raised, the traceback should still be the one of the original one.

• Set and dict contractions (Python 2.7 features) declared local variables for global variables used.
This went unnoticed, because list contractions don't generate code for local variables at all, as they
cannot have such.

• Using the type() built-in to create a new class could attribute it to the wrong module, this is now
corrected.

New Features

• Uses Scons to execute the actual C++ build, giving some immediate improvements.

• Now caches build results and Scons will only rebuild as needed.

• The direct use of __import__() with a constant module name as parameter is also followed in
"deep" mode. With time, non-constants may still become predictable, right now it must be a real
CPython constant string.

New Optimization

• Added optimization for the built-ins ord() and chr(), these require a module and built-in module
lookup, then parameter parsing. Now these are really quick with Nuitka.

• Added optimization for the type() built-in with one parameter. As above, using from builtin module
can be very slow. Now it is instantaneous.

• Added optimization for the type() built-in with three parameters. It's rarely used, but providing our
own variant, allowed to fix the bug mentioned above.

Cleanups

• Using scons is a big cleanup for the way how C++ compiler related options are applied. It also makes
it easier to re-build without Nuitka, e.g. if you were using Nuitka in your packages, you can easily
build in the same way than Nuitka does.

• Static helpers source code has been moved to ".hpp" and ".cpp" files, instead of being in ".py" files.
This makes C++ compiler messages more readable and allows us to use C++ mode in Emacs etc.,
making it easier to write things.

• Generated code for each module ends up in a separate file per module or package.

• Constants etc. go to their own file (although not named sensible yet, likely going to change too)

• Module variables are now created by the CPythonModule node only and are unique, this is to
make optimization of these feasible. This is a pre-step to module variable optimization.

New Tests

• Added "ExtremeClosure" from my Python quiz, it was not covered by existing tests.

• Added test case for program that imports a module with a dash in its name.

• Added test case for main program that starts with a dash.

• Extended the built-in tests to cover type() as well.

Organizational

• There is now a new environment variable NUITKA_SCONS which should point to the directory with
the SingleExe.scons file for Nuitka. The scons file could be named better, because it is actually
one and the same who builds extension modules and executables.

• There is now a new environment variable NUITKA_CPP which should point to the directory with the
C++ helper code of Nuitka.

• The script "create-environment.sh" can now be sourced (if you are in the top level directory of Nuitka)
or be used with eval. In either case it also reports what it does.

Update

The script has become obsolete now, as the environment variables are no longer necessary.

• To cleanup the many "Program.build" directories, there is now a "clean-up.sh" script for your use.
Can be handy, but if you use git, you may prefer its clean command.

Update

The script has become obsolete now, as Nuitka test executions now by default delete the
build results.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.4:

Pystone(1.1) time for 50000 passes = 0.34
This machine benchmarks at 147059 pystones/second

This is 91% for 0.3.4, up from 80% before.

Nuitka Release 0.3.3
This release of Nuitka continues the focus on performance. It also cleans up a few open topics. One is
"doctests", these are now extracted from the CPython 2.6 test suite more completely. The other is that the
CPython 2.7 test suite is now passed completely. There is some more work ahead though, to extract all of
the "doctests" and to do that for both versions of the tests.

This means an even higher level of compatibility has been achieved, then there is performance
improvements, and ever cleaner structure.

Bug fixes

Generators

• Generator functions tracked references to the common and the instance context independently, now
the common context is not released before the instance contexts are.

• Generator functions didn't check the arguments to throw() the way they are in CPython, now they
are.

• Generator functions didn't trace exceptions to "stderr" if they occurred while closing unfinished ones
in "del".

• Generator functions used the slightly different wordings for some error messages.

Function Calls

• Extended call syntax with ** allows that to use a mapping, and it is now checked if it really is a
mapping and if the contents has string keys.

• Similarly, extended call syntax with * allows a sequence, it is now checked if it really is a sequence.

• Error message for duplicate keyword arguments or too little arguments now describe the duplicate
parameter and the callable the same way CPython does.

• Now checks to the keyword argument list first before considering the parameter counts. This is
slower in the error case, but more compatible with CPython.

Classes

• The "locals()" built-in when used in the class scope (not in a method) now is correctly writable and
writes to it change the resulting class.

• Name mangling for private identifiers was not always done entirely correct.

Others

• Exceptions didn't always have the correct stack reported.

• The pickling of some tuples showed that "cPickle" can have non-reproducible results, using "pickle"
to stream constants now

New Optimization

• Access to instance attributes has become faster by writing specific code for the case. This is done in
JIT way, attempting at run time to optimize attribute access for instances.

• Assignments now often consider what's cheaper for the other side, instead of taking a reference to a
global variable, just to have to release it.

• The function call code built argument tuples and dictionaries as constants, now that is true for every
tuple usage.

Cleanups

• The static helper classes, and the prelude code needed have been moved to separate C++ files and
are now accessed "#include". This makes the code inside C++ files as opposed to a Python string
and therefore easier to read and or change.

New Features

• The generator functions and generator expressions have the attribute "gi_running" now. These
indicate if they are currently running.

New Tests

• The script to extract the "doctests" from the CPython test suite has been rewritten entirely and works
with more doctests now. Running these tests created increased the test coverage a lot.

• The Python 2.7 test suite has been added.

Organizational

• One can now run multiple "compare_with_cpython" instances in parallel, which enables background
test runs.

• There is now a new environment variable "NUITKA_INCLUDE" which needs to point to the directory
Nuitka's C++ includes live in. Of course the "create-environment.sh" script generates that for you
easily.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.3:

Pystone(1.1) time for 50000 passes = 0.36
This machine benchmarks at 138889 pystones/second

This is 80% for 0.3.3, up from 66% before.

Nuitka Release 0.3.2
This release of Nuitka continues the focus on performance. But this release also revisits the topic of
feature parity. Before, feature parity had been reached "only" with Python 2.6. This is of course a big
thing, but you know there is always more, e.g. Python 2.7.

With the addition of set contractions and dict contractions in this very release, Nuitka is approaching
Python support for 2.7, and then there are some bug fixes.

Bug fixes

• Calling a function with ** and using a non-dict for it was leading to wrong behavior. Now a mapping
is good enough as input for the ** parameter and it's checked.

• Deeply nested packages "package.subpackage.module" were not found and gave a warning from
Nuitka, with the consequence that they were not embedded in the executable. They now are.

• Some error messages for wrong parameters didn't match literally. For example "function got
multiple..." as opposed to "function() got multiple..." and alike.

• Files that ended in line with a "#" but without a new line gave an error from "ast.parse". As a
workaround, a new line is added to the end of the file if it's "missing".

• More correct exception locations for complex code lines. I noted that the current line indication
should not only be restored when the call at hand failed, but in any case. Otherwise sometimes the
exception stack would not be correct. It now is - more often. Right now, this has no systematic test.

• Re-raised exceptions didn't appear on the stack if caught inside the same function, these are now
correct.

• For exec the globals argument needs to have "__builtins__" added, but the check was performed
with the mapping interface. That is not how CPython does it, and so e.g. the mapping could use a
default value for "__builtins__" which could lead to incorrect behavior. Clearly a corner case, but one
that works fully compatible now.

New Optimization

• The local and shared local variable C++ classes have a flag "free_value" to indicate if an
"PY_DECREF" needs to be done when releasing the object. But still the code used "Py_XDECREF"
(which allows for "NULL" values to be ignored.) when the releasing of the object was done. Now the
inconsistency of using "NULL" as "object" value with "free_value" set to true was removed.

• Tuple constants were copied before using them without a point. They are immutable anyway.

Cleanups

• Improved more of the indentation of the generated C++ which was not very good for contractions so
far. Now it is. Also assignments should be better now.

• The generation of code for contractions was made more general and templates split into multiple
parts. This enabled reuse of the code for list contractions in dictionary and set contractions.

• The with statement has its own template now and got cleaned up regarding indentation.

New Tests

• There is now a script to extract the "doctests" from the CPython test suite and it generates Python
source code from them. This can be compiled with Nuitka and output compared to CPython. Without
this, the doctest parts of the CPython test suite is mostly useless. Solving this improved test
coverage, leading to many small fixes. I will dedicate a later posting to the tool, maybe it is useful in
other contexts as well.

• Reference count tests have been expanded to cover assignment to multiple assignment targets, and
to attributes.

• The deep program test case, now also have a module in a sub-package to cover this case as well.

Organizational

• The gitweb interface might be considered an alternative to downloading the source if you want to
provide a pointer, or want to take a quick glance at the source code. You can already download with

http://nuitka.net/gitweb

git, follow the link below to the page explaining it.

• The "README.txt" has documented more of the differences and I consequently updated the
Differences page. There is now a distinction between generally missing functionality and things that
don't work in --deep mode, where Nuitka is supposed to create one executable.

I will make it a priority to remove the (minor) issues of --deep mode in the next release, as this is
only relatively little work, and not a good difference to have. We want these to be empty, right? But
for the time being, I document the known differences there.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.2:

Pystone(1.1) time for 50000 passes = 0.39
This machine benchmarks at 128205 pystones/second

This is 66% for 0.3.2, slightly up from the 58% of 0.3.1 before. The optimization done were somewhat
fruitful, but as you can see, they were also more cleanups, not the big things.

Nuitka Release 0.3.1
This release of Nuitka continues the focus on performance and contains only cleanups and optimization.
Most go into the direction of more readable code, some aim at making the basic things faster, with good
results as to performance as you can see below.

New Optimization

• Constants in conditions of conditional expressions (a if cond else d), if/elif or while are
now evaluated to true or false directly. Before there would be temporary python object created
from it which was then checked if it had a truth value.

All of that is obviously overhead only. And it hurts the typically while 1: infinite loop case badly.

• Do not generate code to catch BreakException or ContinueException unless a break or
continue statement being in a try: finally: block inside that loop actually require this.

Even while uncaught exceptions are cheap, it is still an improvement worthwhile and it clearly
improves the readability for the normal case.

• The compiler more aggressively prepares tuples, lists and dicts from the source code as constants if
their contents is "immutable" instead of building at run time. An example of a "mutable" tuple would
be ({},) which is not safe to share, and therefore will still be built at run time.

For dictionaries and lists, copies will be made, under the assumption that copying a dictionary will
always be faster, than making it from scratch.

• The parameter parsing code was dynamically building the tuple of argument names to check if an
argument name was allowed by checking the equivalent of name in argument_names. This was
of course wasteful and now a pre-built constant is used for this, so it should be much faster to call
functions with keyword arguments.

• There are new templates files and also actual templates now for the while and for loop code
generation. And I started work on having a template for assignments.

Cleanups

• Do not generate code for the else of while and for loops if there is no such branch. This
uncluttered the generated code somewhat.

• The indentation of the generated C++ was not very good and whitespace was often trailing, or e.g. a
real tab was used instead of "t". Some things didn't play well together here.

Now much of the generated C++ code is much more readable and white space cleaner. For
optimization to be done, the humans need to be able to read the generated code too. Mind you, the
aim is not to produce usable C++, but on the other hand, it must be possible to understand it.

• To the same end of readability, the empty else {} branches are avoided for if, while and for
loops. While the C++ compiler can be expected to remove these, they seriously cluttered up things.

• The constant management code in Context was largely simplified. Now the code is using the
Constant class to find its way around the problem that dicts, sets, etc. are not hashable, or that
complex is not being ordered; this was necessary to allow deeply nested constants, but it is also a
simpler code now.

• The C++ code generated for functions now has two entry points, one for Python calls (arguments as
a list and dictionary for parsing) and one where this has happened successfully. In the future this
should allow for faster function calls avoiding the building of argument tuples and dictionaries
all-together.

• For every function there was a "traceback adder" which was only used in the C++ exception handling
before exit to CPython to add to the traceback object. This was now inlined, as it won't be shared
ever.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.1:

Pystone(1.1) time for 50000 passes = 0.41
This machine benchmarks at 121951 pystones/second

This is 58% for 0.3.1, up from the 25% before. So it's getting somewhere. As always you will find its latest
version here.

Nuitka Release 0.3.0
This release 0.3.0 is the first release to focus on performance. In the 0.2.x series Nuitka achieved feature
parity with CPython 2.6 and that was very important, but now it is time to make it really useful.

Optimization has been one of the main points, although I was also a bit forward looking to Python 2.7
language constructs. This release is the first where I really started to measure things and removed the
most important bottlenecks.

New Features

• Added option to control --debug. With this option the C++ debug information is present in the file,
otherwise it is not. This will give much smaller ".so" and ".exe" files than before.

• Added option --no-optimization to disable all optimization. It enables C++ asserts and
compiles with less aggressive C++ compiler optimization, so it can be used for debugging purposes.

• Support for Python 2.7 set literals has been added.

Performance Enhancements

• Fast global variables: Reads of global variables were fast already. This was due to a trick that is now
also used to check them and to do a much quicker update if they are already set.

• Fast break/continue statements: To make sure these statements execute the finally handlers if
inside a try, these used C++ exceptions that were caught by try/finally in while or for loops.

This was very slow and had very bad performance. Now it is checked if this is at all necessary and
then it's only done for the rare case where a break/continue really is inside the tried block.
Otherwise it is now translated to a C++ break/continue which the C++ compiler handles more
efficiently.

• Added unlikely() compiler hints to all errors handling cases to allow the C++ compiler to
generate more efficient branch code.

• The for loop code was using an exception handler to make sure the iterated value was released,
using PyObjectTemporary for that instead now, which should lead to better generated code.

• Using constant dictionaries and copy from them instead of building them at run time even when
contents was constant.

New Tests

• Merged some bits from the CPython 2.7 test suite that do not harm 2.6, but generally it's a lot due to
some unittest module interface changes.

• Added CPython 2.7 tests test_dictcomps.py and test_dictviews.py which both pass
when using Python 2.7.

• Added another benchmark extract from "PyStone" which uses a while loop with break.

Numbers
python 2.6:

Pystone(1.1) time for 50000 passes = 0.65
This machine benchmarks at 76923.1 pystones/second

Nuitka 0.3.0:

Pystone(1.1) time for 50000 passes = 0.52
This machine benchmarks at 96153.8 pystones/second

That's a 25% speedup now and a good start clearly. It's not yet in the range of where i want it to be, but
there is always room for more. And the break/continue exception was an important performance
regression fix.

Nuitka Release 0.2.4
This release 0.2.4 is likely the last 0.2.x release, as it's the one that achieved feature parity with CPython
2.6, which was the whole point of the release series, so time to celebrate. I have stayed away (mostly)
from any optimization, so as to not be premature.

From now on speed optimization is going to be the focus though. Because right now, frankly, there is not
much of a point to use Nuitka yet, with only a minor run time speed gain in trade for a long compile time.
But hopefully we can change that quickly now.

New Features

• The use of exec in a local function now adds local variables to scope it is in.

• The same applies to from module_name import * which is now compiled correctly and adds
variables to the local variables.

Bug Fixes

• Raises UnboundLocalError when deleting a local variable with del twice.

• Raises NameError when deleting a global variable with del twice.

• Read of to uninitialized closure variables gave NameError, but UnboundLocalError is correct
and raised now.

Cleanups

• There is now a dedicated pass over the node tree right before code generation starts, so that some
analysis can be done as late as that. Currently this is used for determining which functions should
have a dictionary of locals.

• Checking the exported symbols list, fixed all the cases where a static was missing. This reduces
the "module.so" sizes.

• With gcc the "visibility=hidden" is used to avoid exporting the helper classes. Also reduces the
"module.so" sizes, because classes cannot be made static otherwise.

New Tests

• Added "DoubleDeletions" to cover behaviour of del. It seems that this is not part of the CPython test
suite.

• The "OverflowFunctions" (those with dynamic local variables) now has an interesting test, exec on a
local scope, effectively adding a local variable while a closure variable is still accessible, and a
module variable too. This is also not in the CPython test suite.

• Restored the parts of the CPython test suite that did local star imports or exec to provide new
variables. Previously these have been removed.

• Also "test_with.py" which covers PEP 343 has been reactivated, the with statement works as
expected.

Nuitka Release 0.2.3
This new release is marking a closing in on feature parity to CPython 2.6 which is an important mile stone.
Once this is reached, a "Nuitka 0.3.x" series will strive for performance.

Bug Fixes

• Generator functions no longer leak references when started, but not finished.

• Yield can in fact be used as an expression and returns values that the generator user send() to it.

Reduced Differences / New Features

• Generator functions already worked quite fine, but now they have the throw(), send() and
close() methods.

• Yield is now an expression as is ought to be, it returns values put in by send() on the generator
user.

• Support for extended slices:

x = d[:42, ..., :24:, 24, 100]
d[:42, ..., :24:, 24, 100] = "Strange"
del d[:42, ..., :24:, 24, 100]

Tests Work

• The "test_contextlib" is now working perfectly due to the generator functions having a correct
throw(). Added that test back, so context managers are now fully covered.

• Added a basic test for "overflow functions" has been added, these are the ones which have an
unknown number of locals due to the use of language constructs exec or from bla import *
on the function level. This one currently only highlights the failure to support it.

• Reverted removals of extended slice syntax from some parts of the CPython test suite.

Cleanups

• The compiled generator types are using the new C++0x type safe enums feature.

• Resolved a circular dependency between TreeBuilding and TreeTransforming modules.

Nuitka Release 0.2.2
This is some significant progress, a lot of important things were addressed.

Bug Fixes

• Scope analysis is now done during the tree building instead of sometimes during code generation,
this fixed a few issues that didn't show up in tests previously.

• Reference leaks of generator expressions that were not fishing, but then deleted are not more.

• Inlining of exec is more correct now.

• More accurate exception lines when iterator creation executes compiled code, e.g. in a for loop

• The list of base classes of a class was evaluated in the context of the class, now it is done in the
context of the containing scope.

• The first iterated of a generator expression was evaluated in its own context, now it is done in the
context of the containing scope.

Reduced Differences

• With the enhanced scope analysis, UnboundLocalError is now correctly supported.

• Generator expressions (but not yet functions) have a throw(), send() and close() method.

• Exec can now write to local function namespace even if None is provided at run time.

• Relative imports inside packages are now correctly resolved at compile time when using --deep.

Cleanups

• The compiled function type got further enhanced and cleaned up.

• The compiled generator expression function type lead to a massive cleanup of the code for
generator expressions.

• Cleaned up namespaces, was still using old names, or "Py*" which is reserved to core CPython.

• Overhaul of the code responsible for eval and exec, it has been split, and it pushed the detection
defaults to the C++ compiler which means, we can do it at run time or compile time, depending on
circumstances.

• Made PyTemporaryObject safer to use, disabling copy constructor it should be also a relief to the
C++ compiler if it doesn't have to eliminate all its uses.

• The way delayed work is handled in TreeBuilding step has been changed to use closured
functions, should be more readable.

• Some more code templates have been created, making the code generation more readable in some
parts. More to come.

New Features

• As I start to consider announcing Nuitka, I moved the version logic so that the version can now be
queried with --version.

New Optimization

• Name lookups for None, True and False and now always detected as constants, eliminating
many useless module variable lookups.

New Tests

• More complete test of generator expressions.

• Added test program for packages with relative imports inside the package.

• The built-in dir() in a function was not having fully deterministic output list, now it does.

Summary
Overall, the amount of differences between CPython and Nuitka is heading towards zero. Also most of the
improvements done in this release were very straightforward cleanups and not much work was required,
mostly things are about cleanups and then it becomes easily right. The new type for the compiled
generator expressions was simple to create, esp. as I could check what CPython does in its source code.

For optimization purposes, I decided that generator expressions and generator functions will be separate
compiled types, as most of their behavior will not be shared. I believe optimizing generator expressions to
run well is an important enough goal to warrant that they have their own implementation. Now that this is
done, I will repeat it with generator functions.

Generator functions already work quite fine, but like generator expressions did before this release, they
can leak references if not finished , and they don't have the throw() method, which seems very
important to the correct operation of contextlib. So I will introduce a decicated type for these too,
possibly in the next release.

Nuitka Release 0.2.1
The march goes on, this is another minor release with a bunch of substantial improvements:

Bug Fixes

• Packages now also can be embedded with the --deep option too, before they could not be
imported from the executable.

• Inlined exec with their own future statements leaked these to the surrounding code.

Reduced Differences

• The future print function import is now supported too.

Cleanups

• Independence of the compiled function type. When I started it was merely PyCFunction and then
a copy of it patched at run time, using increasingly less code from CPython. Now it's nothing at all
anymore.

• This lead to major cleanup of run time compiled function creation code, no more methoddefs,
PyCObject holding context, etc.

• PyLint was used to find the more important style issues and potential bugs, also helping to identify
some dead code.

Summary
The major difference now is the lack of a throw method for generator functions. I will try to address that in
a 0.2.2 release if possible. The plan is that the 0.2.x series will complete these tasks, and 0.3 could aim at
some basic optimization finally.

Nuitka Release 0.2
Good day, this is a major step ahead, improvements everywhere.

Bug fixes

• Migrated the Python parser from the deprecated and problematic compiler module to the ast
module which fixes the d[a,] = b parser problem. A pity it was not available at the time I started,
but the migration was relatively painless now.

• I found and fixed wrong encoding of binary data into C++ literals. Now Nuitka uses C++0x raw
strings, and these problems are gone.

• The decoding of constants was done with the marshal module, but that appears to not deeply care
enough about unicode encoding it seems. Using cPickle now, which seems less efficient, but is
more correct.

• Another difference is gone: The continue and break inside loops do no longer prevent the
execution of finally blocks inside the loop.

Organizational

• I now maintain the "README.txt" in org-mode, and intend to use it as the issue tracker, but I am still
a beginner at that.

Update

Turned out I never master it, and used ReStructured Text instead.

• There is a public git repository for you to track Nuitka releases. Make your changes and then git
pull --rebase. If you encounter conflicts in things you consider useful, please submit the patches
and a pull offer. When you make your clones of Nuitka public, use nuitka-unofficial or not the
name Nuitka at all.

• There is a now a mailing list available too.

Reduced Differences

• Did you know you could write lambda : (yield something) and it gives you a lambda that
creates a generator that produces that one value? Well, now Nuitka has support for lambda
generator functions.

• The from __future__ import division statement works as expected now, leading to some
newly passing CPython tests.

• Same for from __future__ import unicode_literals statement, these work as expected
now, removing many differences in the CPython tests that use this already.

New Features

• The Python binary provided and Nuitka.py are now capable of accepting parameters for the
program executed, in order to make it even more of a drop-in replacement to python.

• Inlining of exec statements with constant expressions. These are now compiled at compile time, not
at run time anymore. I observed that an increasing number of CPython tests use exec to do things in
isolation or to avoid warnings, and many more these tests will now be more effective. I intend to do
the same with eval expressions too, probably in a minor release.

Summary
So give it a whirl. I consider it to be substantially better than before, and the list of differences to CPython
is getting small enough, plus there is already a fair bit of polish to it. Just watch out that it needs gcc-4.5 or
higher now.

Nuitka Release 0.1.1
I just have just updated Nuitka to version 0.1.1 which is a bug fix release to 0.1, which corrects many of
the small things:

• Updated the CPython test suite to 2.6.6rc and minimized much of existing differences in the course.

• Compiles standalone executable that includes modules (with --deep option), but packages are not
yet included successfully.

• Reference leaks with exceptions are no more.

• sys.exc_info() works now mostly as expected (it's not a stack of exceptions).

• More readable generated code, better organisation of C++ template code.

http://nuitka.net/pages/mailinglist.html

• Restored debug option --g++-only.

The biggest thing probably is the progress with exception tracebacks objects in exception handlers, which
were not there before (always None). Having these in place will make it much more compatible. Also with
manually raised exceptions and assertions, tracebacks will now be more correct to the line.

On a bad news, I discovered that the compiler module that I use to create the AST from Python source
code, is not only deprecated, but also broken. I created the CPython bug about it, basically it cannot
distinguish some code of the form d[1,] = None from d[1] = None. This will require a migration of
the ast module, which should not be too challenging, but will take some time.

I am aiming at it for a 0.2 release. Generating wrong code (Nuitka sees d[1] = None in both cases) is a
show blocker and needs a solution.

So, yeah. It's better, it's there, but still experimental. You will find its latest version here. Please try it out
and let me know what you think in the comments section.

Nuitka Release 0.1 (Releasing Nuitka to the World)
Obviously this is very exciting step for me. I am releasing Nuitka today. Finally. For a long time I knew I
would, but actually doing it, is a different beast. Reaching my goals for release turned out to be less far
away than I hope, so instead of end of August, I can already release it now.

Currently it's not more than 4% faster than CPython. No surprise there, if all you did, is removing the
bytecode interpretation so far. It's not impressive at all. It's not even a reason to use it. But it's also only a
start. Clearly, once I get into optimizing the code generation of Nuitka, it will only get better, and then
probably in sometimes dramatic steps. But I see this as a long term goal.

I want to have infrastructure in the code place, before doing lots of possible optimization that just make
Nuitka unmaintainable. And I will want to have a look at what others did so far in the domain of type
inference and how to apply that for my project.

I look forward to the reactions about getting this far. The supported language volume is amazing, and I
have a set of nice tricks used. For example the way generator functions are done is a clever hack.

Where to go from here? Well, I guess, I am going to judge it by the feedback I receive. I personally see
"constant propagation" as a laudable first low hanging fruit, that could be solved.

Consider this readable code on the module level:

meters_per_nautical_mile = 1852

def convertMetersToNauticalMiles(meters):
 return meters / meters_per_nautical_mile
def convertNauticalMilesToMeters(miles):
 return miles * meters_per_nautical_mile

Now imagine you are using this very frequently in code. Quickly you determine that the following will be
much faster:

def convertMetersToNauticalMiles(meters):
 return meters / 1852
def convertNauticalMilesToMeters(miles):
 return miles * 1852

Still good? Well, probably next step you are going to inline the function calls entirely. For optimization, you
are making your code less readable. I do not all appreciate that. My first goal is there to make the more
readable code perform as well or better as the less readable variant.

http://bugs.python.org/issue9656

	Nuitka Release 0.4.6
	Bug Fixes
	New Features
	New Optimization
	Cleanups
	Organizational
	Summary

	Nuitka Release 0.4.5
	Bug Fixes
	New Features
	Cleanups
	Organizational
	Summary

	Nuitka Release 0.4.4
	New Features
	New Optimization
	Bug Fixes
	Cleanups
	New Tests
	Organizational
	Summary

	Nuitka Release 0.4.3
	New Features
	Bug Fixes
	New Optimization
	Organizational
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.4.2
	New Features
	Bug Fixes
	New Optimization
	New Tests
	Organizational
	Summary

	Nuitka Release 0.4.1
	New Features
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Summary

	Nuitka Release 0.4.0
	New Features
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Summary

	Nuitka Release 0.3.25
	Bug fixes
	New Features
	Cleanups
	New Optimization
	Organizational
	New Tests
	Summary

	Nuitka Release 0.3.24
	Bug fixes
	New Features
	Organizational
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.3.23
	Bug fixes
	New Features
	Organizational
	New Tests
	Summary

	Nuitka Release 0.3.22
	Bug fixes
	New Features
	New Optimization
	Organizational
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.3.21
	Bug fixes
	New Optimization
	Organizational
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.3.20
	Bug fixes
	New Features
	New Optimization
	Organizational
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.3.19
	Bug fixes
	New Features
	New Optimization
	Cleanups
	Organizational
	New Tests
	Summary

	Nuitka Release 0.3.18
	Bug fixes
	New Optimization
	Cleanups
	Organizational
	New Tests
	Summary

	Nuitka Release 0.3.17
	Bug fixes
	New Features
	New Optimization
	Organizational
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.3.16
	Bug fixes
	New Optimization
	New Features
	Organizational
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.3.15
	Bug fixes
	New Features
	Organizational
	New Optimization
	Cleanups
	New Tests
	Summary

	Nuitka Release 0.3.14
	Bug fixes
	New Features
	New Optimization
	Cleanups
	New Tests
	Organizational
	Summary

	Nuitka Release 0.3.13
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Summary

	Nuitka Release 0.3.12
	Bug fixes
	Cleanups
	New Tests
	Organizational
	Summary

	Nuitka Release 0.3.11
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Numbers
	Summary

	Nuitka Release 0.3.10
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Summary

	Nuitka Release 0.3.9
	Bug fixes
	New Optimization
	Exceptions
	Function Calls
	Parameter Parsing
	Attribute Access
	Constants
	Iteration
	Built-ins
	Cleanups

	New Tests
	Organizational

	Nuitka Release 0.3.8
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Numbers

	Nuitka Release 0.3.7
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Numbers

	Nuitka Release 0.3.6
	Bug fixes
	New Features
	New Optimization
	Cleanups
	New Tests
	Organizational
	Numbers

	Nuitka Release 0.3.5
	Bug fixes
	New Features
	New Optimization
	Cleanups
	New Tests
	Organizational
	Numbers

	Nuitka Release 0.3.4
	Bug fixes
	New Features
	New Optimization
	Cleanups
	New Tests
	Organizational
	Numbers

	Nuitka Release 0.3.3
	Bug fixes
	Generators
	Function Calls
	Classes
	Others

	New Optimization
	Cleanups
	New Features
	New Tests
	Organizational
	Numbers

	Nuitka Release 0.3.2
	Bug fixes
	New Optimization
	Cleanups
	New Tests
	Organizational
	Numbers

	Nuitka Release 0.3.1
	New Optimization
	Cleanups
	Numbers

	Nuitka Release 0.3.0
	New Features
	Performance Enhancements
	New Tests
	Numbers

	Nuitka Release 0.2.4
	New Features
	Bug Fixes
	Cleanups
	New Tests

	Nuitka Release 0.2.3
	Bug Fixes
	Reduced Differences / New Features
	Tests Work
	Cleanups

	Nuitka Release 0.2.2
	Bug Fixes
	Reduced Differences
	Cleanups
	New Features
	New Optimization
	New Tests
	Summary

	Nuitka Release 0.2.1
	Bug Fixes
	Reduced Differences
	Cleanups
	Summary

	Nuitka Release 0.2
	Bug fixes
	Organizational
	Reduced Differences
	New Features
	Summary

	Nuitka Release 0.1.1
	Nuitka Release 0.1 (Releasing Nuitka to the World)

