The RDF Users Guide					 Version 0.0

The Radar Definition Format (RDF) was developed as part of the Advanced Radar Technology Program (ART). It was a proposal to help simplify the exchange of radar system design information between various Section 334 design tools. Although funding for the task was canceled before completion, a fair amount of work was spent defining the file format and developing software to read and edit these files. Though the file format is neither new nor elaborate, it has a potential for simplifying data transfer between radar system elements.

1.0	Users Guide Organization
The Radar Definition Format (RDF) Users Guide is divided into three distinct chapters. The first chapter contains a description of the file format, its advantages, and limitations. The Second chapter describes the RDF Reader software available to read, write, and edit RDF files. The final chapter presents conventions, restrictions and guidelines that different projects have adopted when using the RDF files.

2.0	RDF File Format
The Radar Definition File is an ASCII file and is organized using a Key = Value method. In its simplest form, each line of the file contains a parameter name, an operator such as ‘=‘, and the value of the parameter. Optional fields include the units of the parameter and any comments that one wishes to make. This method allows sufficient flexibility to handle complex multi-mode systems as well as single string low cost radars. Only the parameters that are necessary for a particular system must be specified, keeping the file size down and making the RDF much more readable, The ordering of parameters is not important, so they can appear in whatever sequence makes the most sense for a given system.

2.1	Data File Components
RDF files can contain two kinds of logical records: a data record and a comment record. A data record consists of the following components:
 Keyword (Units) [dimensions] {element} Operator Values Comments
Although they must occur in the order shown above, the fields indicated by Italics are considered optional. A comment record consists of any line which does not contain an operator field, including lines that are entirely blank.
2.1.1		Keyword
All data in an RDF file are identified byunique Keywords. The Keyword is composed of any arbitrary string of printable ascii characters except for the 11 reserved characters listed in section 2.3. Spaces (ascii #32) and tabs contained within a keyword are considered part of the keyword and must be present when making keyword searches. However, spaces and tabs are considered equivalent. Also, consecutive spaces and tabs within a keyword are equivalent to a single character. Spaces and tabs on the leading and trailing ends of keywords are ignored. Both upper and lower case letters are allowed, however, no distinction is made between them and they are equivalent in a keyword search.
2.1.2		Units
If present, the Units field must occur between the keyword and the operator. It is distinguish from the key word by open and close parenthesis (). The units are expressed as an ascii field. The RDF certified list of units can be found in appendix A. They include measures of length, velocity, mass, time, etc. If a logical record contains more than one data value, a separate unit can be specified for each value. If there are more values than units, the last unit specified applies to all the remaining values.

2.1.3		Operator
The operator separates the keyword from the list of values. The default value is the equals sign, =. The default operator can be change by the following:
	OPERATOR = string
where string is the desired string of characters to be used as the operator. It must be present in every logical data record.

2.1.4		Values
The value field can consist of any printable ascii character except for the comment deliminator (see following section). The ascii representation of numeric data follows the FORTRAN conventions for integer, fix point, and floating point data formats. Floating point data uses an E to indicate the exponent value. Data values can be space or comma delimited. When character and numeric data occur within the same data field, and the character string contains spaces or commas, the string must be enclosed by double quotes, “.
2.1.5		Comments
Any characters following the comment deliminator are considered a comment. The default comment deliminator is an exclimation point, !. The comment deliminator can be change by specifing:
	COMMENT = string
where string can be any ascii string. There is no restriction on the content of the comment following the comment deliminator.

2.1.6		Dimensions (Format Extension)
2.1.7		Elements (Unused)

2.2	Delimiters
When multiple values occur in the Units or Value fields, the entries can be separated from each other using: commas, tabs, or spaces.

2.3	Reserved Characters
The following characters are not allowed in keywords, units, dimensions, and elements: (,), [,], {, }, <, >, =, !, and ;. In addition, the semicolon, ;, is not allowed in the value field. If ascii data contains spaces, commas or tabs, it must be enclosed by double quotes. Finally, if the last character of a physical record is a backslash, \, the logical record is continued onto the following line (see section 2.5).

2.3	Reserved Keywords
The following keywords are reserved and cannot be used in a data file:
	COMMENT, OPERATOR, PREFIX, SUFFIX, and INCLUDE.

2.4	Prefix/Suffix
Often, a group of keywords will begin with similar character strings. An alternative to typing the repetitious portion of the keyword over and over for each record is to use the following Prefix command at the beginning of the group of records:
PREFIX = Repetitious portion at the START of a set of Keywords
This applies to all following keywords in the file until another prefix command is encounter. At the end of the group, the prefix can be turn off by putting the following record in the file:
PREFIX =
The PREFIX string is considered as if it were part of the key for all Keywords between the two above PREFIX entries. It is the combination of the PREFIX and explicit keyword that must satisfy the uniqueness requirement.
Similarly, if the end of a group of keywords is repetitious, the following entry can be used:
SUFFIX = Repetitious portion at the END of a set of Keywords

2.5	Include

The Include command provides a convenient way of combining RDF files without actually merging them. The syntax is as follows

INCLUDE = filename

The result is equivalent to inserting all the records of the included file into the original RDF file with exception of the PREFIX and SUFFIX commands. If a prefix or suffix is used in the original file, it is applied to the included file as well. If the include file also has a prefix or suffix, they do not over write the original suffix/prefix. Instead, the new prefix/suffix gets combined with the original for all applicable records in the included file. Should the included file also have an include statement, the process continues. The maximum depth of include files open at any one time is 10.
(italics indicates not yet implemented)
2.6	Continuation Lines
If the last non-space character in a physical record is backslash, \, the logical record is continued onto the following line. The last character before the backslash is immediately followed by the first non-space character of the next line. If the first non-space character on the following line is also a backslash, then it is skipped and the line continues with the character immediately after the backslash. This construction allows the line breaks to be made even in the middle of a string of spaces without any ambiguity. For Instance:
Example_Key = The rain in Spain falls mainly on the plain
is equivalent to all of the following:
Example_Key = The rain in Spa\
 in falls mainly on the plain
Example_Key = The rain in Spain \
 falls mainly on the plain
Example_Key = The rain in Spain \
 \falls mainly on the plain
Example_Key = The rain in Spain\
 \ falls mainly on the plain

3.0	RDF Reader Software
To make it easier for people to use RDF files, I have written several FORTRAN subroutines that read and parse data from RDF files and return the desired values. There are routines which update existing RFDs as well as create new ones. I have also included routines that automatically perform unit conversions. In general, reading an RDF file with these routines is as easy as typing the FORTRAN read command. For those who shun FORTRAN, there are also C++ routines written by David Imel which will read and parse the RDF files as well. Soon, there will also be subroutines to read RDF Files written by Ian Joughin using C programming language.
3.1	FORTRAN Reader Software
The FORTRAN reader package consists of over 50 subroutines and functions, providing a wide range of methods to access the data. Most reader applications will, however, only need a few of these routines to read a file.

3.1.1		Reader Conventions
All RDF routines begin with the letters RDF to help prevent conflict with user supplied routines. Following the RDF, all subroutines have a ‘_’, functions do not. Subroutines are generally used when entering data into RDF, or when no immediate data is to be returned to the user. Functions are generally used when a single output parameter is to be returned. Often, subroutines will have function equivalents that return a subset of the subroutines pass parameters.
Consistent with the RDF defined in chapter 2, the RDF reader software is case insensitive. Case is preserved throughout, but is ignored when making comparisons of key word match and unit conversion types if applicable.

3.1.2		Data Representation
Internally, the RDF reader software generally treats all variables as character strings. This eliminates the need for the reader software to know what type of data format or numeric precision is required for each number. Only when performing unit conversions does the software need to convert data from ASCII string to numeric form. In this case, the data is converted to FORTRAN real*8 format, the unit conversion is performed, and then it is converted back to ASCII.

3.1.3		Internal Structure
All data read by the RDF software is stored as columns of ascii data. A separate column exists for each of the RDF field types: key word, units, dimensions, elements, operator, values and comment. All columns have a fixed width of 320 characters. Any line exceeding this limit is truncated
 The data are passed between the various RDF routines using the common block, ‘params’. Users can access this common block directly, or via the routines provide, but it is recommended that one uses the routines to allow the software to work more efficiently.

3.1.4		Basic Routine Descriptions
For a complete list of the FORTRAN functions and subroutines, please see Appendix B

3.1.4	.1		RDF Initialization
The subroutine, rdf_init, initializes the RDF package and should always be call before any other RDF routines. It also allows the calling program to customize several features of the RDF reader. The calling format is as follows:
		call rdf_init(a_cmdstring)
		where:	a_cmdstring is an character command string
	valid command strings include:
		errfile = screen		directs error messages to std out as they occur.
		errfile = buffer		stores error messages in buffer until queried.
		errfile = filename	sends error messages to specified file.

		error_screen = 	on/off	turns error logging to screen on/off regardless 							of whether it is going anywhere else.
		error_buffer = 	on/off	turns error logging to buffer on/off regardless 							of whether it is going anywhere else.
		error_file = filename	turns error logging to a file on/off regardless 							of whether it is going anywhere else.
		tabs= q,r,s,t,u,v	specifies the preferred location of each field on 							write out to file.
		keyword field size=x	specifies preferred width of keyword field.
		unit field size=x		specifies preferred width of unit field.
		operator field size=x	specifies preferred width of operator field.
		value field size=x	specifies preferred width of value field.
		comment field size=x	specifies preferred width of comment field.

		integer format= Ix	sets the number of digits to use in integer 								conversions
		real format= Fx.y	sets the number of digits to use in real*4 								conversions
		double format=Dx.y	sets the number of digits to use in real*8 								conversions
RDF_INIT can also be call with the null string just to initialize parameters.

3.1.4.2		Reading an RDF File
The primary way to load existing files into the RDF buffer is use the RDF_READ command . The calling syntax is as follows:
	call rdf_read(‘filename’)
This will clear all existing records in the buffer and then read in the data contained in the file specified. As the file is read in, each record is parsed into the various RDF fields and stored as separate columns in memory for easy access by the other RDF routines.
A second subroutine to read RDF files, RDF_MERGE is virtually identical to RDF_READ except that it does not clear out the existing records before reading the file. Data from the new file are appended to the existing data.

3.1.4.3		Writing an RDF File
Data in the RDF buffer can be written to a file using the RDF_WRITE command using the following syntax:
	call RDF_WRITE(‘filename’)
where filename is the name of the desired output file including the directory path. The records will be written out in the order they appear in the RDF internal buffer. The preferred spacing between the various RDF fields can be set using the routine RDF_INIT (see 3.1.4.1).

3.1.4.4		Finding Parameter Info
There are several methods to find and extract parameters contained in the RDF internal buffer. The primary method is to search the buffer for the desired keyword. Depending on the specific output desired, a variety of subroutines are available:
RDF_FIND(a_keyword,a_data)		returns the entire data record, a_data, for the specified 						key, a_keyword) as an ascii string
RDF_VALUE(a_keyword,a_value)	returns the value portion of the data record, a_value, 						for the specified key, a_keyword as an ascii string
RDF_UNITS(a_keyword,a_unit)		returns the units of the data, a_unit, for the specified 						key, a_keyword as an ascii string
RDF_COMMENT(a_keyword,a_comment) 	returns the ascii comment field, a_comment, 							for the specified keyword, a_keyword
A complementary set of character functions are also available to extract the same data:
	RDFFIND(a_keyword)
	RDFVALU(a_keyword)
	RDFUNIT(a_keyword)
	RDFCMNT(a_keyword)

Although all of the above routines return data as ascii strings, numeric data can be easily extracted using the internal fortran read statement as shown below:
	read(unit=rdfvalu(a_keyword),fmt=*,iostat=i_err) x_val
where x_val can be any numeric fortran data type such as integer, real*4, real*8, byte, etc. depending on whats appropriate for the parameter.

3.1.4.5		Buffer Entry
To add data to the RDF Buffer, the following routines may be used:
RDF_INSERT(a_keyword,a_data)
RDF_INSERTCOLS(a_keyword,a_units,a_dimn,a_elem,a_oper,a_valu,a_cmnt)
RDF_APPEND(a_keyword,a_data)
RDF_ APPENDCOLS(a_keyword,a_units,a_dimn,a_elem,a_oper,a_valu,a_cmnt)
When inserting data, the new record is placed just prior to the last record accessed in the the data buffer. Appending data will place the new record just after the last record acessed in the buffer. The two versions of insert (RDF_INSERT and RDF_INSERTCOLS) are provide for convenience. RDF_INSERTCOLS requires each field in the buffer be specified as a separate character array. RDF_INSERT accepts the data with all the fields concatinated into one array. The same is true for RDF_APPEND and RDF_APPENDCOLS. Otherwise, the subroutines are identical.
To change existing values within the RDF buffer, used the subroutines:
	RDF_UPDATE(a_keyword, a_data)
 or 	RDF_UPDATECOLS(a_keyword a_units,a_dimn,a_elem,a_oper,a_valu,a_cmnt).
	If the specified keyword cannot be found in the RDF buffer, the record is added at the end of the buffer and an error message is generated.

3.1.4.6		Error Handling
When error logging is directed to the BUFFER, a convenient set of routines are provided to check for error conditions which might arise during RDF routine execution. All errors trapped within the RDF routines are buffered and retrievable using the follow function:
i_err = rdferr(a_message)
where i_err is the number of errors in the buffer (prior to calling rdferr) and a_message is an ascii string containing the oldest error message in the buffer. The error message contains the name of the subroutine that the error occured in, some text describing the error, and the data which caused the error (when appropriate). Following the call to RDFERR, the error counter is reduced by one and the oldest message is removed from the list. A common method for checking error conditions is as follows
	call rdf_read(‘a_filename’)
	do while (rdferr(a_string) .ne. 0)
	 write(6,*) ‘Error Message = ‘,a_string
	end do

3.1.5		Advance Features
3.1.5.1		Unit Conversion
It is often convenient to represent data within a program in using units that are different from the way the parameter is specified in the data file. The character routines
	RDFDATA(a_keyword,a_unit)
will perform the unit conversion before retrieving it from the RDF buffer so the user does not need to perform the conversion separately. All unit conversions are perform in double precision math to avoid roundoff errors. Prior to returning the data, all numeric values are converted back to ascii to be compatible with the other routines. For a list of the valid units that RDF recognizes, see Appendix A
 	
3.1.5.2		Multiple File
Although there is only one RDF buffer, several data sets can be loaded and manipulated simultaneously and still be able to distinguish between them. This is achieved by assigning a group name to each set of variables to be managed. When reading in a file, all the parameters within the file can receive a group name by placing it in front of the filename in the call to RDF_READ as follows:
	call rdf_read(‘groupname:filename’)
The colon separates the name of the group from the name of the file. All searches can be restricted to a certain group by specifing the groupname in front the the desired keyword as follows:
	call rdf_find(‘groupname:keword’)
Only the keywords in the group groupname will be checked for a match.
Similarly, and routine that requires a keyword or filename can have the groupname included to focus the search or select which data set gets written out.

3.1.6		Miscilaneous Routines
The following functions are extremely useful when reading and parsing RDF data.
	RDFLEN		Integer		Returns the location of the last non-blank charater in a character string. If the string is null, a zero is returned.
	RDFTRIM		Character	Returns the input character string without any leading spaces.
	RDFSPACES		Character	Returns the input character string with all Tabs converted to spaces. Also, all sets of consecutive spaces are converted to a single space.
	RDFUPPER		Character	Converts the input character string to all upper case.
	RDFLOWER 		Character	Converts the input character string to all lower case.
	RDFINT		Character	Converts an integer into its ascii string equivalent.
	RDFREAL		Character	Converts a real*4 into its ascii string equivalent.
	RDFDBLE		Character 	Converts a real*8 into its ascii string equivalent

3.1.7		Basic Calling Procedure
Though each application will have different reader needs, an example of a nominal calling procedure is as follows:
	call rdf_init(‘errfile = screen’)		! Send error messages to screen
	call rdf_read(‘filename.rdf’)		! Read file into buffer
	r_rate = rdfdata(‘rate_keyword’,’m/s’)	! Extract a parameter
	r_time = rdfdata(‘time_keyword’,’ s’)	! Extract another parameter
	r_dist = (r_rate * r_time) / 1000.0	! Compute new parameter
	call rdf_append(‘distance_keyword (km) = ‘//rdfreal1(r_dist)) ! Append new
											 ! value to file
	call rdf_write(‘newfile.rdf’)		! Write buffer out to new file
For a more detailed discussion of each routine, see section 3.1.4.

3.2	C Reader Software
See Ian Jou

3.3	C++ Reader Software

See Dave Imel

4.0	RDF Conventions
In order to achieve the maximum benefit from a common file format, it is necessary to adopt a set of conventions for using RDF. The biggest single gain is to choose a set of Key Parameter names with a common definition for each. If everyone can agree on the keywords and definitions, and adheres to those definitions, RDF files will become much more transportable from one analysis program to the next. My attempt to define a set of universal key words can be found in the Key Parameter List (KPL) on the setion 334 internal home page
 at
http://www-radar.jpl.nasa.gov/capabilities/radar_sys_design/KPL.html
. It includes the parameter name, suggested units, and short description of each parameter. It is by no means complete. I expect lots of parameters to be added and some of the definitions to be refined. But I feel it is sufficient to get the ball rolling.

�APPENDIX A
List of Valid RDF Units and Conversions used in the FORTRAN RDF Reader Software.

Type		Unit		Multiplier		Adder

length		nm		1.e-9			0.	
		um		1.e-6			0.	
		mm		1.e-3			0.	
		cm		1.e-2			0.	
		m		1.0				0.	
		km		1.e+3			0.	
		in		2.54e-2			0.	
		ft		3.048e-1			0.	
		mi		1.609344e3		0.	
		
area		mm*mm		1.e-6			0.	
		cm*cm		1.e-4			0.	
		m*m		1.0				0.	
		km*km		1.e+6			0.	
		in*in		6.4516e-4			0.	
		ft*ft		9.290304e-2		0.	
		mi*mi		2.58995511e6		0.	

time		ns		1.e-9			0.	
		us		1.e-6			0.	
		ms		1.e-3			0.	
		s		1.0				0.
		min		6.0e1			0.	
		hr		3.6e3			0.	
		day		8.64e4			0.	

velocity		cm/s		1.e-2			0.	
		m/s		1.0				0.	
		km/s		1.e3			0.	
		km/hr		2.77777778e-1		0.	
		ft/s		3.04878e-1		0.	
		mi/hr		4.4704e-1			0.	

power		mw		1.e-3			0.	
		w		1.0				0.	
		kw		1.e3			0.	
		dbm		1.e-3			0.
		dbw		1.0				0.

frequency		hz		1.0				0.
		khz		1.0e3			0.	
		mhz		1.0e6			0.	
		ghz		1.0e9			0.	

angle		deg		1.0				0.
		rad		57.29577951		0.
		arc		0.000277778		0.	

data		bits		1				0	
		kbits		1000			0	
		mbits		1000000			0	
		bytes		8				0	
		kbytes		8320			0	
		mbytes		8388608			0	
		words		32				0

datarate		bits/s		1				0.	
		kbits/s		1000			0.	
		mbits/s		1000000			0.	
		bytes/s		8				0.	
		kbytes/s		8320			0.	
		mbytes/s	8388608			0.	
		baud		1				0.	

temperature		degc		1.0				0.0	
		degk		1.0				273.0	
		degf		0.555556			-32.0	

ratio		-		1.0				0.0	
		db		1.0				0.0	

�APPENDIX B

List of FORTRAN Functions and Subroutines to Read RDF Files

Integer Functions
integer*4 function rdflen(a_string)
integer*4 function rdfmap(i,j,k)
integer*4 function rdfnum()
integer*4 function rdferr(a_err)
integer*4 function rdfindx(a_keyw)

Character Functions
character*(*) function rdfvalu(a_keyw)
character*(*) function rdfunit(a_keyw)
character*(*) function rdfdimn(a_keyw)
character*(*) function rdfelem(a_keyw)
character*(*) function rdfoper(a_keyw)
character*(*) function rdfcmnt(a_keyw)
character*(*) function rdfval(a_keyw,a_unit)
character*(*) function rdfdata(a_keyw,a_ounit)
character*(*) function rdftrim(a_input)
character*(*) function rdflower(a_inpval)
character*(*) function rdfupper(a_inpval)
character*(*) function rdfint(i_num,i_data)
character*(*) function rdfint1(i_data)
character*(*) function rdfint2(i_data1,i_data2)
character*(*) function rdfint3(i_data1,i_data2,i_data3)
character*(*) function rdfreal(i_num,r_data)
character*(*) function rdfreal1(r_data)
character*(*) function rdfreal2(r_data1,r_data2)
character*(*) function rdfreal3(r_data1,r_data2,r_data3)
character*(*) function rdfdble(i_num,r_data)
character*(*) function rdfdble1(r_data)
character*(*) function rdfdble2(r_data1,r_data2)
character*(*) function rdfdble3(r_data1,r_data2,r_data3)
character*(*) function rdfquote(a_string)
character*(*) function rdfunquote(a_string)

Subroutines
rdf_init(a_data)
rdf_error(a_message)
rdf_read(a_rdfname)
rdf_merge(a_rdfname)
rdf_write(a_rdfname)
rdf_unparse(a_data,a_keyw,a_unit,a_dimn,a_elem,a_oper,a_valu,a_cmnt)
rdf_clear()
rdf_num(i_num)
rdf_insert(a_data)
rdf_append(a_data)
rdf_insertcols(a_keyw,a_valu,a_unit,a_dimn,a_elem,a_oper,a_cmnt)
rdf_appendcols(a_keyw,a_valu,a_unit,a_dimn,a_elem,a_oper,a_cmnt)
rdf_entercols(i_indx,a_keyw,a_valu,a_unit,a_dimn,a_elem,a_oper,a_cmnt)
rdf_view(i_indx,a_data)
rdf_viewcols(i_indx,a_keyw,a_valu,a_unit,a_dimn,a_elem,a_oper,a_cmnt)
rdf_find(a_keyw,a_data)
rdf_findcols(a_keyw,a_valu,a_unit,a_dimn,a_elem,a_oper,a_cmnt)
rdf_remove(a_keyw)
rdf_updatecols(a_keyw,a_unit,a_dimn,a_elem,a_oper,a_cmnt,a_valu)
rdf_index(a_keyw,i_indx,i_cnt)
rdf_cnvrt(a_ounit,a_unit,a_valu)
rdf_getlun(i_lun)
rdf_unquote(a_string,i_string)
rdf_indices(a_dimn,i_dimn,i_strt,i_stop,i_order)
rdf_getfields(a_string,i_values,a_values)
rdf_parse(a_data,a_keyw,a_unit,a_dimn,a_elem,a_oper,a_valu,a_cmnt)
rdf_unparse(a_data,a_keyw,a_unit,a_dimn,a_elem,a_oper,a_valu,a_cmnt)

top_read(a_rdfname)
top_write(a_rdfname)

�

	�

