Anti-grain library notes.

agg::rendering_buffer

Before drawing anything, you must create a memory buffer to store the image you are drawing. There isn't anything fancy about the memory -- it can just be a raw memory buffer. However, agg requires you to “attach” this buffer to a class called agg::rendering_buffer found in agg_rendering_buffer.h that it uses in all of its rendering operations. There are some decent notes in the header about the nuances of the class. Most of the time, you’ll just use the attach method of the class:
void attach(unsigned char* buf,

 unsigned width,

 unsigned height,

 int row_bytes);

Allocating and deallocating buf is the users responsibility. Width and height specify the size of the image space you are drawing into. The argument row_bytes is used because in reality the row length in bytes does not obligatory correspond with the width of the image in pixels, i.e. it cannot be simply calculated as width_in_pixels * bytes_per_pixel. For example, it must be aligned to 4 bytes in Windows bitmaps. Besides, the value of row_bytes can be negative - it depends on the order of displaying the rendering buffer - from top to bottom or from bottom to top. In other words, if row_bytes > 0 the pointers to each row will start from the beginning of the buffer and increase. If it < 0, the pointers start from the end of the buffer and decrease. It gives you an additional degree of freedom. Method attach() can be called more than once. The execution time of it is very little.

Example

The following code illustrates how to connect an agg::rendering_buffer to a Numeric array using weave:

#<test>
from Numeric import *

import weave

import os

from glob import glob

agg_path = "C:/wrk/agg2"

agg_src = glob(os.path.join(agg_path,'src','*.cpp'))

agg_include_dirs = [os.path.join(agg_path,'include')]

agg_headers = ['"agg_rendering_buffer.h"']

code = """

 agg::rendering_buffer buf;

 buf.attach(ary, Nary[1], Nary[0],

 Nary[1]*Nary[2]);

 """

ary = zeros((4,4,3),typecode=UInt8)

weave.inline(code,['ary'], sources = agg_src,

 headers = agg_headers,

 include_dirs = agg_include_dirs)
#</test>
Note that we defined the array to have a typecode of UInt8 because anti-grain expects an unsigned char* array as the buffer.

agg::renderer_xxx_yyy

One of the Anti-grain renderer classes is in charge of drawing to an agg::rendering_buffer. There are a number of different rendering classes to support the various image pixel layouts possible such as rgb24, bgr24, rgba32, abgr32, etc. There are quite a view other variations supported.
 Renderers can also be either solid or gourmand.
 So, to render to a 32 bit image with red, green, blue, alpha pixels using a solid renderer, the renderer class to use is agg::renderer_bgra32_solid. Note that the layout of the memory buffer in the agg::rendering_buffer used should match that expected by the renderer class.
Example

#<test>

from Numeric import *

import weave

from agg_info import agg_build_info

code = """

 agg::rendering_buffer buf;

 width height row_bytes

 buf.attach(ary, Nary[1], Nary[0],
 Nary[1]*Nary[2]);

 agg::renderer_bgra32_solid rr(buf);

 agg::renderer_util<agg::util_bgra32> util(buf);

 util.clear(agg::rgba(1.0,1.0,1.0));

 """

ary = zeros((4,4,4),typecode=UInt8)

weave.inline(code,['ary'], **agg_build_info)

desired = ones((4,4,4),typecode=UInt8) * 255

desired[:,:,3] = 255 # set alpha plane.

assert(ary == desired)
#</test>
agg::path_storage

Antigrain separates out the ideas of storage for the vertices in a path and the conversion of the vertices to something the “rasterizer” can render into a rendering_buffer. The agg::path_storage class has methods such as move_to, line_to, curve3, curve4, add_path, and add_poly for building a list of commands that define a path to be drawn.
 These guys are sorta like “display lists” in OpenGL in that you can build them once and save them for later execution. The following several paragraphs are extracted directly from the antigrain code comments in agg_path_storage.h.
Before rendering we must collect and store the necessary number of vertices. There are different approaches that can be used such as a simple buffer in memory. But we also may want to perform different kinds of conversions, for example, affine transformations, clipping, making an outline, calculation of Minkowski sum, and so on. Many graphic libraries do that, but the sequence of these conversions is often hard coded, i.e., there's a number of settings such as set_rotate(), set_clip_box(), etc, which can be used or omitted, but anyway a particular vertex suffers all these conversions in the strictly defined order. Another approach is based on a number of functions or classes each of which performs only one kind of conversion (in fact, this is how the first approach looks inside). In this case we usually have to store intermediate results as vertex arrays or something on each step of the conversion.

AGG allows you to construct any custom pipelines, but at the same time does not require the use of any intermediate storages. Not possible? Yes, it is possible with some exceptions which are not painful. A concept of rendering assumes creating a rasterizer object, then adding vertices into it, and finally render the filled polygon. The rasterizer has template method add_path which takes an abstract vertex source and "asks" it to give vertices one by one. This storage must support the interface of two methods: rewind() and vertex(). The latest method gives the rasterizer one vertex from the vertex source and returns special flag.

When all vertices are given, method vertex() returns pathflag_stop. Such a concept allows you to avoid storing vertices anywhere, in case, for example, if you know the analytical representation of your figure and calculate vertices on demand. For example, we can easily write a class that produces a sine wave, but does not use any arrays. This class can be used as a source of vertices either directly or via some intermediate converters. The examples of such kind of classes you can find in file agg_curves.h.

The main conclusion of it is: Any class that supports interface of two mentioned above methods can be used as a vertex source. There are two kinds of these classes - initial sources and intermediate converters. The latest require a pointer to a preceding source when being constructed. All these classes have prefix conv_. Classes path_storage, curve3, curve4 can be only initial sources.

All converter classes are template ones, all initial sources are usually regular ones. Template mechanism are used because it gives us more freedom. All the vertex source class need to have is a two-method interface. These classes don't have to be derived from any particular base class, and, besides, it allows us to avoid using virtual calls which works much slower than regular calls (They make the processor pipeline to resynchronize because they are doubly indirect. BTW, pure C indirect calls, via a pointer to a function work almost as fast as direct ones, because they have only one level of indirection).

Still, sometimes we have to use converters that have one common base class and their interface methods are virtual. There is such base class called pipe_conv. See agg_pipe_conv.h for details. In fact there's only wrappers that turn interface function into virtual. Every vertex source class has this wrapper.

Filled Polygon Example
If you render an agg::path_storage directly using a rasterizer, it’ll render a filled region. The following code renders a filled sine wave. If the last point isn’t the same as the first one, it is automatically closed.

#<test>

from Numeric import *

import weave

from agg_info import agg_build_info

import windows_bmp
code = """

 agg::rendering_buffer buf;

 // width height row_bytes

 buf.attach(ary, Nary[1], Nary[0],

 Nary[1]*Nary[2]);

 agg::renderer_rgba32_solid ren(buf);

 agg::rasterizer<agg::scanline_u8> ras;

 agg::renderer_util<agg::util_rgba32> util(buf);

 agg::path_storage ps;

 util.clear(agg::rgba(1.0,1.0,1.0));

 ps.remove_all();

 ps.move_to(pts[0],pts[0+1]);

 for(int i=2; i < Npts[0]*2; i+=2)

 ps.line_to(pts[i],pts[i+1]);

 ras.add_path(ps);

 ren.attribute(agg::rgba(0.5,0.5,0.5,0.5));

 ras.render(ren);

 """

M,N = 1000,1000

ary = zeros((M,N,4),typecode=UInt8)

x = arange(0,2*pi,2*pi/P)

y = (sin(x)+1)*M/2.

pts = transpose(array((arange(len(x)),y))).copy()

weave.inline(code,['ary','pts'], **agg_build_info)

windows_bmp.write_bmp_24("draw_poly.bmp",ary)

#</test>

[image: image1.png]

Figure 1: A filled sinusoid generated by example <xxx>.
Line Example

To render the outline of path instead of a filled polygon, you must “convert” the path using a agg::conv_polyline or an agg::conv_polygon class. Both classes render an outline, but the second will close the path automatically even if the end points of the path are not the same point. If you render an agg::path_storage directly using a rasterizer, it’ll render a filled region. The following code renders a filled sine wave. If the last point isn’t the same as the first one, it is automatically closed.

#<test>

from Numeric import *

import weave

from agg_info import agg_build_info

import windows_bmp

code = """

 agg::rendering_buffer buf;

 // width height row_bytes

 buf.attach(ary, Nary[1], Nary[0],

 Nary[1]*Nary[2]);

 agg::renderer_rgba32_solid ren(buf);

 agg::rasterizer<agg::scanline_u8> ras;

 agg::renderer_util<agg::util_rgba32> util(buf);

 agg::path_storage ps;

 agg::conv_polyline<agg::path_storage> path(ps);

 path.thickness(4.0);
 util.clear(agg::rgba(1.0,1.0,1.0));

 ps.remove_all();

 ps.move_to(pts[0],pts[0+1]);

 for(int i=2; i < Npts[0]*2; i+=2)

 ps.line_to(pts[i],pts[i+1]);

 ras.add_path(path);

 ren.attribute(agg::rgba(0.5,0.5,0.5,0.5));

 ras.render(ren);

 """

M,N = 1000,1000

ary = zeros((M,N,4),typecode=UInt8)

x = arange(0,2*pi,2*pi/P)

y = (sin(x)+1)*M/2.

pts = transpose(array((arange(len(x)),y))).copy()

weave.inline(code,['ary','pts'], **agg_build_info)

windows_bmp.write_bmp_24("draw_poly.bmp",ary)

#</test>

[image: image2.png]
Figure 1: Sinusoidal line generated by example <xxx>.

And the following slightly modified code will automatically closed path:

#<test>

from Numeric import *

import weave

from agg_info import agg_build_info

import windows_bmp

code = """

 agg::rendering_buffer buf;

 // width height row_bytes

 buf.attach(ary, Nary[1], Nary[0],

 Nary[1]*Nary[2]);

 agg::renderer_rgba32_solid ren(buf);

 agg::rasterizer<agg::scanline_u8> ras;

 agg::renderer_util<agg::util_rgba32> util(buf);

 agg::path_storage ps;

 agg::conv_polygon<agg::path_storage> path(ps);

 path.thickness(4.0);

 util.clear(agg::rgba(1.0,1.0,1.0));

 ps.remove_all();

 ps.move_to(pts[0],pts[0+1]);

 for(int i=2; i < Npts[0]*2; i+=2)

 ps.line_to(pts[i],pts[i+1]);

 ras.add_path(path);

 ren.attribute(agg::rgba(0.5,0.5,0.5,0.5));

 ras.render(ren);

 """

M,N = 1000,1000

ary = zeros((M,N,4),typecode=UInt8)

x = arange(0,2*pi,2*pi/P)

y = (sin(x)+1)*M/2.

pts = transpose(array((arange(len(x)),y))).copy()

weave.inline(code,['ary','pts'], **agg_build_info)

windows_bmp.write_bmp_24("draw_poly.bmp",ary)

</test>

[image: image3.png]
Figure 1: Sinusoidal polygon outline generated by example <xxx>.

Constructing a kiva::path
Notes:

1. When testing the construction of rendering a path, it looks like about 33% of the time is in the path construction and 66% is in the actual rendering. We can therefore save 33% of the time if we can construct a path once and use it in any future re-draws. Also, I believe rendering aliased lines can cut the rendering time by at least 50%, so we have the potential to speed the rendering of lines up by a factor of 3.??

Questions:
1. How do you turn off anti-aliasing during rendering?

2. If we turn off anti-aliasing, will it speed up the rendering of lines?

3. Creating paths with more than (approx) 32000 line_to calls causes a seg-fault. Should this be more graceful?

4. Shouldn’t the path_storage destructor be virtual?
�I need to think about rendering to a non-contiguous array, but that should be fairly easy also by specifying the correct row_bytes size. This will be important when rendering to a sub-section of an image.

�They should all be enumerated.

�I’m not sure about the difference here. It should be discussed though.

�Why can’t the renderer just have a clear() method? This seems cleaner than having to generate another object to do it.

�Note the absence of coordinate transforms in this list, so it doesn’t support the PDF notion of having coordinate transforms impeded between path commands. We will have to add this in a kiva::path_stoarge object or something like that.

