
Software Manual
pbtomake

Author Jim Schimpf

Document Number: PAN-200603011
Revision Number: 0.4

8 May 2006

Pandora Products.
215 Uschak Road

Derry, PA 15627

Pandora Products.
pbtomake

Program Manual

c©2006 Pandora Products. All rights reserved. Pandora product and company names, as well as their
respective logos are trademarks or registered trademarks of Pandora Products. All other product
names mentioned herein are trademarks or registered trademarks of their respective owners.

Pandora Products.

215 Uschak Road

Derry, PA 15627

Phone: 724.539.1276

Web: http://members.bellatlantic.net/~vze35xda/

Email: vze35xda@verizon.net

Pandora Products. has carefully checked the information in this document and believes it to be accu-
rate. However, Pandora Products assumes no responsibility for any inaccuracies that this document
may contain. In no event will Pandora Products. be liable for direct, indirect, special, exemplary,
incidental, or consequential damages resulting from any defect or omission in this document, even
if advised of the possibility of such damages.

In the interest of product development, Pandora Products reserves the right to make improvements
to the information in this document and the products that it describes at any time, without notice or
obligation.

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

ii

Pandora Products.
pbtomake

Program Manual

Document Revision History

Use the following table to track a history of this documents revisions. An entry should be made into
this table for each version of the document.

Version Author Description Date
0.1 js Initial Version 15-Mar-2003
0.2 js Convert to LYX form 11-Mar-2006
0.3 js Complete Code description 12-Mar-2006
0.4 js Add Clean & Install (Florian Wagner) 8-May-2006

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

iii

Pandora Products.
pbtomake

Program Manual
Contents

Contents

1 Preface 1

2 Operation 1

2.1 Project Preparation . 1

2.2 pbtomake installation . 1

2.3 Use . 1

2.3.1 Running pbtomake and errors . 1

2.3.2 Testing . 2

2.3.3 Install & Clean . 2

3 Building makefiles for other systems 2

3.1 Introduction . 2

3.2 Command line syntax . 3

3.2.1 -i <Project.xcodeproj> . 3

3.2.2 -o <makefile name> . 3

3.2.3 -cc <compiler> . 3

3.2.4 -cc_opt <Compiler options> . 4

3.2.5 -bin_dir <Installation Directory> . 4

3.2.6 -link_opt <Link options> . 4

3.2.7 -no_framework . 4

3.2.8 -debug . 4

3.2.9 -v . 4

3.3 And then what . 5

4 Source Code 5

4.1 Introduction . 5

4.2 Project File Data . 5

4.3 Source Files . 6

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

iv

Pandora Products.
pbtomake

Program Manual
Preface

1 Preface

pbtomake is a command line utility designed to read the structure of a XCode project and build
a corresponding makefile. This is useful when you are collaborating with Linux/UNIX users and
want to share code . You can use XCode on the Mac then give them the code with the makefile and
they can build it on their systems.

XCode evolved from an earlier program called Project Builder so this program’s name started as
Project Builder to Make (pbtomake) and never got changed in the transition to XCode.

2 Operation

2.1 Project Preparation

Before starting the conversion you must go through your XCode project and make all file references
Project Relative. Do this by selecting the files in the project and picking Show Info under Project.
You will have a drop down menu to allow you to change the reference. This must be done as
pbtomake depends on this style of reference to build the make file. (Note when you build projects
if you start adding files this way it will be done for you by XCode)

Also ensure that any libraries added to your project are of file type archive or archive.ar. Do Get
Info on the library and note both Path Type and File Type.

2.2 pbtomake installation

You will find the executable pbtomake in this directory. Install this so it is in your Terminal execu-
tion path. That is if your path includes ~/bin then put it there. In any case this file is all you need
for the conversion.

2.3 Use

2.3.1 Running pbtomake and errors

Open a terminal window and cd to where your <my project>.xcodeproj lies. Then all you have to
do is:

pbtomake -i <my project>.codeproj

This will run and if there are no errors will create a makefile right in this directory. The makefile
will reference all it’s files relative to this directory so is designed to be stored right here and be used
here. If there are errors like:

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

Page 1 of 6

Pandora Products.
pbtomake

Program Manual
Building makefiles for other systems

** Fix this file and run again
** GROUP FILE REF [delcomdrv.c]

-- Parse Done --
** BAD PROJECT FILE FIX AND TRY AGAIN

it means that file (delcomdrv.c) has a group relative not a project relative reference in the project. Go
into the project, Get Info on that file and change the reference to project relative. Running pbtomake
again you should get

-- Parse Done --

if there are no more incorrect references then the makefile is created right here.

2.3.2 Testing

You can test the makefile at this point by typing make and it will build your project just like XCode.
All the .o (object) files will be created in this directory and the executable will be created right here
also.

make
/usr/bin/cc main.c -c -I. -o main.o
/usr/bin/cc delcomdrv.c -c -I. -o delcomdrv.o
:
/usr/bin/cc -framework IOKit -framework CoreFoundation \

main.o\
delcomdrv.o\
-o MyUSB

If all of this works then the makefile is complete and ready for modification for other systems.

2.3.3 Install & Clean

Florian Wagner has added support in the output makefiles to do clean and make. If you type make
clean then all the object files from the make will be deleted allowing you to do a full build. If you
type make install then the product of the make (i.e. the executable) will be copied to a specified
directory (see -bin_dir 3.2.5 on page 4).

3 Building makefiles for other systems

3.1 Introduction

The previous section showed how to create a makefile that works in OS X. This is a useful check
to see if the makefile finds all the project files and links to the correct libraries, you should do this
before you consider building a makefile for say Linux or some other UNIX.

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

Page 2 of 6

Pandora Products.
pbtomake

Program Manual
Command line syntax

After you are satisfied with the makefile then you have to change it. Linux and other UNIX systems
usually have different names for the C compiler and almost always have different linking conven-
tions for the system libraries. Remember frameworks (on OS X) don’t exist elsewhere so they will
NOT be in your final makefile for non-OSX systems. Also when you write your code you might use
defines like LINUX_SYS to turn on or off sectons of code that only are used in say Linux.

pbtomake has command line options to allow you to input special compiler options and link options
so you can build a special purpose makefile for these other systems. I have found that I will make
a small script file with all the parameters for a particular system make file for pbtomake. Calling
this say buildmakelinux.sh then if my project changes I can just run the script again to create the
makefile for that system.

3.2 Command line syntax

If you type pbtomake -v it will show you the program version and the options availble:

pbtomake PB Project -> makefile converter Ver: May 8 2006 13:39:01
Syntax pbtomake -i <Project.pbproj> [-o <fname>] [-cc <c compiler>] [-v]

-i <fname> Input Project (pbproj) DEF NONE
-o <fname> Output File (makefile) DEF makefile
-cc <compiler> Compiler used DEF /usr/bin/gcc
-cc_opt <compiler options> Compiler options DEF NONE
-bin_dir <install directory> Target directory for

"make install" DEF NONE
-link_opt <link options> Link stage options DEF NONE
-no_framework Supress -framework lines DEF Show frameworks
-debug Turn on Debug output
-v Show this help

3.2.1 -i <Project.xcodeproj>

This specifies the project you want to convert, this is a required input and there is no default.

3.2.2 -o <makefile name>

This is the name of the makefile you wish to produce, if this is not input makefile is used.

3.2.3 -cc <compiler>

This is the name of the c or c++ compiler used. By default it uses /usr/bin/cc. If you are building
a c++ project you will have to set this to /usr/bin/g++ on OS X. This name will vary depending on
the target system. In general Linux and OS X use the same names (i.e. gcc) but others like Solaris
and HP-UX have other names for their C compilers.

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

Page 3 of 6

Pandora Products.
pbtomake

Program Manual
Command line syntax

3.2.4 -cc_opt <Compiler options>

These are options you wish to pass to the C compiler. These can be things like -DLINUX_SYS=1
where you wish to use these defines to enable/disable code for that particular system. If you have
a number of these like -DLINUX_SYS=1 -DTEST=1 then you must enclose them in quotes on the
command line like:

pbtomake -i tst.xcodeproj -cc_opt “-DLINUX_SYS=1 -DTEST=1”

or only the first one will be used

3.2.5 -bin_dir <Installation Directory>

This will specify where the output file will be copied when you do make install. By default none is
specified. Also you must have write priviledges to this directory or the make install will not work.

This was added by Florian Wagner..

3.2.6 -link_opt <Link options>

The are options for the link phase. For OS X you generatlly don’t need any options here. In the case
of other systems you might need things like -lmath or -lpthread depending on your program.

Note again like the -cc_opt lines if you have more than one of these enclose the whole set in double
quotes to ensure it is all passed to pbtomake.

3.2.7 -no_framework

If present will suppress the -framework links in the constructed makefile link options. These are
needed for OS X builds but are NOT present in other systems. For testing you will leave this off,
building an OS X compatible makefile. For your foreign system makefile you will probably want to
use this option.

3.2.8 -debug

Will output the internal tables of the program as it runs. Has no effect on the created makefile but is
used for diagnostics in case of problems.

3.2.9 -v

Will cause pbtomake to output this syntax listing and stop. Will not create any output file.

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

Page 4 of 6

Pandora Products.
pbtomake

Program Manual
And then what

3.3 And then what

You have to move your code to the other system and try this out. It might not work, at that point
see if you can fix the problem with options in pbtomake and regenerate the makefile and try again.
There will be times this is not possible. Then you will have to use pbtomake to build a makefile and
edit it manually to fix it for the target system.

I have only tried pbtomake makefiles, moving code to Debian Linux, Solaris and HP-UX so I am
sure there are many more variations. If you have a persistant problem with certain systems contact
me with specifics and we can see if changes in pbtomake can solve them. Also source code is
included so you can build your own special purpose version of pbtomake.

Once the makefile is created it usually isn’t changed in major ways for the course of a project so even
if you have to do some rather complicated editing, you only have to do that once. Use pbotmake to
create an almost useful makefile, doing all the busy work for you then if necessary you can apply
the final editing for a particular system.

4 Source Code

4.1 Introduction

The source code is included in the project and this section will describe the major modules and how
it fits together. If you wish to modify the program the XCode project is here and you can easily
create special purpose versions of the program to build YOUR makefile.

Originally this was designed to work with Project Builder files, the predecessor to XCode. These
files were hugely more complicated than now. XCode 2.0 changed the project structure and simpli-
fied it greatly. The makefiles produced by the program for these older versions were not particularly
good, they would work for a simple project but fail on larger ones. With XCode 2.0 and later, with
the simplified internal structure, the output makefiles are much improved and will work for even
quite complicated projects (my test is a > 350 file simulator project and it now works.)

4.2 Project File Data

The project file has a section (in the internal file project.pbxproj in the project bundle)

/* Begin PBXFileReference section */
3870AEE909744652008D4F3B /* ctcpnet.c */ = {isa = PBXFileReference; fileEncoding = 30;

lastKnownFileType = sourcecode.c.c; name = ctcpnet.c; path = ../POSIX/ctcpnet.c; sourceTree = SOURCE_ROOT; };
3870AEEA09744652008D4F3B /* ctcpnet.h */ = {isa = PBXFileReference; fileEncoding = 30;

lastKnownFileType = sourcecode.c.h; name = ctcpnet.h; path = ../POSIX/ctcpnet.h; sourceTree = SOURCE_ROOT; };

with lines like the above. The program reads these lines and these contain all the information needed
to build the make file.

As you can see each line consists of a number of key value pairs which describe the type of file
(include, source, archive or framework) and its path. The program opens this file and reads the lines
trying to find this section. Then each line in this secton is read in and analyzed.

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

Page 5 of 6

Pandora Products.
pbtomake

Program Manual
Source Files

4.3 Source Files

In the project the main.c gathers in the command line options, starts the analysis process and dumps
the output makefile if input is correct. There are two other support files needed here, first CMaker.ch
which does most of the operations second CpbxLexFile.cp which is used to parse the project data.

PAN-200603011
Revision: 0.4

8 May 2006
DoomCube Manual

Page 6 of 6

