

SWIG Users Guide

Pointers, Constraints, and Typemaps

90

Pointers, Constraints, and

Typemaps 6
Introduction
For most applications, SWIG’s treatment of basic datatypes and pointers is enough to build an
interface. However, in certain cases, it is desirable to change SWIG’s treatment of particular
datatypes. For example, we may want a char ** to act like a list of strings instead of a pointer.
In another instance, we may want to tell SWIG that double *result is the output value of a
function. Similarly, we might want to map a datatype of float[4] into a 4 element tuple. This
chapter describes advanced methods for managing pointers, arrays, and complex datatypes. It
also describes how you can customize SWIG to handle new kinds of objects and datatypes.

The SWIG Pointer Library
If your interface involves C pointers, chances are you will need to work with these pointers in
some way or another. The SWIG pointer library provides a collection of useful methods for
manipulating pointers. To use the library, simply put the following declaration in your interface
file :

%include pointer.i // Grab the SWIG pointer library

or run SWIG as follows :

swig -perl5 -lpointer.i interface.i

Doing so adds a collection of pointer manipulation functions that are described below. The func-
tions are mainly designed to work with basic C datatypes, but can often be used with more com-
plicated structures.

Pointer Library Functions
ptrcreate(type,?value?,?nitems?)

Creates a new object and returns a pointer to it. type is a string containing the C datatype
and may be one of “int”,”short”,”long”,”float”,”double”,”char”,”char *”, or
“void”. value is the optional initial value to be assigned to the object. nitems is an
optional parameter containing the number of objects to create. By default it is 1, but specify-
ing another value allows you to create an array of values. This function is really just a wrap-
per around the C malloc() function.
Version 1.1, June 23, 1997

SWIG Users Guide

Pointers, Constraints, and Typemaps

91

ptrfree(ptr)
Destroys an object created by ptrcreate. It is generally unsafe to use this function on
objects not created by ptrcreate. Calls the C free() function.

ptrvalue(ptr,?index?,?type?)
This dereferences a pointer and returns the value that it is pointing to. index is an optional
parameter that allows array access by returning the value of ptr[index]. type is an
optional parameter that explicitly specifies the datatype. Since SWIG pointers are encoded
with type information, the type is usually unnecessary. The type parameter provides some-
what better performance and allows you to dereference a pointer of different type however.

ptrset(ptr, value, ?index?, ?type?)
Sets the value of the object a pointer is pointing to. value is the new value of the object.
index is an optional parameter allowing array access by setting ptr[index] = value.
type is an optional parameter that explicitly specifies the datatype as described above.

ptrcast(ptr, newtype)
Casts a pointer to a new datatype and returns the new value. newtype is a string containing
the new datatype and may either be the “mangled” version used by SWIG (such as
“_Vector_p”) or the C version (such as “Vector *”). This function works with any kind of
pointer value. In additional to pointers, ptr may also hold an integer value in which case the
integer is turned into a pointer of given type.

ptradd(ptr, offset)
Adds an offset to a pointer and returns a new pointer. offset is specified as the number of
objects except for unknown complex datatypes in which case it is the number of bytes. For
example, is ptr is a “double *”, ptradd(ptr,1) will return the next double. On the other
hand, if if ptr is “Vector *”, then ptradd(ptr,1) will update the pointer by 1 byte.

ptrmap(type1,type2)
This performs a “runtime typedef” and makes SWIG recognize pointers of type1 and
type2 as equivalent. type1 and type2 are specified as strings. Not generally needed, but
sometimes useful.

A simple example
Suppose you have the following C function :

void add(double a, double b, double *result) {
*result = a + b;

}

To manage the result output, we can write an interface file like this :

%module example
%include pointer.i

extern void add(double a, double b, double *result);

Now, let’s use the pointer library (shown for a few languages) :
Version 1.1, June 23, 1997

SWIG Users Guide

Pointers, Constraints, and Typemaps

92

Tcl
set result [ptrcreate double] ;# Create a double
add 4.5 3 $result ;# Call our C function
puts [ptrvalue $result] ;# Print out the result
ptrfree $result ;# Destroy the double

Perl5
use example;
package example; # Functions are in example package
$result = ptrcreate(“double”); # Create a double
add(4.5,3,$result); # Call C function
print ptrvalue($result),”\n”; # Print the result
ptrfree($result); # Destroy the double

Python
import example
result = example.ptrcreate(“double”) # Create a double
example.add(4.5,3,result) # Call C function
print example.ptrvalue(result) # Print the result
example.ptrfree(result) # Destroy the double

In this case, the idea is simple--we create a pointer, pass it to our C function, and dereference it to
get the result. It’s essentially identical to how we would have done it in C (well, minus the func-
tion call to dereference the value).

Creating arrays
Now suppose you have a C function involving arrays :

void addv(double a[], double b[], double c[], int nitems) {
int i;
for (i = 0; i < nitems; i++) {

c[i] = a[i]+b[i];
}

}

This is also easily handled by our pointer library. For example (in Python) :

Python function to turn a list into an “array”
def build_array(l):

nitems = len(l)
a = ptrcreate(“double”,0,nitems)
i = 0
for item in l:

ptrset(a,item,i)
i = i + 1

return a

Python function to turn an array into list
def build_list(a,nitems):

l = []
for i in range(0,nitems):

l.append(ptrvalue(a,i))
return l

Now use our functions
a = listtoarray([0.0,-2.0,3.0,9.0])
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 93
b = build_array([-2.0,3.5,10.0,22.0])
c = ptrcreate(“double”,0,4) # For return result
add(a,b,c,4) # Call our C function
result = build_list(c) # Build a python list from the result
print result
ptrfree(a)
ptrfree(b)
ptrfree(c)

This example may look quite inefficient on the surface (due to the translation of Python lists to
and from C arrays). However, if you’re working with lots of C functions, it’s possible to simply
pass C pointers around between them without any translation. As a result, applications can run
fast--even when controlled from a scripting language. It’s also worth emphasizing that the ptr-
create() function created a real C array that can be interchanged with other arrays. The ptr-
value() function can also dereference a C pointer even if it wasn’t created from Python.

Packing a data structure
The pointer library can even be used to pack simple kinds of data-structures, perhaps for send-
ing across a network, or simply for changing the value. For example, suppose you had this data
structure:

struct Point {
double x,y;
int color;

};

You could write a Tcl function to set the fields of the structure as follows :

proc set_point { ptr x y c } {
set p [ptrcast $ptr “double *”] ;# Make a double *
ptrset $p $x ;# Set x component
set p [ptradd $p 1] ;# Update pointer
ptrset $p $y ;# Set y component
set p [ptrcast [ptradd $p 1] “int *”] ;# Update pointer and cast
ptrset $p $c ;# Set color component

}

This function could be used even if you didn’t tell SWIG anything about the “Point” structure
above.

Introduction to typemaps
Sometimes it’s desirable to change SWIG behavior in some manner. For example, maybe you
want to automatically translate C arrays to and from Perl lists. Or perhaps you would like a par-
ticular function argument to behave as an output parameter. Typemaps provide a mechanism for
doing just this by modifying SWIG’s code generator. Typemaps are new to SWIG 1.1, but it
should be emphasized that they are not required to build an interface.

The idea (in a nutshell)
The idea behind typemaps is relatively simple--given the occurrence of a particular C datatype,
we want to apply rules for special processing. For example, suppose we have a C function like
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 94
this :

void add(double a, double b, double *result) {
*result = a + b;

}

It is clear to us that the result of the function is being returned in the result parameter. Unfor-
tunately, SWIG isn’t this smart--after all “result” is just like any other pointer. However, with a
typemap, we can make SWIG recognize “double *result” as a special datatype and change
the handling to do exactly what we want.

So, despite being a common topic of discussion on the SWIG mailing list, a typemap is really just
a special processing rule that is applied to a particular datatype. Each typemap relies on two
essential attributes--a datatype and a name (which is optional). When trying to match parame-
ters, SWIG looks at both attributes. Thus, special processing applied to a parameter of “double
*result” will not be applied to “double *input”. On the other hand, special processing
defined for a datatype of “double *” could be applied to both (since it is more general).

Using some typemaps
It is easy to start using some typemaps right away. To wrap the above function, simply use the
typemaps.i library file (which is part of the SWIG library) as follows :

// Simple example using typemaps
%module example
%include typemaps.i // Grab the standard typemap library

%apply double *OUTPUT { double *result };
extern void add(double a, double b, double *result);

The %apply directive tells SWIG that we are going to apply special processing to a datatype. The
“double *OUTPUT” is the name of a rule describing how to return an output value from a
“double *” (this rule is defined in the file typemaps.i). The rule gets applied to all of the
datatypes listed in curly braces-- in this case “double *result”.

While it may sound complicated, when you compile the module and use it, you get a function
that works as follows :

Perl code to call our add function

$a = add(3,4);
print $a,”\n”;
7

Our function is much easier to use and it is no longer necessary to create a special double * object
and pass it to the function. Typemaps took care of this automatically.

Managing input and output parameters
By default, when SWIG encounters a pointer, it makes no assumptions about what it is (well,
other than the fact that it’s a pointer). The typemaps.i library file contains a variety of methods
for changing this behavior. The following methods are available in this file :
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 95
Input Methods
These methods tell SWIG that a pointer is a single input value. When used, functions will expect
values instead of pointers.

int *INPUT
short *INPUT
long *INPUT
unsigned int *INPUT
unsigned short *INPUT
unsigned long *INPUT
double *INPUT
float *INPUT

Suppose you had a C function like this :

double add(double *a, double *b) {
return *a+*b;

}

You could wrap it with SWIG as follows :

%module example
%include typemaps.i
...
extern double add(double *INPUT, double *INPUT);

Now, when you use your function ,it will work like this :

% set result [add 3 4]
% puts $result
7

Output Methods
These methods tell SWIG that pointer is the output value of a function. When used, you do not
need to supply the argument when calling the function, but multiple return values can be
returned.

int *OUTPUT
short *OUTPUT
long *OUTPUT
unsigned int *OUTPUT
unsigned short *OUTPUT
unsigned long *OUTPUT
double *OUTPUT
float *OUTPUT

These methods can be used as shown in an earlier example. For example, if you have this C func-
tion :

void add(double a, double b, double *c) {
*c = a+b;

}

A SWIG interface file might look like this :
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 96
%module example
%include typemaps.i
...
extern void add(double a, double b, double *OUTPUT);

In this case, only a single output value is returned, but this is not a restriction. For example, sup-
pose you had a function like this :

// Returns a status code and double
int get_double(char *str, double *result);

When declared in SWIG as :

int get_double(char *str, double *OUTPUT);

The function would return a list of output values as shown for Python below :as follows :

>>> get_double(“3.1415926”) # Returns both a status and value
[0, 3.1415926]
>>>

Input/Output Methods
When a pointer serves as both an input and output value you can use the following methods :

int *BOTH
short *BOTH
long *BOTH
unsigned int *BOTH
unsigned short *BOTH
unsigned long *BOTH
double *BOTH
float *BOTH

A typical C function would be as follows :

void negate(double *x) {
*x = -(*x);

}

To make x function as both and input and output value, declare the function like this in an inter-
face file :

%module example
%include typemaps.i
...
extern void negate(double *BOTH);

Now within a script, you can simply call the function normally :

$a = negate(3); # a = -3 after calling this
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 97
Using different names
By explicitly using the parameter names of INPUT, OUTPUT, and BOTH in your declarations,
SWIG performs different operations. If you would like to use different names, you can simply
use the %apply directive. For example :

// Make double *result an output value
%apply double *OUTPUT { double *result };

// Make Int32 *in an input value
%apply int *INPUT { Int32 *in };

// Make long *x both
%apply long *BOTH {long *x};

%apply only renames the different type handling rules. You can use it to match up with the
naming scheme used in a header file and so forth. To later clear a naming rule, the %clear direc-
tive can be used :

%clear double *result;
%clear Int32 *in, long *x;

Applying constraints to input values
In addition to changing the handling of various input values, it is also possible to apply con-
straints. For example, maybe you want to insure that a value is positive, or that a pointer is non-
NULL. This can be accomplished including the constraints.i library file (which is also based
on typemaps).

Simple constraint example
The constraints library is best illustrated by the following interface file :

// Interface file with constraints
%module example
%include constraints.i

double exp(double x);
double log(double POSITIVE); // Allow only positive values
double sqrt(double NONNEGATIVE); // Non-negative values only
double inv(double NONZERO); // Non-zero values

void free(void *NONNULL); // Non-NULL pointers only

The behavior of this file is exactly as you would expect. If any of the arguments violate the con-
straint condition, a scripting language exception will be raised. As a result, it is possible to catch
bad values, prevent mysterious program crashes and so on.

Constraint methods
The following constraints are currently available

POSITIVE Any number > 0 (not zero)
NEGATIVE Any number < 0 (not zero)
NONNEGATIVE Any number >= 0
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 98
NONPOSITIVE Any number <= 0
NONZERO Nonzero number
NONNULL Non-NULL pointer (pointers only).

Applying constraints to new datatypes
The constraints library only supports the built-in C datatypes, but it is easy to apply it to new
datatypes using %apply. For example :

// Apply a constraint to a Real variable
%apply Number POSITIVE { Real in };

// Apply a constraint to a pointer type
%apply Pointer NONNULL { Vector * };

The special types of “Number” and “Pointer” can be applied to any numeric and pointer vari-
able type respectively. To later remove a constraint, the %clear directive can be used :

%clear Real in;
%clear Vector *;

Writing new typemaps
So far, we have only seen a high-level picture of typemaps and have utilized pre-existing
typemaps in the SWIG library. However, it is possible to do more if you’re willing to get your
hands dirty and dig into the internals of SWIG and your favorite scripting language.

Before diving in, first ask yourself do I really need to change SWIG’s default behavior? The basic
pointer model works pretty well most of the time and I encourage you to use it--after all, I
wanted SWIG to be easy enough to use so that you didn’t need to worry about low level details.
If, after contemplating this for awhile, you’ve decided that you really want to change something,
a word of caution is in order. Writing a typemap from scratch usually requires a detailed knowl-
edge of the internal workings of a particular scripting language. It is also quite easy to break all
of the output code generated by SWIG if you don’t know what you’re doing. On the plus side,
once a typemap has been written it can be reused over and over again by putting it in the SWIG
library (as has already been demonstrated). This section describes the basics of typemaps. Lan-
guage specific information (which can be quite technical) is contained in the later chapters.

Motivations for using typemaps
Suppose you have a few C functions such as the following :

void glLightfv(GLenum light, Glenum pname, GLfloat parms[4]);

In this case, the third argument takes a 4 element array. If you do nothing, SWIG will convert the
last argument into a pointer. When used in the scripting language, you will need to pass a
“GLfloat *” object to the function to make it work.

Managing special data-types with helper functions
Helper functions provide one mechanism for dealing with odd datatypes. With a helper func-
tion, you provide additional functionality for creating and destroying objects or converting val-
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 99
ues into a useful form. These functions are usually just placed into your interface file with the
rest of the functions. For example, a few helper functions to work with 4 element arrays for the
above function, might look like this :

%inline %{
/* Create a new GLfloat [4] object */
GLfloat *newfv4(double x, double y, double z, double w) {

GLfloat *f = (GLfloat *) malloc(4*sizeof(GLfloat));
f[0] = x;
f[1] = y;
f[2] = z;
f[3] = w;
return f;

}

/* Destroy a GLfloat [4] object */
void delete_fv4(GLfloat *d) {

free(d);
}
%}

When wrapped, our helper functions will show up the interface and can be used as follows :

% set light [newfv4 0.0 0.0 0.0 1.0] # Creates a GLfloat *
% glLightfv GL_LIGHT0 GL_AMBIENT $light # Pass it to the function
...
% delete_fv4 $light # Destroy it (When done)

While not the most elegant approach, helper functions provide a simple mechanism for working
with more complex datatypes. In most cases, they can be written without diving into SWIG’s
internals. Before typemap support was added to SWIG, helper functions were the only method
for handling these kinds of problems. The pointer.i library file described earlier is an example of
just this sort of approach. As a rule of thumb, I recommend that you try to use this approach
before jumping into typemaps.

A Typemap Implementation
As we have seen, a typemap can often eliminate the need for helper functions. Without diving
into the details, a more sophisticated typemap implementation of the previous example can per-
mit you to pass an array or list of values directly into the C function like this :

% glLightfv GL_LIGHT0 GL_AMBIENT {0.0 0.0 0.0 1.0}

This is a more natural implementation that replaces the low-level pointer method. Now we will
look into how one actually specifies a typemap.

What is a typemap?
A typemap is specified using the %typemap directive in your interface file. A simple typemap
might look liks this :

%module example
%typemap(tcl,in) int {
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 100
$target = atoi($source);
printf(“Received an integer : %d\n”, $target);

}

int add(int a, int b);

In this case, we changed the processing of integers as input arguments to functions. When used
in a Tcl script, we would get the following debugging information:

% set a [add 7 13]
Received an integer : 7
Received an integer : 13

In the typemap specification, the symbols $source and $target are holding places for C vari-
able names that SWIG is going to use when generating wrapper code. In this example, $source
would contain a Tcl string containing the input value and $target would be the C integer value
that is going to be passed into the “add” function.

Creating a new typemap
A new typemap can be created as follows :

%typemap(lang,method) Datatype {
... Conversion code ...

}

lang specifies the target language, method defines a particular conversion method, and
Datatype gives the corresponding C datatype. The code corresponding to the typemap is
enclosed in braces after the declaration. There are about a dozen different kinds of typemaps that
are used within SWIG, but we will get to that shortly.

A single conversion can be applied to multiple datatypes by giving a comma separated list of
datatypes. For example :

%typemap(tcl,in) int, short, long, signed char {
$target = ($type) atol($source);

}

Here, $type will be expanded into the real datatype during code generation. Datatypes may
also carry names as in

%typemap(perl5,in) char **argv {
... Turn a perl array into a char ** ...

}

A “named”typemap will only apply to an object that matches both the C datatype and the name.
Thus the char **argv typemap will only be applied to function arguments that exactly match
“char **argv”. In some cases, the name may correspond to a function name (as is the case for
return values).

Finally, there is a shortened form of the typemap directive :

%typemap(method) Datatype {
...
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 101
}

When the language name is ommitted, the typemap will be applied to the current target lan-
guage. This form is only recommended for typemap methods that are language independent
(there are a few). It is not recommended if you are building interfaces for multiple languages.

Deleting a typemap
A typemap can be deleted by providing no conversion code. For example :

%typemap(lang,method) Datatype; // Deletes this typemap

Copying a typemap
A typemap can be copied using the following declaration :

%typemap(python,out) unsigned int = int; // Copies a typemap

This specifies that the typemap for “unsigned int” should be the same as the “int” typemap.
This is most commonly used when working with library files.

Typemap matching rules
When you specify a typemap, SWIG is going to try and match it with all future occurrences of
the datatype you specify. The matching process is based upon the target language, typemap
method, datatype, and optional name. Because of this, it is perfectly legal for multiple typemaps
to exist for a single datatype at any given time. For example :

%typemap(tcl,in) int * {
... Convert an int * ...

}
%typemap(tcl,in) int [4] {

... Convert an int[4] ...
}
%typemap(tcl,in) int out[4] {

... Convert an out[4] ...
}
%typemap(tcl,in) int *status {

... Convert an int *status ...
}

These typemaps all involve the “int *” datatype in one way or another, but are all considered
to be distinct. There is an extra twist to typemaps regarding the similarity between C pointers
and arrays. A typemap applied to a pointer will also work for any array of the same type. On the
other hand, a typemap applied to an array will only work for arrays, not pointers. Assuming that
you’re not completely confused at this point, the following rules are applied in order to match
pointers and arrays :

• Named arrays
• Unnamed arrays
• Named datatypes
• Unnamed datatypes

The following interface file shows how these rules are applied.
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 102
void foo1(int *); // Apply int * typemap
void foo2(int a[4]); // Apply int[4] typemap
void foo3(int out[4]); // Apply int out[4] typemap
void foo4(int *status); // Apply int *status typemap
void foo5(int a[20]); // Apply int * typemap (because int [20] is an int *)

Because SWIG uses a name-based approach, it is possible to attach special properties to named
parameters. For example, we can make an argument of “int *OUTPUT” always be treated as an
output value of a function or make a “char **argv” always accept a list of string values.

Common typemap methods
The following methods are supported by most SWIG language modules. Individual language
may provide any number of other methods not listed here.

 Common Typemap Methods

%typemap(lang,in) Convert function arguments from the scripting language to a C
representation.

%typemap(lang,out) Converts the return value from a function to a scripting lan-
guage representation.

%typemap(lang,ret) Cleans up the return value of a function. For example, this
could be used to free up memory that might have been allo-
cated by the underlying C function. This code is executed
before a function returns control back to the scripting language.

%typemap(lang,freearg) Cleans up arguments. This method can be used to clean up
function arguments that might have required memory alloca-
tion or other special processing.

%typemap(lang,argout) Outputs argument values. This typemap can be used to make a
function return a value from one of its arguments.

%typemap(lang,check) Checks validity of function inputs. Can be used to apply con-
straints, raise exceptions, or simply for debugging.

%typemap(lang,varin) Used by some languages to set the value of a C global variable.
Converts a datatype from the scripting language to C. This
method is only used if the “in” method won’t work for some
reason.

%typemap(lang,varout) Variable. Convert the value of a C global variable to a scripting
language representation.

%typemap(lang,const) Specifies the code used to create a constant in the module ini-
tialization function. Not supported by all languages.

%typemap(lang,memberin) Set structure member. Specifies special processing of structure
and class members when setting a value.

%typemap(lang,memberout) Get structure member. Special processing applied when
retrieving a structure member.
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 103
Understanding how some of these methods are applied takes a little practice and better under-
standing of what SWIG does when it creates a wrapper function. The next few diagrams show
the anatomy of a wrapper function and how the typemaps get applied. More detailed examples
of typemaps can be found on the chapters for each target language.

Wrapper function typemaps and where they are applied

%typemap(lang,arginit) Initializes a parameter to an initial value (for example, setting a
pointer to a NULL value). Sometimes useful in determining
whether a parameter was received correctly.

%typemap(lang,default) Can be used to set a default argument value. Overrides any
other default arguments that might have been specified.

%typemap(lang,ignore) Set an argument to a default value and ignore it for the pur-
poses of generating wrapper code. (An ignored argument
becomes a hidden argument in the scripting interface).

 Common Typemap Methods

/* A generic wrapper function */
int wrap_func(int argc, Arg *args[]) {

int arg0;
int retval;
...
/* Check argument count */
...
/* Parse arguments */
arg0 = Get_Int(args[0]);
...
/* Call the C function */
retval = func(arg0);
/* Return the result */
Set_ResultInt(retval);
/* Clean up or return args */
...
/* Clean up return result */
...
return OK;

}

%typemap(lang,in)

%typemap(lang,ret)

%typemap(lang,freearg)
%typemap(lang,argout)

%typemap(lang,out)

%typemap(lang,check)

%typemap(lang,default)
%typemap(lang,arginit)
%typemap(lang,ignore)
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 104
How a typemap gets applied to a wrapper function

Writing typemap code
The conversion code supplied to a typemap needs to follow a few conventions described here.

Scope
Typemap code is enclosed in braces when it is inserted into the resulting wrapper code (using
C’s block-scope). It is perfectly legal to declare local and static variables in a typemap. However,
local variables will only exist in the tiny portion of code you supply. In other words, any local
variables that you create in a typemap will disappear when the typemap has completed its exe-
cution.

Creating local variables
Sometimes it is necessary to declare a new local variable that exists in the scope of the entire
wrapper function. This can be done by specifying a typemap with parameters as follows :

%typemap(tcl,in) int *INPUT(int temp) {
temp = atoi($source);
$target = &temp;

}

What happens here is that temp becomes a local variable in the scope of the entire wrapper func-
tion. When we set it to a value, that values persists for the duration of the wrapper function and
gets cleaned up automatically on exit. This is particularly useful when working with pointers
and temporary values.

It is perfectly safe to use multiple typemaps involving local variables in the same function. For
example, we could declare a function as :

void foo(int *INPUT, int *INPUT, int *INPUT);

/* A generic wrapper function */
int wrap_func(int argc, Arg *args[]) {

int arg0;
int retval;
...
/* Parse arguments */
{
arg0 = Get_Int(args[0]);
fprintf(“Received %d\n”,arg0);
}
...
/* Call the C function */
retval = func(arg0);
Set_ResultInt(retval);
return OK;

}

%typemap(lang,in) int {
$target = Get_Int($source);
fprintf(“Received %d\n”,$target);
}

Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 105
When this occurs, SWIG will create three different local variables named ‘temp’. Of course, they
don’t all end up having the same name---SWIG automatically performs a variable renaming
operation if it detects a name-clash like this.

Some typemaps do not recognize local variables (or they may simply not apply). At this time,
only the “in”, “argout”, “default”, and “ignore” typemaps use local variables.

Special variables
The following special variables may be used within a typemap conversion code :

When found in the conversion code, these variables will be replaced with the correct values. Not
all values are used in all typemaps. Please refer to the SWIG reference manual for the precise
usage.

Typemaps for handling arrays
One of the most common uses of typemaps is providing some support for arrays. Due to the sub-
tle differences between pointers and arrays in C, array support is somewhat limited unless you
provide additional support. For example, consider the following structure appears in an inter-
face file :

struct Person {
char name[32];
char address[64];

 Special variables

$source C Variable containing source value

$target C Variable where result is to be placed

$type A string containing the datatype (will be a pointer if working with
arrays).

$basetype A string containing the base datatype. In the case of pointers, this is
the root datatype (without any pointers).

$mangle Mangled string representing the datatype (used for creating pointer
values)

$value Value of contants (const typemap only)

$argnum Argument number (functions only)

$arg Original argument. Often used by typemaps returning v alues
through function parameters.

$name Name of C declaration (usually the name of a function).

$<op> Insert the code for any previously defined typemap. <op> must
match the name of the the typemap being defined (ie. “in”, “out”,
“argout”, etc...). This is used for typemap chaining and is not recom-
mended unless you absolutely know what you’re doing.
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 106
int id;
};

When SWIG is run, you will get the following warnings :

swig -python example.i
Generating wrappers for Python
example.i : Line 2. Warning. Array member will be read-only.
example.i : Line 3. Warning. Array member will be read-only.

These warning messages indicate that SWIG does not know how you want to set the name and
address fields. As a result, you will only be able to query their value.

To fix this, we could supply two typemaps in the file such as the following :

%typemap(memberin) char [32] {
strncpy($target,$source,32);

}
%typemap(memberin) char [64] {

strncpy($target,$source,64);
}

The “memberin” typemap is used to set members of structures and classes. When you run the
new version through SWIG, the warnings will go away and you can now set each member. It is
important to note that char[32] and char[64] are different datatypes as far as SWIG
typemaps are concerned. However, both typemaps can be combined as follows :

// A better typemap for char arrays
%typemap(memberin) char [ANY] {

strncpy($target,$source,$dim0);
}

The ANY keyword can be used in a typemap to match any array dimension. When used, the spe-
cial variable $dim0 will contain the real dimension of the array and can be used as shown above.

Multidimensional arrays can also be handled by typemaps. For example :

// A typemap for handling any int [][] array
%typemap(memberin) int [ANY][ANY] {

int i,j;
for (i = 0; i < $dim0; i++)

for (j = 0; j < $dim1; j++) {
$target[i][j] = *($source+$dim1*i+j);

}
}

When multi-dimensional arrays are used, the symbols $dim0, $dim1, $dim2, etc... get
replaced by the actual array dimensions being used.

The ANY keyword can be combined with any specific dimension. For example :

%typemap(python,in) int [ANY][4] {
...

}

Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 107
A typemap using a specific dimension always has precedence over a more general version. For
example, [ANY][4] will be used before[ANY][ANY].

Typemaps and the SWIG Library
Writing typemaps is a tricky business. For this reason, many common typemaps can be placed
into a SWIG library file and reused in other modules without having to worry about nasty
underlying details. To do this, you first write a file containing typemaps such as this :

// file : stdmap.i
// A file containing a variety of useful typemaps

%typemap(tcl,in) int INTEGER {
...

}
%typemap(tcl,in) double DOUBLE {

...
}
%typemap(tcl,out) int INT {

...
}
%typemap(tcl,out) double DOUBLE {

...
}
%typemap(tcl,argout) double DOUBLE {

...
}
// and so on...

This file may contain dozens or even hundreds of possible mappings. Now, to use this file with
other modules, simply include it in other files and use the %apply directive :

// interface.i
// My interface file

%include stdmap.i // Load the typemap library

// Now grab the typemaps we want to use
%apply double DOUBLE {double};

// Rest of your declarations

In this case, stdmap.i contains a variety of standard mappings. The %apply directive lets us
apply specific versions of these to new datatypes without knowing the underlying implementa-
tion details.

To clear a typemap that has been applied, you can use the %clear directive. For example :

%clear double x; // Clears any typemaps being applied to double x

Implementing constraints with typemaps
One particularly interesting application of typemaps is the implementation of argument con-
Version 1.1, June 23, 1997

SWIG Users Guide Pointers, Constraints, and Typemaps 108
straints. This can be done with the “check” typemap. When used, this allows you to provide
code for checking the values of function arguments. For example :

%module math

%typemap(perl5,check) double *posdouble {
if ($target < 0) {

croak(“Expecting a positive number”);
}

}

...
double sqrt(double posdouble);

This provides a sanity check to your wrapper function. If a negative number is passed to this
function, a Perl exception will be raised and your program terminated with an error message.

This kind of checking can be particularly useful when working with pointers. For example :

%typemap(python,check) Vector * {
if ($target == 0) {

PyErr_SetString(PyExc_TypeError,”NULL Pointer not allowed”);
return NULL;

}
}

will prevent any function involving a Vector * from accepting a NULL pointer. As a result,
SWIG can often prevent a potential segmentation faults or other run-time problems by raising an
exception rather than blindly passing values to the underlying C/C++ program.

Typemap examples
Typemaps are inherently language dependent so more examples appear in later chapters. The
SWIG Examples directory also includes a variety of examples. Sophisticated users may gain
more by examining the typemaps.i and constraints.i SWIG library files.

How to break everything with a typemap
It should be emphasized that typemaps provide a direct mechanism for modifying SWIG’s out-
put. As a result, it can be very easy to break almost everything if you don’t know what you’re
doing. For this reason, it should be stressed that typemaps are not required in order to use SWIG
with most kinds of applications. Power users, however, will probably find typemaps to be a use-
ful tool for creating extremely powerful scripting language extensions.

Typemaps and the future
The current typemap mechanism, while new, will probably form the basis of SWIG 2.0. Rather
than having code buried away inside a C++ module, it may soon be possible to redefine almost
all of SWIG’s code generation on the fly. Future language modules will rely upon typemaps
almost exclusively.
Version 1.1, June 23, 1997

	Pointers, Constraints, and Typemaps
	Introduction
	The SWIG Pointer Library
	Pointer Library Functions
	A simple example
	Creating arrays
	Packing a data structure

	Introduction to typemaps
	The idea (in a nutshell)
	Using some typemaps

	Managing input and output parameters
	Input Methods
	Output Methods
	Input/Output Methods
	Using different names

	Applying constraints to input values
	Simple constraint example
	Constraint methods
	Applying constraints to new datatypes

	Writing new typemaps
	Motivations for using typemaps
	Managing special data-types with helper functions
	A Typemap Implementation
	What is a typemap?
	Creating a new typemap
	Deleting a typemap
	Copying a typemap
	Typemap matching rules

	Common typemap methods
	Writing typemap code
	Scope
	Creating local variables
	Special variables

	Typemaps for handling arrays
	Typemaps and the SWIG Library
	Implementing constraints with typemaps
	Typemap examples
	How to break everything with a typemap
	Typemaps and the future

