
MySQL++ Reference Manual
3.0.8

Generated by Doxygen 1.3.9.1
Thu Nov 27 01:21:16 2008

Contents

1 MySQL++ Reference Manual 1
1.1 Getting Started . 1
1.2 Major Classes . 1
1.3 Major Files . 1
1.4 If You Have Questions... 2
1.5 Licensing . 2

2 MySQL++ Hierarchical Index 3
2.1 MySQL++ Class Hierarchy . 3

3 MySQL++ Class Index 7
3.1 MySQL++ Class List . 7

4 MySQL++ File Index 13
4.1 MySQL++ File List . 13

5 MySQL++ Class Documentation 15
5.1 AutoFlag< T > Class Template Reference 15
5.2 mysqlpp::BadConversion Class Reference 17
5.3 mysqlpp::BadFieldName Class Reference 20
5.4 mysqlpp::BadIndex Class Reference 22
5.5 mysqlpp::BadOption Class Reference 24
5.6 mysqlpp::BadParamCount Class Reference 26
5.7 mysqlpp::BadQuery Class Reference 27

ii CONTENTS

5.8 mysqlpp::BeecryptMutex Class Reference 30
5.9 Comparable< T > Class Template Reference 32
5.10 mysqlpp::CompressOption Class Reference 34
5.11 mysqlpp::Connection Class Reference 35
5.12 mysqlpp::ConnectionFailed Class Reference 45
5.13 mysqlpp::ConnectionPool Class Reference 47
5.14 mysqlpp::ConnectTimeoutOption Class Reference 51
5.15 mysqlpp::DataOption< T > Class Template Reference 52
5.16 mysqlpp::Date Class Reference 54
5.17 mysqlpp::DateTime Class Reference 58
5.18 mysqlpp::DBDriver Class Reference 63
5.19 mysqlpp::DBSelectionFailed Class Reference 78
5.20 mysqlpp::equal_list_b< Seq1, Seq2, Manip > Struct Template

Reference . 80
5.21 mysqlpp::equal_list_ba< Seq1, Seq2, Manip > Struct Template

Reference . 82
5.22 mysqlpp::Exception Class Reference 84
5.23 mysqlpp::Field Class Reference 86
5.24 mysqlpp::FieldNames Class Reference 89
5.25 mysqlpp::FieldTypes Class Reference 91
5.26 mysqlpp::FoundRowsOption Class Reference 92
5.27 mysqlpp::GuessConnectionOption Class Reference 93
5.28 mysqlpp::IgnoreSpaceOption Class Reference 94
5.29 mysqlpp::InitCommandOption Class Reference 95
5.30 mysqlpp::InteractiveOption Class Reference 96
5.31 mysqlpp::LocalFilesOption Class Reference 97
5.32 mysqlpp::LocalIn�leOption Class Reference 98
5.33 mysqlpp::MultiResultsOption Class Reference 99
5.34 mysqlpp::MultiStatementsOption Class Reference 100
5.35 mysqlpp::MutexFailed Class Reference 101
5.36 mysqlpp::mysql_type_info Class Reference 102
5.37 mysqlpp::NamedPipeOption Class Reference 107

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

CONTENTS iii

5.38 mysqlpp::NoExceptions Class Reference 108
5.39 mysqlpp::NoSchemaOption Class Reference 110
5.40 mysqlpp::Null< Type, Behavior > Class Template Reference . . 111
5.41 mysqlpp::null_type Class Reference 116
5.42 mysqlpp::NullIsBlank Struct Reference 117
5.43 mysqlpp::NullIsNull Struct Reference 118
5.44 mysqlpp::NullIsZero Struct Reference 119
5.45 mysqlpp::ObjectNotInitialized Class Reference 120
5.46 mysqlpp::Option Class Reference 121
5.47 mysqlpp::OptionalExceptions Class Reference 123
5.48 mysqlpp::Query Class Reference 125
5.49 mysqlpp::ReadDefaultFileOption Class Reference 148
5.50 mysqlpp::ReadDefaultGroupOption Class Reference 149
5.51 mysqlpp::ReadTimeoutOption Class Reference 150
5.52 mysqlpp::ReconnectOption Class Reference 151
5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template

Reference . 152
5.54 mysqlpp::RefCountedPointerDestroyer< T > Struct Template

Reference . 158
5.55 mysqlpp::RefCountedPointerDestroyer< MYSQL_RES > Struct

Template Reference . 159
5.56 mysqlpp::ReportDataTruncationOption Class Reference 160
5.57 mysqlpp::ResultBase Class Reference 161
5.58 mysqlpp::Row Class Reference . 165
5.59 mysqlpp::ScopedLock Class Reference 179
5.60 mysqlpp::SecureAuthOption Class Reference 180
5.61 mysqlpp::SelfTestFailed Class Reference 181
5.62 mysqlpp::Set< Container > Class Template Reference 182
5.63 mysqlpp::SetCharsetDirOption Class Reference 183
5.64 mysqlpp::SetCharsetNameOption Class Reference 184
5.65 mysqlpp::SetClientIpOption Class Reference 185
5.66 mysqlpp::SharedMemoryBaseNameOption Class Reference 186

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

iv CONTENTS

5.67 mysqlpp::SimpleResult Class Reference 187
5.68 mysqlpp::SQLBu�er Class Reference 189
5.69 mysqlpp::SQLParseElement Struct Reference 192
5.70 mysqlpp::SQLQueryParms Class Reference 194
5.71 mysqlpp::SQLTypeAdapter Class Reference 198
5.72 mysqlpp::SslOption Class Reference 207
5.73 mysqlpp::StoreQueryResult Class Reference 209
5.74 mysqlpp::String Class Reference 212
5.75 mysqlpp::TCPConnection Class Reference 225
5.76 mysqlpp::Time Class Reference 229
5.77 mysqlpp::tiny_int< VT > Class Template Reference 233
5.78 mysqlpp::TooOld< ConnInfoT > Class Template Reference . . . 237
5.79 mysqlpp::Transaction Class Reference 238
5.80 mysqlpp::TypeLookupFailed Class Reference 240
5.81 mysqlpp::UnixDomainSocketConnection Class Reference 241
5.82 mysqlpp::UseEmbeddedConnectionOption Class Reference 244
5.83 mysqlpp::UseQueryError Class Reference 245
5.84 mysqlpp::UseQueryResult Class Reference 246
5.85 mysqlpp::UseRemoteConnectionOption Class Reference 249
5.86 mysqlpp::value_list_b< Seq, Manip > Struct Template Reference250
5.87 mysqlpp::value_list_ba< Seq, Manip > Struct Template Reference252
5.88 mysqlpp::WindowsNamedPipeConnection Class Reference 254
5.89 mysqlpp::WriteTimeoutOption Class Reference 257

6 MySQL++ File Documentation 259
6.1 auto�ag.h File Reference . 259
6.2 beemutex.h File Reference . 260
6.3 common.h File Reference . 261
6.4 comparable.h File Reference . 262
6.5 connection.h File Reference . 263
6.6 cpool.h File Reference . 264

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

CONTENTS v

6.7 custom.h File Reference . 265
6.8 datetime.h File Reference . 266
6.9 dbdriver.h File Reference . 267
6.10 exceptions.h File Reference . 268
6.11 �eld.h File Reference . 270
6.12 �eld_names.h File Reference . 271
6.13 �eld_types.h File Reference . 272
6.14 manip.h File Reference . 273
6.15 myset.h File Reference . 276
6.16 mysql++.h File Reference . 277
6.17 mystring.h File Reference . 279
6.18 noexceptions.h File Reference . 280
6.19 null.h File Reference . 281
6.20 options.h File Reference . 283
6.21 qparms.h File Reference . 287
6.22 query.h File Reference . 288
6.23 refcounted.h File Reference . 290
6.24 result.h File Reference . 291
6.25 row.h File Reference . 293
6.26 sql_bu�er.h File Reference . 294
6.27 sql_types.h File Reference . 295
6.28 stadapter.h File Reference . 296
6.29 stream2string.h File Reference 297
6.30 tcp_connection.h File Reference 298
6.31 tiny_int.h File Reference . 299
6.32 transaction.h File Reference . 300
6.33 type_info.h File Reference . 301
6.34 uds_connection.h File Reference 303
6.35 vallist.h File Reference . 304
6.36 wnp_connection.h File Reference 313

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

Chapter 1

MySQL++ Reference Manual

1.1 Getting Started

The best place to get started is the user manual. It provides a guide to the
example programs and more.

1.2 Major Classes

In MySQL++, the main user-facing classes are mysqlpp::Connection(p. 35),
mysqlpp::Query(p. 125), mysqlpp::Row(p. 165), mysqlpp::StoreQuery-
Result(p. 209), and mysqlpp::UseQueryResult(p. 246).
In addition, MySQL++ has a mechanism called Specialized SQL Structures
(SSQLS), which allow you to create C++ structures that parallel the de�nition
of the tables in your database schema. These let you manipulate the data in
your database using native C++ data structures. Programs using this feature
often include very little SQL code, because MySQL++ can generate most of
what you need automatically when using SSQLSes. There is a whole chapter in
the user manual on how to use this feature of the library, plus a section in the
user manual's tutorial chapter to introduce it. It's possible to use MySQL++
e�ectively without using SSQLS, but it sure makes some things a lot easier.

1.3 Major Files

The only two header �les your program ever needs to include are mysql++.h,
and optionally custom.h(p. 265). (The latter implements the SSQLS mecha-
nism.) All of the other �les are used within the library only.

2 MySQL++ Reference Manual

1.4 If You Have Questions...

If you want to email someone to ask questions about this library, we greatly
prefer that you send mail to the MySQL++mailing list, which you can subscribe
to here: http://lists.mysql.com/plusplus
That mailing list is archived, so if you have questions, do a search to see if the
question has been asked before.
You may �nd people's individual email addresses in various �les within the My-
SQL++ distribution. Please do not send mail to them unless you are sending
something that is inherently personal. Questions that are about MySQL++
usage may well be ignored if you send them to our personal email accounts.
Those of us still active in MySQL++ development monitor the mailing list, so
you aren't getting any extra "coverage" by sending messages to those addresses
in addition to the mailing list.

1.5 Licensing

MySQL++ is licensed under the GNU Lesser General Public License,
which you should have received with the distribution package in a
�le called "LGPL" or "LICENSE". You can also view it here:
http://www.gnu.org/licenses/lgpl.html or receive a copy by writing to Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301, USA.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

Chapter 2

MySQL++ Hierarchical

Index

2.1 MySQL++ Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
AutoFlag< T > . 15
mysqlpp::BeecryptMutex . 30
Comparable< T > . 32
Comparable< Date > . 32

mysqlpp::Date . 54
Comparable< DateTime > . 32

mysqlpp::DateTime . 58
Comparable< Time > . 32

mysqlpp::Time . 229
mysqlpp::ConnectionPool . 47
mysqlpp::DBDriver . 63
mysqlpp::equal_list_b< Seq1, Seq2, Manip > 80
mysqlpp::equal_list_ba< Seq1, Seq2, Manip > 82
mysqlpp::Exception . 84

mysqlpp::BadConversion . 17
mysqlpp::BadFieldName . 20
mysqlpp::BadIndex . 22
mysqlpp::BadOption . 24
mysqlpp::BadParamCount . 26
mysqlpp::BadQuery . 27
mysqlpp::ConnectionFailed . 45
mysqlpp::DBSelectionFailed . 78

4 MySQL++ Hierarchical Index

mysqlpp::MutexFailed . 101
mysqlpp::ObjectNotInitialized . 120
mysqlpp::SelfTestFailed . 181
mysqlpp::TypeLookupFailed . 240
mysqlpp::UseQueryError . 245

mysqlpp::Field . 86
mysqlpp::FieldNames . 89
mysqlpp::FieldTypes . 91
mysqlpp::mysql_type_info . 102
mysqlpp::NoExceptions . 108
mysqlpp::Null< Type, Behavior > . 111
mysqlpp::null_type . 116
mysqlpp::NullIsBlank . 117
mysqlpp::NullIsNull . 118
mysqlpp::NullIsZero . 119
mysqlpp::Option . 121

mysqlpp::CompressOption . 34
mysqlpp::DataOption< T > . 52

mysqlpp::IgnoreSpaceOption 94
mysqlpp::InitCommandOption 95
mysqlpp::LocalFilesOption . 97
mysqlpp::MultiResultsOption 99
mysqlpp::MultiStatementsOption 100
mysqlpp::ReadDefaultFileOption 148
mysqlpp::ReadDefaultGroupOption 149
mysqlpp::SetCharsetDirOption 183
mysqlpp::SetCharsetNameOption 184
mysqlpp::SetClientIpOption . 185
mysqlpp::SharedMemoryBaseNameOption 186
mysqlpp::WriteTimeoutOption 257

mysqlpp::DataOption< bool > . 52
mysqlpp::FoundRowsOption . 92
mysqlpp::InteractiveOption . 96
mysqlpp::NoSchemaOption . 110
mysqlpp::ReconnectOption . 151
mysqlpp::ReportDataTruncationOption 160
mysqlpp::SecureAuthOption . 180

mysqlpp::DataOption< unsigned > 52
mysqlpp::ConnectTimeoutOption 51
mysqlpp::LocalIn�leOption . 98
mysqlpp::ReadTimeoutOption 150

mysqlpp::GuessConnectionOption 93
mysqlpp::NamedPipeOption . 107
mysqlpp::SslOption . 207
mysqlpp::UseEmbeddedConnectionOption 244

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

2.1 MySQL++ Class Hierarchy 5

mysqlpp::UseRemoteConnectionOption 249
mysqlpp::OptionalExceptions . 123

mysqlpp::Connection . 35
mysqlpp::TCPConnection . 225
mysqlpp::UnixDomainSocketConnection 241
mysqlpp::WindowsNamedPipeConnection 254

mysqlpp::Query . 125
mysqlpp::ResultBase . 161

mysqlpp::StoreQueryResult . 209
mysqlpp::UseQueryResult . 246

mysqlpp::Row . 165
mysqlpp::RefCountedPointer< T, Destroyer > 152
mysqlpp::RefCountedPointerDestroyer< T > 158
mysqlpp::RefCountedPointerDestroyer< MYSQL_RES > 159
mysqlpp::ScopedLock . 179
mysqlpp::Set< Container > . 182
mysqlpp::SimpleResult . 187
mysqlpp::SQLBu�er . 189
mysqlpp::SQLParseElement . 192
mysqlpp::SQLQueryParms . 194
mysqlpp::SQLTypeAdapter . 198
mysqlpp::String . 212
mysqlpp::tiny_int< VT > . 233
mysqlpp::TooOld< ConnInfoT > . 237
mysqlpp::Transaction . 238
mysqlpp::value_list_b< Seq, Manip > 250
mysqlpp::value_list_ba< Seq, Manip > 252

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6 MySQL++ Hierarchical Index

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

Chapter 3

MySQL++ Class Index

3.1 MySQL++ Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
AutoFlag< T > (A template for setting a �ag on a variable as long

as the object that set it is in scope. Flag resets when object
goes out of scope. Works on anything that looks like bool) . 15

mysqlpp::BadConversion (Exception(p. 84) thrown when a bad
type conversion is attempted) 17

mysqlpp::BadFieldName (Exception(p. 84) thrown when a re-
quested named �eld doesn't exist) 20

mysqlpp::BadIndex (Exception(p. 84) thrown when an object with
operator [] or an at() method gets called with a bad index) . 22

mysqlpp::BadOption (Exception(p. 84) thrown when you pass an
unrecognized option to Connection::set_option()(p. 43)) 24

mysqlpp::BadParamCount (Exception(p. 84) thrown when not
enough query parameters are provided) 26

mysqlpp::BadQuery (Exception(p. 84) thrown when the database
server encounters a problem while processing your query) . . 27

mysqlpp::BeecryptMutex (Wrapper around platform-speci�c mu-
texes) . 30

Comparable< T > (Mix-in that gives its subclass a full set of com-
parison operators) . 32

mysqlpp::CompressOption (Enable data compression on the con-
nection) . 34

mysqlpp::Connection (Manages the connection to the database
server) . 35

mysqlpp::ConnectionFailed (Exception(p. 84) thrown when there
is a problem related to the database server connection) . . . 45

8 MySQL++ Class Index

mysqlpp::ConnectionPool (Manages a pool of connections for pro-
grams that need more than one Connection(p. 35) object at
a time, but can't predict how many they need in advance) . 47

mysqlpp::ConnectTimeoutOption (Change Connec-
tion::connect()(p. 40) default timeout) 51

mysqlpp::DataOption< T > (De�ne abstract interface for all
∗Options that take a lone scalar as an argument) 52

mysqlpp::Date (C++ form of SQL's DATE type) 54
mysqlpp::DateTime (C++ form of SQL's DATETIME type) . . . 58
mysqlpp::DBDriver (Provides a thin abstraction layer over the un-

derlying database client library) 63
mysqlpp::DBSelectionFailed (Exception(p. 84) thrown when the

program tries to select a new database and the database server
refuses for some reason) . 78

mysqlpp::equal_list_b< Seq1, Seq2, Manip > (Same as
equal_list_ba(p. 82), plus the option to have some elements
of the equals clause suppressed) 80

mysqlpp::equal_list_ba< Seq1, Seq2, Manip > (Holds two lists
of items, typically used to construct a SQL "equals clause") 82

mysqlpp::Exception (Base class for all MySQL++ custom excep-
tions) . 84

mysqlpp::Field (Class to hold information about a SQL �eld) . . . 86
mysqlpp::FieldNames (Holds a list of SQL �eld names) 89
mysqlpp::FieldTypes (A vector of SQL �eld types) 91
mysqlpp::FoundRowsOption (Make Query::a�ected_-

rows()(p. 125) return number of matched rows) 92
mysqlpp::GuessConnectionOption (Allow C API to guess what

kind of connection to use) . 93
mysqlpp::IgnoreSpaceOption (Allow spaces after function names

in queries) . 94
mysqlpp::InitCommandOption (Give SQL executed on connect) . 95
mysqlpp::InteractiveOption (Assert that this is an interactive pro-

gram) . 96
mysqlpp::LocalFilesOption (Enable LOAD DATA LOCAL state-

ment) . 97
mysqlpp::LocalIn�leOption (Enable LOAD LOCAL INFILE state-

ment) . 98
mysqlpp::MultiResultsOption (Enable multiple result sets in a re-

ply) . 99
mysqlpp::MultiStatementsOption (Enable multiple queries in a

request to the server) . 100
mysqlpp::MutexFailed (Exception(p. 84) thrown when a

BeecryptMutex(p. 30) object fails) 101
mysqlpp::mysql_type_info (SQL �eld type information) 102
mysqlpp::NamedPipeOption (Suggest use of named pipes) 107

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

3.1 MySQL++ Class List 9

mysqlpp::NoExceptions (Disable exceptions in an object derived
from OptionalExceptions(p. 123)) 108

mysqlpp::NoSchemaOption (Disable db.tbl.col syntax in queries) 110
mysqlpp::Null< Type, Behavior > (Class for holding data from a

SQL column with the NULL attribute) 111
mysqlpp::null_type (The type of the global mysqlpp::null object) . 116
mysqlpp::NullIsBlank (Class for objects that de�ne SQL null as a

blank C string) . 117
mysqlpp::NullIsNull (Class for objects that de�ne SQL null in terms

of MySQL++'s null_type(p. 116)) 118
mysqlpp::NullIsZero (Class for objects that de�ne SQL null as 0) . 119
mysqlpp::ObjectNotInitialized (Exception(p. 84) thrown when

you try to use an object that isn't completely initialized) . . 120
mysqlpp::Option (De�ne abstract interface for all ∗Option subclasses)121
mysqlpp::OptionalExceptions (Interface allowing a class to have

optional exceptions) . 123
mysqlpp::Query (A class for building and executing SQL queries) . 125
mysqlpp::ReadDefaultFileOption (Override use of my.cnf) 148
mysqlpp::ReadDefaultGroupOption (Override use of my.cnf) . . 149
mysqlpp::ReadTimeoutOption (Set(p. 182) timeout for IPC data

reads) . 150
mysqlpp::ReconnectOption (Enable automatic reconnection to

server) . 151
mysqlpp::RefCountedPointer< T, Destroyer > (Creates an ob-

ject that acts as a reference-counted pointer to another object
) . 152

mysqlpp::RefCountedPointerDestroyer< T > (Functor to call
delete on the pointer you pass to it) 158

mysqlpp::RefCountedPointerDestroyer< MYSQL_RES >
(Functor to call mysql_free_result() on the pointer you pass
to it) . 159

mysqlpp::ReportDataTruncationOption (Set(p. 182) reporting
of data truncation errors) . 160

mysqlpp::ResultBase (Base class for StoreQueryResult(p. 209)
and UseQueryResult(p. 246)) 161

mysqlpp::Row (Manages rows from a result set) 165
mysqlpp::ScopedLock (Wrapper aroundBeecryptMutex(p. 30) to

add scope-bound locking and unlocking) 179
mysqlpp::SecureAuthOption (Enforce use of secure authentication,

refusing connection if not available) 180
mysqlpp::SelfTestFailed (Used within MySQL++'s test harness

only) . 181
mysqlpp::Set< Container > (A special std::set derivative for hold-

ing MySQL data sets) . 182
mysqlpp::SetCharsetDirOption (Give path to charset de�nition

�les) . 183

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

10 MySQL++ Class Index

mysqlpp::SetCharsetNameOption (Give name of default charset) 184
mysqlpp::SetClientIpOption (Fake client IP address when connect-

ing to embedded server) . 185
mysqlpp::SharedMemoryBaseNameOption (Set(p. 182) name of

shmem segment for IPC) . 186
mysqlpp::SimpleResult (Holds information about the result of

queries that don't return rows) 187
mysqlpp::SQLBu�er (Holds SQL data in string form plus type in-

formation for use in converting the string to compatible C++
data types) . 189

mysqlpp::SQLParseElement (Used within Query(p. 125) to hold
elements for parameterized queries) 192

mysqlpp::SQLQueryParms (This class holds the parameter values
for �lling template queries) 194

mysqlpp::SQLTypeAdapter (Converts many di�erent data types to
strings suitable for use in SQL queries) 198

mysqlpp::SslOption (Specialized option for handling SSL parame-
ters) . 207

mysqlpp::StoreQueryResult (StoreQueryResult(p. 209) set type
for "store" queries) . 209

mysqlpp::String (A std::string work-alike that can convert itself from
SQL text data formats to C++ data types) 212

mysqlpp::TCPConnection (Specialization of Connection(p. 35)
for TCP/IP) . 225

mysqlpp::Time (C++ form of SQL's TIME type) 229
mysqlpp::tiny_int< VT > (Class for holding an SQL TINYINT value)233
mysqlpp::TooOld< ConnInfoT > (Functor to test whether a given

ConnectionInfo object is "too old") 237
mysqlpp::Transaction (Helper object for creating exception-safe

SQL transactions) . 238
mysqlpp::TypeLookupFailed (Thrown from the C++ to SQL data

type conversion routine when it can't �gure out how to map
the type) . 240

mysqlpp::UnixDomainSocketConnection (Specialization ofCon-
nection(p. 35) for Unix domain sockets) 241

mysqlpp::UseEmbeddedConnectionOption (Connect to embed-
ded server in preference to remote server) 244

mysqlpp::UseQueryError (Exception(p. 84) thrown when some-
thing goes wrong in processing a "use" query) 245

mysqlpp::UseQueryResult (StoreQueryResult(p. 209) set type
for "use" queries) . 246

mysqlpp::UseRemoteConnectionOption (Connect to remote
server in preference to embedded server) 249

mysqlpp::value_list_b< Seq, Manip > (Same as value_list_-
ba(p. 252), plus the option to have some elements of the list
suppressed) . 250

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

3.1 MySQL++ Class List 11

mysqlpp::value_list_ba< Seq, Manip > (Holds a list of items,
typically used to construct a SQL "value list") 252

mysqlpp::WindowsNamedPipeConnection (Specialization of
Connection(p. 35) for Windows named pipes) 254

mysqlpp::WriteTimeoutOption (Set(p. 182) timeout for IPC data
reads) . 257

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

12 MySQL++ Class Index

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

Chapter 4

MySQL++ File Index

4.1 MySQL++ File List

Here is a list of all documented �les with brief descriptions:
auto�ag.h (De�nes a template for setting a �ag within a given variable

scope, and resetting it when exiting that scope) 259
beemutex.h (MUTually EXclusive lock class) 260
common.h (This �le includes top-level de�nitions for use both internal

to the library, and outside it. Contrast mysql++.h) 261
comparable.h (Declares the Comparable<T> mixin) 262
connection.h (Declares the Connection class) 263
cpool.h (Declares the ConnectionPool class) 264
custom.h (Backwards-compatibility header; loads ssqls.h) 265
datetime.h (Declares classes to add SQL-compatible date and time

types to C++'s type system) 266
dbdriver.h (Declares the DBDriver class) 267
exceptions.h (Declares the MySQL++-speci�c exception classes) . . 268
�eld.h (Declares the Field and Fields classes) 270
�eld_names.h (Declares a class to hold a list of �eld names) 271
�eld_types.h (Declares a class to hold a list of SQL �eld type info) 272
manip.h (Declares the Query stream manipulators and operators) . 273
myset.h (Declares templates for generating custom containers used

elsewhere in the library) . 276
mysql++.h (The main MySQL++ header �le) 277
mystring.h (Declares String class, MySQL++'s generic std::string-

like class, used for holding data received from the database
server) . 279

noexceptions.h (Declares interface that allows exceptions to be op-
tional) . 280

14 MySQL++ File Index

null.h (Declares classes that implement SQL "null" semantics within
C++'s type system) . 281

options.h (Declares the Option class hierarchy, used to implement
connection options in Connection and DBDriver classes) . . 283

qparms.h (Declares the template query parameter-related stu�) . . 287
query.h (De�nes a class for building and executing SQL queries) . . 288
refcounted.h (Declares the RefCountedPointer template) 290
result.h (Declares classes for holding information about SQL query

results) . 291
row.h (Declares the classes for holding row data from a result set) . 293
sql_bu�er.h (Declares the SQLBu�er class) 294
sql_types.h (Declares the closest C++ equivalent of each MySQL

column type) . 295
stadapter.h (Declares the SQLTypeAdapter class) 296
stream2string.h (Declares an adapter that converts something that

can be inserted into a C++ stream into a std::string type) . 297
tcp_connection.h (Declares the TCPConnection class) 298
tiny_int.h (Declares class for holding a SQL TINYINT) 299
transaction.h (Declares the Transaction class) 300
type_info.h (Declares classes that provide an interface between the

SQL and C++ type systems) 301
uds_connection.h (Declares the UnixDomainSocketConnection

class) . 303
vallist.h (Declares templates for holding lists of values) 304
wnp_connection.h (Declares the WindowsNamedPipeConnection

class) . 313

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

Chapter 5

MySQL++ Class

Documentation

5.1 AutoFlag< T > Class Template Reference

A template for setting a �ag on a variable as long as the object that set it is in
scope. Flag resets when object goes out of scope. Works on anything that looks
like bool.
#include <autoflag.h>

Collaboration diagram for AutoFlag< T >:

AutoFlag< T >

T

referent_

Public Member Functions

� AutoFlag (T &ref)
Constructor: sets ref to true.

� ∼AutoFlag ()
Destructor: sets referent passed to ctor to false.

16 MySQL++ Class Documentation

5.1.1 Detailed Description

template<class T = bool> class AutoFlag< T >

A template for setting a �ag on a variable as long as the object that set it is in
scope. Flag resets when object goes out of scope. Works on anything that looks
like bool.
The documentation for this class was generated from the following �le:

� auto�ag.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.2 mysqlpp::BadConversion Class Reference 17

5.2 mysqlpp::BadConversion Class Reference

Exception(p. 84) thrown when a bad type conversion is attempted.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadConversion:

mysqlpp::BadConversion

mysqlpp::Exception

Collaboration diagram for mysqlpp::BadConversion:

mysqlpp::BadConversion

mysqlpp::Exception

Public Member Functions

� BadConversion (const char ∗tn, const char ∗d, size_t r, size_t a)
Create exception object, building error string dynamically.

� BadConversion (const std::string &w, const char ∗tn, const char ∗d,
size_t r, size_t a)

Create exception object, given completed error string.

� BadConversion (const char ∗w="")
Create exception object, with error string only.

� ∼BadConversion () throw ()
Destroy exception.

Public Attributes

� const char ∗ type_name
name of type we tried to convert to

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

18 MySQL++ Class Documentation

� std::string data
string form of data we tried to convert

� size_t retrieved
documentation needed!

� size_t actual_size
documentation needed!

5.2.1 Detailed Description

Exception(p. 84) thrown when a bad type conversion is attempted.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 mysqlpp::BadConversion::BadConversion (const char ∗ tn,
const char ∗ d, size_t r, size_t a) [inline]

Create exception object, building error string dynamically.

Parameters:
tn type name we tried to convert to
d string form of data we tried to convert
r ??
a ??

5.2.2.2 mysqlpp::BadConversion::BadConversion (const std::string
& w, const char ∗ tn, const char ∗ d, size_t r, size_t a)
[inline]

Create exception object, given completed error string.

Parameters:
w the "what" error string
tn type name we tried to convert to
d string form of data we tried to convert
r ??
a ??

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.2 mysqlpp::BadConversion Class Reference 19

5.2.2.3 mysqlpp::BadConversion::BadConversion (const char ∗ w =
"") [inline, explicit]

Create exception object, with error string only.

Parameters:
w the "what" error string

All other data members are initialize to default values
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

20 MySQL++ Class Documentation

5.3 mysqlpp::BadFieldName Class Reference

Exception(p. 84) thrown when a requested named �eld doesn't exist.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadFieldName:

mysqlpp::BadFieldName

mysqlpp::Exception

Collaboration diagram for mysqlpp::BadFieldName:

mysqlpp::BadFieldName

mysqlpp::Exception

Public Member Functions

� BadFieldName (const char ∗bad_�eld)
Create exception object.

� ∼BadFieldName () throw ()
Destroy exception.

5.3.1 Detailed Description

Exception(p. 84) thrown when a requested named �eld doesn't exist.
Thrown by Row::lookup_by_name() when you pass a �eld name that isn't in
the result set.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 mysqlpp::BadFieldName::BadFieldName (const char ∗
bad_�eld) [inline, explicit]

Create exception object.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.3 mysqlpp::BadFieldName Class Reference 21

Parameters:
bad_�eld name of �eld the database server didn't like

The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

22 MySQL++ Class Documentation

5.4 mysqlpp::BadIndex Class Reference

Exception(p. 84) thrown when an object with operator [] or an at() method
gets called with a bad index.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadIndex:

mysqlpp::BadIndex

mysqlpp::Exception

Collaboration diagram for mysqlpp::BadIndex:

mysqlpp::BadIndex

mysqlpp::Exception

Public Member Functions

� BadIndex (const char ∗what, int bad_index, int max_index)
Create exception object.

� ∼BadIndex () throw ()
Destroy exception.

5.4.1 Detailed Description

Exception(p. 84) thrown when an object with operator [] or an at() method
gets called with a bad index.

5.4.2 Constructor & Destructor Documentation

5.4.2.1 mysqlpp::BadIndex::BadIndex (const char ∗ what, int
bad_index, int max_index) [inline, explicit]

Create exception object.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.4 mysqlpp::BadIndex Class Reference 23

Parameters:
bad_index type of object bad index tried on
bad_index index value the container didn't like
max_index largest legal index value for container

The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

24 MySQL++ Class Documentation

5.5 mysqlpp::BadOption Class Reference

Exception(p. 84) thrown when you pass an unrecognized option to
Connection::set_option()(p. 43).
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadOption:

mysqlpp::BadOption

mysqlpp::Exception

Collaboration diagram for mysqlpp::BadOption:

mysqlpp::BadOption

mysqlpp::Exception

Public Member Functions

� BadOption (const char ∗w, const std::type_info &ti)
Create exception object, taking C string.

� BadOption (const std::string &w, const std::type_info &ti)
Create exception object, taking C++ string.

� const std::type_info & what_option () const
Return type information about the option that failed.

5.5.1 Detailed Description

Exception(p. 84) thrown when you pass an unrecognized option to
Connection::set_option()(p. 43).

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.5 mysqlpp::BadOption Class Reference 25

5.5.2 Member Function Documentation

5.5.2.1 const std::type_info& mysqlpp::BadOption::what_option
() const [inline]

Return type information about the option that failed.
Because each option has its own C++ type, this lets you distinguish among
BadOption(p. 24) exceptions programmatically.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

26 MySQL++ Class Documentation

5.6 mysqlpp::BadParamCount Class Reference

Exception(p. 84) thrown when not enough query parameters are provided.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadParamCount:

mysqlpp::BadParamCount

mysqlpp::Exception

Collaboration diagram for mysqlpp::BadParamCount:

mysqlpp::BadParamCount

mysqlpp::Exception

Public Member Functions

� BadParamCount (const char ∗w="")
Create exception object.

� ∼BadParamCount () throw ()
Destroy exception.

5.6.1 Detailed Description

Exception(p. 84) thrown when not enough query parameters are provided.
This is used in handling template queries.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.7 mysqlpp::BadQuery Class Reference 27

5.7 mysqlpp::BadQuery Class Reference

Exception(p. 84) thrown when the database server encounters a problem while
processing your query.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadQuery:

mysqlpp::BadQuery

mysqlpp::Exception

Collaboration diagram for mysqlpp::BadQuery:

mysqlpp::BadQuery

mysqlpp::Exception

Public Member Functions

� BadQuery (const char ∗w="", int e=0)
Create exception object.

� BadQuery (const std::string &w, int e=0)
Create exception object.

� int errnum () const
Return the error number corresponding to the error message returned by
what()(p. 84).

5.7.1 Detailed Description

Exception(p. 84) thrown when the database server encounters a problem while
processing your query.
Unlike most other MySQL++ exceptions, which carry just an error message,
this type carries an error number to preserve Connection::errnum()(p. 36)'s
return value at the point the exception is thrown. We do this because when

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

28 MySQL++ Class Documentation

using the Transaction(p. 238) class, the rollback process that occurs during
stack unwinding issues a query to the database server, overwriting the error
value. This rollback should always succeed, so this e�ect can fool code that
relies on Connection::errnum()(p. 36) into believing that there was no error.
Beware that in older versions of MySQL++, this was e�ectively the generic
exception type. (This is most especially true in v1.7.x, but it continued to a
lesser extent through the v2.x series.) When converting old code to new versions
of MySQL++, it's therefore possible to get seemingly "new" exceptions thrown,
which could crash your program if you don't also catch a more generic type like
mysqlpp::Exception(p. 84) or std::exception.

5.7.2 Constructor & Destructor Documentation

5.7.2.1 mysqlpp::BadQuery::BadQuery (const char ∗ w = "", int e
= 0) [inline, explicit]

Create exception object.

Parameters:
w explanation for why the exception was thrown
e the error number from the underlying database API

5.7.2.2 mysqlpp::BadQuery::BadQuery (const std::string & w, int e
= 0) [inline, explicit]

Create exception object.

Parameters:
w explanation for why the exception was thrown
e the error number from the underlying database API

5.7.3 Member Function Documentation

5.7.3.1 int mysqlpp::BadQuery::errnum () const [inline]

Return the error number corresponding to the error message returned by
what()(p. 84).
This may return the same value as Connection::errnum()(p. 36), but not
always. See the overview documentation for this class for the reason for the
di�erence.
The documentation for this class was generated from the following �le:

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.7 mysqlpp::BadQuery Class Reference 29

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

30 MySQL++ Class Documentation

5.8 mysqlpp::BeecryptMutex Class Reference

Wrapper around platform-speci�c mutexes.
#include <beemutex.h>

Public Member Functions

� BeecryptMutex () throw (MutexFailed)
Create the mutex object.

� ∼BeecryptMutex ()
Destroy the mutex.

� void lock () throw (MutexFailed)
Acquire the mutex, blocking if it can't be acquired immediately.

� bool trylock () throw (MutexFailed)
Acquire the mutex immediately and return true, or return false if it would
have to block to acquire the mutex.

� void unlock () throw (MutexFailed)
Release the mutex.

5.8.1 Detailed Description

Wrapper around platform-speci�c mutexes.
This class is only intended to be used within the library. We don't really want
to support this as a general purpose class. If it works for you as-is, that's
great, we won't try to stop you. But if you run into a problem that doesn't
a�ect MySQL++ itself, we're not likely to bother enhancing this class to �x the
problem.

5.8.2 Constructor & Destructor Documentation

5.8.2.1 mysqlpp::BeecryptMutex::BeecryptMutex () throw
(MutexFailed)

Create the mutex object.
Throws a MutexFailed(p. 101) exception if we can't acquire the lock for some
reason. The exception contains a message saying why.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.8 mysqlpp::BeecryptMutex Class Reference 31

5.8.2.2 mysqlpp::BeecryptMutex::∼BeecryptMutex ()

Destroy the mutex.
Failures are quietly ignored.
The documentation for this class was generated from the following �les:

� beemutex.h
� beemutex.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

32 MySQL++ Class Documentation

5.9 Comparable< T > Class Template Reference

Mix-in that gives its subclass a full set of comparison operators.
#include <comparable.h>

Inheritance diagram for Comparable< T >:
Comparable< T >

Comparable< DateTime >

< DateTime >

Comparable< Time >

< Time >

Comparable< Date >

< Date >

mysqlpp::DateTime mysqlpp::Time mysqlpp::Date

Public Member Functions

� bool operator== (const T &other) const
Returns true if "other" is equal to this object.

� bool operator!= (const T &other) const
Returns true if "other" is not equal to this object.

� bool operator< (const T &other) const
Returns true if "other" is less than this object.

� bool operator<= (const T &other) const
Returns true if "other" is less than or equal to this object.

� bool operator> (const T &other) const
Returns true if "other" is greater than this object.

� bool operator>= (const T &other) const
Returns true if "other" is greater than or equal to this object.

Protected Member Functions

� virtual ∼Comparable ()
Destroy object.

� virtual int compare (const T &other) const =0

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.9 Comparable< T > Class Template Reference 33

Compare this object to another of the same type.

5.9.1 Detailed Description

template<class T> class Comparable< T >

Mix-in that gives its subclass a full set of comparison operators.
Simply by inheriting publically from this and implementing compare()(p. 33),
the subclass gains a full set of comparison operators, because all of the operators
are implemented in terms of compare()(p. 33).

5.9.2 Constructor & Destructor Documentation

5.9.2.1 template<class T> virtual Comparable< T >::∼Comparable
() [inline, protected, virtual]

Destroy object.
This class has nothing to destroy, but declaring the dtor virtual placates some
compilers set to high warning levels. Protecting it ensures you can't delete
subclasses through base class pointers, which makes no sense because this class
isn't made for polymorphism. It's just a mixin.

5.9.3 Member Function Documentation

5.9.3.1 template<class T> virtual int Comparable< T >::compare
(const T & other) const [protected, pure virtual]

Compare this object to another of the same type.
Returns < 0 if this object is "before" the other, 0 of they are equal, and > 0 if
this object is "after" the other.
Implemented in mysqlpp::DateTime (p. 61), mysqlpp::Date (p. 56), and
mysqlpp::Time (p. 231).
The documentation for this class was generated from the following �le:

� comparable.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

34 MySQL++ Class Documentation

5.10 mysqlpp::CompressOption Class Reference

Enable data compression on the connection.
#include <options.h>

Inheritance diagram for mysqlpp::CompressOption:

mysqlpp::CompressOption

mysqlpp::Option

Collaboration diagram for mysqlpp::CompressOption:

mysqlpp::CompressOption

mysqlpp::Option

5.10.1 Detailed Description

Enable data compression on the connection.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.11 mysqlpp::Connection Class Reference 35

5.11 mysqlpp::Connection Class Reference

Manages the connection to the database server.
#include <connection.h>

Inheritance diagram for mysqlpp::Connection:

mysqlpp::Connection

mysqlpp::TCPConnection mysqlpp::UnixDomainSocketConnection mysqlpp::WindowsNamedPipeConnection

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::Connection:

mysqlpp::Connection

mysqlpp::OptionalExceptions mysqlpp::DBDriver

driver_

Public Member Functions

� Connection (bool te=true)
Create object without connecting to the database server.

� Connection (const char ∗db, const char ∗server=0, const char ∗user=0,
const char ∗password=0, unsigned int port=0)

Create object and connect to database server in one step.

� Connection (const Connection &other)
Establish a new connection using the same parameters as an existing con-
nection.

� virtual ∼Connection ()
Destroy object.

� std::string client_version () const
Get version of library underpinning the current database driver.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

36 MySQL++ Class Documentation

� virtual bool connect (const char ∗db=0, const char ∗server=0, const char
∗user=0, const char ∗password=0, unsigned int port=0)

Connect to database after object is created.

� bool connected () const
Returns true if connection was established successfully.

� ulonglong count_rows (const std::string &table)
Returns the number of rows in a table.

� bool create_db (const std::string &db)
Ask the database server to create a database.

� void disconnect ()
Drop the connection to the database server.

� DBDriver ∗ driver ()
Returns a reference to the current database driver.

� bool drop_db (const std::string &db)
Asks the database server to drop (destroy) a database.

� int errnum ()
Return last error number associated with this connection.

� const char ∗ error () const
Return error message for last error associated with this connection.

� std::string ipc_info () const
Get information about the IPC connection to the database server.

� bool kill (unsigned long tid) const
Kill a database server thread.

� operator private_bool_type () const
Test whether any error has occurred within the object.

� Connection & operator= (const Connection &rhs)
Copy an existing Connection(p. 35) object's state into this object.

� bool ping ()
"Pings" the database server

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.11 mysqlpp::Connection Class Reference 37

� int protocol_version () const
Returns version number of the protocol the database driver uses to commu-
nicate with the server.

� Query query (const char ∗qstr=0)
Return a new query object.

� Query query (const std::string &qstr)
Return a new query object.

� bool select_db (const std::string &db)
Change to a di�erent database managed by the database server we are con-
nected to.

� std::string server_version () const
Get the database server's version string.

� bool set_option (Option ∗o)
Sets a connection option.

� bool shutdown ()
Ask database server to shut down.

� std::string server_status () const
Returns information about database server's status.

� unsigned long thread_id ()
Returns the database server's thread ID for this connection.

Static Public Member Functions

� bool thread_aware ()
Returns true if both MySQL++ and database driver we're using were com-
piled with thread awareness.

� void thread_end ()
Tells the underlying database driver that this thread is done using the library.

� bool thread_start ()
Tells the underlying database driver that the current thread is now using its
services.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

38 MySQL++ Class Documentation

Protected Member Functions

� void build_error_message (const char ∗core)
Build an error message in the standard form used whenever one of the meth-
ods can't succeed because we're not connected to the database server.

� void copy (const Connection &other)
Establish a new connection as a copy of an existing one.

� bool parse_ipc_method (const char ∗server, std::string &host, un-
signed int &port, std::string &socket_name)

Extract elements from the server parameter in formats suitable for passing
to DBDriver::connect()(p. 68).

Protected Attributes

� std::string error_message_
MySQL++ speci�c error, if any.

5.11.1 Detailed Description

Manages the connection to the database server.
This class is a thick wrapper around DBDriver(p. 63), adding high-level error
handling, utility functions, and abstraction away from underlying C API details.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 mysqlpp::Connection::Connection (bool te = true)

Create object without connecting to the database server.

Parameters:
te if true, exceptions are thrown on errors

5.11.2.2 mysqlpp::Connection::Connection (const char ∗ db, const
char ∗ server = 0, const char ∗ user = 0, const char ∗
password = 0, unsigned int port = 0)

Create object and connect to database server in one step.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.11 mysqlpp::Connection Class Reference 39

This constructor allows you to most fully specify the options used when con-
necting to the database server.

Parameters:
db name of database to select upon connection
server speci�es the IPC method and parameters for contacting the server;

see below for details
user user name to log in under, or 0 to use the user name this program is

running under
password password to use when logging in
port TCP port number database server is listening on, or 0 to use default

value; note that you may also give this as part of the server parameter

The server parameter can be any of several di�erent forms:

� 0: Let the database driver decide how to connect; usually some sort of
localhost IPC method.

� ".": On Windows, this means named pipes, if the server supports it

� "/some/domain/socket/path": If the passed string doesn't match one
of the previous alternatives and we're on a system that supports Unix
domain sockets, MySQL++ will test it to see if it names one, and use it
if we have permission.

� "host.name.or.ip:port": If the previous test fails, or if the system
doesn't support Unix domain sockets at all, it assumes the string is some
kind of network address, optionally followed by a colon and port. The
name can be in dotted quad form, a host name, or a domain name. The
port can either be a TCP/IP port number or a symbolic service name. If
a port or service name is given here and a nonzero value is passed for the
port parameter, the latter takes precedence.

5.11.2.3 mysqlpp::Connection::Connection (const Connection &
other)

Establish a new connection using the same parameters as an existing connection.

Parameters:
other existing Connection(p. 35) object

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

40 MySQL++ Class Documentation

5.11.3 Member Function Documentation

5.11.3.1 bool mysqlpp::Connection::connect (const char ∗ db = 0,
const char ∗ server = 0, const char ∗ user = 0, const char
∗ password = 0, unsigned int port = 0) [virtual]

Connect to database after object is created.
It's better to use the connect-on-create constructor if you can. See its documen-
tation for the meaning of these parameters.
If you call this method on an object that is already connected to a database
server, the previous connection is dropped and a new connection is established.

5.11.3.2 bool mysqlpp::Connection::connected () const

Returns true if connection was established successfully.

Returns:
true if connection was established successfully

5.11.3.3 void mysqlpp::Connection::copy (const Connection &
other) [protected]

Establish a new connection as a copy of an existing one.

Parameters:
other the connection to copy

5.11.3.4 ulonglong mysqlpp::Connection::count_rows (const
std::string & table)

Returns the number of rows in a table.

Parameters:
table name of table whose rows you want counted

This is syntactic sugar for a SELECT COUNT(∗) FROM table SQL query.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.11 mysqlpp::Connection Class Reference 41

5.11.3.5 bool mysqlpp::Connection::create_db (const std::string &
db)

Ask the database server to create a database.

Parameters:
db name of database to create

Returns:
true if database was created successfully

5.11.3.6 DBDriver∗ mysqlpp::Connection::driver () [inline]

Returns a reference to the current database driver.

5.11.3.7 bool mysqlpp::Connection::drop_db (const std::string &
db)

Asks the database server to drop (destroy) a database.

Parameters:
db name of database to destroy

Returns:
true if database was dropped successfully

5.11.3.8 const char ∗ mysqlpp::Connection::error () const

Return error message for last error associated with this connection.
Returns either a MySQL++-speci�c error message if one exists, or one from the
current database driver otherwise.

5.11.3.9 std::string mysqlpp::Connection::ipc_info () const

Get information about the IPC connection to the database server.
String(p. 212) contains info about type of connection (e.g. TCP/IP, named
pipe, Unix socket...) and the server hostname.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

42 MySQL++ Class Documentation

5.11.3.10 bool mysqlpp::Connection::kill (unsigned long tid) const

Kill a database server thread.
Parameters:

tid ID of thread to kill
See also:

thread_id()(p. 44)

5.11.3.11 mysqlpp::Connection::operator private_bool_type ()
const [inline]

Test whether any error has occurred within the object.
Allows the object to be used in bool context, like this:

Connection conn;
.... use conn
if (conn) {

... nothing bad has happened since last successful use
}
else {

... some error has occurred
}

Prior to MySQL++ v3, the object was always falsy when we weren't connected.
Now a true return simply indicates a lack of errors. If you've been using this to
test for whether the connection is still up, you need to call connected()(p. 40)
instead.

5.11.3.12 bool mysqlpp::Connection::ping ()

"Pings" the database server

Return values:
true if server is responding
false if either we already know the connection is down and cannot re-

establish it, or if the server did not respond to the ping and we could
not re-establish the connection.

5.11.3.13 Query mysqlpp::Connection::query (const std::string &
qstr)

Return a new query object.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.11 mysqlpp::Connection Class Reference 43

Parameters:
qstr initial query string

5.11.3.14 Query mysqlpp::Connection::query (const char ∗ qstr =
0)

Return a new query object.
The returned query object is tied to this connection object, so when you call a
method like execute() (p. 135) on that object, the query is sent to the server
this object is connected to.

Parameters:
qstr an optional query string for populating the new Query(p. 125) object

5.11.3.15 bool mysqlpp::Connection::select_db (const std::string &
db)

Change to a di�erent database managed by the database server we are connected
to.

Parameters:
db database to switch to

Return values:
true if we changed databases successfully

5.11.3.16 bool mysqlpp::Connection::set_option (Option ∗ o)

Sets a connection option.

Parameters:
o pointer to any derivative of Option(p. 121) allocated on the heap

Objects passed to this method and successfully set will be released when this
Connection(p. 35) object is destroyed. If an error occurs while setting the
option the object will be deleted immediately.
Because there are so many Option(p. 121) subclasses, the actual e�ect of this
function has a wide range. This mechanism abstracts away many things that
are unrelated down at the database driver level, hiding them behind a coherent,
type-safe interface.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

44 MySQL++ Class Documentation

The rules about which options can be set, when, are up to the underlying
database driver. Some must be set before the connection is established because
they can only be used during that connection setup process. Others can be set
at any time after the connection comes up. If you get it wrong, you'll get a
BadOption(p. 24) exception.

Return values:
true if option was successfully set

5.11.3.17 unsigned long mysqlpp::Connection::thread_id ()

Returns the database server's thread ID for this connection.
This has nothing to do with threading on the client side. The only thing you
can do with this value is pass it to kill()(p. 42).

5.11.3.18 bool mysqlpp::Connection::thread_start () [static]

Tells the underlying database driver that the current thread is now using its
services.
It's not necessary to call this from the thread that creates the connection as it's
done automatically. This method exists for times when multiple threads may
use this object; it allows the underlying database driver to set up any per-thread
data structures it needs.
The MySQL++ user manual's chapter on threads details two major strate-
gies for dealing with connections in the face of threads. The Connection-per-
thread option frees you from ever having to call this method. The other docu-
mented strategy is to use ConnectionPool(p. 47), which opens the possibility
for one thread to create a connection that another uses, so you do need to call
this method in that case, or with any other similar strategy.

Return values:
True if there was no problem

The documentation for this class was generated from the following �les:

� connection.h
� connection.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.12 mysqlpp::ConnectionFailed Class Reference 45

5.12 mysqlpp::ConnectionFailed Class Reference

Exception(p. 84) thrown when there is a problem related to the database server
connection.
#include <exceptions.h>

Inheritance diagram for mysqlpp::ConnectionFailed:

mysqlpp::ConnectionFailed

mysqlpp::Exception

Collaboration diagram for mysqlpp::ConnectionFailed:

mysqlpp::ConnectionFailed

mysqlpp::Exception

Public Member Functions

� ConnectionFailed (const char ∗w="", int e=0)
Create exception object.

� int errnum () const
Return the error number corresponding to the error message returned by
what()(p. 84), if any.

5.12.1 Detailed Description

Exception(p. 84) thrown when there is a problem related to the database server
connection.
This is thrown not just on making the connection, but also on shutdown and
when calling certain of Connection's methods that require a connection when
there isn't one.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

46 MySQL++ Class Documentation

5.12.2 Constructor & Destructor Documentation

5.12.2.1 mysqlpp::ConnectionFailed::ConnectionFailed (const char
∗ w = "", int e = 0) [inline, explicit]

Create exception object.

Parameters:
w explanation for why the exception was thrown
e the error number from the underlying database API

5.12.3 Member Function Documentation

5.12.3.1 int mysqlpp::ConnectionFailed::errnum () const [inline]

Return the error number corresponding to the error message returned by
what()(p. 84), if any.
If the error number is 0, it means that the error message doesn't come from
the underlying database API, but rather from MySQL++ itself. This happens
when an error condition is detected up at this higher level instead of letting the
underlying database API do it.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.13 mysqlpp::ConnectionPool Class Reference 47

5.13 mysqlpp::ConnectionPool Class Reference

Manages a pool of connections for programs that need more than one Connec-
tion(p. 35) object at a time, but can't predict how many they need in advance.
#include <cpool.h>

Collaboration diagram for mysqlpp::ConnectionPool:

mysqlpp::ConnectionPool

mysqlpp::BeecryptMutex

mutex_

Public Member Functions

� ConnectionPool ()
Create empty pool.

� virtual ∼ConnectionPool ()
Destroy object.

� bool empty () const
Returns true if pool is empty.

� virtual Connection ∗ grab ()
Grab a free connection from the pool.

� virtual void release (const Connection ∗pc)
Return a connection to the pool.

� void shrink ()
Remove all unused connections from the pool.

Protected Member Functions

� void clear (bool all=true)
Drains the pool, freeing all allocated memory.

� virtual Connection ∗ create ()=0
Create a new connection.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

48 MySQL++ Class Documentation

� virtual void destroy (Connection ∗)=0
Destroy a connection.

� virtual unsigned int max_idle_time ()=0
Returns the maximum number of seconds a connection is able to remain idle
before it is dropped.

� size_t size () const
Returns the current size of the internal connection pool.

5.13.1 Detailed Description

Manages a pool of connections for programs that need more than one Connec-
tion(p. 35) object at a time, but can't predict how many they need in advance.
This class is useful in programs that need to make multiple simultaneous queries
on the database; this requires multiple Connection(p. 35) objects due to a hard
limitation of the underlying C API. Connection(p. 35) pools are most useful in
multithreaded programs, but it can be helpful to have one in a single-threaded
program as well. Sometimes it's necessary to get more data from the server while
in the middle of processing data from an earlier query; this requires multiple
connections. Whether you use a pool or manage connections yourself is up to
you, but realize that this class takes care of a lot of subtle details for you that
aren't obvious.
The pool's policy for connection reuse is to always return the most recently
used connection that's not being used right now. This ensures that excess
connections don't hang around any longer than they must. If the pool were to
return the least recently used connection, it would be likely to result in a large
pool of sparsely used connections because we'd keep resetting the last-used time
of whichever connection is least recently used at that moment.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 virtual mysqlpp::ConnectionPool::∼ConnectionPool ()
[inline, virtual]

Destroy object.
If the pool raises an assertion on destruction, it means our subclass isn't calling
clear()(p. 49) in its dtor as it should.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.13 mysqlpp::ConnectionPool Class Reference 49

5.13.3 Member Function Documentation

5.13.3.1 void mysqlpp::ConnectionPool::clear (bool all = true)
[protected]

Drains the pool, freeing all allocated memory.
A derived class must call this in its dtor to avoid leaking all Connection(p. 35)
objects still in existence. We can't do it up at this level because this class's dtor
can't call our subclass's destroy()(p. 49) method.

Parameters:
all if true, remove all connections, even those in use

5.13.3.2 virtual Connection∗ mysqlpp::ConnectionPool::create ()
[protected, pure virtual]

Create a new connection.
Subclasses must override this.
Essentially, this method lets your code tell ConnectionPool(p. 47) what server
to connect to, what login parameters to use, what connection options to enable,
etc. ConnectionPool(p. 47) can't know any of this without your help.

Return values:
A connected Connection(p. 35) object

5.13.3.3 virtual void mysqlpp::ConnectionPool::destroy
(Connection ∗) [protected, pure virtual]

Destroy a connection.
Subclasses must override this.
This is for destroying the objects returned by create()(p. 49). Because we can't
know what the derived class did to create the connection we can't reliably know
how to destroy it.

5.13.3.4 Connection ∗ mysqlpp::ConnectionPool::grab () [virtual]

Grab a free connection from the pool.
This method creates a new connection if an unused one doesn't exist, and de-
stroys any that have remained unused for too long. If there is more than one free

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

50 MySQL++ Class Documentation

connection, we return the most recently used one; this allows older connections
to die o� over time when the caller's need for connections decreases.
Do not delete the returned pointer. This object manages the lifetime of connec-
tion objects it creates.

Return values:
a pointer to the connection

5.13.3.5 virtual unsigned int mysqlpp::Connection-
Pool::max_idle_time () [protected, pure
virtual]

Returns the maximum number of seconds a connection is able to remain idle
before it is dropped.
Subclasses must override this as it encodes a policy issue, something that My-
SQL++ can't declare by �at.

Return values:
number of seconds before an idle connection is destroyed due to lack of

use

5.13.3.6 void mysqlpp::ConnectionPool::release (const Connection
∗ pc) [virtual]

Return a connection to the pool.
Marks the connection as no longer in use.
The pool updates the last-used time of a connection only on release, on the
assumption that it was used just prior. There's nothing forcing you to do it this
way: your code is free to delay releasing idle connections as long as it likes. You
want to avoid this because it will make the pool perform poorly; if it doesn't
know approximately how long a connection has really been idle, it can't make
good judgements about when to remove it from the pool.
The documentation for this class was generated from the following �les:

� cpool.h
� cpool.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.14 mysqlpp::ConnectTimeoutOption Class Reference 51

5.14 mysqlpp::ConnectTimeoutOption Class

Reference

Change Connection::connect()(p. 40) default timeout.
#include <options.h>

Inheritance diagram for mysqlpp::ConnectTimeoutOption:

mysqlpp::ConnectTimeoutOption

IntegerOption

mysqlpp::Option

mysqlpp::DataOption< T >

< unsigned >

Collaboration diagram for mysqlpp::ConnectTimeoutOption:

mysqlpp::ConnectTimeoutOption

IntegerOption

mysqlpp::Option

mysqlpp::DataOption< T >

< unsigned >

T

arg_

5.14.1 Detailed Description

Change Connection::connect()(p. 40) default timeout.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

52 MySQL++ Class Documentation

5.15 mysqlpp::DataOption< T > Class Template

Reference

De�ne abstract interface for all ∗Options that take a lone scalar as an argument.
#include <options.h>

Inheritance diagram for mysqlpp::DataOption< T >:

mysqlpp::DataOption< T >

mysqlpp::IgnoreSpaceOption< bool >

mysqlpp::InitCommandOption

mysqlpp::LocalFilesOption< bool >

mysqlpp::MultiResultsOption< bool >

mysqlpp::MultiStatementsOption< bool >

mysqlpp::ReadDefaultFileOption

mysqlpp::ReadDefaultGroupOption

mysqlpp::SetCharsetDirOption

mysqlpp::SetCharsetNameOption

mysqlpp::SetClientIpOption

mysqlpp::SharedMemoryBaseNameOption

mysqlpp::WriteTimeoutOption< unsigned >

mysqlpp::DataOption< unsigned >

< unsigned >

mysqlpp::DataOption< bool >

< bool >

mysqlpp::Option

Collaboration diagram for mysqlpp::DataOption< T >:

mysqlpp::DataOption< T >

mysqlpp::Option T

arg_

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.15 mysqlpp::DataOption< T > Class Template Reference 53

Public Types

� typedef T ArgType
Alias for template param.

Protected Member Functions

� DataOption (const T &arg)
Construct object.

Protected Attributes

� T arg_
The argument value.

5.15.1 Detailed Description

template<typename T> class mysqlpp::DataOption< T >

De�ne abstract interface for all ∗Options that take a lone scalar as an argument.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

54 MySQL++ Class Documentation

5.16 mysqlpp::Date Class Reference

C++ form of SQL's DATE type.
#include <datetime.h>

Inheritance diagram for mysqlpp::Date:

mysqlpp::Date

Comparable< Date >

Comparable< T >

< Date >

Collaboration diagram for mysqlpp::Date:

mysqlpp::Date

Comparable< Date >

Comparable< T >

< Date >

Public Member Functions

� Date ()
Default constructor.

� Date (unsigned short y, unsigned char m, unsigned char d)
Initialize object.

� Date (const Date &other)
Initialize object as a copy of another Date(p. 54).

� Date (const DateTime &other)
Initialize object from date part of date/time object.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.16 mysqlpp::Date Class Reference 55

� Date (const char ∗str)
Initialize object from a C string containing a date.

� template<class Str> Date (const Str &str)
Initialize object from a C++ string containing a date.

� Date (time_t t)
Initialize object from a time_t.

� int compare (const Date &other) const
Compare this date to another.

� const char ∗ convert (const char ∗)
Parse a SQL date string into this object.

� unsigned char day () const
Get the date's day part, 1-31.

� void day (unsigned char d)
Change the date's day part, 1-31.

� unsigned char month () const
Get the date's month part, 1-12.

� void month (unsigned char m)
Change the date's month part, 1-12.

� operator std::string () const
Convert to std::string.

� operator time_t () const
Convert to time_t.

� std::string str () const
Return our value in std::string form.

� unsigned short year () const
Get the date's year part.

� void year (unsigned short y)
Change the date's year part.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

56 MySQL++ Class Documentation

5.16.1 Detailed Description

C++ form of SQL's DATE type.
Objects of this class can be inserted into streams, and initialized from SQL
DATE strings.

5.16.2 Constructor & Destructor Documentation

5.16.2.1 mysqlpp::Date::Date (const char ∗ str) [inline, explicit]

Initialize object from a C string containing a date.
String(p. 212) must be in the YYYY-MM-DD format. It doesn't have to be
zero-padded.

5.16.2.2 template<class Str> mysqlpp::Date::Date (const Str &
str) [inline, explicit]

Initialize object from a C++ string containing a date.
This works with any stringish class that declares a c_str() member function:
std::string, mysqlpp::String(p. 212)...

See also:
Date(const char∗)(p. 56)

5.16.2.3 mysqlpp::Date::Date (time_t t) [explicit]

Initialize object from a time_t.
Naturally, we throw away the "time" part of the time_t. If you need to keep
it, you want to use DateTime(p. 58) instead.

5.16.3 Member Function Documentation

5.16.3.1 int mysqlpp::Date::compare (const Date & other) const
[virtual]

Compare this date to another.
Returns < 0 if this date is before the other, 0 of they are equal, and > 0 if this
date is after the other.
Implements Comparable< Date > (p. 33).

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.16 mysqlpp::Date Class Reference 57

5.16.3.2 mysqlpp::Date::operator time_t () const

Convert to time_t.
The "time" part of the time_t is "now"

5.16.3.3 void mysqlpp::Date::year (unsigned short y) [inline]

Change the date's year part.
Pass the year value normally; we don't optimize the value by subtracting 1900
like some other date implementations.

5.16.3.4 unsigned short mysqlpp::Date::year () const [inline]

Get the date's year part.
There's no trickery here like in some date implementations where you have to
add 1900 or something like that.
The documentation for this class was generated from the following �les:

� datetime.h
� datetime.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

58 MySQL++ Class Documentation

5.17 mysqlpp::DateTime Class Reference

C++ form of SQL's DATETIME type.
#include <datetime.h>

Inheritance diagram for mysqlpp::DateTime:

mysqlpp::DateTime

Comparable< DateTime >

Comparable< T >

< DateTime >

Collaboration diagram for mysqlpp::DateTime:

mysqlpp::DateTime

Comparable< DateTime >

Comparable< T >

< DateTime >

Public Member Functions

� DateTime ()
Default constructor.

� DateTime (unsigned short y, unsigned char mon, unsigned char d, un-
signed char h, unsigned char min, unsigned char s)

Initialize object from discrete y/m/d h:m:s values.

� DateTime (const DateTime &other)
Initialize object as a copy of another Date(p. 54).

� DateTime (const char ∗str)
Initialize object from a C string containing a SQL date-and-time string.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DateTime Class Reference 59

� template<class Str> DateTime (const Str &str)
Initialize object from a C++ string containing a SQL date-and-time string.

� DateTime (time_t t)
Initialize object from a time_t.

� int compare (const DateTime &other) const
Compare this object to another.

� const char ∗ convert (const char ∗)
Parse a SQL date and time string into this object.

� unsigned char day () const
Get the date/time value's day part, 1-31.

� void day (unsigned char d)
Change the date/time value's day part, 1-31.

� unsigned char hour () const
Get the date/time value's hour part, 0-23.

� void hour (unsigned char h)
Change the date/time value's hour part, 0-23.

� bool is_now () const
Returns true if object will evaluate to SQL "NOW()" on conversion to string.

� unsigned char minute () const
Get the date/time value's minute part, 0-59.

� void minute (unsigned char m)
Change the date/time value's minute part, 0-59.

� unsigned char month () const
Get the date/time value's month part, 1-12.

� void month (unsigned char m)
Change the date/time value's month part, 1-12.

� operator std::string () const
Convert to std::string.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

60 MySQL++ Class Documentation

� operator time_t () const
Convert to time_t.

� unsigned char second () const
Get the date/time value's second part, 0-59.

� void second (unsigned char s)
Change the date/time value's second part, 0-59.

� std::string str () const
Return our value in std::string form.

� unsigned short year () const
Get the date/time value's year part.

� void year (unsigned short y)
Change the date/time value's year part.

Static Public Member Functions

� DateTime now ()
Factory to create an object instance that will convert to SQL "NOW()" on
insertion into a query.

5.17.1 Detailed Description

C++ form of SQL's DATETIME type.
This object exists primarily for conversion purposes. You can initialize it in
several di�erent ways, and then convert the object to SQL string form, extract
the individual y/m/d h:m:s values, convert it to C's time_t, etc.

5.17.2 Constructor & Destructor Documentation

5.17.2.1 mysqlpp::DateTime::DateTime (unsigned short y,
unsigned char mon, unsigned char d, unsigned char h,
unsigned char min, unsigned char s) [inline]

Initialize object from discrete y/m/d h:m:s values.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DateTime Class Reference 61

Parameters:
y year_
mon month_
d day_ of month_
h hour_
min minute_
s second_

5.17.2.2 mysqlpp::DateTime::DateTime (const char ∗ str) [inline,
explicit]

Initialize object from a C string containing a SQL date-and-time string.
String(p. 212) must be in the HH:MM:SS format. It doesn't have to be zero-
padded.

5.17.2.3 template<class Str> mysqlpp::DateTime::DateTime (const
Str & str) [inline, explicit]

Initialize object from a C++ string containing a SQL date-and-time string.
This works with any stringish class that declares a c_str() member function:
std::string, mysqlpp::String(p. 212)...
See also:

DateTime(const char∗)(p. 61)

5.17.3 Member Function Documentation

5.17.3.1 int mysqlpp::DateTime::compare (const DateTime &
other) const [virtual]

Compare this object to another.
Returns < 0 if this object is before the other, 0 of they are equal, and > 0 if
this object is after the other.
Implements Comparable< DateTime > (p. 33).

5.17.3.2 DateTime mysqlpp::DateTime::now () [inline, static]

Factory to create an object instance that will convert to SQL "NOW()" on
insertion into a query.
This is just syntactic sugar around the default ctor

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

62 MySQL++ Class Documentation

5.17.3.3 void mysqlpp::DateTime::year (unsigned short y)
[inline]

Change the date/time value's year part.
Pass the year value normally; we don't optimize the value by subtracting 1900
like some other date/time implementations.

5.17.3.4 unsigned short mysqlpp::DateTime::year () const
[inline]

Get the date/time value's year part.
There's no trickery here like in some date/time implementations where you have
to add 1900 or something like that.
The documentation for this class was generated from the following �les:

� datetime.h
� datetime.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 63

5.18 mysqlpp::DBDriver Class Reference

Provides a thin abstraction layer over the underlying database client library.
#include <dbdriver.h>

Public Types

� enum nr_code { nr_more_results, nr_last_result, nr_error,
nr_not_supported }

Result code returned by next_result()(p. 73).

Public Member Functions

� DBDriver ()
Create object.

� DBDriver (const DBDriver &other)
Duplicate an existing driver.

� virtual ∼DBDriver ()
Destroy object.

� ulonglong a�ected_rows ()
Return the number of rows a�ected by the last query.

� std::string client_version () const
Get database client library version.

� bool connect (const MYSQL &mysql)
Establish a new connection using the same parameters as an existing con-
nection.

� virtual bool connect (const char ∗host, const char ∗socket_name, un-
signed int port, const char ∗db, const char ∗user, const char ∗password)

Connect to database server.

� bool connected () const
Return true if we have an active connection to the database server.

� void copy (const DBDriver &other)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

64 MySQL++ Class Documentation

Establish a new connection as a copy of an existing one.

� bool create_db (const char ∗db) const
Ask the database server to create a database.

� void data_seek (MYSQL_RES ∗res, ulonglong o�set) const
Seeks to a particualr row within the result set.

� void disconnect ()
Drop the connection to the database server.

� bool drop_db (const std::string &db) const
Drop a database.

� bool enable_ssl (const char ∗key=0, const char ∗cert=0, const char
∗ca=0, const char ∗capath=0, const char ∗cipher=0)

Enable SSL-encrypted connection.

� const char ∗ error ()
Return error message for last MySQL error associated with this connection.

� int errnum ()
Return last MySQL error number associated with this connection.

� size_t escape_string (char ∗to, const char ∗from, size_t length)
SQL-escapes the given string, taking into account the default character set
of the database server we're connected to.

� bool execute (const char ∗qstr, size_t length)
Executes the given query string.

� MYSQL_ROW fetch_row (MYSQL_RES ∗res) const
Returns the next raw C API row structure from the given result set.

� const unsigned long ∗ fetch_lengths (MYSQL_RES ∗res) const
Returns the lengths of the �elds in the current row from a "use" query.

� MYSQL_FIELD ∗ fetch_�eld (MYSQL_RES ∗res, size_t i=UINT_-
MAX) const

Returns information about a particular �eld in a result set.

� void �eld_seek (MYSQL_RES ∗res, size_t �eld) const
Jumps to the given �eld within the result set.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 65

� void free_result (MYSQL_RES ∗res) const
Releases memory used by a result set.

� st_mysql_options get_options () const
Return the connection options object.

� std::string ipc_info ()
Get information about the IPC connection to the database server.

� ulonglong insert_id ()
Get ID generated for an AUTO_INCREMENT column in the previous IN-
SERT query.

� bool kill (unsigned long tid)
Kill a MySQL server thread.

� bool more_results ()
Returns true if there are unconsumed results from the most recent query.

� nr_code next_result ()
Moves to the next result set from a multi-query.

� int num_�elds (MYSQL_RES ∗res) const
Returns the number of �elds in the given result set.

� ulonglong num_rows (MYSQL_RES ∗res) const
Returns the number of rows in the given result set.

� bool ping ()
"Pings" the MySQL database

� int protocol_version ()
Returns version number of MySQL protocol this connection is using.

� std::string query_info ()
Returns information about the last executed query.

� bool refresh (unsigned options)
Asks the database server to refresh certain internal data structures.

� bool result_empty ()

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

66 MySQL++ Class Documentation

Returns true if the most recent result set was empty.

� bool select_db (const char ∗db)
Asks the database server to switch to a di�erent database.

� std::string server_version ()
Get the database server's version number.

� std::string set_option (Option ∗o)
Sets a connection option.

� bool set_option (mysql_option moption, const void ∗arg=0)
Set(p. 182) MySQL C API connection option.

� bool set_option (unsigned int option, bool arg)
Set(p. 182) MySQL C API connection option.

� std::string set_option_default (Option ∗o)
Same as set_option()(p. 75), except that it won't override a previously-set
option.

� bool shutdown ()
Ask database server to shut down.

� std::string server_status ()
Returns the database server's status.

� MYSQL_RES ∗ store_result ()
Saves the results of the query just execute()(p. 71)d in memory and returns
a pointer to the MySQL C API data structure the results are stored in.

� unsigned long thread_id ()
Returns the MySQL server thread ID for this connection.

� MYSQL_RES ∗ use_result ()
Returns a result set from the last-executed query which we can walk through
in linear fashion, which doesn't store all result sets in memory.

Static Public Member Functions

� size_t escape_string_no_conn (char ∗to, const char ∗from, size_t
length)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 67

SQL-escapes the given string without reference to the character set of a
database server.

� bool thread_aware ()
Returns true if MySQL++ and the underlying MySQL C API library were
both compiled with thread awareness.

� void thread_end ()
Tells the underlying MySQL C API library that this thread is done using the
library.

� bool thread_start ()
Tells the underlying C API library that the current thread will be using the
library's services.

5.18.1 Detailed Description

Provides a thin abstraction layer over the underlying database client library.
This class does as little as possible to adapt between its public interface and the
interface required by the underlying C API. That is, in fact, its only mission.
The high-level interfaces indended for use by MySQL++ users are in Con-
nection(p. 35), Query(p. 125), Result, and ResUse, all of which delegate the
actual database communication to an object of this type, created by Connec-
tion(p. 35). If you really need access to the low-level database driver, get it via
Connection::driver()(p. 41); don't create DBDriver(p. 63) objects directly.
Currently this is a concrete class for wrapping the MySQL C API. In the fu-
ture, it may be turned into an abstract base class, with subclasses for di�erent
database server types.

5.18.2 Member Enumeration Documentation

5.18.2.1 enum mysqlpp::DBDriver::nr_code

Result code returned by next_result()(p. 73).

Enumeration values:
nr_more_results success, with more results to come
nr_last_result success, last result received
nr_error problem retrieving next result
nr_not_supported this C API doesn't support "next result"

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

68 MySQL++ Class Documentation

5.18.3 Constructor & Destructor Documentation

5.18.3.1 mysqlpp::DBDriver::DBDriver (const DBDriver & other)

Duplicate an existing driver.

Parameters:
other existing DBDriver(p. 63) object

This establishes a new database server connection with the same parameters as
the other driver's.

5.18.4 Member Function Documentation

5.18.4.1 ulonglong mysqlpp::DBDriver::a�ected_rows () [inline]

Return the number of rows a�ected by the last query.
Wraps mysql_affected_rows() in the MySQL C API.

5.18.4.2 std::string mysqlpp::DBDriver::client_version () const
[inline]

Get database client library version.
Wraps mysql_get_client_info() in the MySQL C API.

5.18.4.3 bool mysqlpp::DBDriver::connect (const char ∗ host, const
char ∗ socket_name, unsigned int port, const char ∗ db,
const char ∗ user, const char ∗ password) [virtual]

Connect to database server.
If you call this method on an object that is already connected to a database
server, the previous connection is dropped and a new connection is established.

5.18.4.4 bool mysqlpp::DBDriver::connect (const MYSQL & mysql)

Establish a new connection using the same parameters as an existing connection.

Parameters:
mysql existing MySQL C API connection object

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 69

5.18.4.5 bool mysqlpp::DBDriver::connected () const [inline]

Return true if we have an active connection to the database server.
This does not actually check whether the connection is viable, it just indicates
whether there was previously a successful connect()(p. 68) call and no dis-
connect()(p. 69). Call ping()(p. 74) to actually test the connection's viability.

5.18.4.6 void mysqlpp::DBDriver::copy (const DBDriver & other)

Establish a new connection as a copy of an existing one.

Parameters:
other the connection to copy

5.18.4.7 bool mysqlpp::DBDriver::create_db (const char ∗ db)
const

Ask the database server to create a database.

Parameters:
db name of database to create

Returns:
true if database was created successfully

5.18.4.8 void mysqlpp::DBDriver::data_seek (MYSQL_RES ∗ res,
ulonglong o�set) const [inline]

Seeks to a particualr row within the result set.
Wraps mysql_data_seek() in MySQL C API.

5.18.4.9 void mysqlpp::DBDriver::disconnect ()

Drop the connection to the database server.
This method is protected because it should only be used within the library.
Unless you use the default constructor, this object should always be connected.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

70 MySQL++ Class Documentation

5.18.4.10 bool mysqlpp::DBDriver::drop_db (const std::string &
db) const

Drop a database.

Parameters:
db name of database to destroy

Returns:
true if database was created successfully

5.18.4.11 bool mysqlpp::DBDriver::enable_ssl (const char ∗ key =
0, const char ∗ cert = 0, const char ∗ ca = 0, const char ∗
capath = 0, const char ∗ cipher = 0)

Enable SSL-encrypted connection.

Parameters:
key the pathname to the key �le
cert the pathname to the certi�cate �le
ca the pathname to the certi�cate authority �le
capath directory that contains trusted SSL CA certi�cates in pem format.
cipher list of allowable ciphers to use

Returns:
False if call fails or the C API library wasn't compiled with SSL support
enabled.

Must be called before connection is established.
Wraps mysql_ssl_set() in MySQL C API.

5.18.4.12 int mysqlpp::DBDriver::errnum () [inline]

Return last MySQL error number associated with this connection.
Wraps mysql_errno() in the MySQL C API.

5.18.4.13 const char∗ mysqlpp::DBDriver::error () [inline]

Return error message for last MySQL error associated with this connection.
Can return a MySQL++ DBDriver-speci�c error message if there is one. If not,
it simply wraps mysql_error() in the MySQL C API.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 71

5.18.4.14 size_t mysqlpp::DBDriver::escape_string (char ∗ to,
const char ∗ from, size_t length) [inline]

SQL-escapes the given string, taking into account the default character set of
the database server we're connected to.
Wraps mysql_real_escape_string() in the MySQL C API.

5.18.4.15 size_t mysqlpp::DBDriver::escape_string_no_conn
(char ∗ to, const char ∗ from, size_t length) [inline,
static]

SQL-escapes the given string without reference to the character set of a database
server.
Wraps mysql_escape_string() in the MySQL C API.

5.18.4.16 bool mysqlpp::DBDriver::execute (const char ∗ qstr,
size_t length) [inline]

Executes the given query string.
Wraps mysql_real_query() in the MySQL C API.

5.18.4.17 MYSQL_FIELD∗ mysqlpp::DBDriver::fetch_�eld
(MYSQL_RES ∗ res, size_t i = UINT_MAX) const
[inline]

Returns information about a particular �eld in a result set.

Parameters:
res result set to fetch �eld information for
i �eld number to fetch information for, if given

If i parameter is given, this call is like a combination of �eld_seek()(p. 72)
followed by fetch_�eld()(p. 71) without the i parameter, which otherwise just
iterates through the set of �elds in the given result set.
Wraps mysql_fetch_field() and mysql_fetch_�eld_direct() in MySQL C
API. (Which one it uses depends on i parameter.)

5.18.4.18 const unsigned long∗ mysqlpp::DBDriver::fetch_lengths
(MYSQL_RES ∗ res) const [inline]

Returns the lengths of the �elds in the current row from a "use" query.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

72 MySQL++ Class Documentation

Wraps mysql_fetch_lengths() in MySQL C API.

5.18.4.19 MYSQL_ROW mysqlpp::DBDriver::fetch_row
(MYSQL_RES ∗ res) const [inline]

Returns the next raw C API row structure from the given result set.
This is for "use" query result sets only. "store" queries have all the rows already.
Wraps mysql_fetch_row() in MySQL C API.

5.18.4.20 void mysqlpp::DBDriver::�eld_seek (MYSQL_RES ∗
res, size_t �eld) const [inline]

Jumps to the given �eld within the result set.
Wraps mysql_field_seek() in MySQL C API.

5.18.4.21 void mysqlpp::DBDriver::free_result (MYSQL_RES ∗
res) const [inline]

Releases memory used by a result set.
Wraps mysql_free_result() in MySQL C API.

5.18.4.22 ulonglong mysqlpp::DBDriver::insert_id () [inline]

Get ID generated for an AUTO_INCREMENT column in the previous INSERT
query.
Return values:

0 if the previous query did not generate an ID. Use the SQL function
LAST_INSERT_ID() if you need the last ID generated by any query,
not just the previous one. This applies to stored procedure calls be-
cause this function returns the ID generated by the last query, which
was a CALL statement, and CALL doesn't generate IDs. You need to
use LAST_INSERT_ID() to get the ID in this case.

5.18.4.23 std::string mysqlpp::DBDriver::ipc_info () [inline]

Get information about the IPC connection to the database server.
String(p. 212) contains info about type of connection (e.g. TCP/IP, named
pipe, Unix socket...) and the server hostname.
Wraps mysql_get_host_info() in the MySQL C API.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 73

5.18.4.24 bool mysqlpp::DBDriver::kill (unsigned long tid)
[inline]

Kill a MySQL server thread.

Parameters:
tid ID of thread to kill

Wraps mysql_kill() in the MySQL C API.

See also:
thread_id()(p. 76)

5.18.4.25 bool mysqlpp::DBDriver::more_results () [inline]

Returns true if there are unconsumed results from the most recent query.
Wraps mysql_more_results() in the MySQL C API.

5.18.4.26 nr_code mysqlpp::DBDriver::next_result () [inline]

Moves to the next result set from a multi-query.

Returns:
A code indicating whether we successfully found another result, there were
no more results (but still success) or encountered an error trying to �nd the
next result set.

Wraps mysql_next_result() in the MySQL C API, with translation of its
return value from magic integers to nr_code enum values.

5.18.4.27 int mysqlpp::DBDriver::num_�elds (MYSQL_RES ∗
res) const [inline]

Returns the number of �elds in the given result set.
Wraps mysql_num_fields() in MySQL C API.

5.18.4.28 ulonglong mysqlpp::DBDriver::num_rows
(MYSQL_RES ∗ res) const [inline]

Returns the number of rows in the given result set.
Wraps mysql_num_rows() in MySQL C API.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

74 MySQL++ Class Documentation

5.18.4.29 bool mysqlpp::DBDriver::ping () [inline]

"Pings" the MySQL database
This function will try to reconnect to the server if the connection has been
dropped. Wraps mysql_ping() in the MySQL C API.

Return values:
true if server is responding, regardless of whether we had to reconnect or

not
false if either we already know the connection is down and cannot re-

establish it, or if the server did not respond to the ping and we could
not re-establish the connection.

5.18.4.30 int mysqlpp::DBDriver::protocol_version () [inline]

Returns version number of MySQL protocol this connection is using.
Wraps mysql_get_proto_info() in the MySQL C API.

5.18.4.31 string mysqlpp::DBDriver::query_info ()

Returns information about the last executed query.
Wraps mysql_info() in the MySQL C API

5.18.4.32 bool mysqlpp::DBDriver::refresh (unsigned options)
[inline]

Asks the database server to refresh certain internal data structures.
Wraps mysql_refresh() in the MySQL C API. There is no corresponding in-
terface for this in higher level MySQL++ classes because it was undocumented
until recently, and it's a pretty low-level thing. It's designed for things like
MySQL Administrator.

5.18.4.33 bool mysqlpp::DBDriver::result_empty () [inline]

Returns true if the most recent result set was empty.
Wraps mysql_field_count() in the MySQL C API, returning true if it returns
0.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 75

5.18.4.34 std::string mysqlpp::DBDriver::server_status ()
[inline]

Returns the database server's status.
String(p. 212) is similar to that returned by the mysqladmin status command.
Among other things, it contains uptime in seconds, and the number of running
threads, questions and open tables.
Wraps mysql_stat() in the MySQL C API.

5.18.4.35 std::string mysqlpp::DBDriver::server_version ()
[inline]

Get the database server's version number.
Wraps mysql_get_server_info() in the MySQL C API.

5.18.4.36 bool mysqlpp::DBDriver::set_option (unsigned int
option, bool arg)

Set(p. 182) MySQL C API connection option.
Manipulates the MYSQL.client_�ag bit mask. This allows these �ags to be
treated the same way as any other connection option, even though the C API
handles them di�erently.

5.18.4.37 bool mysqlpp::DBDriver::set_option (mysql_option
moption, const void ∗ arg = 0) [inline]

Set(p. 182) MySQL C API connection option.

5.18.4.38 std::string mysqlpp::DBDriver::set_option (Option ∗ o)

Sets a connection option.
This is the database-independent high-level option setting interface that
Connection::set_option()(p. 43) calls. There are several private overloads
that actually implement the option setting.

See also:
Connection::set_option(Option∗)(p. 43) for commentary

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

76 MySQL++ Class Documentation

5.18.4.39 bool mysqlpp::DBDriver::shutdown ()

Ask database server to shut down.
User must have the "shutdown" privilege.
Wraps mysql_shutdown() in the MySQL C API.

5.18.4.40 MYSQL_RES∗ mysqlpp::DBDriver::store_result ()
[inline]

Saves the results of the query just execute()(p. 71)d in memory and returns a
pointer to the MySQL C API data structure the results are stored in.

See also:
use_result()(p. 77)

Wraps mysql_store_result() in the MySQL C API.

5.18.4.41 bool mysqlpp::DBDriver::thread_aware () [static]

Returns true if MySQL++ and the underlying MySQL C API library were both
compiled with thread awareness.
This is based in part on a MySQL C API function mysql_thread_safe(). We de-
liberately don't call this wrapper thread_safe() because it's a misleading name:
linking to thread-aware versions of the MySQL++ and C API libraries doesn't
automatically make your program "thread-safe". See the chapter on threads
in the user manual for more information and guidance.

5.18.4.42 void mysqlpp::DBDriver::thread_end () [inline,
static]

Tells the underlying MySQL C API library that this thread is done using the
library.
This exists because the MySQL C API library allocates some per-thread memory
which it doesn't release until you call this.

5.18.4.43 unsigned long mysqlpp::DBDriver::thread_id ()
[inline]

Returns the MySQL server thread ID for this connection.
This has nothing to do with threading on the client side. It's a server-side thread
ID, to be used with kill()(p. 73).

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBDriver Class Reference 77

5.18.4.44 bool mysqlpp::DBDriver::thread_start () [inline,
static]

Tells the underlying C API library that the current thread will be using the
library's services.

Return values:
True if there was no problem

The MySQL++ user manual's chapter on threads details two major strate-
gies for dealing with connections in the face of threads. If you take the simpler
path, creating one DBDriver(p. 63) object per thread, it is never necessary to
call this function; the underlying C API will call it for you when you estab-
lish the �rst database server connection from that thread. If you use a more
complex connection management strategy where it's possible for one thread to
establish a connection that another thread uses, you must call this from each
thread that can use the database before it creates any MySQL++ objects. If
you use a DBDriverPool object, this applies; DBDriverPool isn't smart enough
to call this for you, and the MySQL C API won't do it, either.

5.18.4.45 MYSQL_RES∗ mysqlpp::DBDriver::use_result ()
[inline]

Returns a result set from the last-executed query which we can walk through in
linear fashion, which doesn't store all result sets in memory.

See also:
store_result(p. 76)

Wraps mysql_use_result() in the MySQL C API.
The documentation for this class was generated from the following �les:

� dbdriver.h
� dbdriver.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

78 MySQL++ Class Documentation

5.19 mysqlpp::DBSelectionFailed Class Refer-

ence

Exception(p. 84) thrown when the program tries to select a new database and
the database server refuses for some reason.
#include <exceptions.h>

Inheritance diagram for mysqlpp::DBSelectionFailed:

mysqlpp::DBSelectionFailed

mysqlpp::Exception

Collaboration diagram for mysqlpp::DBSelectionFailed:

mysqlpp::DBSelectionFailed

mysqlpp::Exception

Public Member Functions

� DBSelectionFailed (const char ∗w="", int e=0)
Create exception object.

� int errnum () const
Return the error number corresponding to the error message returned by
what()(p. 84), if any.

5.19.1 Detailed Description

Exception(p. 84) thrown when the program tries to select a new database and
the database server refuses for some reason.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.19 mysqlpp::DBSelectionFailed Class Reference 79

5.19.2 Constructor & Destructor Documentation

5.19.2.1 mysqlpp::DBSelectionFailed::DBSelectionFailed (const
char ∗ w = "", int e = 0) [inline, explicit]

Create exception object.

Parameters:
w explanation for why the exception was thrown
e the error number from the underlying database API

5.19.3 Member Function Documentation

5.19.3.1 int mysqlpp::DBSelectionFailed::errnum () const [inline]

Return the error number corresponding to the error message returned by
what()(p. 84), if any.
If the error number is 0, it means that the error message doesn't come from
the underlying database API, but rather from MySQL++ itself. This happens
when an error condition is detected up at this higher level instead of letting the
underlying database API do it.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

80 MySQL++ Class Documentation

5.20 mysqlpp::equal_list_b< Seq1, Seq2, Manip

> Struct Template Reference

Same as equal_list_ba(p. 82), plus the option to have some elements of the
equals clause suppressed.
#include <vallist.h>

Collaboration diagram for mysqlpp::equal_list_b< Seq1, Seq2, Manip >:

mysqlpp::equal_list_b< Seq1, Seq2, Manip >

Seq1

list1

Seq2

list2

Manip

manip

Public Member Functions

� equal_list_b (const Seq1 &s1, const Seq2 &s2, const std::vector< bool
> &f, const char ∗d, const char ∗e, Manip m)

Create object.

Public Attributes

� const Seq1 ∗ list1
the list of objects on the left-hand side of the equals sign

� const Seq2 ∗ list2
the list of objects on the right-hand side of the equals sign

� const std::vector< bool > �elds
for each true item in the list, the pair in that position will be inserted into a
C++ stream

� const char ∗ delim
delimiter to use between each pair of elements

� const char ∗ equl
"equal" sign to use between each item in each equal pair; doesn't have to
actually be " = "

� Manip manip

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.20 mysqlpp::equal_list_b< Seq1, Seq2, Manip > Struct Template
Reference 81

manipulator to use when inserting the equal_list into a C++ stream

5.20.1 Detailed Description

template<class Seq1, class Seq2, class Manip> struct
mysqlpp::equal_list_b< Seq1, Seq2, Manip >

Same as equal_list_ba(p. 82), plus the option to have some elements of the
equals clause suppressed.
Imagine an object of this type contains the lists (a, b, c) (d, e, f), that the
object's '�elds' list is (true, false, true), and that the object's delimiter and
equals symbols are set to " AND " and " = " respectively. When you insert
that object into a C++ stream, you would get "a = d AND c = f".
See equal_list_ba's documentation for more details.

5.20.2 Constructor & Destructor Documentation

5.20.2.1 template<class Seq1, class Seq2, class Manip>
mysqlpp::equal_list_b< Seq1, Seq2, Manip
>::equal_list_b (const Seq1 & s1, const Seq2 & s2, const
std::vector< bool > & f, const char ∗ d, const char ∗ e,
Manip m) [inline]

Create object.

Parameters:
s1 list of objects on left-hand side of equal sign
s2 list of objects on right-hand side of equal sign
f for each true item in the list, the pair of items in that position will be

inserted into a C++ stream
d what delimiter to use between each group in the list when inserting the

list into a C++ stream
e the "equals" sign between each pair of items in the equal list; doesn't

actually have to be " = "!
m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following �le:

� vallist.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

82 MySQL++ Class Documentation

5.21 mysqlpp::equal_list_ba< Seq1, Seq2, Ma-

nip > Struct Template Reference

Holds two lists of items, typically used to construct a SQL "equals clause".
#include <vallist.h>

Collaboration diagram for mysqlpp::equal_list_ba< Seq1, Seq2, Manip >:

mysqlpp::equal_list_ba< Seq1, Seq2, Manip >

Seq1

list1

Seq2

list2

Manip

manip

Public Member Functions

� equal_list_ba (const Seq1 &s1, const Seq2 &s2, const char ∗d, const
char ∗e, Manip m)

Create object.

Public Attributes

� const Seq1 ∗ list1
the list of objects on the left-hand side of the equals sign

� const Seq2 ∗ list2
the list of objects on the right-hand side of the equals sign

� const char ∗ delim
delimiter to use between each pair of elements

� const char ∗ equl
"equal" sign to use between each item in each equal pair; doesn't have to
actually be " = "

� Manip manip
manipulator to use when inserting the equal_list into a C++ stream

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.21 mysqlpp::equal_list_ba< Seq1, Seq2, Manip > Struct
Template Reference 83
5.21.1 Detailed Description

template<class Seq1, class Seq2, class Manip> struct
mysqlpp::equal_list_ba< Seq1, Seq2, Manip >

Holds two lists of items, typically used to construct a SQL "equals clause".
The WHERE clause in a SQL SELECT statment is an example of an equals
clause.
Imagine an object of this type contains the lists (a, b) (c, d), and that the
object's delimiter and equals symbols are set to ", " and " = " respectively.
When you insert that object into a C++ stream, you would get "a = c, b = d".
This class is never instantiated by hand. The equal_list() functions build in-
stances of this structure template to do their work. MySQL++'s SSQLS mecha-
nism calls those functions when building SQL queries; you can call them yourself
to do similar work. The "Harnessing SSQLS Internals" section of the user man-
ual has some examples of this.

See also:
equal_list_b(p. 80)

5.21.2 Constructor & Destructor Documentation

5.21.2.1 template<class Seq1, class Seq2, class Manip>
mysqlpp::equal_list_ba< Seq1, Seq2, Manip
>::equal_list_ba (const Seq1 & s1, const Seq2 & s2, const
char ∗ d, const char ∗ e, Manip m) [inline]

Create object.

Parameters:
s1 list of objects on left-hand side of equal sign
s2 list of objects on right-hand side of equal sign
d what delimiter to use between each group in the list when inserting the

list into a C++ stream
e the "equals" sign between each pair of items in the equal list; doesn't

actually have to be " = "!
m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following �le:

� vallist.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

84 MySQL++ Class Documentation

5.22 mysqlpp::Exception Class Reference

Base class for all MySQL++ custom exceptions.
#include <exceptions.h>

Inheritance diagram for mysqlpp::Exception:

mysqlpp::Exception

mysqlpp::BadConversion

mysqlpp::BadFieldName

mysqlpp::BadIndex

mysqlpp::BadOption

mysqlpp::BadParamCount

mysqlpp::BadQuery

mysqlpp::ConnectionFailed

mysqlpp::DBSelectionFailed

mysqlpp::MutexFailed

mysqlpp::ObjectNotInitialized

mysqlpp::SelfTestFailed

mysqlpp::TypeLookupFailed

mysqlpp::UseQueryError

Public Member Functions

� Exception (const Exception &e) throw ()
Create exception object as copy of another.

� Exception & operator= (const Exception &rhs) throw ()
Assign another exception object's contents to this one.

� ∼Exception () throw ()
Destroy exception object.

� virtual const char ∗ what () const throw ()
Returns explanation of why exception was thrown.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.22 mysqlpp::Exception Class Reference 85

Protected Member Functions

� Exception (const char ∗w="") throw ()
Create exception object.

� Exception (const std::string &w) throw ()
Create exception object.

Protected Attributes

� std::string what_
explanation of why exception was thrown

5.22.1 Detailed Description

Base class for all MySQL++ custom exceptions.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

86 MySQL++ Class Documentation

5.23 mysqlpp::Field Class Reference

Class to hold information about a SQL �eld.
#include <field.h>

Collaboration diagram for mysqlpp::Field:

mysqlpp::Field

mysqlpp::mysql_type_info

type_

Public Member Functions

� Field ()
Create empty object.

� Field (const MYSQL_FIELD ∗pf)
Create object from C API �eld structure.

� Field (const Field &other)
Create object as a copy of another Field(p. 86).

� bool auto_increment () const
Returns true if �eld auto-increments.

� bool binary_type () const
Returns true if �eld is of some binary type.

� bool blob_type () const
Returns true if �eld is of some BLOB type.

� const char ∗ db () const
Return the name of the database the �eld comes from.

� bool enumeration () const
Returns true if �eld is of an enumerated value type.

� size_t length () const
Return the creation size of the �eld.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.23 mysqlpp::Field Class Reference 87

� size_t max_length () const
Return the maximum number of bytes stored in this �eld in any of the rows
in the result set we were created from.

� bool multiple_key () const
Returns true if �eld is part of a key.

� const char ∗ name () const
Return the �eld's name.

� bool primary_key () const
Returns true if �eld is part of a primary key.

� bool set_type () const
Returns true if �eld is of some 'set' type.

� const char ∗ table () const
Return the name of the table the �eld comes from.

� bool timestamp () const
Returns true if �eld's type is timestamp.

� const mysql_type_info & type () const
Return information about the �eld's type.

� bool unique_key () const
Returns true if �eld is part of a unique key.

� bool zero�ll () const
Returns true if �eld has the zero�ll attribute.

5.23.1 Detailed Description

Class to hold information about a SQL �eld.
This is a cut-down version of MYSQL_FIELD, using MySQL++ and generic
C++ types instead of the C types it uses, and hiding all �elds behind accessors.
It leaves out data members we have decided aren't very useful. Given a good
argument, we're willing to mirror more of the �elds; we just don't want to mirror
the underlying structure slavishly for no bene�t.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

88 MySQL++ Class Documentation

5.23.2 Member Function Documentation

5.23.2.1 size_t mysqlpp::Field::length () const [inline]

Return the creation size of the �eld.
This is the number of bytes the �eld can hold, not how much is actually stored
in the �eld on any particular row.
The documentation for this class was generated from the following �le:

� �eld.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.24 mysqlpp::FieldNames Class Reference 89

5.24 mysqlpp::FieldNames Class Reference

Holds a list of SQL �eld names.
#include <field_names.h>

Public Member Functions

� FieldNames ()
Default constructor.

� FieldNames (const FieldNames &other)
Copy constructor.

� FieldNames (const ResultBase ∗res)
Create �eld name list from a result set.

� FieldNames (int i)
Create empty �eld name list, reserving space for a �xed number of �eld
names.

� FieldNames & operator= (const ResultBase ∗res)
Initializes the �eld list from a result set.

� FieldNames & operator= (int i)
Insert i empty �eld names at beginning of list.

� std::string & operator[] (int i)
Get the name of a �eld given its index.

� const std::string & operator[] (int i) const
Get the name of a �eld given its index, in const context.

� unsigned int operator[] (const std::string &s) const
Get the index number of a �eld given its name.

5.24.1 Detailed Description

Holds a list of SQL �eld names.
The documentation for this class was generated from the following �les:

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

90 MySQL++ Class Documentation

� �eld_names.h
� �eld_names.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.25 mysqlpp::FieldTypes Class Reference 91

5.25 mysqlpp::FieldTypes Class Reference

A vector of SQL �eld types.
#include <field_types.h>

Public Member Functions

� FieldTypes ()
Default constructor.

� FieldTypes (const ResultBase ∗res)
Create list of �eld types from a result set.

� FieldTypes (int i)
Create �xed-size list of uninitialized �eld types.

� FieldTypes & operator= (const ResultBase ∗res)
Initialize �eld list based on a result set.

� FieldTypes & operator= (int i)
Insert a given number of uninitialized �eld type objects at the beginning of
the list.

5.25.1 Detailed Description

A vector of SQL �eld types.

5.25.2 Member Function Documentation

5.25.2.1 FieldTypes& mysqlpp::FieldTypes::operator= (int i)
[inline]

Insert a given number of uninitialized �eld type objects at the beginning of the
list.
Parameters:

i number of �eld type objects to insert
The documentation for this class was generated from the following �les:

� �eld_types.h
� �eld_types.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

92 MySQL++ Class Documentation

5.26 mysqlpp::FoundRowsOption Class Refer-

ence

Make Query::a�ected_rows()(p. 125) return number of matched rows.
#include <options.h>

Inheritance diagram for mysqlpp::FoundRowsOption:

mysqlpp::FoundRowsOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

Collaboration diagram for mysqlpp::FoundRowsOption:

mysqlpp::FoundRowsOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

T

arg_

5.26.1 Detailed Description

Make Query::a�ected_rows()(p. 125) return number of matched rows.
Default is to return number of changed rows.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.27 mysqlpp::GuessConnectionOption Class Reference 93

5.27 mysqlpp::GuessConnectionOption Class

Reference

Allow C API to guess what kind of connection to use.
#include <options.h>

Inheritance diagram for mysqlpp::GuessConnectionOption:

mysqlpp::GuessConnectionOption

mysqlpp::Option

Collaboration diagram for mysqlpp::GuessConnectionOption:

mysqlpp::GuessConnectionOption

mysqlpp::Option

5.27.1 Detailed Description

Allow C API to guess what kind of connection to use.
This is the default. The option exists to override UseEmbeddedConnection-
Option(p. 244) and UseEmbeddedConnectionOption(p. 244).
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

94 MySQL++ Class Documentation

5.28 mysqlpp::IgnoreSpaceOption Class Refer-

ence

Allow spaces after function names in queries.
#include <options.h>

Inheritance diagram for mysqlpp::IgnoreSpaceOption:

mysqlpp::IgnoreSpaceOption

BooleanOption

mysqlpp::Option

Collaboration diagram for mysqlpp::IgnoreSpaceOption:

mysqlpp::IgnoreSpaceOption

BooleanOption

mysqlpp::Option T

arg_

5.28.1 Detailed Description

Allow spaces after function names in queries.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.29 mysqlpp::InitCommandOption Class Reference 95

5.29 mysqlpp::InitCommandOption Class Refer-

ence

Give SQL executed on connect.
#include <options.h>

Inheritance diagram for mysqlpp::InitCommandOption:

mysqlpp::InitCommandOption

StringOption

mysqlpp::Option

Collaboration diagram for mysqlpp::InitCommandOption:

mysqlpp::InitCommandOption

StringOption

mysqlpp::Option T

arg_

5.29.1 Detailed Description

Give SQL executed on connect.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

96 MySQL++ Class Documentation

5.30 mysqlpp::InteractiveOption Class Reference

Assert that this is an interactive program.
#include <options.h>

Inheritance diagram for mysqlpp::InteractiveOption:

mysqlpp::InteractiveOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

Collaboration diagram for mysqlpp::InteractiveOption:

mysqlpp::InteractiveOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

T

arg_

5.30.1 Detailed Description

Assert that this is an interactive program.
A�ects connection timeouts.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.31 mysqlpp::LocalFilesOption Class Reference 97

5.31 mysqlpp::LocalFilesOption Class Reference

Enable LOAD DATA LOCAL statement.
#include <options.h>

Inheritance diagram for mysqlpp::LocalFilesOption:

mysqlpp::LocalFilesOption

BooleanOption

mysqlpp::Option

Collaboration diagram for mysqlpp::LocalFilesOption:

mysqlpp::LocalFilesOption

BooleanOption

mysqlpp::Option T

arg_

5.31.1 Detailed Description

Enable LOAD DATA LOCAL statement.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

98 MySQL++ Class Documentation

5.32 mysqlpp::LocalIn�leOption Class Reference

Enable LOAD LOCAL INFILE statement.
#include <options.h>

Inheritance diagram for mysqlpp::LocalIn�leOption:

mysqlpp::LocalInfileOption

IntegerOption

mysqlpp::Option

mysqlpp::DataOption< T >

< unsigned >

Collaboration diagram for mysqlpp::LocalIn�leOption:

mysqlpp::LocalInfileOption

IntegerOption

mysqlpp::Option

mysqlpp::DataOption< T >

< unsigned >

T

arg_

5.32.1 Detailed Description

Enable LOAD LOCAL INFILE statement.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.33 mysqlpp::MultiResultsOption Class Reference 99

5.33 mysqlpp::MultiResultsOption Class Refer-

ence

Enable multiple result sets in a reply.
#include <options.h>

Inheritance diagram for mysqlpp::MultiResultsOption:

mysqlpp::MultiResultsOption

BooleanOption

mysqlpp::Option

Collaboration diagram for mysqlpp::MultiResultsOption:

mysqlpp::MultiResultsOption

BooleanOption

mysqlpp::Option T

arg_

5.33.1 Detailed Description

Enable multiple result sets in a reply.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

100 MySQL++ Class Documentation

5.34 mysqlpp::MultiStatementsOption Class

Reference

Enable multiple queries in a request to the server.
#include <options.h>

Inheritance diagram for mysqlpp::MultiStatementsOption:

mysqlpp::MultiStatementsOption

BooleanOption

mysqlpp::Option

Collaboration diagram for mysqlpp::MultiStatementsOption:

mysqlpp::MultiStatementsOption

BooleanOption

mysqlpp::Option T

arg_

5.34.1 Detailed Description

Enable multiple queries in a request to the server.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.35 mysqlpp::MutexFailed Class Reference 101

5.35 mysqlpp::MutexFailed Class Reference

Exception(p. 84) thrown when a BeecryptMutex(p. 30) object fails.
#include <exceptions.h>

Inheritance diagram for mysqlpp::MutexFailed:

mysqlpp::MutexFailed

mysqlpp::Exception

Collaboration diagram for mysqlpp::MutexFailed:

mysqlpp::MutexFailed

mysqlpp::Exception

Public Member Functions

� MutexFailed (const char ∗w="lock failed")
Create exception object.

5.35.1 Detailed Description

Exception(p. 84) thrown when a BeecryptMutex(p. 30) object fails.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

102 MySQL++ Class Documentation

5.36 mysqlpp::mysql_type_info Class Reference

SQL �eld type information.
#include <type_info.h>

Public Member Functions

� mysql_type_info ()
Default constructor.

� mysql_type_info (enum_�eld_types t, bool _unsigned=false, bool _-
null=false)

Create object from MySQL C API type info.

� mysql_type_info (const mysql_type_info &t)
Create object as a copy of another.

� mysql_type_info (const std::type_info &t)
Create object from a C++ type_info object.

� mysql_type_info & operator= (const mysql_type_info &t)
Assign another mysql_type_info(p. 102) object to this object.

� mysql_type_info & operator= (const std::type_info &t)
Assign a C++ type_info object to this object.

� const char ∗ name () const
Returns an implementation-de�ned name of the C++ type.

� const char ∗ sql_name () const
Returns the name of the SQL type.

� const std::type_info & c_type () const
Returns the type_info for the C++ type associated with the SQL type.

� const mysql_type_info base_type () const
Returns the type_info for the C++ type inside of themysqlpp::Null(p. 111)
type.

� int id () const
Returns the ID of the SQL type.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.36 mysqlpp::mysql_type_info Class Reference 103

� bool quote_q () const
Returns true if the SQL type is of a type that needs to be quoted.

� bool escape_q () const
Returns true if the SQL type is of a type that needs to be escaped.

� bool before (mysql_type_info &b)
Provides a way to compare two types for sorting.

Static Public Attributes

� const enum_�eld_types string_type
The internal constant we use for our string type.

5.36.1 Detailed Description

SQL �eld type information.

5.36.2 Constructor & Destructor Documentation

5.36.2.1 mysqlpp::mysql_type_info::mysql_type_info () [inline]

Default constructor.
This only exists because FieldTypes(p. 91) keeps a vector of these objects. You
are expected to copy real values into it before using it via the copy ctor or one of
the assignment operators. If you don't, we have arranged a pretty spectacular
crash for your program. So there.

5.36.2.2 mysqlpp::mysql_type_info::mysql_type_info
(enum_�eld_types t, bool _unsigned = false, bool _null
= false) [inline]

Create object from MySQL C API type info.

Parameters:
t the underlying C API type ID for this type
_unsigned if true, this is the unsigned version of the type
_null if true, this type can hold a SQL null

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

104 MySQL++ Class Documentation

5.36.2.3 mysqlpp::mysql_type_info::mysql_type_info (const
std::type_info & t) [inline]

Create object from a C++ type_info object.
This tries to map a C++ type to the closest MySQL data type. It is necessarily
somewhat approximate.

5.36.3 Member Function Documentation

5.36.3.1 const mysql_type_info mysqlpp::mysql_type_-
info::base_type () const [inline]

Returns the type_info for the C++ type inside of the mysqlpp::Null(p. 111)
type.
Returns the type_info for the C++ type inside the mysqlpp::Null(p. 111)
type. If the type is not Null(p. 111) then this is the same as c_type()(p. 104).

5.36.3.2 bool mysqlpp::mysql_type_info::before (mysql_type_info
& b) [inline]

Provides a way to compare two types for sorting.
Returns true if the SQL ID of this type is lower than that of another. Used by
mysqlpp::type_info_cmp when comparing types.

5.36.3.3 const std::type_info& mysqlpp::mysql_type_info::c_type
() const [inline]

Returns the type_info for the C++ type associated with the SQL type.
Returns the C++ type_info record corresponding to the SQL type.

5.36.3.4 bool mysqlpp::mysql_type_info::escape_q () const

Returns true if the SQL type is of a type that needs to be escaped.

Returns:
true if the type needs to be escaped for syntactically correct SQL.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.36 mysqlpp::mysql_type_info Class Reference 105

5.36.3.5 int mysqlpp::mysql_type_info::id () const [inline]

Returns the ID of the SQL type.
Returns the ID number MySQL uses for this type. Note: Do not depend on the
value of this ID as it may change between MySQL versions.

5.36.3.6 const char∗ mysqlpp::mysql_type_info::name () const
[inline]

Returns an implementation-de�ned name of the C++ type.
Returns the name that would be returned by typeid().name()(p. 105) for the
C++ type associated with the SQL type.

5.36.3.7 mysql_type_info& mysqlpp::mysql_type_info::operator=
(const std::type_info & t) [inline]

Assign a C++ type_info object to this object.
This tries to map a C++ type to the closest MySQL data type. It is necessarily
somewhat approximate.

5.36.3.8 bool mysqlpp::mysql_type_info::quote_q () const

Returns true if the SQL type is of a type that needs to be quoted.

Returns:
true if the type needs to be quoted for syntactically correct SQL.

5.36.3.9 const char∗ mysqlpp::mysql_type_info::sql_name () const
[inline]

Returns the name of the SQL type.
Returns the SQL name for the type.

5.36.4 Member Data Documentation

5.36.4.1 const enum_�eld_types mysqlpp::mysql_type_-
info::string_type [static]

Initial value:

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

106 MySQL++ Class Documentation

FIELD_TYPE_STRING

The internal constant we use for our string type.
We expose this because other parts of MySQL++ need to know what the string
constant is at the moment.
The documentation for this class was generated from the following �les:

� type_info.h
� type_info.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.37 mysqlpp::NamedPipeOption Class Reference 107

5.37 mysqlpp::NamedPipeOption Class Refer-

ence

Suggest use of named pipes.
#include <options.h>

Inheritance diagram for mysqlpp::NamedPipeOption:

mysqlpp::NamedPipeOption

mysqlpp::Option

Collaboration diagram for mysqlpp::NamedPipeOption:

mysqlpp::NamedPipeOption

mysqlpp::Option

5.37.1 Detailed Description

Suggest use of named pipes.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

108 MySQL++ Class Documentation

5.38 mysqlpp::NoExceptions Class Reference

Disable exceptions in an object derived from OptionalExceptions(p. 123).
#include <noexceptions.h>

Collaboration diagram for mysqlpp::NoExceptions:

mysqlpp::NoExceptions

mysqlpp::OptionalExceptions

assoc_

Public Member Functions

� NoExceptions (const OptionalExceptions &a)
Constructor.

� ∼NoExceptions ()
Destructor.

5.38.1 Detailed Description

Disable exceptions in an object derived from OptionalExceptions(p. 123).
This class was designed to be created on the stack, taking a reference to a
subclass of OptionalExceptions(p. 123). (We call that our "associate" ob-
ject.) On creation, we save that object's current exception state, and disable
exceptions. On destruction, we restore our associate's previous state.

5.38.2 Constructor & Destructor Documentation

5.38.2.1 mysqlpp::NoExceptions::NoExceptions (const
OptionalExceptions & a) [inline]

Constructor.
Takes a reference to an OptionalExceptions(p. 123) derivative, saves that
object's current exception state, and disables exceptions.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.38 mysqlpp::NoExceptions Class Reference 109

5.38.2.2 mysqlpp::NoExceptions::∼NoExceptions () [inline]

Destructor.
Restores our associate object's previous exception state.
The documentation for this class was generated from the following �le:

� noexceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

110 MySQL++ Class Documentation

5.39 mysqlpp::NoSchemaOption Class Reference

Disable db.tbl.col syntax in queries.
#include <options.h>

Inheritance diagram for mysqlpp::NoSchemaOption:

mysqlpp::NoSchemaOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

Collaboration diagram for mysqlpp::NoSchemaOption:

mysqlpp::NoSchemaOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

T

arg_

5.39.1 Detailed Description

Disable db.tbl.col syntax in queries.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.40 mysqlpp::Null< Type, Behavior > Class Template Reference111

5.40 mysqlpp::Null< Type, Behavior > Class

Template Reference

Class for holding data from a SQL column with the NULL attribute.
#include <null.h>

Collaboration diagram for mysqlpp::Null< Type, Behavior >:

mysqlpp::Null< Type, Behavior >

Type

data

Public Types

� typedef Type value_type
Type of the data stored in this object, when it is not equal to SQL null.

Public Member Functions

� Null ()
Default constructor.

� Null (const Type &x)
Initialize the object with a particular value.

� Null (const null_type &)
Construct a Null(p. 111) equal to SQL null.

� operator Type & ()
Converts this object to Type.

� Null & operator= (const Type &x)
Assign a value to the object.

� Null & operator= (const null_type &n)
Assign SQL null to this object.

� bool operator== (const Null< Type > &rhs) const

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

112 MySQL++ Class Documentation

Do equality comparison of two nullable values.

� bool operator== (const null_type &) const
Do equality comparison against hard-coded SQL null.

� bool operator!= (const Null< Type > &rhs) const
Do inequality comparison of two nullable values.

� bool operator!= (const null_type &rhs) const
Do inequality comparison against hard-coded SQL null.

� bool operator< (const Null< Type > &rhs) const
Do less-than comparison of two nullable values.

� bool operator< (const null_type &) const
Do less-than comparison against hard-coded SQL null.

Public Attributes

� Type data
The object's value, when it is not SQL null.

� bool is_null
If set, this object is considered equal to SQL null.

5.40.1 Detailed Description

template<class Type, class Behavior = NullIsNull> class
mysqlpp::Null< Type, Behavior >

Class for holding data from a SQL column with the NULL attribute.
This template is necessary because there is nothing in the C++ type system
with the same semantics as SQL's null. In SQL, a column can have the optional
'NULL' attribute, so there is a di�erence in type between, say an int column
that can be null and one that cannot be. C++'s NULL constant does not have
these features.
It's important to realize that this class doesn't hold nulls, it holds data that
can be null. It can hold a non-null value, you can then assign null to it (using
MySQL++'s global null object), and then assign a regular value to it again;
the object will behave as you expect throughout this process.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.40 mysqlpp::Null< Type, Behavior > Class Template Reference113

Because one of the template parameters is a C++ type, the typeid() for a null
int is di�erent than for a null string, to pick two random examples. See
type_info.cpp(p. ??) for the table SQL types that can be null.

5.40.2 Constructor & Destructor Documentation

5.40.2.1 template<class Type, class Behavior = NullIsNull>
mysqlpp::Null< Type, Behavior >::Null () [inline]

Default constructor.
"data" member is left uninitialized by this ctor, because we don't know what
to initialize it to.

5.40.2.2 template<class Type, class Behavior = NullIsNull>
mysqlpp::Null< Type, Behavior >::Null (const Type & x)
[inline]

Initialize the object with a particular value.
The object is marked as "not null" if you use this ctor. This behavior exists
because the class doesn't encode nulls, but rather data which can be null. The
distinction is necessary because 'NULL' is an optional attribute of SQL columns.

5.40.2.3 template<class Type, class Behavior = NullIsNull>
mysqlpp::Null< Type, Behavior >::Null (const null_type
&) [inline]

Construct a Null(p. 111) equal to SQL null.
This is typically used with the global null object. (Not to be confused with C's
NULL type.) You can say something like...

Null<int> foo = null;

...to get a null int.

5.40.3 Member Function Documentation

5.40.3.1 template<class Type, class Behavior = NullIsNull>
mysqlpp::Null< Type, Behavior >::operator Type & ()
[inline]

Converts this object to Type.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

114 MySQL++ Class Documentation

If is_null is set, returns whatever we consider that null "is", according to the
Behavior parameter you used when instantiating this template. See NullIs-
Null(p. 118), NullIsZero(p. 119) and NullIsBlank(p. 117).
Otherwise, just returns the 'data' member.

5.40.3.2 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator< (const
null_type &) const [inline]

Do less-than comparison against hard-coded SQL null.
Always returns false because we can only be greater than or equal to a SQL
null.

5.40.3.3 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator< (const Null<
Type > & rhs) const [inline]

Do less-than comparison of two nullable values.
Two null objects are equal to each other, and null is less than not-null. If neither
is null, we delegate to operator < for the base data type.

5.40.3.4 template<class Type, class Behavior = NullIsNull> Null&
mysqlpp::Null< Type, Behavior >::operator= (const
null_type & n) [inline]

Assign SQL null to this object.
This just sets the is_null �ag; the data member is not a�ected until you call
the Type() operator on it.

5.40.3.5 template<class Type, class Behavior = NullIsNull> Null&
mysqlpp::Null< Type, Behavior >::operator= (const Type
& x) [inline]

Assign a value to the object.
This marks the object as "not null" as a side e�ect.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.40 mysqlpp::Null< Type, Behavior > Class Template Reference115

5.40.3.6 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator== (const
null_type &) const [inline]

Do equality comparison against hard-coded SQL null.
This tells you the same thing as testing is_null member.

5.40.3.7 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator== (const
Null< Type > & rhs) const [inline]

Do equality comparison of two nullable values.
Two null objects are equal, and null is not equal to not-null. If neither is null,
we delegate to operator == for the base data type.

5.40.4 Member Data Documentation

5.40.4.1 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::is_null

If set, this object is considered equal to SQL null.
This �ag a�ects how the Type() and << operators work.
The documentation for this class was generated from the following �le:

� null.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

116 MySQL++ Class Documentation

5.41 mysqlpp::null_type Class Reference

The type of the global mysqlpp::null object.
#include <null.h>

5.41.1 Detailed Description

The type of the global mysqlpp::null object.
User code shouldn't declare variables of this type. Use theNull(p. 111) template
instead.
The documentation for this class was generated from the following �le:

� null.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.42 mysqlpp::NullIsBlank Struct Reference 117

5.42 mysqlpp::NullIsBlank Struct Reference

Class for objects that de�ne SQL null as a blank C string.
#include <null.h>

5.42.1 Detailed Description

Class for objects that de�ne SQL null as a blank C string.
Returns "" when you ask what null is, and is empty when you insert it into a
C++ stream.
Used for the behavior parameter for template Null(p. 111)
The documentation for this struct was generated from the following �le:

� null.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

118 MySQL++ Class Documentation

5.43 mysqlpp::NullIsNull Struct Reference

Class for objects that de�ne SQL null in terms of MySQL++'s null_-
type(p. 116).
#include <null.h>

5.43.1 Detailed Description

Class for objects that de�ne SQL null in terms of MySQL++'s null_-
type(p. 116).
Returns a null_type(p. 116) instance when you ask what null is, and is
"(NULL)" when you insert it into a C++ stream.
Used for the behavior parameter for template Null(p. 111)
The documentation for this struct was generated from the following �le:

� null.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.44 mysqlpp::NullIsZero Struct Reference 119

5.44 mysqlpp::NullIsZero Struct Reference

Class for objects that de�ne SQL null as 0.
#include <null.h>

5.44.1 Detailed Description

Class for objects that de�ne SQL null as 0.
Returns 0 when you ask what null is, and is zero when you insert it into a C++
stream.
Used for the behavior parameter for template Null(p. 111)
The documentation for this struct was generated from the following �le:

� null.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

120 MySQL++ Class Documentation

5.45 mysqlpp::ObjectNotInitialized Class Refer-

ence

Exception(p. 84) thrown when you try to use an object that isn't completely
initialized.
#include <exceptions.h>

Inheritance diagram for mysqlpp::ObjectNotInitialized:

mysqlpp::ObjectNotInitialized

mysqlpp::Exception

Collaboration diagram for mysqlpp::ObjectNotInitialized:

mysqlpp::ObjectNotInitialized

mysqlpp::Exception

Public Member Functions

� ObjectNotInitialized (const char ∗w="")
Create exception object.

5.45.1 Detailed Description

Exception(p. 84) thrown when you try to use an object that isn't completely
initialized.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.46 mysqlpp::Option Class Reference 121

5.46 mysqlpp::Option Class Reference

De�ne abstract interface for all ∗Option subclasses.
#include <options.h>

Inheritance diagram for mysqlpp::Option:

mysqlpp::Option

mysqlpp::CompressOption

mysqlpp::DataOption< T >

mysqlpp::DataOption< unsigned >

mysqlpp::DataOption< bool >

mysqlpp::GuessConnectionOption

mysqlpp::NamedPipeOption

mysqlpp::SslOption

mysqlpp::UseEmbeddedConnectionOption

mysqlpp::UseRemoteConnectionOption

< unsigned >

< bool >

Public Types

� enum Error { err_NONE, err_api_limit, err_api_reject, err_-
connected }

Types of option setting errors we can diagnose.

Public Member Functions

� virtual ∼Option ()
Destroy object.

� virtual Error set (DBDriver ∗dbd)=0
Apply option.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

122 MySQL++ Class Documentation

5.46.1 Detailed Description

De�ne abstract interface for all ∗Option subclasses.
This is the base class for the mid-level interface classes that take arguments,
plus the direct base for options that take no arguments.

5.46.2 Member Enumeration Documentation

5.46.2.1 enum mysqlpp::Option::Error

Types of option setting errors we can diagnose.

Enumeration values:
err_NONE option was set successfully
err_api_limit option not supported by underlying C API
err_api_reject underlying C API returned error when setting option
err_connected can't set the given option while connected

The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.47 mysqlpp::OptionalExceptions Class Reference 123

5.47 mysqlpp::OptionalExceptions Class Refer-

ence

Interface allowing a class to have optional exceptions.
#include <noexceptions.h>

Inheritance diagram for mysqlpp::OptionalExceptions:

mysqlpp::OptionalExceptions

mysqlpp::Connection mysqlpp::Query mysqlpp::ResultBase mysqlpp::Row

Public Member Functions

� OptionalExceptions (bool e=true)
Default constructor.

� virtual ∼OptionalExceptions ()
Destroy object.

� void enable_exceptions () const
Enable exceptions from the object.

� void disable_exceptions () const
Disable exceptions from the object.

� bool throw_exceptions () const
Returns true if exceptions are enabled.

Protected Member Functions

� void set_exceptions (bool e) const
Sets the exception state to a particular value.

Friends

� class NoExceptions

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

124 MySQL++ Class Documentation

DeclareNoExceptions(p. 108) to be our friend so it can access our protected
functions.

5.47.1 Detailed Description

Interface allowing a class to have optional exceptions.
A class derives from this one to acquire a standard interface for disabling ex-
ceptions, possibly only temporarily. By default, exceptions are enabled.
Note that all methods are const even though some of them change our internal
�ag indicating whether exceptions should be thrown. This is justi�able because
this is just an interface class, and it changes the behavior of our subclass literally
only in exceptional conditions. This Jesuitical interpretation of "const" is re-
quired because you may want to disable exceptions on const subclass instances.
If it makes you feel better about this, consider that the real change isn't within
the const OptionalExceptions(p. 123) subclass instance. What changes is the
code wrapping the method call on that instance that can optionally throw an
exception. This outside code is in a better position to say what "const" means
than the subclass instance.

5.47.2 Constructor & Destructor Documentation

5.47.2.1 mysqlpp::OptionalExceptions::OptionalExceptions (bool e
= true) [inline]

Default constructor.
Parameters:

e if true, exceptions are enabled (this is the default)

5.47.3 Member Function Documentation

5.47.3.1 void mysqlpp::OptionalExceptions::set_exceptions (bool
e) const [inline, protected]

Sets the exception state to a particular value.
This method is protected because it is only intended for use by subclasses' copy
constructors and the like.
The documentation for this class was generated from the following �le:

� noexceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 125

5.48 mysqlpp::Query Class Reference

A class for building and executing SQL queries.
#include <query.h>

Inheritance diagram for mysqlpp::Query:

mysqlpp::Query

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::Query:

mysqlpp::Query

mysqlpp::SQLQueryParms

parent_

mysqlpp::OptionalExceptions

mysqlpp::Connection

template_defaults

conn_

mysqlpp::DBDriver

driver_

Public Member Functions

� Query (Connection ∗c, bool te=true, const char ∗qstr=0)
Create a new query object attached to a connection.

� Query (const Query &q)
Create a new query object as a copy of another.

� ulonglong a�ected_rows ()
Return the number of rows a�ected by the last query.

� size_t escape_string (std::string ∗ps, const char ∗original=0, size_t
length=0) const

Return a SQL-escaped version of a character bu�er.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

126 MySQL++ Class Documentation

� size_t escape_string (char ∗escaped, const char ∗original, size_t
length) const

Return a SQL-escaped version of the given character bu�er.

� int errnum () const
Get the last error number that was set.

� const char ∗ error () const
Get the last error message that was set.

� std::string info ()
Returns information about the most recently executed query.

� ulonglong insert_id ()
Get ID generated for an AUTO_INCREMENT column in the previous IN-
SERT query.

� Query & operator= (const Query &rhs)
Assign another query's state to this object.

� operator void ∗ () const
Test whether the object has experienced an error condition.

� void parse ()
Treat the contents of the query string as a template query.

� void reset ()
Reset the query object so that it can be reused.

� std::string str ()
Get built query as a C++ string.

� std::string str (const SQLTypeAdapter &arg0)
Get built query as a C++ string with template query parameter substitution.

� std::string str (SQLQueryParms &p)
Get built query as a null-terminated C++ string.

� bool exec ()
Execute a built-up query.

� bool exec (const std::string &str)
Execute a query.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 127

� SimpleResult execute ()
Execute built-up query.

� SimpleResult execute (SQLQueryParms &p)
Execute template query using given parameters.

� SimpleResult execute (const SQLTypeAdapter &str)
Execute a query that returns no rows.

� SimpleResult execute (const char ∗str, size_t len)
Execute query in a known-length string of characters. This can include null
characters.

� UseQueryResult use ()
Execute a query that can return rows, with access to the rows in sequence.

� UseQueryResult use (SQLQueryParms &p)
Execute a template query that can return rows, with access to the rows in
sequence.

� UseQueryResult use (const SQLTypeAdapter &str)
Execute a query that can return rows, with access to the rows in sequence.

� UseQueryResult use (const char ∗str, size_t len)
Execute a query that can return rows, with access to the rows in sequence.

� StoreQueryResult store ()
Execute a query that can return a result set.

� StoreQueryResult store (SQLQueryParms &p)
Store results from a template query using given parameters.

� StoreQueryResult store (const SQLTypeAdapter &str)
Execute a query that can return rows, returning all of the rows in a random-
access container.

� StoreQueryResult store (const char ∗str, size_t len)
Execute a query that can return rows, returning all of the rows in a random-
access container.

� template<typename Function> Function for_each (const SQLType-
Adapter &query, Function fn)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

128 MySQL++ Class Documentation

Execute a query, and call a functor for each returned row.

� template<typename Function> Function for_each (Function fn)
Execute the query, and call a functor for each returned row.

� template<class SSQLS, typename Function> Function for_each (const
SSQLS &ssqls, Function fn)

Run a functor for every row in a table.

� template<class Sequence, typename Function> Function store_if (Se-
quence &con, const SQLTypeAdapter &query, Function fn)

Execute a query, conditionally storing each row in a container.

� template<class Sequence, class SSQLS, typename Function> Function
store_if (Sequence &con, const SSQLS &ssqls, Function fn)

Pulls every row in a table, conditionally storing each one in a container.

� template<class Sequence, typename Function> Function store_if (Se-
quence &con, Function fn)

Execute the query, conditionally storing each row in a container.

� StoreQueryResult store_next ()
Return next result set, when processing a multi-query.

� bool more_results ()
Return whether more results are waiting for a multi-query or stored procedure
response.

� template<class Sequence> void storein_sequence (Sequence &con)
Execute a query, storing the result set in an STL sequence container.

� template<class Sequence> void storein_sequence (Sequence &con,
const SQLTypeAdapter &s)

Executes a query, storing the result rows in an STL sequence container.

� template<class Seq> void storein_sequence (Seq &con, SQLQuery-
Parms &p)

Execute template query using given parameters, storing the results in a se-
quence type container.

� template<class Set> void storein_set (Set &con)
Execute a query, storing the result set in an STL associative container.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 129

� template<class Set> void storein_set (Set &con, const SQLType-
Adapter &s)

Executes a query, storing the result rows in an STL set-associative container.

� template<class Set> void storein_set (Set &con, SQLQueryParms
&p)

Execute template query using given parameters, storing the results in a set
type container.

� template<class Container> void storein (Container &con)
Execute a query, and store the entire result set in an STL container.

� template<class T> void storein (std::vector< T > &con, const
SQLTypeAdapter &s)

Specialization of storein_sequence()(p. 143) for std::vector.

� template<class T> void storein (std::deque< T > &con, const
SQLTypeAdapter &s)

Specialization of storein_sequence()(p. 143) for std::deque.

� template<class T> void storein (std::list< T > &con, const SQLType-
Adapter &s)

Specialization of storein_sequence()(p. 143) for std::list.

� template<class T> void storein (std::set< T > &con, const SQLType-
Adapter &s)

Specialization of storein_set()(p. 145) for std::set.

� template<class T> void storein (std::multiset< T > &con, const
SQLTypeAdapter &s)

Specialization of storein_set()(p. 145) for std::multiset.

� template<class T> Query & update (const T &o, const T &n)
Replace an existing row's data with new data.

� template<class T> Query & insert (const T &v)
Insert a new row.

� template<class Iter> Query & insert (Iter �rst, Iter last)
Insert multiple new rows.

� template<class T> Query & replace (const T &v)
Insert new row unless there is an existing row that matches on a unique
index, in which case we replace it.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

130 MySQL++ Class Documentation

Public Attributes

� SQLQueryParms template_defaults
The default template parameters.

Friends

� class SQLQueryParms

5.48.1 Detailed Description

A class for building and executing SQL queries.
One does not generally create Query(p. 125) objects directly. Instead, call
mysqlpp::Connection::query()(p. 43) to get one tied to that connection.
There are several ways to build and execute SQL queries with this class.
The way most like other database libraries is to pass a SQL statement in either
the form of a C or C++ string to one of the exec∗(), (p. 135) store∗(), (p. 140)
or use()(p. 147) methods. The query is executed immediately, and any results
returned.
For more complicated queries, it's often more convenient to build up the query
string over several C++ statements using Query's stream interface. It works
like any other C++ stream (std::cout, std::ostringstream, etc.) in that
you can just insert things into the stream, building the query up piece by piece.
When the query string is complete, you call the overloaded version of exec∗(),
(p. 135) store∗(), (p. 140) or use() (p. 147) takes no parameters, which executes
the built query and returns any results.
If you are using the library's Specialized SQL Structures feature, Query(p. 125)
has several special functions for generating common SQL queries from those
structures. For instance, it o�ers the insert() (p. 137) method, which builds
an INSERT query to add the contents of the SSQLS to the database. As with
the stream interface, these methods only build the query string; call one of the
parameterless methods mentioned previously to actually execute the query.
Finally, you can build "template queries". This is something like C's printf()
function, in that you insert a specially-formatted query string into the object
which contains placeholders for data. You call the parse()(p. 138) method to
tell the Query(p. 125) object that the query string contains placeholders. Hav-
ing done that, you call one of the the many exec∗(), (p. 134) store∗(), (p. 139)
or use() (p. 146) overloads that take SQLTypeAdapter(p. 198) objects. There
are 25 of each by default, di�ering only in the number of STA objects they take.
(See lib/querydef.pl if you need to change the limit, or examples/tquery2.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 131

for a way around it that doesn't require changing the library.) Only the version
taking a single STA object is documented below, as to document all of them
would just be repetitive. For each Query(p. 125) method that takes a single
STA object, there's a good chance there's a set of undocumented overloads that
take more of them for the purpose of �lling out a template query.
See the user manual for more details about these options.

5.48.2 Constructor & Destructor Documentation

5.48.2.1 mysqlpp::Query::Query (Connection ∗ c, bool te = true,
const char ∗ qstr = 0)

Create a new query object attached to a connection.
This is the constructor used by mysqlpp::Connection::query()(p. 43).

Parameters:
c connection the �nished query should be sent out on
te if true, throw exceptions on errors
qstr an optional initial query string

5.48.2.2 mysqlpp::Query::Query (const Query & q)

Create a new query object as a copy of another.
This is not a traditional copy ctor! Its only purpose is to make it possible to
assign the return of Connection::query()(p. 43) to an empty Query(p. 125)
object. In particular, the stream bu�er and template query stu� will be empty
in the copy, regardless of what values they have in the original.

5.48.3 Member Function Documentation

5.48.3.1 int mysqlpp::Query::errnum () const

Get the last error number that was set.
This just delegates to Connection::errnum()(p. 36). Query(p. 125) has noth-
ing extra to say, so use either, as makes sense in your program.

5.48.3.2 const char ∗ mysqlpp::Query::error () const

Get the last error message that was set.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

132 MySQL++ Class Documentation

This just delegates to Connection::error()(p. 41). Query(p. 125) has nothing
extra to say, so use either, as makes sense in your program.

5.48.3.3 size_t mysqlpp::Query::escape_string (char ∗ escaped,
const char ∗ original, size_t length) const

Return a SQL-escaped version of the given character bu�er.

Parameters:
escaped character bu�er to hold escaped version; must point to at least

(length ∗ 2 + 1) bytes
original pointer to the character bu�er to escape
length number of characters to escape

Return values:
number of characters placed in escaped

This is part of Query(p. 125) because proper SQL escaping takes the database's
current character set into account, which requires access to the Connec-
tion(p. 35) object the query will go out on. Also, this function is very im-
portant to MySQL++'s Query(p. 125) stream manipulator mechanism, so it's
more convenient for this method to live in Query(p. 125) rather than Connec-
tion(p. 35).

5.48.3.4 size_t mysqlpp::Query::escape_string (std::string ∗ ps,
const char ∗ original = 0, size_t length = 0) const

Return a SQL-escaped version of a character bu�er.

Parameters:
ps pointer to C++ string to hold escaped version; if original is 0, also holds

the original data to be escaped
original if given, pointer to the character bu�er to escape instead of con-

tents of ∗ps
length if both this and original are given, number of characters to escape

instead of ps->length()

Return values:
number of characters placed in ∗ps

This method has three basic operation modes:

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 133

� Pass just a pointer to a C++ string containing the original data to escape,
plus act as receptacle for escaped version

� Pass a pointer to a C++ string to receive escaped string plus a pointer to
a C string to be escaped

� Pass nonzero for all parameters, taking original to be a pointer to an array
of char with given length; does not treat null characters as special

There's a degenerate fourth mode, where ps is zero: simply returns 0, because
there is nowhere to store the result.
Note that if original is 0, we always ignore the length parameter even if it is
nonzero. Length always comes from ps->length() in this case.
ps is a pointer because if it were a reference, the other overload would be impos-
sible to call: the compiler would complain that the two overloads are ambiguous
because std::string has a char∗ conversion ctor. A nice bonus is that pointer
syntax makes it clearer that the �rst parameter is an "out" parameter.

See also:
comments for escape_string(char∗, const char∗, size_t) for further details.

5.48.3.5 bool mysqlpp::Query::exec (const std::string & str)

Execute a query.
Same as execute()(p. 135), except that it only returns a �ag indicating whether
the query succeeded or not. It is basically a thin wrapper around the C API
function mysql_real_query().

Parameters:
str the query to execute

Returns:
true if query was executed successfully

See also:
execute()(p. 135), store()(p. 140), storein()(p. 142), and use()(p. 147)

5.48.3.6 bool mysqlpp::Query::exec () [inline]

Execute a built-up query.
Same as exec()(p. 133), except that it uses the query string built up within the
query object already instead of accepting a query string from the caller.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

134 MySQL++ Class Documentation

Returns:
true if query was executed successfully

See also:
exec(const std::string& str)(p. 133), execute()(p. 135),
store()(p. 140), storein()(p. 142), and use()(p. 147)

5.48.3.7 SimpleResult mysqlpp::Query::execute (const char ∗ str,
size_t len)

Execute query in a known-length string of characters. This can include null
characters.
Executes the query immediately, and returns the results.

5.48.3.8 SimpleResult mysqlpp::Query::execute (const
SQLTypeAdapter & str)

Execute a query that returns no rows.

Parameters:
str if this object is set up as a template query, this is the value to substitute

for the �rst template query parameter; else, it is the SQL query string
to execute

Because SQLTypeAdapter(p. 198) can be initialized from either a C string
or a C++ string, this overload accepts query strings in either form. Beware,
SQLTypeAdapter(p. 198) also accepts many other data types (this is its raison
d'etre), so it will let you write code that compiles but results in bogus SQL
queries.
To support template queries, there many more overloads of this type (25
total, by default; see lib/querydef.pl), each taking one more SQLType-
Adapter(p. 198) object than the previous one. See the template query overview
above for more about this topic.

5.48.3.9 SimpleResult mysqlpp::Query::execute (SQLQueryParms
& p)

Execute template query using given parameters.
This method should only be used by code that doesn't know, at compile time,
how many parameters it will have. This is useful within the library, and also
for code that builds template queries dynamically, at run time.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 135

Parameters:
p parameters to use in the template query.

5.48.3.10 SimpleResult mysqlpp::Query::execute () [inline]

Execute built-up query.
Use one of the execute()(p. 135) overloads if you don't expect the server to
return a result set. For instance, a DELETE query. The returned Simple-
Result(p. 187) object contains status information from the server, such as
whether the query succeeded, and if so how many rows were a�ected.
This overloaded version of execute()(p. 135) simply executes the query that you
have built up in the object in some way. (For instance, via the insert()(p. 137)
method, or by using the object's stream interface.)
Returns:

SimpleResult(p. 187) status information about the query
See also:

exec()(p. 133), store()(p. 140), storein()(p. 142), and use()(p. 147)

5.48.3.11 template<class SSQLS, typename Function> Function
mysqlpp::Query::for_each (const SSQLS & ssqls,
Function fn) [inline]

Run a functor for every row in a table.
Just like for_each(Function)(p. 135), except that it builds a "select ∗ from
TABLE" query using the SQL table name from the SSQLS instance you pass.
Parameters:

ssqls the SSQLS instance to get a table name from
fn the functor called for each row

Returns:
a copy of the passed functor

5.48.3.12 template<typename Function> Function
mysqlpp::Query::for_each (Function fn) [inline]

Execute the query, and call a functor for each returned row.
Just like for_each(const SQLTypeAdapter&, Function)(p. 136), but it
uses the query string held by the Query(p. 125) object already

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

136 MySQL++ Class Documentation

Parameters:
fn the functor called for each row

Returns:
a copy of the passed functor

5.48.3.13 template<typename Function> Function
mysqlpp::Query::for_each (const SQLTypeAdapter &
query, Function fn) [inline]

Execute a query, and call a functor for each returned row.
This method wraps a use()(p. 147) query, calling the given functor for every
returned row. It is analogous to STL's for_each()(p. 136) algorithm, but in-
stead of iterating over some range within a container, it iterates over a result
set produced by a query.

Parameters:
query the query string
fn the functor called for each row

Returns:
a copy of the passed functor

5.48.3.14 template<class Iter> Query& mysqlpp::Query::insert
(Iter �rst, Iter last) [inline]

Insert multiple new rows.
Builds an INSERT SQL query using items from a range within an STL con-
tainer. Insert the entire contents of the container by using the begin() and
end() iterators of the container as parameters to this function.

Parameters:
�rst iterator pointing to �rst element in range to insert
last iterator pointing to one past the last element to insert

See also:
replace()(p. 138), update()(p. 145)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 137

5.48.3.15 template<class T> Query& mysqlpp::Query::insert
(const T & v) [inline]

Insert a new row.
This function builds an INSERT SQL query. One uses it with MySQL++'s
Specialized SQL Structures mechanism.

Parameters:
v new row

See also:
replace()(p. 138), update()(p. 145)

5.48.3.16 ulonglong mysqlpp::Query::insert_id ()

Get ID generated for an AUTO_INCREMENT column in the previous INSERT
query.

Return values:
0 if the previous query did not generate an ID. Use the SQL function

LAST_INSERT_ID() if you need the last ID generated by any query,
not just the previous one. This applies to stored procedure calls be-
cause this function returns the ID generated by the last query, which
was a CALL statement, and CALL doesn't generate IDs. You need to
use LAST_INSERT_ID() to get the ID in this case.

5.48.3.17 bool mysqlpp::Query::more_results ()

Return whether more results are waiting for a multi-query or stored procedure
response.
If this function returns true, you must call store_next()(p. 142) to fetch the
next result set before you can execute more queries.
Wraps mysql_more_results() in the MySQL C API. That function only exists
in MySQL v4.1 and higher. Therefore, this function always returns false when
built against older API libraries.

Returns:
true if another result set exists

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

138 MySQL++ Class Documentation

5.48.3.18 mysqlpp::Query::operator void ∗ () const

Test whether the object has experienced an error condition.
Allows for code constructs like this:

Query q = conn.query();
.... use query object
if (q) {

... no problems in using query object
}
else {

... an error has occurred
}

This method returns false if either the Query(p. 125) object or its associated
Connection(p. 35) object has seen an error condition since the last operation.

5.48.3.19 Query & mysqlpp::Query::operator= (const Query & rhs)

Assign another query's state to this object.
The same caveats apply to this operator as apply to the copy ctor.

5.48.3.20 void mysqlpp::Query::parse ()

Treat the contents of the query string as a template query.
This method sets up the internal structures used by all of the other members
that accept template query parameters. See the "Template Queries" chapter in
the user manual for more information.

5.48.3.21 template<class T> Query& mysqlpp::Query::replace
(const T & v) [inline]

Insert new row unless there is an existing row that matches on a unique index,
in which case we replace it.
This function builds a REPLACE SQL query. One uses it with MySQL++'s
Specialized SQL Structures mechanism.

Parameters:
v new row

See also:
insert()(p. 137), update()(p. 145)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 139

5.48.3.22 void mysqlpp::Query::reset ()

Reset the query object so that it can be reused.
As of v3.0, Query(p. 125) objects auto-reset upon query execution unless you've
set it up for making template queries. (It can't auto-reset in that situation,
because it would forget the template info.) Therefore, the only time you must
call this is if you have a Query(p. 125) object set up for making template
queries, then want to build queries using one of the other methods. (Static
strings, SSQLS, or the stream interface.)

5.48.3.23 StoreQueryResult mysqlpp::Query::store (const char ∗
str, size_t len)

Execute a query that can return rows, returning all of the rows in a random-
access container.
This overload is for situations where you have the query in a C string and have
its length already. If you want to execute a query in a null-terminated C string or
have the query string in some other form, you probably want to call store(const
SQLTypeAdapter&)(p. 139) instead. SQLTypeAdapter(p. 198) converts
from plain C strings and other useful data types implicitly.

5.48.3.24 StoreQueryResult mysqlpp::Query::store (const
SQLTypeAdapter & str)

Execute a query that can return rows, returning all of the rows in a random-
access container.

Parameters:
str if this object is set up as a template query, this is the value to substitute

for the �rst template query parameter; else, it is the SQL query string
to execute

Because SQLTypeAdapter(p. 198) can be initialized from either a C string
or a C++ string, this overload accepts query strings in either form. Beware,
SQLTypeAdapter(p. 198) also accepts many other data types (this is its raison
d'etre), so it will let you write code that compiles but results in bogus SQL
queries.
To support template queries, there many more overloads of this type (25
total, by default; see lib/querydef.pl), each taking one more SQLType-
Adapter(p. 198) object than the previous one. See the template query overview
above for more about this topic.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

140 MySQL++ Class Documentation

5.48.3.25 StoreQueryResult mysqlpp::Query::store
(SQLQueryParms & p)

Store results from a template query using given parameters.
This method should only be used by code that doesn't know, at compile time,
how many parameters it will have. This is useful within the library, and also
for code that builds template queries dynamically, at run time.
Parameters:

p parameters to use in the template query.

5.48.3.26 StoreQueryResult mysqlpp::Query::store () [inline]

Execute a query that can return a result set.
Use one of the store()(p. 140) overloads to execute a query and retrieve the
entire result set into memory. This is useful if you actually need all of the
records at once, but if not, consider using one of the use()(p. 147) methods
instead, which returns the results one at a time, so they don't allocate as much
memory as store()(p. 140).
You must use store()(p. 140), storein()(p. 142) or use()(p. 147) for SELECT,
SHOW, DESCRIBE and EXPLAIN queries. You can use these functions with other
query types, but since they don't return a result set, exec()(p. 133) and exe-
cute()(p. 135) are more e�cient.
The name of this method comes from the MySQL C API function it is imple-
mented in terms of, mysql_store_result().
This function has the same set of overloads as execute()(p. 135).
Returns:

StoreQueryResult(p. 209) object containing entire result set
See also:

exec()(p. 133), execute()(p. 135), storein()(p. 142), and use()(p. 147)

5.48.3.27 template<class Sequence, typename Function> Function
mysqlpp::Query::store_if (Sequence & con, Function fn)
[inline]

Execute the query, conditionally storing each row in a container.
Just like store_if(Sequence&, const SQLTypeAdapter&, Func-
tion)(p. 141), but it uses the query string held by the Query(p. 125) object
already

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 141

Parameters:
con the destination container; needs a push_back() method
fn the functor called for each row

Returns:
a copy of the passed functor

5.48.3.28 template<class Sequence, class SSQLS, typename
Function> Function mysqlpp::Query::store_if (Sequence
& con, const SSQLS & ssqls, Function fn) [inline]

Pulls every row in a table, conditionally storing each one in a container.
Just like store_if(Sequence&, const SQLTypeAdapter&, Func-
tion)(p. 141), but it uses the SSQLS instance to construct a "select ∗ from
TABLE" query, using the table name �eld in the SSQLS.

Parameters:
con the destination container; needs a push_back() method
ssqls the SSQLS instance to get a table name from
fn the functor called for each row

Returns:
a copy of the passed functor

5.48.3.29 template<class Sequence, typename Function> Function
mysqlpp::Query::store_if (Sequence & con, const
SQLTypeAdapter & query, Function fn) [inline]

Execute a query, conditionally storing each row in a container.
This method wraps a use()(p. 147) query, calling the given functor for every
returned row, and storing the results in the given sequence container if the
functor returns true.
This is analogous to the STL copy_if() algorithm, except that the source rows
come from a database query instead of another container. (copy_if() isn't a
standard STL algorithm, but only due to an oversight by the standardization
committee.) This fact may help you to remember the order of the parameters:
the container is the destination, the query is the source, and the functor is the
predicate; it's just like an STL algorithm.

Parameters:
con the destination container; needs a push_back() method

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

142 MySQL++ Class Documentation

query the query string
fn the functor called for each row

Returns:
a copy of the passed functor

5.48.3.30 StoreQueryResult mysqlpp::Query::store_next ()

Return next result set, when processing a multi-query.
There are two cases where you'd use this function instead of the regular
store()(p. 140) functions.
First, when handling the result of executing multiple queries at once. (See this
page in the MySQL documentation for details.)
Second, when calling a stored procedure, MySQL can return the result as a set
of results.
In either case, you must consume all results before making another MySQL
query, even if you don't care about the remaining results or result sets.
As the MySQL documentation points out, you must set the MYSQL_-
OPTION_MULTI_STATEMENTS_ON �ag on the connection in order to use
this feature. See Connection::set_option()(p. 43).
Multi-queries only exist in MySQL v4.1 and higher. Therefore, this function
just wraps store()(p. 140) when built against older API libraries.

Returns:
StoreQueryResult(p. 209) object containing the next result set.

5.48.3.31 template<class Container> void mysqlpp::Query::storein
(Container & con) [inline]

Execute a query, and store the entire result set in an STL container.
This is a set of specialized template functions that call either storein_-
sequence()(p. 143) or storein_set()(p. 145), depending on the type of con-
tainer you pass it. It understands std::vector, deque, list, slist (a common
C++ library extension), set, and multiset.
Like the functions it wraps, this is actually an overloaded set of functions. See
the other functions' documentation for details.
Use this function if you think you might someday switch your program from
using a set-associative container to a sequence container for storing result sets,
or vice versa.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 143

See exec()(p. 133), execute()(p. 135), store()(p. 140), and use()(p. 147) for
alternative query execution mechanisms.

5.48.3.32 template<class Seq> void mysqlpp::Query::storein_-
sequence (Seq & con, SQLQueryParms & p)
[inline]

Execute template query using given parameters, storing the results in a sequence
type container.
This method should only be used by code that doesn't know, at compile time,
how many parameters it will have. This is useful within the library, and also
for code that builds template queries dynamically, at run time.

Parameters:
con container that will receive the results
p parameters to use in the template query.

5.48.3.33 template<class Sequence> void
mysqlpp::Query::storein_sequence (Sequence & con,
const SQLTypeAdapter & s) [inline]

Executes a query, storing the result rows in an STL sequence container.

Parameters:
con the container to store the results in
s if Query(p. 125) is set up as a template query, this is the value to sub-

stitute for the �rst template query parameter; else, the SQL query
string

There many more overloads of this type (25 total, by default; see
lib/querydef.pl), each taking one more SQLTypeAdapter(p. 198) object
than the previous one. See the template query overview above for more about
this topic.

5.48.3.34 template<class Sequence> void
mysqlpp::Query::storein_sequence (Sequence & con)
[inline]

Execute a query, storing the result set in an STL sequence container.
This function works much like store()(p. 140) from the caller's perspective,
because it returns the entire result set at once. It's actually implemented in

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

144 MySQL++ Class Documentation

terms of use()(p. 147), however, so that memory for the result set doesn't need
to be allocated twice.
There are many overloads for this function, pretty much the same as for exe-
cute()(p. 135), except that there is a Container parameter at the front of the
list. So, you can pass a container and a query string, or a container and template
query parameters.

Parameters:
con any STL sequence container, such as std::vector

See also:
exec()(p. 133), execute()(p. 135), store()(p. 140), and use()(p. 147)

5.48.3.35 template<class Set> void mysqlpp::Query::storein_set
(Set & con, SQLQueryParms & p) [inline]

Execute template query using given parameters, storing the results in a set type
container.
This method should only be used by code that doesn't know, at compile time,
how many parameters it will have. This is useful within the library, and also
for code that builds template queries dynamically, at run time.

Parameters:
con container that will receive the results
p parameters to use in the template query.

5.48.3.36 template<class Set> void mysqlpp::Query::storein_set
(Set & con, const SQLTypeAdapter & s) [inline]

Executes a query, storing the result rows in an STL set-associative container.

Parameters:
con the container to store the results in
s if Query(p. 125) is set up as a template query, this is the value to sub-

stitute for the �rst template query parameter; else, the SQL query
string

There many more overloads of this type (25 total, by default; see
lib/querydef.pl), each taking one more SQLTypeAdapter(p. 198) object
than the previous one. See the template query overview above for more about
this topic.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 145

5.48.3.37 template<class Set> void mysqlpp::Query::storein_set
(Set & con) [inline]

Execute a query, storing the result set in an STL associative container.
The same thing as storein_sequence()(p. 143), except that it's used with
associative STL containers, such as std::set. Other than that detail, that
method's comments apply equally well to this one.

5.48.3.38 std::string mysqlpp::Query::str (SQLQueryParms & p)

Get built query as a null-terminated C++ string.
Parameters:

p template query parameters to use, overriding the ones this object holds,
if any

5.48.3.39 std::string mysqlpp::Query::str (const SQLTypeAdapter
& arg0) [inline]

Get built query as a C++ string with template query parameter substitution.
Parameters:

arg0 the value to substitute for the �rst template query parameter; be-
cause SQLTypeAdapter(p. 198) implicitly converts from many dif-
ferent data types, this method is very �exible in what it accepts as a
parameter. You shouldn't have to use the SQLTypeAdapter(p. 198)
data type directly in your code.

There many more overloads of this type (25 total, by default; see
lib/querydef.pl), each taking one more SQLTypeAdapter(p. 198) object
than the previous one. See the template query overview above for more about
this topic.

5.48.3.40 template<class T> Query& mysqlpp::Query::update
(const T & o, const T & n) [inline]

Replace an existing row's data with new data.
This function builds an UPDATE SQL query using the new row data for the
SET clause, and the old row data for the WHERE clause. One uses it with
MySQL++'s Specialized SQL Structures mechanism.
Parameters:

o old row

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

146 MySQL++ Class Documentation

n new row
See also:

insert()(p. 137), replace()(p. 138)

5.48.3.41 UseQueryResult mysqlpp::Query::use (const char ∗ str,
size_t len)

Execute a query that can return rows, with access to the rows in sequence.
This overload is for situations where you have the query in a C string and
have its length already. If you want to execute a query in a null-terminated C
string or have the query string in some other form, you probably want to call
use(const SQLTypeAdapter&)(p. 146) instead. SQLTypeAdapter(p. 198)
converts from plain C strings and other useful data types implicitly.

5.48.3.42 UseQueryResult mysqlpp::Query::use (const
SQLTypeAdapter & str)

Execute a query that can return rows, with access to the rows in sequence.
Parameters:

str if this object is set up as a template query, this is the value to substitute
for the �rst template query parameter; else, it is the SQL query string
to execute

Because SQLTypeAdapter(p. 198) can be initialized from either a C string
or a C++ string, this overload accepts query strings in either form. Beware,
SQLTypeAdapter(p. 198) also accepts many other data types (this is its raison
d'etre), so it will let you write code that compiles but results in bogus SQL
queries.
To support template queries, there many more overloads of this type (25
total, by default; see lib/querydef.pl), each taking one more SQLType-
Adapter(p. 198) object than the previous one. See the template query overview
above for more about this topic.

5.48.3.43 UseQueryResult mysqlpp::Query::use (SQLQueryParms
& p)

Execute a template query that can return rows, with access to the rows in
sequence.
This method should only be used by code that doesn't know, at compile time,
how many parameters it will have. This is useful within the library, and also
for code that builds template queries dynamically, at run time.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 147

Parameters:
p parameters to use in the template query.

5.48.3.44 UseQueryResult mysqlpp::Query::use () [inline]

Execute a query that can return rows, with access to the rows in sequence.
Use one of the use()(p. 147) overloads if memory e�ciency is important. They
return an object that can walk through the result records one by one, without
fetching the entire result set from the server. This is superior to store()(p. 140)
when there are a large number of results; store()(p. 140) would have to allocate
a large block of memory to hold all those records, which could cause problems.
A potential downside of this method is that MySQL database resources are tied
up until the result set is completely consumed. Do your best to walk through
the result set as expeditiously as possible.
The name of this method comes from the MySQL C API function that initiates
the retrieval process, mysql_use_result(). This method is implemented in
terms of that function.
This function has the same set of overloads as execute()(p. 135).

Returns:
UseQueryResult(p. 246) object that can walk through result set serially

See also:
exec()(p. 133), execute()(p. 135), store()(p. 140) and storein()(p. 142)

5.48.4 Member Data Documentation

5.48.4.1 SQLQueryParms mysqlpp::Query::template_defaults

The default template parameters.
Used for �lling in parameterized queries.
The documentation for this class was generated from the following �les:

� query.h
� query.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

148 MySQL++ Class Documentation

5.49 mysqlpp::ReadDefaultFileOption Class Ref-

erence

Override use of my.cnf.
#include <options.h>

Inheritance diagram for mysqlpp::ReadDefaultFileOption:

mysqlpp::ReadDefaultFileOption

StringOption

mysqlpp::Option

Collaboration diagram for mysqlpp::ReadDefaultFileOption:

mysqlpp::ReadDefaultFileOption

StringOption

mysqlpp::Option T

arg_

5.49.1 Detailed Description

Override use of my.cnf.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.50 mysqlpp::ReadDefaultGroupOption Class Reference 149

5.50 mysqlpp::ReadDefaultGroupOption Class

Reference

Override use of my.cnf.
#include <options.h>

Inheritance diagram for mysqlpp::ReadDefaultGroupOption:

mysqlpp::ReadDefaultGroupOption

StringOption

mysqlpp::Option

Collaboration diagram for mysqlpp::ReadDefaultGroupOption:

mysqlpp::ReadDefaultGroupOption

StringOption

mysqlpp::Option T

arg_

5.50.1 Detailed Description

Override use of my.cnf.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

150 MySQL++ Class Documentation

5.51 mysqlpp::ReadTimeoutOption Class Refer-

ence

Set(p. 182) timeout for IPC data reads.
#include <options.h>

Inheritance diagram for mysqlpp::ReadTimeoutOption:

mysqlpp::ReadTimeoutOption

IntegerOption

mysqlpp::Option

mysqlpp::DataOption< T >

< unsigned >

Collaboration diagram for mysqlpp::ReadTimeoutOption:

mysqlpp::ReadTimeoutOption

IntegerOption

mysqlpp::Option

mysqlpp::DataOption< T >

< unsigned >

T

arg_

5.51.1 Detailed Description

Set(p. 182) timeout for IPC data reads.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.52 mysqlpp::ReconnectOption Class Reference 151

5.52 mysqlpp::ReconnectOption Class Reference

Enable automatic reconnection to server.
#include <options.h>

Inheritance diagram for mysqlpp::ReconnectOption:

mysqlpp::ReconnectOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

Collaboration diagram for mysqlpp::ReconnectOption:

mysqlpp::ReconnectOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

T

arg_

5.52.1 Detailed Description

Enable automatic reconnection to server.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

152 MySQL++ Class Documentation

5.53 mysqlpp::RefCountedPointer< T, Destroyer

> Class Template Reference

Creates an object that acts as a reference-counted pointer to another object.
#include <refcounted.h>

Inheritance diagram for mysqlpp::RefCountedPointer< T, Destroyer >:

mysqlpp::RefCountedPointer< T, Destroyer >

mysqlpp::RefCountedPointer< FieldTypes >
< FieldTypes >

mysqlpp::RefCountedPointer< FieldNames >< FieldNames >

mysqlpp::RefCountedPointer< MYSQL_RES >

< MYSQL_RES >

mysqlpp::RefCountedPointer< SQLBuffer >

< SQLBuffer >

Collaboration diagram for mysqlpp::RefCountedPointer< T, Destroyer >:

mysqlpp::RefCountedPointer< T, Destroyer >

T

counted_

Public Types

� typedef RefCountedPointer< T > ThisType
alias for this object's type

Public Member Functions

� RefCountedPointer ()
Default constructor.

� RefCountedPointer (T ∗c)
Standard constructor.

� RefCountedPointer (const ThisType &other)
Copy constructor.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template
Reference 153

� ∼RefCountedPointer ()
Destructor.

� ThisType & assign (T ∗c)
Sets (or resets) the pointer to the counted object.

� ThisType & assign (const ThisType &other)
Copy an existing refcounted pointer.

� ThisType & operator= (T ∗c)
Set(p. 182) (or reset) the pointer to the counted object.

� ThisType & operator= (const ThisType &rhs)
Copy an existing refcounted pointer.

� T ∗ operator → () const
Access the object through the smart pointer.

� T & operator ∗ () const
Dereference the smart pointer.

� operator void ∗ ()
Returns the internal raw pointer converted to void∗.

� operator const void ∗ () const
Returns the internal raw pointer converted to const void∗.

� T ∗ raw ()
Return the raw pointer in T∗ context.

� const T ∗ raw () const
Return the raw pointer when used in const T∗ context.

� void swap (ThisType &other)
Exchange our managed memory with another pointer.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

154 MySQL++ Class Documentation

5.53.1 Detailed Description

template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> class mysqlpp::RefCountedPointer< T, Destroyer
>

Creates an object that acts as a reference-counted pointer to another object.
Resulting type acts like a pointer in all respects, except that it manages the
memory it points to by observing how many users there are for the object.
This attempts to be as automatic as reference counting in a programming lan-
guage with memory management. Like all automatic memory management
schemes, it has penalties: it turns the single indirection of an unmanaged pointer
into a double indirection, and has additional management overhead in the as-
signment operators due to the reference counter. This is an acceptable trade-
o� when wrapping objects that are expensive to copy, and which need to be
"owned" by disparate parties: you can allocate the object just once, then pass
around the reference counted pointer, knowing that the last user will "turn out
the lights".
Implementation detail: You may notice that this class manages two pointers,
one to the data we're managing, and one to the reference count. You might
wonder why we don't wrap these up into a structure and keep just a pointer to
an instance of it to simplify the memory management. It would indeed do that,
but then every access to the data we manage would be a triple indirection instead
of just double. It's a tradeo�, and we've chosen to take a minor complexity hit
to avoid the performance hit.

5.53.2 Constructor & Destructor Documentation

5.53.2.1 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T,
Destroyer >::RefCountedPointer () [inline]

Default constructor.
An object constructed this way is useless until you vivify it with operator
=()(p. 157) or assign()(p. 155).

5.53.2.2 template<class T, class Destroyer = RefCounted-
PointerDestroyer<T>> mysqlpp::RefCountedPointer<
T, Destroyer >::RefCountedPointer (T ∗ c) [inline,
explicit]

Standard constructor.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template
Reference 155
Parameters:

c A pointer to the object to be managed. If you pass 0, it's like calling the
default ctor instead, only more work: the object's useless until you
vivify it with operator =()(p. 157) or assign()(p. 155).

5.53.2.3 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T,
Destroyer >::∼RefCountedPointer () [inline]

Destructor.
This only destroys the managed memory if the reference count drops to 0.

5.53.3 Member Function Documentation

5.53.3.1 template<class T, class Destroyer =
RefCountedPointerDestroyer<T>> ThisType&
mysqlpp::RefCountedPointer< T, Destroyer >::assign
(const ThisType & other) [inline]

Copy an existing refcounted pointer.
If we are managing a pointer, this decrements the refcount for it and destroys
the managed object if the refcount falls to 0. Then we increment the other
object's reference count and copy that refcount and the managed pointer into
this object.
This is a no-op if you pass a reference to this same object.

5.53.3.2 template<class T, class Destroyer =
RefCountedPointerDestroyer<T>> ThisType&
mysqlpp::RefCountedPointer< T, Destroyer >::assign (T ∗
c) [inline]

Sets (or resets) the pointer to the counted object.
If we are managing a pointer, this decrements the refcount for it and destroys
the managed object if the refcount falls to 0.
This is a no-op if you pass the same pointer we're already managing.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

156 MySQL++ Class Documentation

5.53.3.3 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T,
Destroyer >::operator const void ∗ () const [inline]

Returns the internal raw pointer converted to const void∗.

See also:
comments for operator void∗()(p. 156)

5.53.3.4 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T,
Destroyer >::operator void ∗ () [inline]

Returns the internal raw pointer converted to void∗.
This isn't intended to be used directly; if you need the pointer, call raw()(p. 153)
instead. It's used internally by the compiler to implement operators bool, ==,
and !=
WARNING: This makes it possible to say

RefCountedPointer<Foo> bar(new Foo);
delete bar;

This will almost kinda sorta do the right thing: the Foo object held by the ref-
counted pointer will be destroyed as you wanted, but then when the refcounted
pointer goes out of scope, the memory is deleted a second time, which will
probably crash your program. This is easy to accidentally do when converting
a good ol' unmanaged pointer to a refcounted pointer and forgetting to remove
the delete calls needed previously.

5.53.3.5 template<class T, class Destroyer =
RefCountedPointerDestroyer<T>> ThisType&
mysqlpp::RefCountedPointer< T, Destroyer >::operator=
(const ThisType & rhs) [inline]

Copy an existing refcounted pointer.
This is essentially the same thing as assign(const ThisType&)(p. 155). The
choice between the two is just a matter of syntactic preference.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template
Reference 157
5.53.3.6 template<class T, class Destroyer =

RefCountedPointerDestroyer<T>> ThisType&
mysqlpp::RefCountedPointer< T, Destroyer >::operator=
(T ∗ c) [inline]

Set(p. 182) (or reset) the pointer to the counted object.
This is essentially the same thing as assign(T∗)(p. 155). The choice between
the two is just a matter of syntactic preference.

5.53.3.7 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> void mysqlpp::RefCountedPointer< T,
Destroyer >::swap (ThisType & other) [inline]

Exchange our managed memory with another pointer.
The documentation for this class was generated from the following �le:

� refcounted.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

158 MySQL++ Class Documentation

5.54 mysqlpp::RefCountedPointerDestroyer< T

> Struct Template Reference

Functor to call delete on the pointer you pass to it.
#include <refcounted.h>

Public Member Functions

� void operator() (T ∗doomed) const
Functor implementation.

5.54.1 Detailed Description

template<class T> struct mysqlpp::RefCountedPointerDestroyer< T
>

Functor to call delete on the pointer you pass to it.
The default "destroyer" for RefCountedPointer(p. 152). You won't use this
directly, you'll pass a functor of your own devising for the second parameter
to the RefCountedPointer(p. 152) template to override this. Or simpler, just
specialize this template for your type if possible: see ResUse::result_.
The documentation for this struct was generated from the following �le:

� refcounted.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.55 mysqlpp::RefCountedPointerDestroyer< MYSQL_RES >
Struct Template Reference 159
5.55 mysqlpp::RefCountedPointerDestroyer<

MYSQL_RES > Struct Template Refer-

ence

Functor to call mysql_free_result() on the pointer you pass to it.
#include <result.h>

Public Member Functions

� void operator() (MYSQL_RES ∗doomed) const
Functor implementation.

5.55.1 Detailed Description

template<> struct mysqlpp::RefCountedPointerDestroyer<
MYSQL_RES >

Functor to call mysql_free_result() on the pointer you pass to it.
This overrides RefCountedPointer's default destroyer, which uses operator
delete; it annoys the C API when you nuke its data structures this way. :)
The documentation for this struct was generated from the following �le:

� result.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

160 MySQL++ Class Documentation

5.56 mysqlpp::ReportDataTruncationOption

Class Reference

Set(p. 182) reporting of data truncation errors.
#include <options.h>

Inheritance diagram for mysqlpp::ReportDataTruncationOption:

mysqlpp::ReportDataTruncationOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

Collaboration diagram for mysqlpp::ReportDataTruncationOption:

mysqlpp::ReportDataTruncationOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

T

arg_

5.56.1 Detailed Description

Set(p. 182) reporting of data truncation errors.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.57 mysqlpp::ResultBase Class Reference 161

5.57 mysqlpp::ResultBase Class Reference

Base class for StoreQueryResult(p. 209) and UseQueryResult(p. 246).
#include <result.h>

Inheritance diagram for mysqlpp::ResultBase:

mysqlpp::ResultBase

mysqlpp::StoreQueryResult mysqlpp::UseQueryResult

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::ResultBase:

mysqlpp::ResultBase

mysqlpp::OptionalExceptions mysqlpp::RefCountedPointer< FieldTypes >

types_

mysqlpp::FieldTypes

counted_

mysqlpp::RefCountedPointer< T, Destroyer >

< FieldTypes >

mysqlpp::RefCountedPointer< FieldNames >

< FieldNames >

T

counted_

mysqlpp::DBDriver

driver_names_

mysqlpp::FieldNames

counted_

Public Member Functions

� virtual ∼ResultBase ()
Destroy object.

� const Field & fetch_�eld () const
Returns the next �eld in this result set.

� const Field & fetch_�eld (Fields::size_type i) const
Returns the given �eld in this result set.

� const Field & �eld (unsigned int i) const
Get the underlying Field(p. 86) structure given its index.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

162 MySQL++ Class Documentation

� const Fields & �elds () const
Get the underlying Fields structure.

� const std::string & �eld_name (int i) const
Get the name of the �eld at the given index.

� const RefCountedPointer< FieldNames > & �eld_names () const
Get the names of the �elds within this result set.

� int �eld_num (const std::string &) const
Get the index of the named �eld.

� const FieldTypes::value_type & �eld_type (int i) const
Get the type of a particular �eld within this result set.

� const RefCountedPointer< FieldTypes > & �eld_types () const
Get a list of the types of the �elds within this result set.

� size_t num_�elds () const
Returns the number of �elds in this result set.

� const char ∗ table () const
Return the name of the table the result set comes from.

Protected Member Functions

� ResultBase ()
Create empty object.

� ResultBase (MYSQL_RES ∗result, DBDriver ∗dbd, bool te=true)
Create the object, fully initialized.

� ResultBase (const ResultBase &other)
Create object as a copy of another ResultBase(p. 161).

� ResultBase & copy (const ResultBase &other)
Copy another ResultBase(p. 161) object's contents into this one.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.57 mysqlpp::ResultBase Class Reference 163

Protected Attributes

� DBDriver ∗ driver_
Access to DB driver; fully initted if nonzero.

� Fields �elds_
list of �elds in result

� RefCountedPointer< FieldNames > names_
list of �eld names in result

� RefCountedPointer< FieldTypes > types_
list of �eld types in result

� Fields::size_type current_�eld_
Default �eld index used by fetch_�eld()(p. 161).

5.57.1 Detailed Description

Base class for StoreQueryResult(p. 209) and UseQueryResult(p. 246).
Not useful directly. Just contains common functionality for its subclasses.

5.57.2 Member Function Documentation

5.57.2.1 int mysqlpp::ResultBase::�eld_num (const std::string &)
const

Get the index of the named �eld.
This is the inverse of �eld_name()(p. 162).

5.57.3 Member Data Documentation

5.57.3.1 Fields::size_type mysqlpp::ResultBase::current_�eld_
[mutable, protected]

Default �eld index used by fetch_�eld()(p. 161).
It's mutable because it's just internal housekeeping: it's changed by fetch_-
�eld(void)(p. 161), but it doesn't change the "value" of the result. See muta-
bility justi�cation for UseQueryResult::result_: this �eld provides functionality
we used to get through result_, so it's relevant here, too.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

164 MySQL++ Class Documentation

The documentation for this class was generated from the following �les:

� result.h
� result.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 165

5.58 mysqlpp::Row Class Reference

Manages rows from a result set.
#include <row.h>

Inheritance diagram for mysqlpp::Row:

mysqlpp::Row

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::Row:

mysqlpp::Row

mysqlpp::OptionalExceptions mysqlpp::RefCountedPointer< FieldNames >

field_names_

mysqlpp::FieldNames

counted_

mysqlpp::RefCountedPointer< T, Destroyer >

< FieldNames >

T

counted_

Public Types

� typedef std::vector< String > list_type
type of our internal data list

� typedef list_type::const_iterator const_iterator
constant iterator type

� typedef list_type::const_reference const_reference
constant reference type

� typedef list_type::const_reverse_iterator const_reverse_iterator
const reverse iterator type

� typedef list_type::di�erence_type di�erence_type
type for index di�erences

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

166 MySQL++ Class Documentation

� typedef const_iterator iterator
iterator type

� typedef const_reference reference
reference type

� typedef const_reverse_iterator reverse_iterator
mutable reverse iterator type

� typedef list_type::size_type size_type
type of returned sizes

� typedef list_type::value_type value_type
type of data in container

Public Member Functions

� Row ()
Default constructor.

� Row (const Row &r)
Copy constructor.

� Row (MYSQL_ROW row, const ResultBase ∗res, const unsigned long
∗lengths, bool te=true)

Create a row object.

� ∼Row ()
Destroy object.

� const_reference at (size_type i) const
Get a const reference to the �eld given its index.

� const_reference back () const
Get a reference to the last element of the vector.

� const_iterator begin () const
Return a const iterator pointing to �rst element in the container.

� bool empty () const

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 167

Returns true if container is empty.

� const_iterator end () const
Return a const iterator pointing to one past the last element in the container.

� equal_list_ba< FieldNames, Row, quote_type0 > equal_list
(const char ∗d=",", const char ∗e=" = ") const

Get an "equal list" of the �elds and values in this row.

� template<class Manip> equal_list_ba< FieldNames, Row, Manip
> equal_list (const char ∗d, const char ∗e, Manip m) const

Get an "equal list" of the �elds and values in this row.

� value_list_ba< FieldNames, do_nothing_type0 > �eld_list (const
char ∗d=",") const

Get a list of the �eld names in this row.

� template<class Manip> value_list_ba< FieldNames, Manip >
�eld_list (const char ∗d, Manip m) const

Get a list of the �eld names in this row.

� template<class Manip> value_list_b< FieldNames, Manip >
�eld_list (const char ∗d, Manip m, const std::vector< bool > &vb)
const

Get a list of the �eld names in this row.

� value_list_b< FieldNames, quote_type0 > �eld_list (const char ∗d,
const std::vector< bool > &vb) const

Get a list of the �eld names in this row.

� value_list_b< FieldNames, quote_type0 > �eld_list (const
std::vector< bool > &vb) const

Get a list of the �eld names in this row.

� template<class Manip> value_list_b< FieldNames, Manip >
�eld_list (const char ∗d, Manip m, bool t0, bool t1=false, bool t2=false,
bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false,
bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)
const

Get a list of the �eld names in this row.

� value_list_b< FieldNames, quote_type0 > �eld_list (const char ∗d,
bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool
t5=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool
ta=false, bool tb=false, bool tc=false) const

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

168 MySQL++ Class Documentation

Get a list of the �eld names in this row.

� value_list_b< FieldNames, quote_type0 > �eld_list (bool t0, bool
t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false) const

Get a list of the �eld names in this row.

� size_type �eld_num (const char ∗name) const
Returns a �eld's index given its name.

� const_reference front () const
Get a reference to the �rst element of the vector.

� size_type max_size () const
Return maximum number of elements that can be stored in container without
resizing.

� Row & operator= (const Row &rhs)
Assignment operator.

� const_reference operator[] (const char ∗�eld) const
Get the value of a �eld given its name.

� const_reference operator[] (int i) const
Get the value of a �eld given its index.

� operator private_bool_type () const
Returns true if row object was fully initialized and has data.

� const_reverse_iterator rbegin () const
Return reverse iterator pointing to �rst element in the container.

� const_reverse_iterator rend () const
Return reverse iterator pointing to one past the last element in the container.

� size_type size () const
Get the number of �elds in the row.

� template<class Manip> value_list_ba< Row, Manip > value_list
(const char ∗d=",", Manip m=quote) const

Get a list of the values in this row.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 169

� template<class Manip> value_list_b< Row, Manip > value_list
(const char ∗d, const std::vector< bool > &vb, Manip m=quote) const

Get a list of the values in this row.

� value_list_b< Row, quote_type0 > value_list (const std::vector<
bool > &vb) const

Get a list of the values in this row.

� template<class Manip> value_list_b< Row, Manip > value_list
(const char ∗d, Manip m, bool t0, bool t1=false, bool t2=false, bool
t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)
const

Get a list of the values in this row.

� value_list_b< Row, quote_type0 > value_list (const char ∗d, bool
t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool
t5=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool
ta=false, bool tb=false, bool tc=false) const

Get a list of the values in this row.

� value_list_b< Row, quote_type0 > value_list (bool t0, bool
t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false) const

Get a list of the values in this row.

� template<class Manip> value_list_b< Row, Manip > value_list
(const char ∗d, Manip m, std::string s0, std::string s1="", std::string
s2="", std::string s3="", std::string s4="", std::string s5="", std::string
s6="", std::string s7="", std::string s8="", std::string s9="", std::string
sa="", std::string sb="", std::string sc="") const

Get a list of the values in this row.

� value_list_b< Row, quote_type0 > value_list (const char ∗d,
std::string s0, std::string s1="", std::string s2="", std::string s3="",
std::string s4="", std::string s5="", std::string s6="", std::string s7="",
std::string s8="", std::string s9="", std::string sa="", std::string sb="",
std::string sc="") const

Get a list of the values in this row.

� value_list_b< Row, quote_type0 > value_list (std::string s0,
std::string s1="", std::string s2="", std::string s3="", std::string s4="",
std::string s5="", std::string s6="", std::string s7="", std::string s8="",

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

170 MySQL++ Class Documentation

std::string s9="", std::string sa="", std::string sb="", std::string sc="")
const

Get a list of the values in this row.

5.58.1 Detailed Description

Manages rows from a result set.
This class is like an extended version of a const std::vector of
mysqlpp::String(p. 212). It adds stu� for populating the vector. As for why
it's const, what would it mean to modify aRow(p. 165)? If we ever did support
such semantics, it should probably actually modify the database. We can't do
that if we just derive from std::vector.
Not that we could derive from std::vector even if we wanted to:
vector::operator[](size_type) would interfere with our operator[](const
char∗). We can avoid this only by maintaining our own public inteface inde-
pendent of that of vector.

5.58.2 Member Typedef Documentation

5.58.2.1 typedef const_iterator mysqlpp::Row::iterator

iterator type
Note that this is just an alias for the const iterator. Row(p. 165) is immutable,
but people are in the habit of saying 'iterator' even when they don't intend to
use the iterator to modify the container, so we provide this as a convenience.

5.58.2.2 typedef std::vector<String> mysqlpp::Row::list_type

type of our internal data list
This is public because all other typedefs we have for mirroring std::vector's
public interface depend on it.

5.58.2.3 typedef const_reference mysqlpp::Row::reference

reference type

See also:
iterator(p. 170) for justi�cation for this const_reference(p. 165) alias

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 171

5.58.2.4 typedef const_reverse_iterator mysqlpp::Row::reverse_-
iterator

mutable reverse iterator type

See also:
iterator(p. 170) for justi�cation for this const_reverse_iterator(p. 165)
alias

5.58.3 Constructor & Destructor Documentation

5.58.3.1 mysqlpp::Row::Row (MYSQL_ROW row, const
ResultBase ∗ res, const unsigned long ∗ lengths, bool te =
true)

Create a row object.

Parameters:
row MySQL C API row data
res result set that the row comes from
lengths length of each item in row
te if true, throw exceptions on errors

5.58.4 Member Function Documentation

5.58.4.1 Row::const_reference mysqlpp::Row::at (size_type i)
const

Get a const reference to the �eld given its index.

Exceptions:
mysqlpp::BadIndex if the row is not initialized or there are less than i

�elds in the row.

5.58.4.2 template<class Manip> equal_list_ba< FieldNames,
Row, Manip > mysqlpp::Row::equal_list (const char ∗ d,
const char ∗ e, Manip m) const

Get an "equal list" of the �elds and values in this row.
This method's parameters govern how the returned list will behave when you
insert it into a C++ stream:

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

172 MySQL++ Class Documentation

Parameters:
d delimiter to use between items

e the operator to use between elements

m the manipulator to use for each element

For example, if d is ",", e is " = ", and m is the quote manipulator, then the
�eld and value lists (a, b) (c, d'e) will yield an equal list that gives the following
when inserted into a C++ stream:

'a' = 'c', 'b' = 'd''e'

Notice how the single quote was 'escaped' in the SQL way to avoid a syntax
error.

5.58.4.3 equal_list_ba< FieldNames, Row, quote_type0 >
mysqlpp::Row::equal_list (const char ∗ d = ",", const
char ∗ e = " = ") const

Get an "equal list" of the �elds and values in this row.
When inserted into a C++ stream, the delimiter 'd' will be used between the
items, " = " is the relationship operator, and items will be quoted and escaped.

5.58.4.4 value_list_b< FieldNames, quote_type0 >
mysqlpp::Row::�eld_list (bool t0, bool t1 = false, bool t2
= false, bool t3 = false, bool t4 = false, bool t5 = false,
bool t6 = false, bool t7 = false, bool t8 = false, bool t9
= false, bool ta = false, bool tb = false, bool tc = false)
const

Get a list of the �eld names in this row.
For each true parameter, the �eld name in that position within the row is added
to the returned list. When the list is inserted into a C++ stream, a comma will
be placed between the items as a delimiter, and the items will be quoted and
escaped.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 173

5.58.4.5 value_list_b< FieldNames, quote_type0 >
mysqlpp::Row::�eld_list (const char ∗ d, bool t0, bool t1
= false, bool t2 = false, bool t3 = false, bool t4 = false,
bool t5 = false, bool t6 = false, bool t7 = false, bool t8
= false, bool t9 = false, bool ta = false, bool tb = false,
bool tc = false) const

Get a list of the �eld names in this row.
For each true parameter, the �eld name in that position within the row is added
to the returned list. When the list is inserted into a C++ stream, the delimiter
'd' will be placed between the items as a delimiter, and the items will be quoted
and escaped.

5.58.4.6 template<class Manip> value_list_b< FieldNames,
Manip > mysqlpp::Row::�eld_list (const char ∗ d, Manip
m, bool t0, bool t1 = false, bool t2 = false, bool t3 =
false, bool t4 = false, bool t5 = false, bool t6 = false,
bool t7 = false, bool t8 = false, bool t9 = false, bool ta
= false, bool tb = false, bool tc = false) const

Get a list of the �eld names in this row.
For each true parameter, the �eld name in that position within the row is added
to the returned list. When the list is inserted into a C++ stream, the delimiter
'd' will be placed between the items as a delimiter, and the manipulator 'm'
used before each item.

5.58.4.7 value_list_b< FieldNames, quote_type0 >
mysqlpp::Row::�eld_list (const std::vector< bool > & vb)
const

Get a list of the �eld names in this row.

Parameters:
vb for each true item in this list, add that �eld name to the returned list;

ignore the others

Field(p. 86) names will be quoted and escaped when inserted into a C++
stream, and a comma will be placed between them as a delimiter.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

174 MySQL++ Class Documentation

5.58.4.8 value_list_b< FieldNames, quote_type0 >
mysqlpp::Row::�eld_list (const char ∗ d, const
std::vector< bool > & vb) const

Get a list of the �eld names in this row.

Parameters:
d delimiter to place between the items when the list is inserted into a C++

stream
vb for each true item in this list, add that �eld name to the returned list;

ignore the others

Field(p. 86) names will be quoted and escaped when inserted into a C++
stream.

5.58.4.9 template<class Manip> value_list_b< FieldNames,
Manip > mysqlpp::Row::�eld_list (const char ∗ d, Manip
m, const std::vector< bool > & vb) const

Get a list of the �eld names in this row.

Parameters:
d delimiter to place between the items when the list is inserted into a C++

stream
m manipulator to use before each item when the list is inserted into a C++

stream
vb for each true item in this list, add that �eld name to the returned list;

ignore the others

5.58.4.10 template<class Manip> value_list_ba< FieldNames,
Manip > mysqlpp::Row::�eld_list (const char ∗ d, Manip
m) const

Get a list of the �eld names in this row.

Parameters:
d delimiter to place between the items when the list is inserted into a C++

stream
m manipulator to use before each item when the list is inserted into a C++

stream

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 175

5.58.4.11 value_list_ba< FieldNames, do_nothing_type0 >
mysqlpp::Row::�eld_list (const char ∗ d = ",") const

Get a list of the �eld names in this row.
When inserted into a C++ stream, the delimiter 'd' will be used between the
items, and no manipulator will be used on the items.

5.58.4.12 mysqlpp::Row::operator private_bool_type () const
[inline]

Returns true if row object was fully initialized and has data.
This operator lets you useRow(p. 165) in bool context, which lets you do things
like tell when you've run o� the end of a "use" query's result set:

Query q("....");
if (UseQueryResult res = q.use()) {

// Can use 'res', query succeeded
while (Row row = res.fetch_row()) {

// Retreived another row in the result set, can use 'row'
}

}

5.58.4.13 const_reference mysqlpp::Row::operator[] (int i) const
[inline]

Get the value of a �eld given its index.
This function is just syntactic sugar, wrapping the at()(p. 171) method.
It's critical that the parameter type be int, not size_type, because it will
interfere with the const char∗ overload otherwise. row[0] is ambiguous when
there isn't an int overload.
Exceptions:

mysqlpp::BadIndex if the row is not initialized or there are less than i
�elds in the row.

5.58.4.14 const Row::value_type & mysqlpp::Row::operator[]
(const char ∗ �eld) const

Get the value of a �eld given its name.
If the �eld does not exist in this row, we throw a BadFieldName(p. 20) ex-
ception if exceptions are enabled, or an empty row if not. An empty row tests
as false in bool context.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

176 MySQL++ Class Documentation

This operator is fairly ine�cient. operator[](int) is faster.

5.58.4.15 value_list_b<Row, quote_type0>
mysqlpp::Row::value_list (std::string s0, std::string s1 =
"", std::string s2 = "", std::string s3 = "", std::string s4
= "", std::string s5 = "", std::string s6 = "", std::string
s7 = "", std::string s8 = "", std::string s9 = "",
std::string sa = "", std::string sb = "", std::string sc =
"") const [inline]

Get a list of the values in this row.
The 's' parameters name the �elds that will be added to the returned list. When
inserted into a C++ stream, a comma will be placed between the items as a
delimiter, and items will be quoted and escaped.

5.58.4.16 value_list_b<Row, quote_type0>
mysqlpp::Row::value_list (const char ∗ d, std::string s0,
std::string s1 = "", std::string s2 = "", std::string s3 =
"", std::string s4 = "", std::string s5 = "", std::string s6
= "", std::string s7 = "", std::string s8 = "", std::string
s9 = "", std::string sa = "", std::string sb = "",
std::string sc = "") const [inline]

Get a list of the values in this row.
The 's' parameters name the �elds that will be added to the returned list. When
inserted into a C++ stream, the delimiter 'd' will be placed between the items,
and items will be quoted and escaped.

5.58.4.17 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, Manip m,
std::string s0, std::string s1 = "", std::string s2 = "",
std::string s3 = "", std::string s4 = "", std::string s5 =
"", std::string s6 = "", std::string s7 = "", std::string s8
= "", std::string s9 = "", std::string sa = "", std::string
sb = "", std::string sc = "") const [inline]

Get a list of the values in this row.
The 's' parameters name the �elds that will be added to the returned list. When
inserted into a C++ stream, the delimiter 'd' will be placed between the items,
and the manipulator 'm' will be inserted before each item.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 177

5.58.4.18 value_list_b<Row, quote_type0>
mysqlpp::Row::value_list (bool t0, bool t1 = false, bool
t2 = false, bool t3 = false, bool t4 = false, bool t5 =
false, bool t6 = false, bool t7 = false, bool t8 = false,
bool t9 = false, bool ta = false, bool tb = false, bool tc
= false) const [inline]

Get a list of the values in this row.
For each true parameter, the value in that position within the row is added to
the returned list. When the list is inserted into a C++ stream, the a comma
will be placed between the items, as a delimiter, and items will be quoted and
escaped.

5.58.4.19 value_list_b<Row, quote_type0>
mysqlpp::Row::value_list (const char ∗ d, bool t0, bool t1
= false, bool t2 = false, bool t3 = false, bool t4 =
false, bool t5 = false, bool t6 = false, bool t7 = false,
bool t8 = false, bool t9 = false, bool ta = false, bool tb
= false, bool tc = false) const [inline]

Get a list of the values in this row.
For each true parameter, the value in that position within the row is added to
the returned list. When the list is inserted into a C++ stream, the delimiter 'd'
will be placed between the items, and items will be quoted and escaped.

5.58.4.20 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, Manip m, bool
t0, bool t1 = false, bool t2 = false, bool t3 = false,
bool t4 = false, bool t5 = false, bool t6 = false, bool t7
= false, bool t8 = false, bool t9 = false, bool ta =
false, bool tb = false, bool tc = false) const [inline]

Get a list of the values in this row.
For each true parameter, the value in that position within the row is added to
the returned list. When the list is inserted into a C++ stream, the delimiter
'd' will be placed between the items, and the manipulator 'm' used before each
item.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

178 MySQL++ Class Documentation

5.58.4.21 value_list_b<Row, quote_type0>
mysqlpp::Row::value_list (const std::vector< bool > &
vb) const [inline]

Get a list of the values in this row.
Parameters:

vb for each true item in this list, add that value to the returned list; ignore
the others

Items will be quoted and escaped when inserted into a C++ stream, and a
comma will be used as a delimiter between the items.

5.58.4.22 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, const
std::vector< bool > & vb, Manip m = quote) const
[inline]

Get a list of the values in this row.
Parameters:

d delimiter to use between values
vb for each true item in this list, add that value to the returned list; ignore

the others
m manipulator to use when inserting values into a stream

5.58.4.23 template<class Manip> value_list_ba<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d = ",", Manip m
= quote) const [inline]

Get a list of the values in this row.
When inserted into a C++ stream, the delimiter 'd' will be used between the
items, and the quoting and escaping rules will be set by the manipulator 'm'
you choose.
Parameters:

d delimiter to use between values
m manipulator to use when inserting values into a stream

The documentation for this class was generated from the following �les:
� row.h
� row.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.59 mysqlpp::ScopedLock Class Reference 179

5.59 mysqlpp::ScopedLock Class Reference

Wrapper around BeecryptMutex(p. 30) to add scope-bound locking and un-
locking.
#include <beemutex.h>

Collaboration diagram for mysqlpp::ScopedLock:

mysqlpp::ScopedLock

mysqlpp::BeecryptMutex

mutex_

Public Member Functions

� ScopedLock (BeecryptMutex &mutex)
Lock the mutex.

� ∼ScopedLock ()
Unlock the mutex.

5.59.1 Detailed Description

Wrapper around BeecryptMutex(p. 30) to add scope-bound locking and un-
locking.
This allows code to lock a mutex and ensure it will unlock on exit from the
enclosing scope even in the face of exceptions. This is separate from Beecrypt-
Mutex(p. 30) because we don't want to make this behavior mandatory.
The documentation for this class was generated from the following �le:

� beemutex.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

180 MySQL++ Class Documentation

5.60 mysqlpp::SecureAuthOption Class Refer-

ence

Enforce use of secure authentication, refusing connection if not available.
#include <options.h>

Inheritance diagram for mysqlpp::SecureAuthOption:

mysqlpp::SecureAuthOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

Collaboration diagram for mysqlpp::SecureAuthOption:

mysqlpp::SecureAuthOption

BooleanOption

mysqlpp::Option

mysqlpp::DataOption< T >

< bool >

T

arg_

5.60.1 Detailed Description

Enforce use of secure authentication, refusing connection if not available.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.61 mysqlpp::SelfTestFailed Class Reference 181

5.61 mysqlpp::SelfTestFailed Class Reference

Used within MySQL++'s test harness only.
#include <exceptions.h>

Inheritance diagram for mysqlpp::SelfTestFailed:

mysqlpp::SelfTestFailed

mysqlpp::Exception

Collaboration diagram for mysqlpp::SelfTestFailed:

mysqlpp::SelfTestFailed

mysqlpp::Exception

Public Member Functions

� SelfTestFailed (const std::string &w)
Create exception object.

5.61.1 Detailed Description

Used within MySQL++'s test harness only.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

182 MySQL++ Class Documentation

5.62 mysqlpp::Set< Container > Class Template

Reference

A special std::set derivative for holding MySQL data sets.
#include <myset.h>

Public Member Functions

� Set ()
Default constructor.

� Set (const char ∗str)
Create object from a comma-separated list of values.

� Set (const std::string &str)
Create object from a comma-separated list of values.

� Set (const String &str)
Create object from a comma-separated list of values.

� operator std::string () const
Convert this set's data to a string containing comma-separated items.

� std::string str () const
Return our value in std::string form.

5.62.1 Detailed Description

template<class Container = std::set<std::string>> class
mysqlpp::Set< Container >

A special std::set derivative for holding MySQL data sets.
The documentation for this class was generated from the following �le:

� myset.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.63 mysqlpp::SetCharsetDirOption Class Reference 183

5.63 mysqlpp::SetCharsetDirOption Class Refer-

ence

Give path to charset de�nition �les.
#include <options.h>

Inheritance diagram for mysqlpp::SetCharsetDirOption:

mysqlpp::SetCharsetDirOption

StringOption

mysqlpp::Option

Collaboration diagram for mysqlpp::SetCharsetDirOption:

mysqlpp::SetCharsetDirOption

StringOption

mysqlpp::Option T

arg_

5.63.1 Detailed Description

Give path to charset de�nition �les.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

184 MySQL++ Class Documentation

5.64 mysqlpp::SetCharsetNameOption Class

Reference

Give name of default charset.
#include <options.h>

Inheritance diagram for mysqlpp::SetCharsetNameOption:

mysqlpp::SetCharsetNameOption

StringOption

mysqlpp::Option

Collaboration diagram for mysqlpp::SetCharsetNameOption:

mysqlpp::SetCharsetNameOption

StringOption

mysqlpp::Option T

arg_

5.64.1 Detailed Description

Give name of default charset.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.65 mysqlpp::SetClientIpOption Class Reference 185

5.65 mysqlpp::SetClientIpOption Class Refer-

ence

Fake client IP address when connecting to embedded server.
#include <options.h>

Inheritance diagram for mysqlpp::SetClientIpOption:

mysqlpp::SetClientIpOption

StringOption

mysqlpp::Option

Collaboration diagram for mysqlpp::SetClientIpOption:

mysqlpp::SetClientIpOption

StringOption

mysqlpp::Option T

arg_

5.65.1 Detailed Description

Fake client IP address when connecting to embedded server.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

186 MySQL++ Class Documentation

5.66 mysqlpp::SharedMemoryBaseNameOption

Class Reference

Set(p. 182) name of shmem segment for IPC.
#include <options.h>

Inheritance diagram for mysqlpp::SharedMemoryBaseNameOption:

mysqlpp::SharedMemoryBaseNameOption

StringOption

mysqlpp::Option

Collaboration diagram for mysqlpp::SharedMemoryBaseNameOption:

mysqlpp::SharedMemoryBaseNameOption

StringOption

mysqlpp::Option T

arg_

5.66.1 Detailed Description

Set(p. 182) name of shmem segment for IPC.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.67 mysqlpp::SimpleResult Class Reference 187

5.67 mysqlpp::SimpleResult Class Reference

Holds information about the result of queries that don't return rows.
#include <result.h>

Public Member Functions

� SimpleResult ()
Default ctor.

� SimpleResult (bool copacetic, ulonglong insert_id, ulonglong rows,
const std::string &info)

Initialize object.

� operator private_bool_type () const
Test whether the query that created this result succeeded.

� ulonglong insert_id () const
Get the last value used for an AUTO_INCREMENT �eld.

� ulonglong rows () const
Get the number of rows a�ected by the query.

� const char ∗ info () const
Get any additional information about the query returned by the server.

5.67.1 Detailed Description

Holds information about the result of queries that don't return rows.

5.67.2 Member Function Documentation

5.67.2.1 mysqlpp::SimpleResult::operator private_bool_type ()
const [inline]

Test whether the query that created this result succeeded.
If you test this object in bool context and it's false, it's a signal that the
query this was created from failed in some way. Call Query::error()(p. 131)
or Query::errnum()(p. 131) to �nd out what exactly happened.
The documentation for this class was generated from the following �le:

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

188 MySQL++ Class Documentation

� result.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.68 mysqlpp::SQLBu�er Class Reference 189

5.68 mysqlpp::SQLBu�er Class Reference

Holds SQL data in string form plus type information for use in converting the
string to compatible C++ data types.
#include <sql_buffer.h>

Collaboration diagram for mysqlpp::SQLBu�er:

mysqlpp::SQLBuffer

mysqlpp::mysql_type_info

type_

Public Types

� typedef size_t size_type
Type of length values.

Public Member Functions

� SQLBu�er (const char ∗data, size_type length, mysql_type_info
type, bool is_null)

Initialize object as a copy of a raw data bu�er.

� SQLBu�er (const std::string &s,mysql_type_info type, bool is_null)
Initialize object as a copy of a C++ string object.

� ∼SQLBu�er ()
Destructor.

� SQLBu�er & assign (const char ∗data, size_type length,
mysql_type_info type=mysql_type_info::string_type, bool
is_null=false)

Replace contents of bu�er with copy of given C string.

� SQLBu�er & assign (const std::string &s, mysql_type_info
type=mysql_type_info::string_type, bool is_null=false)

Replace contents of bu�er with copy of given C++ string.

� const char ∗ data () const

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

190 MySQL++ Class Documentation

Return pointer to raw data bu�er.

� bool escape_q () const
Returns true if we were initialized with a data type that must be escaped when
used in a SQL query.

� size_type length () const
Return number of bytes in data bu�er.

� bool is_string ()
Returns true if type of bu�er's contents is string.

� bool is_null () const
Return true if bu�er's contents represent a SQL null.

� bool quote_q () const
Returns true if we were initialized with a data type that must be quoted when
used in a SQL query.

� void set_null ()
Sets the internal SQL null �ag.

� const mysql_type_info & type () const
Return the SQL type of the data held in the bu�er.

5.68.1 Detailed Description

Holds SQL data in string form plus type information for use in converting the
string to compatible C++ data types.

5.68.2 Constructor & Destructor Documentation

5.68.2.1 mysqlpp::SQLBu�er::SQLBu�er (const char ∗ data,
size_type length, mysql_type_info type, bool is_null)
[inline]

Initialize object as a copy of a raw data bu�er.
Copies the string into a new bu�er one byte longer than the length value given,
using that to hold a C string null terminator, just for safety. The length value
we keep does not include this extra byte, allowing this same mechanism to work
for both C strings and binary data.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.68 mysqlpp::SQLBu�er Class Reference 191

5.68.3 Member Function Documentation

5.68.3.1 bool mysqlpp::SQLBu�er::is_null () const [inline]

Return true if bu�er's contents represent a SQL null.
The bu�er's actual content will probably be "NULL" or something like it, but
in the SQL data type system, a SQL null is distinct from a plain string with
value "NULL".

5.68.3.2 size_type mysqlpp::SQLBu�er::length () const [inline]

Return number of bytes in data bu�er.
Count does not include the trailing null we tack on to our copy of the bu�er for
ease of use in C string contexts. We do this because we can be holding binary
data just as easily as a C string.
The documentation for this class was generated from the following �les:

� sql_bu�er.h
� sql_bu�er.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

192 MySQL++ Class Documentation

5.69 mysqlpp::SQLParseElement Struct Refer-

ence

Used within Query(p. 125) to hold elements for parameterized queries.
#include <qparms.h>

Public Member Functions

� SQLParseElement (std::string b, char o, signed char n)
Create object.

Public Attributes

� std::string before
string inserted before the parameter

� char option
the parameter option, or blank if none

� signed char num
the parameter position to use

5.69.1 Detailed Description

Used within Query(p. 125) to hold elements for parameterized queries.
Each element has three parts:
The concept behind the before variable needs a little explaining. When a
template query is parsed, each parameter is parsed into one of these SQLParse-
Element(p. 192) objects, but the non-parameter parts of the template also have
to be stored somewhere. MySQL++ chooses to attach the text leading up to a
parameter to that parameter. So, the before string is simply the text copied
literally into the �nished query before we insert a value for the parameter.
The option character is currently one of 'q', 'Q', 'r', 'R' or ' '. See the "Template
Queries" chapter in the user manual for details.
The position value (num) allows a template query to have its parameters in a
di�erent order than in the Query(p. 125) method call. An example of how this
can be helpful is in the "Template Queries" chapter of the user manual.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.69 mysqlpp::SQLParseElement Struct Reference 193

5.69.2 Constructor & Destructor Documentation

5.69.2.1 mysqlpp::SQLParseElement::SQLParseElement
(std::string b, char o, signed char n) [inline]

Create object.

Parameters:
b the 'before' value
o the 'option' value
n the 'num' value

The documentation for this struct was generated from the following �le:

� qparms.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

194 MySQL++ Class Documentation

5.70 mysqlpp::SQLQueryParms Class Reference

This class holds the parameter values for �lling template queries.
#include <qparms.h>

Collaboration diagram for mysqlpp::SQLQueryParms:

mysqlpp::SQLQueryParms

mysqlpp::Query

template_defaults parent_

mysqlpp::OptionalExceptions

mysqlpp::Connection

conn_

mysqlpp::DBDriver

driver_

Public Types

� typedef const SQLTypeAdapter & sta
Abbreviation so some of the declarations below don't span many lines.

Public Member Functions

� SQLQueryParms ()
Default constructor.

� SQLQueryParms (Query ∗p)
Create object.

� bool bound ()
Returns true if we are bound to a query object.

� void clear ()
Clears the list.

� size_t escape_string (std::string ∗ps, const char ∗original=0, size_t
length=0) const

Indirect access to Query::escape_string()(p. 132).
� size_t escape_string (char ∗escaped, const char ∗original, size_t
length) const

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.70 mysqlpp::SQLQueryParms Class Reference 195

Indirect access to Query::escape_string()(p. 132).
� SQLTypeAdapter & operator[] (size_type n)

Access element number n.

� const SQLTypeAdapter & operator[] (size_type n) const
Access element number n.

� SQLTypeAdapter & operator[] (const char ∗str)
Access the value of the element with a key of str.

� const SQLTypeAdapter & operator[] (const char ∗str) const
Access the value of the element with a key of str.

� SQLQueryParms & operator<< (const SQLTypeAdapter &str)
Adds an element to the list.

� SQLQueryParms & operator+= (const SQLTypeAdapter &str)
Adds an element to the list.

� SQLQueryParms operator+ (const SQLQueryParms &other)
const

Build a composite of two parameter lists.

� void set (sta a, sta b, sta c, sta d, sta e, sta f, sta g, sta h, sta i, sta
j, sta k, sta l)

Set(p. 182) the template query parameters.

Friends

� class Query

5.70.1 Detailed Description

This class holds the parameter values for �lling template queries.

5.70.2 Constructor & Destructor Documentation

5.70.2.1 mysqlpp::SQLQueryParms::SQLQueryParms (Query ∗ p)
[inline]

Create object.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

196 MySQL++ Class Documentation

Parameters:
p pointer to the query object these parameters are tied to

5.70.3 Member Function Documentation

5.70.3.1 bool mysqlpp::SQLQueryParms::bound () [inline]

Returns true if we are bound to a query object.
Basically, this tells you which of the two ctors were called.

5.70.3.2 size_t mysqlpp::SQLQueryParms::escape_string (char ∗
escaped, const char ∗ original, size_t length) const

Indirect access to Query::escape_string()(p. 132).

See also:
escape_string(std::string∗, const char∗, size_t)
Query::escape_string(const char∗, const char∗, size_t)

5.70.3.3 size_t mysqlpp::SQLQueryParms::escape_string
(std::string ∗ ps, const char ∗ original = 0, size_t length =
0) const

Indirect access to Query::escape_string()(p. 132).

5.70.3.4 SQLQueryParms mysqlpp::SQLQueryParms::operator+
(const SQLQueryParms & other) const

Build a composite of two parameter lists.
If this list is (a, b) and other is (c, d, e, f, g), then the returned list will be (a,
b, e, f, g). That is, all of this list's parameters are in the returned list, plus any
from the other list that are in positions beyond what exist in this list.
If the two lists are the same length or this list is longer than the other list, a
copy of this list is returned.

5.70.3.5 void mysqlpp::SQLQueryParms::set (sta a, sta b, sta c, sta
d, sta e, sta f, sta g, sta h, sta i, sta j, sta k, sta l) [inline]

Set(p. 182) the template query parameters.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.70 mysqlpp::SQLQueryParms Class Reference 197

Sets parameter 0 to a, parameter 1 to b, etc. There are overloaded versions of
this function that take anywhere from one to a dozen parameters.
The documentation for this class was generated from the following �les:

� qparms.h
� qparms.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

198 MySQL++ Class Documentation

5.71 mysqlpp::SQLTypeAdapter Class Reference

Converts many di�erent data types to strings suitable for use in SQL queries.
#include <stadapter.h>

Collaboration diagram for mysqlpp::SQLTypeAdapter:

mysqlpp::SQLTypeAdapter

mysqlpp::RefCountedPointer< SQLBuffer >

buffer_

mysqlpp::SQLBuffer

counted_

mysqlpp::mysql_type_info

type_

mysqlpp::RefCountedPointer< T, Destroyer >

< SQLBuffer >

T

counted_

Public Types

� typedef size_t size_type
size of length values

Public Member Functions

� SQLTypeAdapter ()
Default constructor; empty string.

� SQLTypeAdapter (const SQLTypeAdapter &other)
Copy ctor.

� SQLTypeAdapter (const String &str, bool processed=false)
Create a copy of a MySQL++ string.

� SQLTypeAdapter (const std::string &str, bool processed=false)
Create a copy of a C++ string.

� SQLTypeAdapter (const char ∗str, bool processed=false)
Create a copy of a null-terminated C string.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 199

� SQLTypeAdapter (const char ∗str, int len, bool processed=false)
Create a copy of an arbitrary block of data.

� SQLTypeAdapter (char c)
Create a single-character string.

� SQLTypeAdapter (sql_tinyint i)
Create a string representation of SQL TINYINT.

� SQLTypeAdapter (sql_tinyint_unsigned i)
Create a string representation of SQL TINYINT UNSIGNED.

� SQLTypeAdapter (short i)
Create a string representation of a short int value.

� SQLTypeAdapter (unsigned short i)
Create a string representation of an unsigned short int value.

� SQLTypeAdapter (int i)
Create a string representation of an int value.

� SQLTypeAdapter (unsigned i)
Create a string representation of an unsigned int value.

� SQLTypeAdapter (long i)
Create a string representation of a long int value.

� SQLTypeAdapter (unsigned long i)
Create a string representation of an unsigned long int value.

� SQLTypeAdapter (longlong i)
Create a string representation of a longlong value.

� SQLTypeAdapter (ulonglong i)
Create a string representation of an unsigned longlong value.

� SQLTypeAdapter (�oat i)
Create a string representation of a float value.

� SQLTypeAdapter (double i)
Create a string representation of a double value.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

200 MySQL++ Class Documentation

� SQLTypeAdapter (const Date &d)
Create a SQL string representation of a date.

� SQLTypeAdapter (const DateTime &dt)
Create a SQL string representation of a date and time.

� SQLTypeAdapter (const Time &t)
Create a SQL string representation of a time.

� SQLTypeAdapter (const null_type &i)
Create object representing SQL NULL.

� SQLTypeAdapter & operator= (const SQLTypeAdapter &rhs)
Standard assignment operator.

� SQLTypeAdapter & operator= (const null_type &n)
Replace contents of object with a SQL null.

� operator const char ∗ () const
Returns a const char pointer to the object's raw data.

� SQLTypeAdapter & assign (const SQLTypeAdapter &sta)
Copies another SQLTypeAdapter's data bu�er into this object.

� SQLTypeAdapter & assign (const char ∗pc, int len=-1)
Copies a C string or a raw bu�er into this object.

� SQLTypeAdapter & assign (const null_type &n)
Replaces contents of object with a SQL null.

� char at (size_type i) const throw (std::out_of_range)
Returns the character at a given position within the string bu�er.

� int compare (const SQLTypeAdapter &other) const
Compare the internal bu�er to the given string.

� int compare (const std::string &other) const
Compare the internal bu�er to the given string.

� int compare (size_type pos, size_type num, std::string &other)
const

Compare the internal bu�er to the given string.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 201

� int compare (const char ∗other) const
Compare the internal bu�er to the given string.

� int compare (size_type pos, size_type num, const char ∗other)
const

Compare the internal bu�er to the given string.

� const char ∗ data () const
Return pointer to raw data bu�er.

� bool escape_q () const
Returns true if we were initialized with a data type that must be escaped when
used in a SQL query.

� bool is_processed () const
Returns true if the internal 'processed' �ag is set.

� size_type length () const
Return number of bytes in data bu�er.

� size_type size () const
alias for length()(p. 201)

� bool quote_q () const
Returns true if we were initialized with a data type that must be quoted when
used in a SQL query.

� int type_id () const
Returns the type ID of the bu�er's data.

� void set_processed ()
Turns on the internal 'is_processed_' �ag.

5.71.1 Detailed Description

Converts many di�erent data types to strings suitable for use in SQL queries.
This class provides implicit conversion between many C++ types and SQL-
formatted string representations of that data without losing important type
information. This class is not for direct use outside MySQL++ itself. It exists
for those interfaces in MySQL++ that need to accept a value of any reasonable
data type which it will use in building a query string.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

202 MySQL++ Class Documentation

One major use for this is in the Query(p. 125) class interfaces for building tem-
plate queries: they have to be generic with respect to argument type, but be-
cause we know we want the data in some kind of string form eventually, we don't
need to templatize it. The interface can just use SQLTypeAdapter(p. 198),
which lets callers pass any reasonable data type. The adapter converts the
passed value implicitly.
The other major use for this type is the quoting and escaping logic in Query's
stream interface: rather than overload the << operators and the manipula-
tors for every single type we know the rules for a priori , we just specialize the
manipulators for SQLTypeAdapter(p. 198). The conversion to SQLType-
Adapter(p. 198) stringizes the data, which we needed anyway for stream in-
sertion, and holds enough type information so that the manipulator can decide
whether to do automatic quoting and/or escaping.

5.71.2 Constructor & Destructor Documentation

5.71.2.1 mysqlpp::SQLTypeAdapter::SQLTypeAdapter (const
SQLTypeAdapter & other)

Copy ctor.
Parameters:

other the other SQLTypeAdapter(p. 198) object
This ctor only copies the pointer to the other SQLTypeAdapter's data bu�er
and increments its reference counter. If you need a deep copy, use one of the
ctors that takes a string.

5.71.2.2 mysqlpp::SQLTypeAdapter::SQLTypeAdapter (const
String & str, bool processed = false)

Create a copy of a MySQL++ string.
This does reference-counted bu�er sharing with the other object. If you
need a deep copy, pass the result of either String::c_str()(p. 213) or
String::conv()(p. 213) instead, which will call one of the other string ctors.

5.71.2.3 mysqlpp::SQLTypeAdapter::SQLTypeAdapter (char c)

Create a single-character string.
If you mean for c to be treated as a small integer, you should be using
mysqlpp::tiny_int(p. 233) instead. It avoids the confusion in C++ between
integer and character. See the documentation for tiny_int.h(p. 299) for details.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 203

5.71.3 Member Function Documentation

5.71.3.1 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::assign
(const null_type & n)

Replaces contents of object with a SQL null.

Parameters:
n typically, the MySQL++ global object mysqlpp::null

Return values:
∗this

5.71.3.2 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::assign
(const char ∗ pc, int len = -1)

Copies a C string or a raw bu�er into this object.

Parameters:
pc Pointer to char bu�er to copy
len Number of characters to copy; default tells function to use the return

value of strlen() instead.

Return values:
∗this If you give the len parameter, this function will treat pc as a pointer

to an array of char, not as a C string. It only treats null characters as
special when you leave len at its default.

5.71.3.3 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::assign
(const SQLTypeAdapter & sta)

Copies another SQLTypeAdapter's data bu�er into this object.

Parameters:
sta Other object to copy

Return values:
∗this Detaches this object from its internal bu�er and attaches itself to

the other object's bu�er, with reference counting on each side. If you
need a deep copy, call one of the assign()(p. 203) overloads taking a
C or C++ string instead.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

204 MySQL++ Class Documentation

5.71.3.4 char mysqlpp::SQLTypeAdapter::at (size_type i) const
throw (std::out_of_range)

Returns the character at a given position within the string bu�er.
Exceptions:

mysqlpp::BadIndex if the internal bu�er is not initialized (default ctor
called, and no subsequent assignment) or if there are not at least i +
1 characters in the bu�er.

WARNING: The throw-spec is incorrect, but it can't be changed until v4, where
we can break the ABI. Throw-specs shouldn't be relied on anyway.

5.71.3.5 int mysqlpp::SQLTypeAdapter::compare (size_type pos,
size_type num, const char ∗ other) const

Compare the internal bu�er to the given string.
Works just like string::compare(size_type, size_type, const char∗).

5.71.3.6 int mysqlpp::SQLTypeAdapter::compare (const char ∗
other) const

Compare the internal bu�er to the given string.
Works just like string::compare(const char∗).

5.71.3.7 int mysqlpp::SQLTypeAdapter::compare (size_type pos,
size_type num, std::string & other) const

Compare the internal bu�er to the given string.
Works just like string::compare(size_type, size_type, std::string&).

5.71.3.8 int mysqlpp::SQLTypeAdapter::compare (const std::string
& other) const

Compare the internal bu�er to the given string.
Works just like string::compare(const std::string&).

5.71.3.9 int mysqlpp::SQLTypeAdapter::compare (const
SQLTypeAdapter & other) const

Compare the internal bu�er to the given string.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 205

Works just like string::compare(const std::string&).

5.71.3.10 bool mysqlpp::SQLTypeAdapter::is_processed () const
[inline]

Returns true if the internal 'processed' �ag is set.
This is an implementation detail of template queries, used to prevent repeated
processing of values.

5.71.3.11 SQLTypeAdapter & mysqlpp::SQLType-
Adapter::operator= (const null_type &
n)

Replace contents of object with a SQL null.

See also:
assign(const null_type&)(p. 203) for details

5.71.3.12 SQLTypeAdapter & mysqlpp::SQLType-
Adapter::operator= (const SQLTypeAdapter &
rhs)

Standard assignment operator.

See also:
assign(const SQLTypeAdapter&)(p. 203) for details

5.71.3.13 void mysqlpp::SQLTypeAdapter::set_processed ()
[inline]

Turns on the internal 'is_processed_' �ag.
This is an implementation detail of template queries, used to prevent repeated
processing of values.

5.71.3.14 int mysqlpp::SQLTypeAdapter::type_id () const

Returns the type ID of the bu�er's data.
Values from type_info.h(p. 301). At the moment, these are the same as the
underlying MySQL C API type IDs, but it's not a good idea to count on this
remaining the case.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

206 MySQL++ Class Documentation

The documentation for this class was generated from the following �les:

� stadapter.h
� stadapter.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.72 mysqlpp::SslOption Class Reference 207

5.72 mysqlpp::SslOption Class Reference

Specialized option for handling SSL parameters.
#include <options.h>

Inheritance diagram for mysqlpp::SslOption:

mysqlpp::SslOption

mysqlpp::Option

Collaboration diagram for mysqlpp::SslOption:

mysqlpp::SslOption

mysqlpp::Option

Public Member Functions

� SslOption (const char ∗key=0, const char ∗cert=0, const char ∗ca=0,
const char ∗capath=0, const char ∗cipher=0)

Create a set of SSL connection option parameters.

5.72.1 Detailed Description

Specialized option for handling SSL parameters.

5.72.2 Constructor & Destructor Documentation

5.72.2.1 mysqlpp::SslOption::SslOption (const char ∗ key = 0, const
char ∗ cert = 0, const char ∗ ca = 0, const char ∗ capath =
0, const char ∗ cipher = 0) [inline]

Create a set of SSL connection option parameters.

Parameters:
key the pathname to the key �le

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

208 MySQL++ Class Documentation

cert the pathname to the certi�cate �le
ca the pathname to the certi�cate authority �le
capath directory that contains trusted SSL CA certi�cates in pem format.
cipher list of allowable ciphers to use

This option replaces Connection::enable_ssl() from MySQL++ version 2.
Now you can set this connection option just like any other.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.73 mysqlpp::StoreQueryResult Class Reference 209

5.73 mysqlpp::StoreQueryResult Class Refer-

ence

StoreQueryResult(p. 209) set type for "store" queries.
#include <result.h>

Inheritance diagram for mysqlpp::StoreQueryResult:

mysqlpp::StoreQueryResult

mysqlpp::ResultBase

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::StoreQueryResult:

mysqlpp::StoreQueryResult

mysqlpp::ResultBase

mysqlpp::OptionalExceptions mysqlpp::RefCountedPointer< FieldTypes >

types_

mysqlpp::FieldTypes

counted_

mysqlpp::RefCountedPointer< T, Destroyer >

< FieldTypes >

mysqlpp::RefCountedPointer< FieldNames >

< FieldNames >

T

counted_

mysqlpp::DBDriver

driver_names_

mysqlpp::FieldNames

counted_

Public Types

� typedef std::vector< Row > list_type
type of vector base class

Public Member Functions

� StoreQueryResult ()

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

210 MySQL++ Class Documentation

Default constructor.

� StoreQueryResult (MYSQL_RES ∗result, DBDriver ∗dbd, bool
te=true)

Fully initialize object.

� StoreQueryResult (const StoreQueryResult &other)
Initialize object as a copy of another StoreQueryResult(p. 209) object.

� ∼StoreQueryResult ()
Destroy result set.

� list_type::size_type num_rows () const
Returns the number of rows in this result set.

� StoreQueryResult & operator= (const StoreQueryResult &rhs)
Copy another StoreQueryResult(p. 209) object's data into this object.

� operator private_bool_type () const
Test whether the query that created this result succeeded.

5.73.1 Detailed Description

StoreQueryResult(p. 209) set type for "store" queries.
This is the obvious C++ implementation of a class to hold results from a SQL
query that returns rows: a specialization of std::vector holding Row(p. 165)
objects in memory so you get random-access semantics. MySQL++ also sup-
ports UseQueryResult(p. 246) which is less friendly, but has better memory
performance. See the user manual for more details on the distinction and the
usage patterns required.

5.73.2 Member Function Documentation

5.73.2.1 mysqlpp::StoreQueryResult::operator private_bool_type
() const [inline]

Test whether the query that created this result succeeded.
If you test this object in bool context and it's false, it's a signal that the
query this was created from failed in some way. Call Query::error()(p. 131)
or Query::errnum()(p. 131) to �nd out what exactly happened.
The documentation for this class was generated from the following �les:

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.73 mysqlpp::StoreQueryResult Class Reference 211

� result.h
� result.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

212 MySQL++ Class Documentation

5.74 mysqlpp::String Class Reference

A std::string work-alike that can convert itself from SQL text data formats to
C++ data types.
#include <mystring.h>

Collaboration diagram for mysqlpp::String:

mysqlpp::String

mysqlpp::RefCountedPointer< SQLBuffer >

buffer_

mysqlpp::SQLBuffer

counted_

mysqlpp::mysql_type_info

type_

mysqlpp::RefCountedPointer< T, Destroyer >

< SQLBuffer >

T

counted_

Public Types

� typedef const char value_type
Type of the data stored in this object, when it is not equal to SQL null.

� typedef size_t size_type
Type of "size" integers.

� typedef const char ∗ const_iterator
Type of iterators.

� typedef const_iterator iterator
Same as const_iterator because the data cannot be changed.

Public Member Functions

� String ()
Default constructor.

� String (const String &other)
Copy ctor.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 213

� String (const char ∗str, size_type len, mysql_type_info
type=mysql_type_info::string_type, bool is_null=false)

Full constructor.

� String (const std::string &str, mysql_type_info type=mysql_-
type_info::string_type, bool is_null=false)

C++ string version of full ctor.

� String (const char ∗str, mysql_type_info type=mysql_type_-
info::string_type, bool is_null=false)

Null-terminated C string version of full ctor.

� ∼String ()
Destroy string.

� void assign (const char ∗str, size_type len, mysql_type_info
type=mysql_type_info::string_type, bool is_null=false)

Assign raw data to this object.

� void assign (const std::string &str, mysql_type_info type=mysql_-
type_info::string_type, bool is_null=false)

Assign a C++ string to this object.

� void assign (const char ∗str, mysql_type_info type=mysql_type_-
info::string_type, bool is_null=false)

Assign a C string to this object.

� char at (size_type pos) const
Return a character within the string.

� const_iterator begin () const
Return iterator pointing to the �rst character of the string.

� const char ∗ c_str () const
Return a const pointer to the string data.

� template<class Type> Type conv (Type) const
Template for converting the column data to most any numeric data type.

� template<class T, class B> Null< T, B > conv (Null< T, B >) const
Overload of conv()(p. 213) for types wrapped with Null<>.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

214 MySQL++ Class Documentation

� int compare (const String &other) const
Lexically compare this string to another.

� int compare (const std::string &other) const
Lexically compare this string to another.

� int compare (size_type pos, size_type num, std::string &other)
const

Lexically compare this string to another.

� int compare (const char ∗other) const
Lexically compare this string to another.

� int compare (size_type pos, size_type num, const char ∗other)
const

Lexically compare this string to another.

� const char ∗ data () const
Raw access to the underlying bu�er, with no C string interpretation.

� bool empty () const
Returns true if size()(p. 224) == 0.

� const_iterator end () const
Return iterator pointing to one past the last character of the string.

� bool escape_q () const
Returns true if data of this type should be escaped, false otherwise.

� bool is_null () const
Returns true if this object is a SQL null.

� void it_is_null ()
Set(p. 182) a �ag indicating that this object is a SQL null.

� size_type length () const
Return number of bytes in the string.

� size_type max_size () const
Return the maximum number of characters in the string.

� bool quote_q () const
Returns true if data of this type should be quoted, false otherwise.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 215

� size_type size () const
Return number of bytes in string.

� void strip_leading_blanks (std::string &s) const
Returns a copy of our internal string without leading blanks.

� void to_string (std::string &s) const
Copies this object's data into a C++ string.

� mysql_type_info type () const
Get this object's current MySQL type.

� String & operator= (const std::string &rhs)
Assignment operator, from C++ string.

� String & operator= (const char ∗str)
Assignment operator, from C string.

� String & operator= (const String &other)
Assignment operator, from other String(p. 212).

� template<typename T> bool operator== (const T &rhs) const
Equality comparison operator.

� bool operator== (const mysqlpp::null_type &) const
Equality comparison operator.

� template<typename T> bool operator!= (const T &rhs) const
Inequality comparison operator.

� bool operator!= (const mysqlpp::null_type &) const
Inequality comparison operator.

� char operator[] (size_type pos) const
Return a character within the string.

� operator const char ∗ () const
Returns a const char pointer to the object's raw data.

� operator signed char () const
Converts this object's string data to a signed char.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

216 MySQL++ Class Documentation

� operator unsigned char () const
Converts this object's string data to an unsigned char.

� operator int () const
Converts this object's string data to an int.

� operator unsigned int () const
Converts this object's string data to an unsigned int.

� operator short int () const
Converts this object's string data to a short int.

� operator unsigned short int () const
Converts this object's string data to an unsigned short int.

� operator long int () const
Converts this object's string data to a long int.

� operator unsigned long int () const
Converts this object's string data to an unsigned long int.

� operator longlong () const
Converts this object's string data to the platform- speci�c 'longlong' type,
usually a 64-bit integer.

� operator ulonglong () const
Converts this object's string data to the platform- speci�c 'ulonglong' type,
usually a 64-bit unsigned integer.

� operator �oat () const
Converts this object's string data to a �oat.

� operator double () const
Converts this object's string data to a double.

� operator bool () const
Converts this object's string data to a bool.

� operator Date () const
Converts this object's string data to a mysqlpp::Date(p. 54).

� operator DateTime () const

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 217

Converts this object's string data to a mysqlpp::DateTime(p. 58).
� operator Time () const

Converts this object's string data to a mysqlpp::Time(p. 229).
� template<class T, class B> operator Null () const

Converts the String(p. 212) to a nullable data type.

Friends

� class SQLTypeAdapter

5.74.1 Detailed Description

A std::string work-alike that can convert itself from SQL text data formats to
C++ data types.
This class is an intermediate form for a SQL �eld, normally converted to a more
useful native C++ type, not used directly. The only exception is in dealing
with BLOB data, which stays in String(p. 212) form for e�ciency and to avoid
corrupting the data with facile conversions. Even then, it's best to use it through
the typedef aliases like sql_blob in sql_types.h(p. 295), in case we later change
this underlying representation.
String's implicit conversion operators let you can use these objects naturally:

String("12.86") + 2.0

That will give you 14.86 (approximately) as you expect, but be careful not to
get tripped up by C++'s type conversion rules. If you had said this instead:

String("12.86") + 2

the result would be 14 because 2 is an integer, and C++'s type conversion rules
put the String(p. 212) object in an integer context.
You can disable the operator overloads that allow these things by de�ning
MYSQLPP_NO_BINARY_OPERS.
This class also has some basic information about the type of data stored in it, to
allow it to do the conversions more intelligently than a trivial implementation
would allow.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

218 MySQL++ Class Documentation

5.74.2 Constructor & Destructor Documentation

5.74.2.1 mysqlpp::String::String () [inline]

Default constructor.
An object constructed this way is essentially useless, but sometimes you just
need to construct a default object.

5.74.2.2 mysqlpp::String::String (const String & other) [inline]

Copy ctor.

Parameters:
other the other String(p. 212) object

This ctor only copies the pointer to the other String's data bu�er and increments
its reference counter. If you need a deep copy, use one of the ctors that takes a
string.

5.74.2.3 mysqlpp::String::String (const char ∗ str, size_type len,
mysql_type_info type = mysql_type_info::string_type,
bool is_null = false) [inline, explicit]

Full constructor.

Parameters:
str the string this object represents, or 0 for SQL null
len the length of the string; embedded nulls are legal
type MySQL type information for data within str
is_null string represents a SQL null, not literal data

The resulting object will contain a copy of the string bu�er. The bu�er will
actually be 1 byte longer than the value given for len, to hold a null terminator
for safety. We do this because this ctor may be used for things other than
null-terminated C strings. (e.g. BLOB data)

5.74.2.4 mysqlpp::String::String (const std::string & str,
mysql_type_info type = mysql_type_info::string_type,
bool is_null = false) [inline, explicit]

C++ string version of full ctor.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 219

Parameters:
str the string this object represents, or 0 for SQL null
type MySQL type information for data within str
is_null string represents a SQL null, not literal data

The resulting object will contain a copy of the string bu�er.

5.74.2.5 mysqlpp::String::String (const char ∗ str, mysql_type_info
type = mysql_type_info::string_type, bool is_null =
false) [inline, explicit]

Null-terminated C string version of full ctor.

Parameters:
str the string this object represents, or 0 for SQL null
type MySQL type information for data within str
is_null string represents a SQL null, not literal data

The resulting object will contain a copy of the string bu�er.

5.74.3 Member Function Documentation

5.74.3.1 void mysqlpp::String::assign (const char ∗ str,
mysql_type_info type = mysql_type_info::string_type,
bool is_null = false) [inline]

Assign a C string to this object.
This parallels the ctor with the same parameters, for when you must do a 2-step
create, or when you want to reassign the data without creating a String(p. 212)
temporary to get around the fact that operator=()(p. 215) can only take one
parameter.

5.74.3.2 void mysqlpp::String::assign (const std::string & str,
mysql_type_info type = mysql_type_info::string_type,
bool is_null = false) [inline]

Assign a C++ string to this object.
This parallels the ctor with the same parameters, for when you must do a 2-step
create, or when you want to reassign the data without creating a String(p. 212)
temporary to get around the fact that operator=()(p. 215) can only take one
parameter.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

220 MySQL++ Class Documentation

5.74.3.3 void mysqlpp::String::assign (const char ∗
str, size_type len, mysql_type_info type =
mysql_type_info::string_type, bool is_null = false)
[inline]

Assign raw data to this object.
This parallels the ctor with the same parameters, for when you must do a 2-step
create, or when you want to reassign the data without creating a String(p. 212)
temporary to get around the fact that operator=()(p. 215) can only take one
parameter.

5.74.3.4 char mysqlpp::String::at (size_type pos) const

Return a character within the string.

Exceptions:
mysqlpp::BadIndex if the row is not initialized or there are less than i

�elds in the row.

5.74.3.5 int mysqlpp::String::compare (size_type pos, size_type
num, const char ∗ other) const

Lexically compare this string to another.

Parameters:
pos position within this string to begin comparison
num maximum number of characters within this string to use in compar-

ison
other string to compare against this one

Return values:
< 0 if this string is lexically "less than" other
0 if this string is equal to other
> 0 if this string is lexically "greater than" other

5.74.3.6 int mysqlpp::String::compare (const char ∗ other) const

Lexically compare this string to another.

Parameters:
other string to compare against this one

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 221

See also:
compare(size_type, size_type, const char∗)

5.74.3.7 int mysqlpp::String::compare (size_type pos, size_type
num, std::string & other) const

Lexically compare this string to another.

Parameters:
pos position within this string to begin comparison
num maximum number of characters within this string to use in compar-

ison
other string to compare against this one

See also:
compare(size_type, size_type, const char∗)

5.74.3.8 int mysqlpp::String::compare (const std::string & other)
const

Lexically compare this string to another.

Parameters:
other string to compare against this one

See also:
compare(size_type, size_type, const char∗)

5.74.3.9 int mysqlpp::String::compare (const String & other) const

Lexically compare this string to another.

Parameters:
other string to compare against this one

See also:
compare(size_type, size_type, const char∗)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

222 MySQL++ Class Documentation

5.74.3.10 template<class T, class B> Null<T, B>
mysqlpp::String::conv (Null< T, B >) const [inline]

Overload of conv()(p. 213) for types wrapped with Null<>.
If the String(p. 212) object was initialized with some string we recognize as
a SQL null, we just return a copy of the global 'null' object converted to the
requested type. Otherwise, we return the String's value wrapped in the Null<>
template.

5.74.3.11 String::size_type mysqlpp::String::length () const

Return number of bytes in the string.
Note that this doesn't count the number of characters in the string. If your
database is con�gured to use an 8-bit character set, this is a distinction without
a di�erence. But, if you're using UTF-8 in the database, you will need to
"widen" the UTF-8 data to use a �xed-size character set like UCS-2 and count
the characters that way. You might use std::wstring, for example.

5.74.3.12 size_type mysqlpp::String::max_size () const [inline]

Return the maximum number of characters in the string.
Because this is a const string, this is just an alias for size()(p. 224); its size is
always equal to the amount of data currently stored.

5.74.3.13 template<class T, class B> mysqlpp::String::operator
Null () const [inline]

Converts the String(p. 212) to a nullable data type.
This is just an implicit version of conv(Null<T, B>)

5.74.3.14 bool mysqlpp::String::operator!= (const
mysqlpp::null_type &) const [inline]

Inequality comparison operator.
For checking object against MySQL++'s global null constant

5.74.3.15 template<typename T> bool mysqlpp::String::operator!=
(const T & rhs) const [inline]

Inequality comparison operator.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 223

For comparing this object to any of the data types we have a compare()(p. 221)
overload for.

5.74.3.16 String& mysqlpp::String::operator= (const String &
other) [inline]

Assignment operator, from other String(p. 212).
This only copies the pointer to the other String's data bu�er and increments its
reference counter. If you need a deep copy, assign a string to this object instead.

5.74.3.17 String& mysqlpp::String::operator= (const char ∗ str)
[inline]

Assignment operator, from C string.
This creates a copy of the entire string, not just a copy of the pointer.

5.74.3.18 bool mysqlpp::String::operator== (const
mysqlpp::null_type &) const [inline]

Equality comparison operator.
For checking object against MySQL++'s global null constant

5.74.3.19 template<typename T> bool
mysqlpp::String::operator== (const T & rhs) const
[inline]

Equality comparison operator.
For comparing this object to any of the data types we have a compare()(p. 221)
overload for.

5.74.3.20 char mysqlpp::String::operator[] (size_type pos) const
[inline]

Return a character within the string.
This function is just syntactic sugar, wrapping the at()(p. 220) method.
Exceptions:

mysqlpp::BadIndex if the string is not initialized or there are less than
i �elds in the string.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

224 MySQL++ Class Documentation

5.74.3.21 size_type mysqlpp::String::size () const [inline]

Return number of bytes in string.
See commentary for length()(p. 222) about the di�erence between bytes and
characters.

5.74.3.22 void mysqlpp::String::to_string (std::string & s) const

Copies this object's data into a C++ string.
If you know the data doesn't contain null characters (i.e. it's a typical string,
not BLOB data), it's more e�cient to just assign this object to anything taking
const char∗. (Or equivalently, call the data()(p. 214) method.) This copies a
pointer to a bu�er instead of copying the bu�er's contents.
The documentation for this class was generated from the following �les:

� mystring.h
� mystring.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.75 mysqlpp::TCPConnection Class Reference 225

5.75 mysqlpp::TCPConnection Class Reference

Specialization of Connection(p. 35) for TCP/IP.
#include <tcp_connection.h>

Inheritance diagram for mysqlpp::TCPConnection:

mysqlpp::TCPConnection

mysqlpp::Connection

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::TCPConnection:

mysqlpp::TCPConnection

mysqlpp::Connection

mysqlpp::OptionalExceptions mysqlpp::DBDriver

driver_

Public Member Functions

� TCPConnection ()
Create object without connecting it to the MySQL server.

� TCPConnection (const char ∗addr, const char ∗db=0, const char
∗user=0, const char ∗password=0)

Create object and connect to database server over TCP/IP in one step.

� TCPConnection (const TCPConnection &other)
Establish a new connection using the same parameters as an existing con-
nection.

� ∼TCPConnection ()
Destroy object.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

226 MySQL++ Class Documentation

� bool connect (const char ∗addr=0, const char ∗db=0, const char ∗user=0,
const char ∗password=0)

Connect to database after object is created.

Static Public Member Functions

� bool parse_address (std::string &addr, unsigned int &port, std::string
&error)

Break the given TCP/IP address up into a separate address and port form.

5.75.1 Detailed Description

Specialization of Connection(p. 35) for TCP/IP.
This class just simpli�es the connection creation interface ofConnection(p. 35).
It does not add new functionality.

5.75.2 Constructor & Destructor Documentation

5.75.2.1 mysqlpp::TCPConnection::TCPConnection (const char ∗
addr, const char ∗ db = 0, const char ∗ user = 0, const
char ∗ password = 0) [inline]

Create object and connect to database server over TCP/IP in one step.

Parameters:
addr TCP/IP address of server, in either dotted quad form or as a host

or domain name; may be followed by a colon and a port number or
service name to override default port

db name of database to use
user user name to log in under, or 0 to use the user name the program is

running under
password password to use when logging in

BEWARE: These parameters are not in the same order as those in the corre-
sponding constructor for Connection(p. 35). This is a feature, not a bug. :)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.75 mysqlpp::TCPConnection Class Reference 227

5.75.2.2 mysqlpp::TCPConnection::TCPConnection (const
TCPConnection & other) [inline]

Establish a new connection using the same parameters as an existing connection.
Parameters:

other pre-existing connection to clone

5.75.3 Member Function Documentation

5.75.3.1 bool mysqlpp::TCPConnection::connect (const char ∗ addr
= 0, const char ∗ db = 0, const char ∗ user = 0, const char
∗ password = 0)

Connect to database after object is created.
It's better to use the connect-on-create constructor if you can. See its documen-
tation for the meaning of these parameters.
If you call this method on an object that is already connected to a database
server, the previous connection is dropped and a new connection is established.

5.75.3.2 bool mysqlpp::TCPConnection::parse_address (std::string
& addr, unsigned int & port, std::string & error) [static]

Break the given TCP/IP address up into a separate address and port form.
Does some sanity checking on the address. Only intended to try and prevent
library misuse, not ensure that the address can actually be used to contact a
server.
It understands the following forms:

� 1.2.3.4

� a.b.com:89

� d.e.fr:mysvcname

It also understands IPv6 addresses, but to avoid confusion between the colons
they use and the colon separating the address part from the service/port part,
they must be in RFC 2732 form. Example: [2010:836B:4179::836B:4179]:1234
Parameters:

addr the address and optional port/service combo to check on input, and
the veri�ed address on successful return

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

228 MySQL++ Class Documentation

port the port number (resolved from the service name if necessary) on
successful return

error on false return, reason for failure is placed here

Returns:
false if address fails to pass sanity checks

The documentation for this class was generated from the following �les:

� tcp_connection.h
� tcp_connection.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.76 mysqlpp::Time Class Reference 229

5.76 mysqlpp::Time Class Reference

C++ form of SQL's TIME type.
#include <datetime.h>

Inheritance diagram for mysqlpp::Time:

mysqlpp::Time

Comparable< Time >

Comparable< T >

< Time >

Collaboration diagram for mysqlpp::Time:

mysqlpp::Time

Comparable< Time >

Comparable< T >

< Time >

Public Member Functions

� Time ()
Default constructor.

� Time (unsigned char h, unsigned char m, unsigned char s)
Initialize object.

� Time (const Time &other)
Initialize object as a copy of another Time(p. 229).

� Time (const DateTime &other)
Initialize object from time part of date/time object.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

230 MySQL++ Class Documentation

� Time (const char ∗str)
Initialize object from a C string containing a SQL time string.

� template<class Str> Time (const Str &str)
Initialize object from a C++ string containing a SQL time string.

� Time (time_t t)
Initialize object from a time_t.

� int compare (const Time &other) const
Compare this time to another.

� const char ∗ convert (const char ∗)
Parse a SQL time string into this object.

� unsigned char hour () const
Get the time's hour part, 0-23.

� void hour (unsigned char h)
Change the time's hour part, 0-23.

� unsigned char minute () const
Get the time's minute part, 0-59.

� void minute (unsigned char m)
Change the time's minute part, 0-59.

� operator std::string () const
Convert to std::string.

� operator time_t () const
Convert to time_t.

� unsigned char second () const
Get the time's second part, 0-59.

� void second (unsigned char s)
Change the time's second part, 0-59.

� std::string str () const
Return our value in std::string form.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.76 mysqlpp::Time Class Reference 231

5.76.1 Detailed Description

C++ form of SQL's TIME type.
Objects of this class can be inserted into streams, and initialized from SQL
TIME strings.

5.76.2 Constructor & Destructor Documentation

5.76.2.1 mysqlpp::Time::Time (const char ∗ str) [inline,
explicit]

Initialize object from a C string containing a SQL time string.
String(p. 212) must be in the HH:MM:SS format. It doesn't have to be zero-
padded.

5.76.2.2 template<class Str> mysqlpp::Time::Time (const Str &
str) [inline, explicit]

Initialize object from a C++ string containing a SQL time string.
This works with any stringish class that declares a c_str() member function:
std::string, mysqlpp::String(p. 212)...
See also:

Time(const char∗)(p. 231)

5.76.2.3 mysqlpp::Time::Time (time_t t) [explicit]

Initialize object from a time_t.
Naturally, we throw away the "date" part of the time_t. If you need to keep
it, you want to use DateTime(p. 58) instead.

5.76.3 Member Function Documentation

5.76.3.1 int mysqlpp::Time::compare (const Time & other) const
[virtual]

Compare this time to another.
Returns < 0 if this time is before the other, 0 of they are equal, and > 0 if this
time is after the other.
Implements Comparable< Time > (p. 33).

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

232 MySQL++ Class Documentation

5.76.3.2 mysqlpp::Time::operator time_t () const

Convert to time_t.
The "date" part of the time_t is "today"
The documentation for this class was generated from the following �les:

� datetime.h
� datetime.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.77 mysqlpp::tiny_int< VT > Class Template Reference 233

5.77 mysqlpp::tiny_int< VT > Class Template

Reference

Class for holding an SQL TINYINT value.
#include <tiny_int.h>

Collaboration diagram for mysqlpp::tiny_int< VT >:

mysqlpp::tiny_int< VT >

VT

value_

Public Types

� typedef tiny_int< VT > this_type
alias for this object's type

� typedef VT value_type
alias for type of internal value

Public Member Functions

� tiny_int ()
Default constructor.

� tiny_int (value_type v)
Create object from any integral type that can be converted to a short int.

� operator bool () const
Return truthiness of value.

� operator int () const
Return value as an int.

� operator value_type () const
Return raw data value with no size change.

� this_type & operator= (int v)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

234 MySQL++ Class Documentation

Assign a new value to the object.

� this_type & operator+= (int v)
Add another value to this object.

� this_type & operator-= (int v)
Subtract another value to this object.

� this_type & operator ∗= (int v)
Multiply this value by another object.

� this_type & operator/= (int v)
Divide this value by another object.

� this_type & operator%= (int v)
Divide this value by another object and store the remainder.

� this_type & operator &= (int v)
Bitwise AND this value by another value.

� this_type & operator|= (int v)
Bitwise OR this value by another value.

� this_type & operator∧= (int v)
Bitwise XOR this value by another value.

� this_type & operator<<= (int v)
Shift this value left by v positions.

� this_type & operator>>= (int v)
Shift this value right by v positions.

� this_type & operator++ ()
Add one to this value and return that value.

� this_type & operator� ()
Subtract one from this value and return that value.

� this_type operator++ (int)
Add one to this value and return the previous value.

� this_type operator� (int)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.77 mysqlpp::tiny_int< VT > Class Template Reference 235

Subtract one from this value and return the previous value.

� this_type operator- (const this_type &i) const
Return this value minus i.

� this_type operator+ (const this_type &i) const
Return this value plus i.

� this_type operator ∗ (const this_type &i) const
Return this value multiplied by i.

� this_type operator/ (const this_type &i) const
Return this value divided by i.

� this_type operator% (const this_type &i) const
Return the modulus of this value divided by i.

� this_type operator| (const this_type &i) const
Return this value bitwise OR'd by i.

� this_type operator & (const this_type &i) const
Return this value bitwise AND'd by i.

� this_type operator∧ (const this_type &i) const
Return this value bitwise XOR'd by i.

� this_type operator<< (const this_type &i) const
Return this value bitwise shifted left by i.

� this_type operator>> (const this_type &i) const
Return this value bitwise shifted right by i.

5.77.1 Detailed Description

template<typename VT = signed char> class mysqlpp::tiny_int< VT
>

Class for holding an SQL TINYINT value.
This is required because the closest C++ type, char, doesn't have all the right
semantics. For one, inserting a char into a stream won't give you a number. For

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

236 MySQL++ Class Documentation

another, if you don't specify signedness explicitly, C++ doesn't give a default,
so it's signed on some platforms, unsigned on others.
The template parameter is intended to allow instantiating it as tiny_-
int<unsigned char> to hold TINYINT UNSIGNED values. There's nothing stopping
you from using any other integer type if you want to be perverse, but please
don't do that.
Several of the functions below accept an int argument, but internally we store
the data as a char by default. Beware of integer over�ows!

5.77.2 Constructor & Destructor Documentation

5.77.2.1 template<typename VT = signed char>
mysqlpp::tiny_int< VT >::tiny_int () [inline]

Default constructor.
Value is uninitialized
The documentation for this class was generated from the following �le:

� tiny_int.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.78 mysqlpp::TooOld< ConnInfoT > Class Template Reference 237

5.78 mysqlpp::TooOld< ConnInfoT > Class Tem-

plate Reference

Functor to test whether a given ConnectionInfo object is "too old".

5.78.1 Detailed Description

template<typename ConnInfoT> class mysqlpp::TooOld< ConnInfo-
T >

Functor to test whether a given ConnectionInfo object is "too old".
The documentation for this class was generated from the following �le:

� cpool.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

238 MySQL++ Class Documentation

5.79 mysqlpp::Transaction Class Reference

Helper object for creating exception-safe SQL transactions.
#include <transaction.h>

Collaboration diagram for mysqlpp::Transaction:

mysqlpp::Transaction

mysqlpp::Connection

conn_

mysqlpp::OptionalExceptions mysqlpp::DBDriver

driver_

Public Member Functions

� Transaction (Connection &conn, bool consistent=false)
Constructor.

� ∼Transaction ()
Destructor.

� void commit ()
Commits the transaction.

� void rollback ()
Rolls back the transaction.

5.79.1 Detailed Description

Helper object for creating exception-safe SQL transactions.

5.79.2 Constructor & Destructor Documentation

5.79.2.1 Transaction::Transaction (Connection & conn, bool
consistent = false)

Constructor.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.79 mysqlpp::Transaction Class Reference 239

Parameters:
conn The connection we use to manage the transaction set
consistent Whether to use "consistent snapshots" during the transaction.

See the documentation for "START TRANSACTION" in the MySQL
manual for more on this.

5.79.2.2 Transaction::∼Transaction ()

Destructor.
If the transaction has not been committed or rolled back by the time the de-
structor is called, it is rolled back. This is the right thing because one way this
can happen is if the object is being destroyed as the stack is unwound to handle
an exception. In that instance, you certainly want to roll back the transaction.

5.79.3 Member Function Documentation

5.79.3.1 void Transaction::commit ()

Commits the transaction.
This commits all updates to the database using the connection we were created
with since this object was created. This is a no-op if the table isn't stored
using a transaction-aware storage engine. See CREATE TABLE in the MySQL
manual for details.

5.79.3.2 void Transaction::rollback ()

Rolls back the transaction.
This abandons all SQL statements made on the connection since this object
was created. This only works on tables stored using a transaction-aware storage
engine. See CREATE TABLE in the MySQL manual for details.
The documentation for this class was generated from the following �les:

� transaction.h
� transaction.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

240 MySQL++ Class Documentation

5.80 mysqlpp::TypeLookupFailed Class Refer-

ence

Thrown from the C++ to SQL data type conversion routine when it can't �gure
out how to map the type.
#include <exceptions.h>

Inheritance diagram for mysqlpp::TypeLookupFailed:

mysqlpp::TypeLookupFailed

mysqlpp::Exception

Collaboration diagram for mysqlpp::TypeLookupFailed:

mysqlpp::TypeLookupFailed

mysqlpp::Exception

Public Member Functions

� TypeLookupFailed (const std::string &w)
Create exception object.

5.80.1 Detailed Description

Thrown from the C++ to SQL data type conversion routine when it can't �gure
out how to map the type.
This exception is not optional. The only alternatives when this happens are
equally drastic: basically, either iterate past the end of an array (crashing the
program) or call assert() to crash the program nicely. At least this way you
have some control over how your program ends. You can even ignore the error
and keep on going: this typically happens when building a SQL query, so you
can handle it just the same as if the subsequent query execution failed.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.81 mysqlpp::UnixDomainSocketConnection Class Reference 241

5.81 mysqlpp::UnixDomainSocketConnection

Class Reference

Specialization of Connection(p. 35) for Unix domain sockets.
#include <uds_connection.h>

Inheritance diagram for mysqlpp::UnixDomainSocketConnection:

mysqlpp::UnixDomainSocketConnection

mysqlpp::Connection

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::UnixDomainSocketConnection:

mysqlpp::UnixDomainSocketConnection

mysqlpp::Connection

mysqlpp::OptionalExceptions mysqlpp::DBDriver

driver_

Public Member Functions

� UnixDomainSocketConnection ()
Create object without connecting it to the MySQL server.

� UnixDomainSocketConnection (const char ∗path, const char ∗db=0,
const char ∗user=0, const char ∗password=0)

Create object and connect to database server over Unix domain sockets in
one step.

� UnixDomainSocketConnection (const UnixDomainSocket-
Connection &other)

Establish a new connection using the same parameters as an existing con-
nection.

� ∼UnixDomainSocketConnection ()

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

242 MySQL++ Class Documentation

Destroy object.

� bool connect (const char ∗path, const char ∗db=0, const char ∗user=0,
const char ∗password=0)

Connect to database after object is created.

Static Public Member Functions

� bool is_socket (const char ∗path, std::string ∗error=0)
Check that the given path names a Unix domain socket and that we have
read-write permission for it.

5.81.1 Detailed Description

Specialization of Connection(p. 35) for Unix domain sockets.
This class just simpli�es the connection creation interface ofConnection(p. 35).
It does not add new functionality.

5.81.2 Constructor & Destructor Documentation

5.81.2.1 mysqlpp::UnixDomainSocketConnection::UnixDomain-
SocketConnection (const char ∗ path, const char ∗ db =
0, const char ∗ user = 0, const char ∗ password = 0)
[inline]

Create object and connect to database server over Unix domain sockets in one
step.

Parameters:
path �lesystem path to socket
db name of database to use
user user name to log in under, or 0 to use the user name the program is

running under
password password to use when logging in

BEWARE: These parameters are not in the same order as those in the corre-
sponding constructor for Connection(p. 35). This is a feature, not a bug. :)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.81 mysqlpp::UnixDomainSocketConnection Class Reference 243

5.81.2.2 mysqlpp::UnixDomainSocketConnection::UnixDomain-
SocketConnection (const UnixDomainSocketConnection &
other) [inline]

Establish a new connection using the same parameters as an existing connection.

Parameters:
other pre-existing connection to clone

5.81.3 Member Function Documentation

5.81.3.1 bool mysqlpp::UnixDomainSocketConnection::connect
(const char ∗ path, const char ∗ db = 0, const char ∗ user
= 0, const char ∗ password = 0)

Connect to database after object is created.
It's better to use the connect-on-create constructor if you can. See its documen-
tation for the meaning of these parameters.
If you call this method on an object that is already connected to a database
server, the previous connection is dropped and a new connection is established.

5.81.3.2 bool mysqlpp::UnixDomainSocketConnection::is_socket
(const char ∗ path, std::string ∗ error = 0) [static]

Check that the given path names a Unix domain socket and that we have read-
write permission for it.

Parameters:
path the �lesystem path to the socket
error on failure, reason is placed here; take default if you do not need a

reason if it fails

Returns:
false if address fails to pass sanity checks

The documentation for this class was generated from the following �les:

� uds_connection.h
� uds_connection.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

244 MySQL++ Class Documentation

5.82 mysqlpp::UseEmbeddedConnectionOption

Class Reference

Connect to embedded server in preference to remote server.
#include <options.h>

Inheritance diagram for mysqlpp::UseEmbeddedConnectionOption:

mysqlpp::UseEmbeddedConnectionOption

mysqlpp::Option

Collaboration diagram for mysqlpp::UseEmbeddedConnectionOption:

mysqlpp::UseEmbeddedConnectionOption

mysqlpp::Option

5.82.1 Detailed Description

Connect to embedded server in preference to remote server.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.83 mysqlpp::UseQueryError Class Reference 245

5.83 mysqlpp::UseQueryError Class Reference

Exception(p. 84) thrown when something goes wrong in processing a "use"
query.
#include <exceptions.h>

Inheritance diagram for mysqlpp::UseQueryError:

mysqlpp::UseQueryError

mysqlpp::Exception

Collaboration diagram for mysqlpp::UseQueryError:

mysqlpp::UseQueryError

mysqlpp::Exception

Public Member Functions

� UseQueryError (const char ∗w="")
Create exception object.

5.83.1 Detailed Description

Exception(p. 84) thrown when something goes wrong in processing a "use"
query.
The documentation for this class was generated from the following �le:

� exceptions.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

246 MySQL++ Class Documentation

5.84 mysqlpp::UseQueryResult Class Reference

StoreQueryResult(p. 209) set type for "use" queries.
#include <result.h>

Inheritance diagram for mysqlpp::UseQueryResult:

mysqlpp::UseQueryResult

mysqlpp::ResultBase

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::UseQueryResult:

mysqlpp::UseQueryResult

mysqlpp::ResultBase mysqlpp::RefCountedPointer< MYSQL_RES >

result_

Public Member Functions

� UseQueryResult ()
Default constructor.

� UseQueryResult (MYSQL_RES ∗result, DBDriver ∗dbd, bool
te=true)

Create the object, fully initialized.

� UseQueryResult (const UseQueryResult &other)
Create a copy of another UseQueryResult(p. 246) object.

� ∼UseQueryResult ()
Destroy object.

� UseQueryResult & operator= (const UseQueryResult &rhs)
Copy another UseQueryResult(p. 246) object's data into this object.

� const Field & fetch_�eld () const

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.84 mysqlpp::UseQueryResult Class Reference 247

Returns the next �eld in this result set.

� const Field & fetch_�eld (Fields::size_type i) const
Returns the given �eld in this result set.

� const unsigned long ∗ fetch_lengths () const
Returns the lengths of the �elds in the current row of the result set.

� Row fetch_row () const
Returns the next row in a "use" query's result set.

� MYSQL_ROW fetch_raw_row () const
Wraps mysql_fetch_row() in MySQL C API.

� void �eld_seek (Fields::size_type �eld) const
Jumps to the given �eld within the result set.

� operator MYSQL_RES ∗ () const
Return the pointer to the underlying MySQL C API result set object.

5.84.1 Detailed Description

StoreQueryResult(p. 209) set type for "use" queries.
See the user manual for the reason you might want to use this even though its
interface is less friendly than StoreQueryResult's.

5.84.2 Member Function Documentation

5.84.2.1 const unsigned long ∗ mysqlpp::UseQueryResult::fetch_-
lengths () const

Returns the lengths of the �elds in the current row of the result set.

5.84.2.2 MYSQL_ROW mysqlpp::UseQueryResult::fetch_raw_-
row () const

Wraps mysql_fetch_row() in MySQL C API.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

248 MySQL++ Class Documentation

5.84.2.3 Row mysqlpp::UseQueryResult::fetch_row () const

Returns the next row in a "use" query's result set.
This is a thick wrapper around DBDriver::fetch_row()(p. 72). It does a lot
of error checking before returning the Row(p. 165) object containing the row
data.

See also:
fetch_raw_row()(p. 247)

5.84.2.4 void mysqlpp::UseQueryResult::�eld_seek
(Fields::size_type �eld) const [inline]

Jumps to the given �eld within the result set.
Calling this allows you to reset the default �eld index used by fetch_-
�eld()(p. 161).

5.84.2.5 mysqlpp::UseQueryResult::operator MYSQL_RES ∗ ()
const [inline]

Return the pointer to the underlying MySQL C API result set object.

Query q("....");
if (UseQueryResult res = q.use()) {

// Can use 'res', query succeeded
}
else {

// Query failed, call Query::error() or ::errnum() for why
}

The documentation for this class was generated from the following �les:

� result.h
� result.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.85 mysqlpp::UseRemoteConnectionOption Class Reference 249

5.85 mysqlpp::UseRemoteConnectionOption

Class Reference

Connect to remote server in preference to embedded server.
#include <options.h>

Inheritance diagram for mysqlpp::UseRemoteConnectionOption:

mysqlpp::UseRemoteConnectionOption

mysqlpp::Option

Collaboration diagram for mysqlpp::UseRemoteConnectionOption:

mysqlpp::UseRemoteConnectionOption

mysqlpp::Option

5.85.1 Detailed Description

Connect to remote server in preference to embedded server.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

250 MySQL++ Class Documentation

5.86 mysqlpp::value_list_b< Seq, Manip >

Struct Template Reference

Same as value_list_ba(p. 252), plus the option to have some elements of the
list suppressed.
#include <vallist.h>

Collaboration diagram for mysqlpp::value_list_b< Seq, Manip >:

mysqlpp::value_list_b< Seq, Manip >

Seq

list

Manip

manip

Public Member Functions

� value_list_b (const Seq &s, const std::vector< bool > &f, const char
∗d, Manip m)

Create object.

Public Attributes

� const Seq ∗ list
set of objects in the value list

� const std::vector< bool > �elds
delimiter to use between each value in the list when inserting it into a C++
stream

� const char ∗ delim
delimiter to use between each value in the list when inserting it into a C++
stream

� Manip manip
manipulator to use when inserting the list into a C++ stream

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.86 mysqlpp::value_list_b< Seq, Manip > Struct Template
Reference 251
5.86.1 Detailed Description

template<class Seq, class Manip> struct mysqlpp::value_list_b<
Seq, Manip >

Same as value_list_ba(p. 252), plus the option to have some elements of the
list suppressed.
Imagine an object of this type contains the list (a, b, c), that the object's '�elds'
list is (true, false, true), and that the object's delimiter is set to ":". When you
insert that object into a C++ stream, you would get "a:c".
See value_list_ba's documentation for more details.

5.86.2 Constructor & Destructor Documentation

5.86.2.1 template<class Seq, class Manip> mysqlpp::value_list_b<
Seq, Manip >::value_list_b (const Seq & s, const
std::vector< bool > & f, const char ∗ d, Manip m)
[inline]

Create object.

Parameters:
s set of objects in the value list
f for each true item in the list, the list item in that position will be inserted

into a C++ stream
d what delimiter to use between each value in the list when inserting the

list into a C++ stream
m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following �le:

� vallist.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

252 MySQL++ Class Documentation

5.87 mysqlpp::value_list_ba< Seq, Manip >

Struct Template Reference

Holds a list of items, typically used to construct a SQL "value list".
#include <vallist.h>

Collaboration diagram for mysqlpp::value_list_ba< Seq, Manip >:

mysqlpp::value_list_ba< Seq, Manip >

Seq

list

Manip

manip

Public Member Functions

� value_list_ba (const Seq &s, const char ∗d, Manip m)
Create object.

Public Attributes

� const Seq ∗ list
set of objects in the value list

� const char ∗ delim
delimiter to use between each value in the list when inserting it into a C++
stream

� Manip manip
manipulator to use when inserting the list into a C++ stream

5.87.1 Detailed Description

template<class Seq, class Manip> struct mysqlpp::value_list_ba<
Seq, Manip >

Holds a list of items, typically used to construct a SQL "value list".
The SQL INSERT statement has a VALUES clause; this class can be used to
construct the list of items for that clause.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.87 mysqlpp::value_list_ba< Seq, Manip > Struct Template
Reference 253
Imagine an object of this type contains the list (a, b, c), and that the object's
delimiter symbol is set to ", ". When you insert that object into a C++ stream,
you would get "a, b, c".
This class is never instantiated by hand. The value_list() functions build in-
stances of this structure template to do their work. MySQL++'s SSQLS mecha-
nism calls those functions when building SQL queries; you can call them yourself
to do similar work. The "Harnessing SSQLS Internals" section of the user man-
ual has some examples of this.

See also:
value_list_b(p. 250)

5.87.2 Constructor & Destructor Documentation

5.87.2.1 template<class Seq, class Manip> mysqlpp::value_list_-
ba< Seq, Manip >::value_list_ba (const Seq & s, const
char ∗ d, Manip m) [inline]

Create object.

Parameters:
s set of objects in the value list
d what delimiter to use between each value in the list when inserting the

list into a C++ stream
m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following �le:

� vallist.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

254 MySQL++ Class Documentation

5.88 mysqlpp::WindowsNamedPipeConnection

Class Reference

Specialization of Connection(p. 35) for Windows named pipes.
#include <wnp_connection.h>

Inheritance diagram for mysqlpp::WindowsNamedPipeConnection:

mysqlpp::WindowsNamedPipeConnection

mysqlpp::Connection

mysqlpp::OptionalExceptions

Collaboration diagram for mysqlpp::WindowsNamedPipeConnection:

mysqlpp::WindowsNamedPipeConnection

mysqlpp::Connection

mysqlpp::OptionalExceptions mysqlpp::DBDriver

driver_

Public Member Functions

� WindowsNamedPipeConnection ()
Create object without connecting it to the MySQL server.

� WindowsNamedPipeConnection (const char ∗db, const char ∗user=0,
const char ∗password=0)

Create object and connect to database server over Windows named pipes in
one step.

� WindowsNamedPipeConnection (const WindowsNamedPipe-
Connection &other)

Establish a new connection using the same parameters as an existing con-
nection.

� ∼WindowsNamedPipeConnection ()

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.88 mysqlpp::WindowsNamedPipeConnection Class Reference 255

Destroy object.

� bool connect (const char ∗db=0, const char ∗user=0, const char
∗password=0)

Connect to database after object is created.

Static Public Member Functions

� bool is_wnp (const char ∗server)
Check that given string denotes a Windows named pipe connection to My-
SQL.

5.88.1 Detailed Description

Specialization of Connection(p. 35) for Windows named pipes.
This class just simpli�es the connection creation interface ofConnection(p. 35).
It does not add new functionality.

5.88.2 Constructor & Destructor Documentation

5.88.2.1 mysqlpp::WindowsNamedPipeConnection::Windows-
NamedPipeConnection (const char ∗ db, const char ∗ user
= 0, const char ∗ password = 0) [inline]

Create object and connect to database server over Windows named pipes in one
step.

Parameters:
db name of database to use
user user name to log in under, or 0 to use the user name the program is

running under
password password to use when logging in

5.88.2.2 mysqlpp::WindowsNamedPipe-
Connection::WindowsNamedPipeConnection (const
WindowsNamedPipeConnection & other) [inline]

Establish a new connection using the same parameters as an existing connection.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

256 MySQL++ Class Documentation

Parameters:
other pre-existing connection to clone

5.88.3 Member Function Documentation

5.88.3.1 bool mysqlpp::WindowsNamedPipeConnection::connect
(const char ∗ db = 0, const char ∗ user = 0, const char ∗
password = 0)

Connect to database after object is created.
It's better to use the connect-on-create constructor if you can. See its documen-
tation for the meaning of these parameters.
If you call this method on an object that is already connected to a database
server, the previous connection is dropped and a new connection is established.

5.88.3.2 bool mysqlpp::WindowsNamedPipeConnection::is_wnp
(const char ∗ server) [static]

Check that given string denotes a Windows named pipe connection to MySQL.

Parameters:
server the server address

Returns:
false if server address does not denote a Windows named pipe connection,
or we are not running on Windows

The documentation for this class was generated from the following �les:

� wnp_connection.h
� wnp_connection.cpp

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

5.89 mysqlpp::WriteTimeoutOption Class Reference 257

5.89 mysqlpp::WriteTimeoutOption Class Refer-

ence

Set(p. 182) timeout for IPC data reads.
#include <options.h>

Inheritance diagram for mysqlpp::WriteTimeoutOption:

mysqlpp::WriteTimeoutOption

IntegerOption

mysqlpp::Option

Collaboration diagram for mysqlpp::WriteTimeoutOption:

mysqlpp::WriteTimeoutOption

IntegerOption

mysqlpp::Option T

arg_

5.89.1 Detailed Description

Set(p. 182) timeout for IPC data reads.
The documentation for this class was generated from the following �le:

� options.h

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

258 MySQL++ Class Documentation

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

Chapter 6

MySQL++ File

Documentation

6.1 auto�ag.h File Reference

De�nes a template for setting a �ag within a given variable scope, and resetting
it when exiting that scope.

Classes

� class AutoFlag< T >

A template for setting a �ag on a variable as long as the object that set it is
in scope. Flag resets when object goes out of scope. Works on anything that
looks like bool.

6.1.1 Detailed Description

De�nes a template for setting a �ag within a given variable scope, and resetting
it when exiting that scope.

260 MySQL++ File Documentation

6.2 beemutex.h File Reference

MUTually EXclusive lock class.
#include "exceptions.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::BeecryptMutex
Wrapper around platform-speci�c mutexes.

� class mysqlpp::ScopedLock
Wrapper around BeecryptMutex(p. 30) to add scope-bound locking and un-
locking.

6.2.1 Detailed Description

MUTually EXclusive lock class.
Author:

Bob Deblier <bob.deblier@telenet.be>

Modi�ed by Warren Young of Educational Technology Resources, Inc. from
version in Beecrypt 4.1.2:

� minor style changes to make it �t within MySQL++
� changed init() to a ctor and destroy() to a dtor
� class just becomes a no-op if no supported mutex type is available
� throwing MutexFailed instead of char∗
� moved all method implementations from inline in the .h �le to a .cpp �le
so we don't have to make the header depend on con�g.h on autoconf-using
systems

� made private mutex member a void∗ so we don't have to de�ne the full
type in the .h �le, due to previous item

� added more Doxygen comments, and changed some existing comments

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.3 common.h File Reference 261

6.3 common.h File Reference

This �le includes top-level de�nitions for use both internal to the library, and
outside it. Contrast mysql++.h.
#include <mysql.h>

6.3.1 Detailed Description

This �le includes top-level de�nitions for use both internal to the library, and
outside it. Contrast mysql++.h.
This �le mostly takes care of platform di�erences.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

262 MySQL++ File Documentation

6.4 comparable.h File Reference

Declares the Comparable<T> mixin.

Classes

� class Comparable< T >

Mix-in that gives its subclass a full set of comparison operators.

6.4.1 Detailed Description

Declares the Comparable<T> mixin.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.5 connection.h File Reference 263

6.5 connection.h File Reference

Declares the Connection class.
#include "common.h"

#include "noexceptions.h"

#include "options.h"

#include <string>

#include "tcp_connection.h"

#include "uds_connection.h"

#include "wnp_connection.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Connection
Manages the connection to the database server.

6.5.1 Detailed Description

Declares the Connection class.
Every program using MySQL++ must create a Connection object, which man-
ages information about the connection to the database server, and performs
connection-related operations once the connection is up. Subordinate classes,
such as Query and Row take their defaults as to whether exceptions are thrown
when errors are encountered from the Connection object that created them,
directly or indirectly.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

264 MySQL++ File Documentation

6.6 cpool.h File Reference

Declares the ConnectionPool class.
#include "beemutex.h"

#include <list>

#include <assert.h>

#include <time.h>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::ConnectionPool
Manages a pool of connections for programs that need more than one Con-
nection(p. 35) object at a time, but can't predict how many they need in
advance.

� struct mysqlpp::ConnectionPool::ConnectionInfo

6.6.1 Detailed Description

Declares the ConnectionPool class.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.7 custom.h File Reference 265

6.7 custom.h File Reference

Backwards-compatibility header; loads ssqls.h.
#include "ssqls.h"

6.7.1 Detailed Description

Backwards-compatibility header; loads ssqls.h.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

266 MySQL++ File Documentation

6.8 datetime.h File Reference

Declares classes to add SQL-compatible date and time types to C++'s type
system.
#include "common.h"

#include "comparable.h"

#include <string>

#include <iostream>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::DateTime
C++ form of SQL's DATETIME type.

� class mysqlpp::Date
C++ form of SQL's DATE type.

� class mysqlpp::Time
C++ form of SQL's TIME type.

6.8.1 Detailed Description

Declares classes to add SQL-compatible date and time types to C++'s type
system.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.9 dbdriver.h File Reference 267

6.9 dbdriver.h File Reference

Declares the DBDriver class.
#include "common.h"

#include "options.h"

#include <typeinfo>

#include <limits.h>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::DBDriver
Provides a thin abstraction layer over the underlying database client library.

6.9.1 Detailed Description

Declares the DBDriver class.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

268 MySQL++ File Documentation

6.10 exceptions.h File Reference

Declares the MySQL++-speci�c exception classes.
#include "options.h"

#include <exception>

#include <string>

#include <sstream>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Exception
Base class for all MySQL++ custom exceptions.

� class mysqlpp::BadConversion
Exception(p. 84) thrown when a bad type conversion is attempted.

� class mysqlpp::BadFieldName
Exception(p. 84) thrown when a requested named �eld doesn't exist.

� class mysqlpp::BadIndex
Exception(p. 84) thrown when an object with operator [] or an at() method
gets called with a bad index.

� class mysqlpp::BadOption
Exception(p. 84) thrown when you pass an unrecognized option to
Connection::set_option()(p. 43).

� class mysqlpp::BadParamCount
Exception(p. 84) thrown when not enough query parameters are provided.

� class mysqlpp::UseQueryError
Exception(p. 84) thrown when something goes wrong in processing a "use"
query.

� class mysqlpp::BadQuery
Exception(p. 84) thrown when the database server encounters a problem
while processing your query.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.10 exceptions.h File Reference 269

� class mysqlpp::ConnectionFailed
Exception(p. 84) thrown when there is a problem related to the database
server connection.

� class mysqlpp::DBSelectionFailed
Exception(p. 84) thrown when the program tries to select a new database
and the database server refuses for some reason.

� class mysqlpp::MutexFailed
Exception(p. 84) thrown when a BeecryptMutex(p. 30) object fails.

� class mysqlpp::ObjectNotInitialized
Exception(p. 84) thrown when you try to use an object that isn't completely
initialized.

� class mysqlpp::SelfTestFailed
Used within MySQL++'s test harness only.

� class mysqlpp::TypeLookupFailed
Thrown from the C++ to SQL data type conversion routine when it can't
�gure out how to map the type.

6.10.1 Detailed Description

Declares the MySQL++-speci�c exception classes.
When exceptions are enabled for a given mysqlpp::Optional-
Exceptions(p. 123) derivative, any of these exceptions can be thrown on
error.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

270 MySQL++ File Documentation

6.11 �eld.h File Reference

Declares the Field and Fields classes.
#include "common.h"

#include "type_info.h"

#include <vector>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Field
Class to hold information about a SQL �eld.

Typedefs

� typedef std::vector< Field > Fields
The list-of-Fields type.

6.11.1 Detailed Description

Declares the Field and Fields classes.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.12 �eld_names.h File Reference 271

6.12 �eld_names.h File Reference

Declares a class to hold a list of �eld names.
#include <string>

#include <vector>

#include <ctype.h>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::FieldNames
Holds a list of SQL �eld names.

6.12.1 Detailed Description

Declares a class to hold a list of �eld names.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

272 MySQL++ File Documentation

6.13 �eld_types.h File Reference

Declares a class to hold a list of SQL �eld type info.
#include "type_info.h"

#include <vector>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::FieldTypes
A vector of SQL �eld types.

6.13.1 Detailed Description

Declares a class to hold a list of SQL �eld type info.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.14 manip.h File Reference 273

6.14 manip.h File Reference

Declares the Query stream manipulators and operators.
#include "common.h"

#include "myset.h"

#include "stadapter.h"

#include <iostream>

Namespaces

� namespace mysqlpp

Enumerations

� enum quote_type0 { quote }
� enum quote_only_type0 { quote_only }
� enum quote_double_only_type0 { quote_double_only }
� enum escape_type0 { escape }
� enum do_nothing_type0 { do_nothing }
� enum ignore_type0 { ignore }

6.14.1 Detailed Description

Declares the Query stream manipulators and operators.
These manipulators let you automatically quote elements or escape characters
that are special in SQL when inserting them into a Query stream. They make
it easier to build syntactically-correct SQL queries.
This �le also includes special operator<< de�nitions for a few key MySQL++
data types, since we know when to do automatic quoting and escaping for these
types. This only works with Query streams, not regular std::ostreams, since
we're only concerned with making correct SQL, not with presentation matters.
test/test_manip.cpp exercises the mechanisms de�ned here.

6.14.2 Enumeration Type Documentation

6.14.2.1 enum do_nothing_type0

The 'do_nothing' manipulator.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

274 MySQL++ File Documentation

Does exactly what it says: nothing. Used as a dummy manipulator when you
are required to use some manipulator but don't want anything to be done to
the following item. When used with SQLQueryParms(p. 194) it will make
sure that it does not get formatted in any way, overriding any setting set by the
template query.

6.14.2.2 enum escape_type0

The 'escape' manipulator.
SQL-escapes following argument if it is of a data type that may require escaping
when inserted into a Query(p. 125) or SQLQueryParms(p. 194) stream. This
is useful with string types, for example, to avoid bad SQL when they contain
special characters like single quotes, nulls, and newlines. Data types like integers
which never bene�t from escaping don't get run through the escaping routine
even if you ask for it.

6.14.2.3 enum ignore_type0

The 'ignore' manipulator.
Only valid when used with SQLQueryParms(p. 194). It's a dummy manip-
ulator like the do_nothing manipulator, except that it will not override for-
matting set by the template query. It is simply ignored.

6.14.2.4 enum quote_double_only_type0

The 'double_quote_only' manipulator.
Similar to quote_only manipulator, except that it uses double quotes instead
of single quotes.
You might care to use it when you have MySQL's ANSI_QUOTES mode enabled.
In that mode, single quotes are used only for string literals, and double quotes
for identi�ers. Otherwise, quote_only and quote are quite su�cient.

6.14.2.5 enum quote_only_type0

The 'quote_only' manipulator.
Similar to quote manipulator, except that it doesn't escape special SQL char-
acters.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.14 manip.h File Reference 275

6.14.2.6 enum quote_type0

The standard 'quote' manipulator. It is the most widely useful manipulator in
MySQL++.
Insert this manipulator into a Query(p. 125) or SQLQueryParms(p. 194)
stream to put single quotes around the next item in the stream, and escape
any characters within it that are special in SQL, if the data type of the next
item in the stream may require it. By contrast, Date(p. 54) objects only re-
quire escaping, not quoting, and integers never require either. The manipulators
won't do work they know is not necessary to ensure syntactially-correct SQL.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

276 MySQL++ File Documentation

6.15 myset.h File Reference

Declares templates for generating custom containers used elsewhere in the li-
brary.
#include "common.h"

#include "mystring.h"

#include "stream2string.h"

#include <iostream>

#include <set>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Set< Container >

A special std::set derivative for holding MySQL data sets.

Functions

� template<class Container> std::ostream & operator<< (std::ostream
&s, const Set< Container > &d)

Inserts a Set(p. 182) object into a C++ stream.

6.15.1 Detailed Description

Declares templates for generating custom containers used elsewhere in the li-
brary.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.16 mysql++.h File Reference 277

6.16 mysql++.h File Reference

The main MySQL++ header �le.
#include "connection.h"

#include "cpool.h"

#include "query.h"

#include "sql_types.h"

#include "transaction.h"

Namespaces

� namespace mysqlpp

De�nes

� #de�ne MYSQLPP_VERSION(major, minor, bug�x) (((major) <<
16) | ((minor) << 8) | (bug�x))

Encode MySQL++ library version number.

� #de�ne MYSQLPP_HEADER_VERSION MYSQLPP_-
VERSION(3, 0, 8)

Get the library version number that mysql++.h comes from.

6.16.1 Detailed Description

The main MySQL++ header �le.
This �le brings in all MySQL++ headers except for custom.h(p. 265) and
custom-macros.h which are a strictly optional feature of MySQL++.
There is no point in trying to optimize which headers you include, because the
MySQL++ headers are so intertwined. You can only get trivial compile time
bene�ts, at the expense of clarity.

6.16.2 De�ne Documentation

6.16.2.1 #de�ne MYSQLPP_HEADER_VERSION
MYSQLPP_VERSION(3, 0, 8)

Get the library version number that mysql++.h comes from.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

278 MySQL++ File Documentation

MySQL++Version number that the mysql++.h header �le comes from, encoded
by MYSQLPP_VERSION macro. Compare this value to what mysqlpp_lib_-
version() returns in order to ensure that your program is using header �les from
the same version of MySQL++ as the actual library you're linking to.

6.16.2.2 #de�ne MYSQLPP_VERSION(major, minor, bug�x)
(((major) << 16) | ((minor) << 8) | (bug�x))

Encode MySQL++ library version number.
This macro takes major, minor and bug�x numbers (e.g. 1, 2, and 3) and
encodes them like 0x010203.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.17 mystring.h File Reference 279

6.17 mystring.h File Reference

Declares String class, MySQL++'s generic std::string-like class, used for holding
data received from the database server.
#include "common.h"

#include "datetime.h"

#include "exceptions.h"

#include "null.h"

#include "sql_buffer.h"

#include <string>

#include <sstream>

#include <limits>

#include <stdlib.h>

#include <string.h>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::String
A std::string work-alike that can convert itself from SQL text data formats
to C++ data types.

6.17.1 Detailed Description

Declares String class, MySQL++'s generic std::string-like class, used for holding
data received from the database server.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

280 MySQL++ File Documentation

6.18 noexceptions.h File Reference

Declares interface that allows exceptions to be optional.
#include "common.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::OptionalExceptions
Interface allowing a class to have optional exceptions.

� class mysqlpp::NoExceptions
Disable exceptions in an object derived from OptionalExceptions(p. 123).

6.18.1 Detailed Description

Declares interface that allows exceptions to be optional.
A class may inherit from OptionalExceptions, which will add to it a mechanism
by which a user can tell objects of that class to suppress exceptions. (They are
enabled by default.) This module also declares a NoExceptions class, objects
of which take a reference to any class derived from OptionalExceptions. The
NoExceptions constructor calls the method that disables exceptions, and the
destructor reverts them to the previous state. One uses the NoExceptions object
within a scope to suppress exceptions in that block, without having to worry
about reverting the setting when the block exits.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.19 null.h File Reference 281

6.19 null.h File Reference

Declares classes that implement SQL "null" semantics within C++'s type sys-
tem.
#include "exceptions.h"

#include <iostream>

#include <string>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::null_type
The type of the global mysqlpp::null object.

� struct mysqlpp::NullIsNull
Class for objects that de�ne SQL null in terms of MySQL++'s null_-
type(p. 116).

� struct mysqlpp::NullIsZero
Class for objects that de�ne SQL null as 0.

� struct mysqlpp::NullIsBlank
Class for objects that de�ne SQL null as a blank C string.

� class mysqlpp::Null< Type, Behavior >

Class for holding data from a SQL column with the NULL attribute.

Functions

� template<class Type, class Behavior> std::ostream & operator<<
(std::ostream &o, const Null< Type, Behavior > &n)

Inserts null-able data into a C++ stream if it is not actually null. Otherwise,
insert something appropriate for null data.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

282 MySQL++ File Documentation

Variables

� const std::string null_str
"NULL" string constant

� const null_type null = null_type()
Global 'null' instance. Use wherever you need a SQL null.

6.19.1 Detailed Description

Declares classes that implement SQL "null" semantics within C++'s type sys-
tem.
This is required because C++'s own NULL type is not semantically the same
as SQL nulls.

6.19.2 Variable Documentation

6.19.2.1 const null_type mysqlpp::null = null_type()

Global 'null' instance. Use wherever you need a SQL null.
SQL null is equal to nothing else. It is not the same as C++'s NULL value, it
is not a Boolean false....it is unique. As such, if you use this in some other type
context, you will get a compiler error saying something about CannotConvert-
NullToAnyOtherDataType. The only thing you can assign this object instance
to is a variable of type Null<T>, and then only directly. Code like this does
not work:

int foo = return_some_value_for_foo();
mysqlpp::Null<int> bar = foo ? foo : mysqlpp::null;

The compiler will try to convert mysqlpp::null to int to make all values in the
conditional operation consistent, but this is not legal. Anyway, it's questionable
code because it means you're using SQL null to mean the same thing as zero
here. If zero is a special value, there's no reason to use SQL null. SQL null
exists when every value for a particular column is legal and you need something
that means "no legal value".

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.20 options.h File Reference 283

6.20 options.h File Reference

Declares the Option class hierarchy, used to implement connection options in
Connection and DBDriver classes.
#include "common.h"

#include <deque>

#include <string>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Option
De�ne abstract interface for all ∗Option subclasses.

� class mysqlpp::DataOption< T >

De�ne abstract interface for all ∗Options that take a lone scalar as an argu-
ment.

� class mysqlpp::CompressOption
Enable data compression on the connection.

� class mysqlpp::ConnectTimeoutOption
Change Connection::connect()(p. 40) default timeout.

� class mysqlpp::FoundRowsOption
Make Query::a�ected_rows()(p. 125) return number of matched rows.

� class mysqlpp::GuessConnectionOption
Allow C API to guess what kind of connection to use.

� class mysqlpp::IgnoreSpaceOption
Allow spaces after function names in queries.

� class mysqlpp::InitCommandOption
Give SQL executed on connect.

� class mysqlpp::InteractiveOption
Assert that this is an interactive program.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

284 MySQL++ File Documentation

� class mysqlpp::LocalFilesOption
Enable LOAD DATA LOCAL statement.

� class mysqlpp::LocalIn�leOption
Enable LOAD LOCAL INFILE statement.

� class mysqlpp::MultiResultsOption
Enable multiple result sets in a reply.

� class mysqlpp::MultiStatementsOption
Enable multiple queries in a request to the server.

� class mysqlpp::NamedPipeOption
Suggest use of named pipes.

� class mysqlpp::NoSchemaOption
Disable db.tbl.col syntax in queries.

� class mysqlpp::ReadDefaultFileOption
Override use of my.cnf.

� class mysqlpp::ReadDefaultGroupOption
Override use of my.cnf.

� class mysqlpp::ReadTimeoutOption
Set(p. 182) timeout for IPC data reads.

� class mysqlpp::ReconnectOption
Enable automatic reconnection to server.

� class mysqlpp::ReportDataTruncationOption
Set(p. 182) reporting of data truncation errors.

� class mysqlpp::SecureAuthOption
Enforce use of secure authentication, refusing connection if not available.

� class mysqlpp::SetCharsetDirOption
Give path to charset de�nition �les.

� class mysqlpp::SetCharsetNameOption
Give name of default charset.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.20 options.h File Reference 285

� class mysqlpp::SetClientIpOption
Fake client IP address when connecting to embedded server.

� class mysqlpp::SharedMemoryBaseNameOption
Set(p. 182) name of shmem segment for IPC.

� class mysqlpp::SslOption
Specialized option for handling SSL parameters.

� class mysqlpp::UseEmbeddedConnectionOption
Connect to embedded server in preference to remote server.

� class mysqlpp::UseRemoteConnectionOption
Connect to remote server in preference to embedded server.

� class mysqlpp::WriteTimeoutOption
Set(p. 182) timeout for IPC data reads.

Typedefs

� typedef DataOption< unsigned > IntegerOption
Option(p. 121) w/ int argument.

� typedef DataOption< bool > BooleanOption
Option(p. 121) w/ bool argument.

� typedef DataOption< std::string > StringOption
Option(p. 121) w/ string argument.

� typedef std::deque< Option ∗ > OptionList
The data type of the list of connection options.

� typedef OptionList::const_iterator OptionListIt
Primary iterator type into List.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

286 MySQL++ File Documentation

6.20.1 Detailed Description

Declares the Option class hierarchy, used to implement connection options in
Connection and DBDriver classes.
This is tied closely enough to DBDriver that there's a pure-OO argument that
it should be declared as protected or private members within DBDriver. We do
it outside DBDriver because there's so much of it. It'd overwhelm everything
else that's going on in that class totally out of proprortion to the importance of
options.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.21 qparms.h File Reference 287

6.21 qparms.h File Reference

Declares the template query parameter-related stu�.
#include "stadapter.h"

#include <vector>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::SQLQueryParms
This class holds the parameter values for �lling template queries.

� struct mysqlpp::SQLParseElement
Used within Query(p. 125) to hold elements for parameterized queries.

6.21.1 Detailed Description

Declares the template query parameter-related stu�.
The classes de�ned in this �le are used by class Query when it parses a template
query: they hold information that it �nds in the template, so it can assemble a
SQL statement later on demand.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

288 MySQL++ File Documentation

6.22 query.h File Reference

De�nes a class for building and executing SQL queries.
#include "common.h"

#include "noexceptions.h"

#include "qparms.h"

#include "querydef.h"

#include "result.h"

#include "row.h"

#include "stadapter.h"

#include <deque>

#include <iomanip>

#include <list>

#include <map>

#include <set>

#include <vector>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Query
A class for building and executing SQL queries.

Functions

� std::ostream & operator<< (std::ostream &os, Query &q)
Insert raw query string into the given stream.

6.22.1 Detailed Description

De�nes a class for building and executing SQL queries.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.22 query.h File Reference 289

6.22.2 Function Documentation

6.22.2.1 std::ostream& operator<< (std::ostream & os, Query & q)
[inline]

Insert raw query string into the given stream.
This is just syntactic sugar for Query::str(void)(p. 126)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

290 MySQL++ File Documentation

6.23 refcounted.h File Reference

Declares the RefCountedPointer template.
#include <memory>

Namespaces

� namespace mysqlpp

Classes

� struct mysqlpp::RefCountedPointerDestroyer< T >

Functor to call delete on the pointer you pass to it.

� class mysqlpp::RefCountedPointer< T, Destroyer >

Creates an object that acts as a reference-counted pointer to another object.

6.23.1 Detailed Description

Declares the RefCountedPointer template.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.24 result.h File Reference 291

6.24 result.h File Reference

Declares classes for holding information about SQL query results.
#include "common.h"

#include "exceptions.h"

#include "field.h"

#include "field_names.h"

#include "field_types.h"

#include "noexceptions.h"

#include "refcounted.h"

#include "row.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::SimpleResult
Holds information about the result of queries that don't return rows.

� class mysqlpp::ResultBase
Base class for StoreQueryResult(p. 209) and UseQueryResult(p. 246).

� class mysqlpp::StoreQueryResult
StoreQueryResult(p. 209) set type for "store" queries.

� struct mysqlpp::RefCountedPointerDestroyer< MYSQL_RES
>

Functor to call mysql_free_result() on the pointer you pass to it.

� class mysqlpp::UseQueryResult
StoreQueryResult(p. 209) set type for "use" queries.

Functions

� void swap (StoreQueryResult &x, StoreQueryResult &y)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

292 MySQL++ File Documentation

Swaps two StoreQueryResult(p. 209) objects.
� void swap (UseQueryResult &x, UseQueryResult &y)

Swaps two UseQueryResult(p. 246) objects.

6.24.1 Detailed Description

Declares classes for holding information about SQL query results.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.25 row.h File Reference 293

6.25 row.h File Reference

Declares the classes for holding row data from a result set.
#include "common.h"

#include "mystring.h"

#include "noexceptions.h"

#include "refcounted.h"

#include "vallist.h"

#include <vector>

#include <string>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Row
Manages rows from a result set.

6.25.1 Detailed Description

Declares the classes for holding row data from a result set.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

294 MySQL++ File Documentation

6.26 sql_bu�er.h File Reference

Declares the SQLBu�er class.
#include "refcounted.h"

#include "type_info.h"

#include <string>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::SQLBu�er
Holds SQL data in string form plus type information for use in converting
the string to compatible C++ data types.

Typedefs

� typedef RefCountedPointer< SQLBu�er > RefCountedBu�er
Reference-counted version of SQLBu�er(p. 189).

6.26.1 Detailed Description

Declares the SQLBu�er class.

6.26.2 Typedef Documentation

6.26.2.1 typedef RefCountedPointer<SQLBu�er>
mysqlpp::RefCountedBu�er

Reference-counted version of SQLBu�er(p. 189).
No one uses SQLBu�er(p. 189) directly. It exists only for use in a Ref-
CountedPointer(p. 152) wrapper.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.27 sql_types.h File Reference 295

6.27 sql_types.h File Reference

Declares the closest C++ equivalent of each MySQL column type.
#include "common.h"

#include "tiny_int.h"

#include <string>

#include <stdint.h>

Namespaces

� namespace mysqlpp

6.27.1 Detailed Description

Declares the closest C++ equivalent of each MySQL column type.
The typedefs de�ned here are only for the "non-NULL" variants. To get
nullable versions, wrap the appropriate type in the Null<T> template. See
null.h(p. 281) for more information.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

296 MySQL++ File Documentation

6.28 stadapter.h File Reference

Declares the SQLTypeAdapter class.
#include "common.h"

#include "datetime.h"

#include "null.h"

#include "sql_buffer.h"

#include "sql_types.h"

#include <stdexcept>

#include <string>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::SQLTypeAdapter
Converts many di�erent data types to strings suitable for use in SQL queries.

6.28.1 Detailed Description

Declares the SQLTypeAdapter class.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.29 stream2string.h File Reference 297

6.29 stream2string.h File Reference

Declares an adapter that converts something that can be inserted into a C++
stream into a std::string type.
#include <sstream>

#include <string>

Namespaces

� namespace mysqlpp

Functions

� template<class T> std::string stream2string (const T &object)
Converts anything you can insert into a C++ stream to a std::string via
std::ostringstream.

6.29.1 Detailed Description

Declares an adapter that converts something that can be inserted into a C++
stream into a std::string type.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

298 MySQL++ File Documentation

6.30 tcp_connection.h File Reference

Declares the TCPConnection class.
#include "connection.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::TCPConnection
Specialization of Connection(p. 35) for TCP/IP.

6.30.1 Detailed Description

Declares the TCPConnection class.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.31 tiny_int.h File Reference 299

6.31 tiny_int.h File Reference

Declares class for holding a SQL TINYINT.
#include "common.h"

#include <ostream>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::tiny_int< VT >

Class for holding an SQL TINYINT value.

Functions

� template<typename VT> std::ostream & operator<< (std::ostream
&os, tiny_int< VT > i)

Insert a tiny_int(p. 233) into a C++ stream.

6.31.1 Detailed Description

Declares class for holding a SQL TINYINT.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

300 MySQL++ File Documentation

6.32 transaction.h File Reference

Declares the Transaction class.
#include "common.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::Transaction
Helper object for creating exception-safe SQL transactions.

6.32.1 Detailed Description

Declares the Transaction class.
This object works with the Connection class to automate the use of MySQL
transactions. It allows you to express these transactions directly in C++ code
instead of sending the raw SQL commands.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.33 type_info.h File Reference 301

6.33 type_info.h File Reference

Declares classes that provide an interface between the SQL and C++ type
systems.
#include "common.h"

#include "exceptions.h"

#include <map>

#include <sstream>

#include <typeinfo>

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::mysql_type_info
SQL �eld type information.

Functions

� bool operator== (const mysql_type_info &a, const mysql_type_info
&b)

Returns true if two mysql_type_info(p. 102) objects are equal.

� bool operator!= (const mysql_type_info &a, const mysql_type_info
&b)

Returns true if two mysql_type_info(p. 102) objects are not equal.

� bool operator== (const std::type_info &a, const mysql_type_info &b)
Returns true if a given mysql_type_info(p. 102) object is equal to a given
C++ type_info object.

� bool operator!= (const std::type_info &a, const mysql_type_info &b)
Returns true if a given mysql_type_info(p. 102) object is not equal to a
given C++ type_info object.

� bool operator== (const mysql_type_info &a, const std::type_info &b)

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

302 MySQL++ File Documentation

Returns true if a given mysql_type_info(p. 102) object is equal to a given
C++ type_info object.

� bool operator!= (const mysql_type_info &a, const std::type_info &b)
Returns true if a given mysql_type_info(p. 102) object is not equal to a
given C++ type_info object.

6.33.1 Detailed Description

Declares classes that provide an interface between the SQL and C++ type
systems.
These classes are mostly used internal to the library.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.34 uds_connection.h File Reference 303

6.34 uds_connection.h File Reference

Declares the UnixDomainSocketConnection class.
#include "connection.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::UnixDomainSocketConnection
Specialization of Connection(p. 35) for Unix domain sockets.

6.34.1 Detailed Description

Declares the UnixDomainSocketConnection class.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

304 MySQL++ File Documentation

6.35 vallist.h File Reference

Declares templates for holding lists of values.
#include "manip.h"

#include <string>

#include <vector>

Namespaces

� namespace mysqlpp

Classes

� struct mysqlpp::equal_list_ba< Seq1, Seq2, Manip >

Holds two lists of items, typically used to construct a SQL "equals clause".

� struct mysqlpp::equal_list_b< Seq1, Seq2, Manip >

Same as equal_list_ba(p. 82), plus the option to have some elements of
the equals clause suppressed.

� struct mysqlpp::value_list_ba< Seq, Manip >

Holds a list of items, typically used to construct a SQL "value list".

� struct mysqlpp::value_list_b< Seq, Manip >

Same as value_list_ba(p. 252), plus the option to have some elements of
the list suppressed.

Functions

� template<class Seq1, class Seq2, class Manip> std::ostream &
operator<< (std::ostream &o, const equal_list_ba< Seq1, Seq2, Ma-
nip > &el)

Inserts an equal_list_ba(p. 82) into an std::ostream.

� template<class Seq1, class Seq2, class Manip> std::ostream &
operator<< (std::ostream &o, const equal_list_b< Seq1, Seq2, Manip
> &el)

Same as operator<< for equal_list_ba(p. 82), plus the option to suppress
insertion of some list items in the stream.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.35 vallist.h File Reference 305

� template<class Seq, class Manip> std::ostream & operator<<
(std::ostream &o, const value_list_ba< Seq, Manip > &cl)

Inserts a value_list_ba(p. 252) into an std::ostream.

� template<class Seq, class Manip> std::ostream & operator<<
(std::ostream &o, const value_list_b< Seq, Manip > &cl)

Same as operator<< for value_list_ba(p. 252), plus the option to suppress
insertion of some list items in the stream.

� template<class Seq> value_list_ba< Seq, do_nothing_type0 >
value_list (const Seq &s, const char ∗d=",")

Constructs a value_list_ba(p. 252).
� template<class Seq, class Manip> value_list_ba< Seq, Manip >
value_list (const Seq &s, const char ∗d, Manip m)

Constructs a value_list_ba(p. 252).
� template<class Seq, class Manip> value_list_b< Seq, Manip > value_-
list (const Seq &s, const char ∗d, Manip m, const std::vector< bool >
&vb)

Constructs a value_list_b(p. 250) (sparse value list).

� template<class Seq, class Manip> value_list_b< Seq, Manip > value_-
list (const Seq &s, const char ∗d, Manip m, bool t0, bool t1=false, bool
t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false)

Constructs a value_list_b(p. 250) (sparse value list).

� template<class Seq> value_list_b< Seq, do_nothing_type0 > value_-
list (const Seq &s, const char ∗d, bool t0, bool t1=false, bool t2=false,
bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false,
bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a sparse value list.

� template<class Seq> value_list_b< Seq, do_nothing_type0 > value_-
list (const Seq &s, bool t0, bool t1=false, bool t2=false, bool t3=false,
bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false,
bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a sparse value list.

� template<class Seq1, class Seq2> equal_list_ba< Seq1, Seq2, do_-
nothing_type0 > equal_list (const Seq1 &s1, const Seq2 &s2, const
char ∗d=",", const char ∗e=" = ")

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

306 MySQL++ File Documentation

Constructs an equal_list_ba(p. 82).
� template<class Seq1, class Seq2, class Manip> equal_list_ba< Seq1,
Seq2, Manip > equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, Manip m)

Constructs an equal_list_ba(p. 82).
� template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d,
const char ∗e, Manip m, const std::vector< bool > &vb)

Constructs a equal_list_b(p. 80) (sparse equal list).

� template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d,
const char ∗e, Manip m, bool t0, bool t1=false, bool t2=false, bool
t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b(p. 80) (sparse equal list).

� template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_-
nothing_type0 > equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, bool t0, bool t1=false, bool t2=false, bool t3=false, bool
t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b(p. 80) (sparse equal list).

� template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_-
nothing_type0 > equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool
t5=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool
ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b(p. 80) (sparse equal list).

� template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_-
nothing_type0 > equal_list (const Seq1 &s1, const Seq2 &s2, bool t0,
bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false,
bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false,
bool tb=false, bool tc=false)

Constructs a equal_list_b(p. 80) (sparse equal list).

6.35.1 Detailed Description

Declares templates for holding lists of values.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.35 vallist.h File Reference 307

6.35.2 Function Documentation

6.35.2.1 template<class Seq1, class Seq2> equal_list_b<Seq1,
Seq2, do_nothing_type0> equal_list (const Seq1 & s1,
const Seq2 & s2, bool t0, bool t1 = false, bool t2 = false,
bool t3 = false, bool t4 = false, bool t5 = false, bool t6
= false, bool t7 = false, bool t8 = false, bool t9 = false,
bool ta = false, bool tb = false, bool tc = false)

Constructs a equal_list_b(p. 80) (sparse equal list).
Same as equal_list(Seq&, Seq&, const char∗, bool, bool...) except that it
doesn't take the const char∗ argument. It uses a comma for the delimiter.
This form is useful for building simple equals lists, where no manipulators are
necessary, and the default delimiter and equals symbol are suitable.

6.35.2.2 template<class Seq1, class Seq2> equal_list_b<Seq1,
Seq2, do_nothing_type0> equal_list (const Seq1 & s1,
const Seq2 & s2, const char ∗ d, bool t0, bool t1 = false,
bool t2 = false, bool t3 = false, bool t4 = false, bool t5
= false, bool t6 = false, bool t7 = false, bool t8 = false,
bool t9 = false, bool ta = false, bool tb = false, bool tc
= false)

Constructs a equal_list_b(p. 80) (sparse equal list).
Same as equal_list(Seq&, Seq&, const char∗, const char∗, bool, bool...) except
that it doesn't take the second const char∗ argument. It uses " = " for the
equals symbol.

6.35.2.3 template<class Seq1, class Seq2> equal_list_b<Seq1,
Seq2, do_nothing_type0> equal_list (const Seq1 & s1,
const Seq2 & s2, const char ∗ d, const char ∗ e, bool t0,
bool t1 = false, bool t2 = false, bool t3 = false, bool t4
= false, bool t5 = false, bool t6 = false, bool t7 = false,
bool t8 = false, bool t9 = false, bool ta = false, bool tb
= false, bool tc = false)

Constructs a equal_list_b(p. 80) (sparse equal list).
Same as equal_list(Seq&, Seq&, const char∗, const char∗, Manip, bool, bool...)
except that it doesn't take the Manip argument. It uses the do_nothing ma-
nipulator instead, meaning that none of the elements are escaped when being
inserted into a stream.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

308 MySQL++ File Documentation

6.35.2.4 template<class Seq1, class Seq2, class Manip>
equal_list_b<Seq1, Seq2, Manip> equal_list (const Seq1
& s1, const Seq2 & s2, const char ∗ d, const char ∗ e,
Manip m, bool t0, bool t1 = false, bool t2 = false, bool
t3 = false, bool t4 = false, bool t5 = false, bool t6 =
false, bool t7 = false, bool t8 = false, bool t9 = false,
bool ta = false, bool tb = false, bool tc = false)

Constructs a equal_list_b(p. 80) (sparse equal list).
Same as equal_list(Seq&, Seq&, const char∗, const char∗, Manip,
vector<bool>&) except that it takes boolean parameters instead of a list of
bools.

6.35.2.5 template<class Seq1, class Seq2, class Manip>
equal_list_b<Seq1, Seq2, Manip> equal_list (const Seq1
& s1, const Seq2 & s2, const char ∗ d, const char ∗ e,
Manip m, const std::vector< bool > & vb)

Constructs a equal_list_b(p. 80) (sparse equal list).
Same as equal_list(Seq&, Seq&, const char∗, const char∗, Manip) except that
you can pass a vector of bools. For each true item in that list, operator<< adds
the corresponding item is put in the equal list. This lets you pass in sequences
when you don't want all of the elements to be inserted into a stream.

6.35.2.6 template<class Seq1, class Seq2, class Manip>
equal_list_ba<Seq1, Seq2, Manip> equal_list (const
Seq1 & s1, const Seq2 & s2, const char ∗ d, const char ∗ e,
Manip m)

Constructs an equal_list_ba(p. 82).
Same as equal_list(Seq&, Seq&, const char∗, const char∗) except that it also
lets you specify the manipulator. Use this version if the data must be escaped
or quoted when being inserted into a stream.

6.35.2.7 template<class Seq1, class Seq2> equal_list_ba<Seq1,
Seq2, do_nothing_type0> equal_list (const Seq1 & s1,
const Seq2 & s2, const char ∗ d = ",", const char ∗ e = "
= ")

Constructs an equal_list_ba(p. 82).
This function returns an equal list that uses the 'do_nothing' manipulator.
That is, the items are not quoted or escaped in any way when inserted into a

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.35 vallist.h File Reference 309

stream. See equal_list(Seq, Seq, const char∗, const char∗, Manip) if you need
a di�erent manipulator.
The idea is for both lists to be of equal length because corresponding elements
from each list are handled as pairs, but if one list is shorter than the other, the
generated list will have that many elements.
Parameters:

s1 items on the left side of the equals sign when the equal list is inserted
into a stream

s2 items on the right side of the equals sign
d delimiter operator<< should place between pairs
e what operator<< should place between items in each pair; by default,

an equals sign, as that is the primary use for this mechanism.

6.35.2.8 template<class Seq, class Manip> std::ostream&
operator<< (std::ostream & o, const value_list_b< Seq,
Manip > & cl)

Same as operator<< for value_list_ba(p. 252), plus the option to suppress
insertion of some list items in the stream.
See value_list_b's documentation for examples of how this works.

6.35.2.9 template<class Seq, class Manip> std::ostream&
operator<< (std::ostream & o, const value_list_ba< Seq,
Manip > & cl)

Inserts a value_list_ba(p. 252) into an std::ostream.
Given a list (a, b) and a delimiter D, this operator will insert "aDb" into the
stream.
See value_list_ba's documentation for concrete examples.
See also:

value_list()

6.35.2.10 template<class Seq1, class Seq2, class Manip>
std::ostream& operator<< (std::ostream & o, const
equal_list_b< Seq1, Seq2, Manip > & el)

Same as operator<< for equal_list_ba(p. 82), plus the option to suppress
insertion of some list items in the stream.
See equal_list_b's documentation for examples of how this works.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

310 MySQL++ File Documentation

6.35.2.11 template<class Seq1, class Seq2, class Manip>
std::ostream& operator<< (std::ostream & o, const
equal_list_ba< Seq1, Seq2, Manip > & el)

Inserts an equal_list_ba(p. 82) into an std::ostream.
Given two lists (a, b) and (c, d), a delimiter D, and an equals symbol E, this
operator will insert "aEcDbEd" into the stream.
See equal_list_ba's documentation for concrete examples.

See also:
equal_list()

6.35.2.12 template<class Seq> value_list_b<Seq,
do_nothing_type0> value_list (const Seq & s, bool t0,
bool t1 = false, bool t2 = false, bool t3 = false, bool t4
= false, bool t5 = false, bool t6 = false, bool t7 =
false, bool t8 = false, bool t9 = false, bool ta = false,
bool tb = false, bool tc = false)

Constructs a sparse value list.
Same as value_list(Seq&, const char∗, Manip, bool, bool...) but without the
Manip or delimiter parameters. We use the do_nothing manipulator, meaning
that the value list items are neither escaped nor quoted when being inserted into
a stream. The delimiter is a comma. This form is suitable for lists of simple
data, such as integers.

6.35.2.13 template<class Seq> value_list_b<Seq,
do_nothing_type0> value_list (const Seq & s, const
char ∗ d, bool t0, bool t1 = false, bool t2 = false, bool
t3 = false, bool t4 = false, bool t5 = false, bool t6 =
false, bool t7 = false, bool t8 = false, bool t9 = false,
bool ta = false, bool tb = false, bool tc = false)

Constructs a sparse value list.
Same as value_list(Seq&, const char∗, Manip, bool, bool...) but without the
Manip parameter. We use the do_nothing manipulator, meaning that the value
list items are neither escaped nor quoted when being inserted into a stream.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.35 vallist.h File Reference 311

6.35.2.14 template<class Seq, class Manip> value_list_b<Seq,
Manip> value_list (const Seq & s, const char ∗ d, Manip
m, bool t0, bool t1 = false, bool t2 = false, bool t3 =
false, bool t4 = false, bool t5 = false, bool t6 = false,
bool t7 = false, bool t8 = false, bool t9 = false, bool ta
= false, bool tb = false, bool tc = false)

Constructs a value_list_b(p. 250) (sparse value list).
Same as value_list(Seq&, const char∗, Manip, const vector<bool>&), except
that it takes the bools as arguments instead of wrapped up in a vector object.

6.35.2.15 template<class Seq, class Manip> value_list_b<Seq,
Manip> value_list (const Seq & s, const char ∗ d, Manip
m, const std::vector< bool > & vb) [inline]

Constructs a value_list_b(p. 250) (sparse value list).

Parameters:
s an STL sequence of items in the value list
d delimiter operator<< should place between items
m manipulator to use when inserting items into a stream
vb for each item in this vector that is true, the corresponding item in the

value list is inserted into a stream; the others are suppressed

6.35.2.16 template<class Seq, class Manip> value_list_ba<Seq,
Manip> value_list (const Seq & s, const char ∗ d, Manip
m)

Constructs a value_list_ba(p. 252).

Parameters:
s an STL sequence of items in the value list
d delimiter operator<< should place between items
m manipulator to use when inserting items into a stream

6.35.2.17 template<class Seq> value_list_ba<Seq,
do_nothing_type0> value_list (const Seq & s, const
char ∗ d = ",")

Constructs a value_list_ba(p. 252).

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

312 MySQL++ File Documentation

This function returns a value list that uses the 'do_nothing' manipulator. That
is, the items are not quoted or escaped in any way. See value_list(Seq, const
char∗, Manip) if you need to specify a manipulator.

Parameters:
s an STL sequence of items in the value list
d delimiter operator<< should place between items

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

6.36 wnp_connection.h File Reference 313

6.36 wnp_connection.h File Reference

Declares the WindowsNamedPipeConnection class.
#include "connection.h"

Namespaces

� namespace mysqlpp

Classes

� class mysqlpp::WindowsNamedPipeConnection
Specialization of Connection(p. 35) for Windows named pipes.

6.36.1 Detailed Description

Declares the WindowsNamedPipeConnection class.

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

Index

∼BeecryptMutex
mysqlpp::BeecryptMutex, 30

∼Comparable
Comparable, 33

∼ConnectionPool
mysqlpp::ConnectionPool, 48

∼NoExceptions
mysqlpp::NoExceptions, 108

∼RefCountedPointer
mysqlpp::RefCountedPointer,

155
∼Transaction

mysqlpp::Transaction, 239

a�ected_rows
mysqlpp::DBDriver, 68

assign
mysqlpp::RefCountedPointer,

155
mysqlpp::SQLTypeAdapter,

203
mysqlpp::String, 219

at
mysqlpp::Row, 171
mysqlpp::SQLTypeAdapter,

203
mysqlpp::String, 220

AutoFlag, 15
auto�ag.h, 259

BadConversion
mysqlpp::BadConversion, 18

BadFieldName
mysqlpp::BadFieldName, 20

BadIndex
mysqlpp::BadIndex, 22

BadQuery

mysqlpp::BadQuery, 28
base_type

mysqlpp::mysql_type_info,
104

BeecryptMutex
mysqlpp::BeecryptMutex, 30

beemutex.h, 260
before

mysqlpp::mysql_type_info,
104

bound
mysqlpp::SQLQueryParms,

196
c_type

mysqlpp::mysql_type_info,
104

clear
mysqlpp::ConnectionPool, 49

client_version
mysqlpp::DBDriver, 68

commit
mysqlpp::Transaction, 239

common.h, 261
Comparable, 32

∼Comparable, 33
compare, 33

comparable.h, 262
compare

Comparable, 33
mysqlpp::Date, 56
mysqlpp::DateTime, 61
mysqlpp::SQLTypeAdapter,

204
mysqlpp::String, 220, 221
mysqlpp::Time, 231

connect

INDEX 315

mysqlpp::Connection, 40
mysqlpp::DBDriver, 68
mysqlpp::TCPConnection, 227
mysqlpp::UnixDomainSocket-

Connection, 243
mysqlpp::WindowsNamed-

PipeConnection, 256
connected

mysqlpp::Connection, 40
mysqlpp::DBDriver, 68

Connection
mysqlpp::Connection, 38, 39

connection.h, 263
ConnectionFailed

mysqlpp::ConnectionFailed, 46
conv

mysqlpp::String, 221
copy

mysqlpp::Connection, 40
mysqlpp::DBDriver, 69

count_rows
mysqlpp::Connection, 40

cpool.h, 264
create

mysqlpp::ConnectionPool, 49
create_db

mysqlpp::Connection, 40
mysqlpp::DBDriver, 69

current_�eld_
mysqlpp::ResultBase, 163

custom.h, 265
data_seek

mysqlpp::DBDriver, 69
Date

mysqlpp::Date, 56
DateTime

mysqlpp::DateTime, 60, 61
datetime.h, 266
DBDriver

mysqlpp::DBDriver, 68
dbdriver.h, 267
DBSelectionFailed

mysqlpp::DBSelectionFailed,
79

destroy

mysqlpp::ConnectionPool, 49
disconnect

mysqlpp::DBDriver, 69
do_nothing_type0

manip.h, 273
driver

mysqlpp::Connection, 41
drop_db

mysqlpp::Connection, 41
mysqlpp::DBDriver, 69

enable_ssl
mysqlpp::DBDriver, 70

equal_list
mysqlpp::Row, 171, 172
vallist.h, 307, 308

equal_list_b
mysqlpp::equal_list_b, 81

equal_list_ba
mysqlpp::equal_list_ba, 83

err_api_limit
mysqlpp::Option, 122

err_api_reject
mysqlpp::Option, 122

err_connected
mysqlpp::Option, 122

err_NONE
mysqlpp::Option, 122

errnum
mysqlpp::BadQuery, 28
mysqlpp::ConnectionFailed, 46
mysqlpp::DBDriver, 70
mysqlpp::DBSelectionFailed,

79
mysqlpp::Query, 131

Error
mysqlpp::Option, 122

error
mysqlpp::Connection, 41
mysqlpp::DBDriver, 70
mysqlpp::Query, 131

escape_q
mysqlpp::mysql_type_info,

104
escape_string

mysqlpp::DBDriver, 70

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

316 INDEX

mysqlpp::Query, 132
mysqlpp::SQLQueryParms,

196
escape_string_no_conn

mysqlpp::DBDriver, 71
escape_type0

manip.h, 274
exceptions.h, 268
exec

mysqlpp::Query, 133
execute

mysqlpp::DBDriver, 71
mysqlpp::Query, 134, 135

fetch_�eld
mysqlpp::DBDriver, 71

fetch_lengths
mysqlpp::DBDriver, 71
mysqlpp::UseQueryResult, 247

fetch_raw_row
mysqlpp::UseQueryResult, 247

fetch_row
mysqlpp::DBDriver, 72
mysqlpp::UseQueryResult, 247

�eld.h, 270
�eld_list

mysqlpp::Row, 172�174
�eld_names.h, 271
�eld_num

mysqlpp::ResultBase, 163
�eld_seek

mysqlpp::DBDriver, 72
mysqlpp::UseQueryResult, 248

�eld_types.h, 272
for_each

mysqlpp::Query, 135, 136
free_result

mysqlpp::DBDriver, 72
grab

mysqlpp::ConnectionPool, 49
id

mysqlpp::mysql_type_info,
104

ignore_type0

manip.h, 274
insert

mysqlpp::Query, 136
insert_id

mysqlpp::DBDriver, 72
mysqlpp::Query, 137

ipc_info
mysqlpp::Connection, 41
mysqlpp::DBDriver, 72

is_null
mysqlpp::Null, 115
mysqlpp::SQLBu�er, 191

is_processed
mysqlpp::SQLTypeAdapter,

205
is_socket

mysqlpp::UnixDomainSocket-
Connection, 243

is_wnp
mysqlpp::WindowsNamed-

PipeConnection, 256
iterator

mysqlpp::Row, 170
kill

mysqlpp::Connection, 41
mysqlpp::DBDriver, 72

length
mysqlpp::Field, 88
mysqlpp::SQLBu�er, 191
mysqlpp::String, 222

list_type
mysqlpp::Row, 170

manip.h, 273
do_nothing_type0, 273
escape_type0, 274
ignore_type0, 274
quote_double_only_type0,

274
quote_only_type0, 274
quote_type0, 274

max_idle_time
mysqlpp::ConnectionPool, 50

max_size

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

INDEX 317

mysqlpp::String, 222
more_results

mysqlpp::DBDriver, 73
mysqlpp::Query, 137

myset.h, 276
mysql++.h, 277

MYSQLPP_HEADER_-
VERSION, 277

MYSQLPP_VERSION, 278
mysql_type_info

mysqlpp::mysql_type_info,
103

mysqlpp::BadConversion, 17
mysqlpp::BadConversion

BadConversion, 18
mysqlpp::BadFieldName, 20
mysqlpp::BadFieldName

BadFieldName, 20
mysqlpp::BadIndex, 22
mysqlpp::BadIndex

BadIndex, 22
mysqlpp::BadOption, 24
mysqlpp::BadOption

what_option, 25
mysqlpp::BadParamCount, 26
mysqlpp::BadQuery, 27
mysqlpp::BadQuery

BadQuery, 28
errnum, 28

mysqlpp::BeecryptMutex, 30
mysqlpp::BeecryptMutex

∼BeecryptMutex, 30
BeecryptMutex, 30

mysqlpp::CompressOption, 34
mysqlpp::Connection, 35

connect, 40
connected, 40
Connection, 38, 39
copy, 40
count_rows, 40
create_db, 40
driver, 41
drop_db, 41
error, 41
ipc_info, 41
kill, 41

operator private_bool_type,
42

ping, 42
query, 42, 43
select_db, 43
set_option, 43
thread_id, 44
thread_start, 44

mysqlpp::ConnectionFailed, 45
mysqlpp::ConnectionFailed

ConnectionFailed, 46
errnum, 46

mysqlpp::ConnectionPool, 47
mysqlpp::ConnectionPool

∼ConnectionPool, 48
clear, 49
create, 49
destroy, 49
grab, 49
max_idle_time, 50
release, 50

mysqlpp::ConnectTimeoutOption,
51

mysqlpp::DataOption, 52
mysqlpp::Date, 54

compare, 56
Date, 56
operator time_t, 56
year, 57

mysqlpp::DateTime, 58
mysqlpp::DateTime

compare, 61
DateTime, 60, 61
now, 61
year, 61, 62

mysqlpp::DBDriver, 63
a�ected_rows, 68
client_version, 68
connect, 68
connected, 68
copy, 69
create_db, 69
data_seek, 69
DBDriver, 68
disconnect, 69
drop_db, 69

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

318 INDEX

enable_ssl, 70
errnum, 70
error, 70
escape_string, 70
escape_string_no_conn, 71
execute, 71
fetch_�eld, 71
fetch_lengths, 71
fetch_row, 72
�eld_seek, 72
free_result, 72
insert_id, 72
ipc_info, 72
kill, 72
more_results, 73
next_result, 73
nr_code, 67
nr_error, 67
nr_last_result, 67
nr_more_results, 67
nr_not_supported, 67
num_�elds, 73
num_rows, 73
ping, 73
protocol_version, 74
query_info, 74
refresh, 74
result_empty, 74
server_status, 74
server_version, 75
set_option, 75
shutdown, 75
store_result, 76
thread_aware, 76
thread_end, 76
thread_id, 76
thread_start, 76
use_result, 77

mysqlpp::DBSelectionFailed, 78
mysqlpp::DBSelectionFailed

DBSelectionFailed, 79
errnum, 79

mysqlpp::equal_list_b, 80
equal_list_b, 81

mysqlpp::equal_list_ba, 82
equal_list_ba, 83

mysqlpp::Exception, 84
mysqlpp::Field, 86

length, 88
mysqlpp::FieldNames, 89
mysqlpp::FieldTypes, 91
mysqlpp::FieldTypes

operator=, 91
mysqlpp::FoundRowsOption, 92
mysqlpp::GuessConnectionOption,

93
mysqlpp::IgnoreSpaceOption, 94
mysqlpp::InitCommandOption, 95
mysqlpp::InteractiveOption, 96
mysqlpp::LocalFilesOption, 97
mysqlpp::LocalIn�leOption, 98
mysqlpp::MultiResultsOption, 99
mysqlpp::MultiStatementsOption,

100
mysqlpp::MutexFailed, 101
mysqlpp::mysql_type_info, 102

base_type, 104
before, 104
c_type, 104
escape_q, 104
id, 104
mysql_type_info, 103
name, 105
operator=, 105
quote_q, 105
sql_name, 105
string_type, 105

mysqlpp::NamedPipeOption, 107
mysqlpp::NoExceptions, 108
mysqlpp::NoExceptions

∼NoExceptions, 108
NoExceptions, 108

mysqlpp::NoSchemaOption, 110
mysqlpp::Null, 111

is_null, 115
Null, 113
operator Type &, 113
operator<, 114
operator=, 114
operator==, 114, 115

mysqlpp::null_type, 116
mysqlpp::NullIsBlank, 117

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

INDEX 319

mysqlpp::NullIsNull, 118
mysqlpp::NullIsZero, 119
mysqlpp::ObjectNotInitialized, 120
mysqlpp::Option, 121

err_api_limit, 122
err_api_reject, 122
err_connected, 122
err_NONE, 122
Error, 122

mysqlpp::OptionalExceptions, 123
mysqlpp::OptionalExceptions

OptionalExceptions, 124
set_exceptions, 124

mysqlpp::Query, 125
errnum, 131
error, 131
escape_string, 132
exec, 133
execute, 134, 135
for_each, 135, 136
insert, 136
insert_id, 137
more_results, 137
operator void ∗, 137
operator=, 138
parse, 138
Query, 131
replace, 138
reset, 138
store, 139, 140
store_if, 140, 141
store_next, 142
storein, 142
storein_sequence, 143
storein_set, 144
str, 145
template_defaults, 147
update, 145
use, 146, 147

mysqlpp::ReadDefaultFileOption,
148

mysqlpp::ReadDefaultGroupOption,
149

mysqlpp::ReadTimeoutOption, 150
mysqlpp::ReconnectOption, 151
mysqlpp::RefCountedPointer, 152

mysqlpp::RefCountedPointer
∼RefCountedPointer, 155
assign, 155
operator const void ∗, 155
operator void ∗, 156
operator=, 156
RefCountedPointer, 154
swap, 157

mysqlpp::RefCountedPointerDestroyer,
158

mysqlpp::RefCountedPointerDestroyer<
MYSQL_RES >, 159

mysqlpp::ReportDataTruncationOption,
160

mysqlpp::ResultBase, 161
mysqlpp::ResultBase

current_�eld_, 163
�eld_num, 163

mysqlpp::Row, 165
at, 171
equal_list, 171, 172
�eld_list, 172�174
iterator, 170
list_type, 170
operator private_bool_type,

175
operator[], 175
reference, 170
reverse_iterator, 170
Row, 171
value_list, 176�178

mysqlpp::ScopedLock, 179
mysqlpp::SecureAuthOption, 180
mysqlpp::SelfTestFailed, 181
mysqlpp::Set, 182
mysqlpp::SetCharsetDirOption, 183
mysqlpp::SetCharsetNameOption,

184
mysqlpp::SetClientIpOption, 185
mysqlpp::SharedMemoryBaseNameOption,

186
mysqlpp::SimpleResult, 187
mysqlpp::SimpleResult

operator private_bool_type,
187

mysqlpp::SQLBu�er, 189

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

320 INDEX

is_null, 191
length, 191
SQLBu�er, 190

mysqlpp::SQLParseElement, 192
mysqlpp::SQLParseElement

SQLParseElement, 193
mysqlpp::SQLQueryParms, 194
mysqlpp::SQLQueryParms

bound, 196
escape_string, 196
operator+, 196
set, 196
SQLQueryParms, 195

mysqlpp::SQLTypeAdapter, 198
mysqlpp::SQLTypeAdapter

assign, 203
at, 203
compare, 204
is_processed, 205
operator=, 205
set_processed, 205
SQLTypeAdapter, 202
type_id, 205

mysqlpp::SslOption, 207
mysqlpp::SslOption

SslOption, 207
mysqlpp::StoreQueryResult, 209
mysqlpp::StoreQueryResult

operator private_bool_type,
210

mysqlpp::String, 212
assign, 219
at, 220
compare, 220, 221
conv, 221
length, 222
max_size, 222
operator Null, 222
operator!=, 222
operator=, 223
operator==, 223
operator[], 223
size, 223
String, 218, 219
to_string, 224

mysqlpp::TCPConnection, 225

connect, 227
parse_address, 227
TCPConnection, 226

mysqlpp::Time, 229
compare, 231
operator time_t, 231
Time, 231

mysqlpp::tiny_int, 233
tiny_int, 236

mysqlpp::TooOld, 237
mysqlpp::Transaction, 238

∼Transaction, 239
commit, 239
rollback, 239
Transaction, 238

mysqlpp::TypeLookupFailed, 240
mysqlpp::UnixDomainSocketConnection,

241
mysqlpp::UnixDomainSocket-

Connection
connect, 243
is_socket, 243
UnixDomainSocketConnec-

tion, 242
mysqlpp::UseEmbeddedConnectionOption,

244
mysqlpp::UseQueryError, 245
mysqlpp::UseQueryResult, 246
mysqlpp::UseQueryResult

fetch_lengths, 247
fetch_raw_row, 247
fetch_row, 247
�eld_seek, 248
operator MYSQL_RES ∗, 248

mysqlpp::UseRemoteConnectionOption,
249

mysqlpp::value_list_b, 250
value_list_b, 251

mysqlpp::value_list_ba, 252
value_list_ba, 253

mysqlpp::WindowsNamedPipeConnection,
254

mysqlpp::WindowsNamedPipe-
Connection

connect, 256
is_wnp, 256

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

INDEX 321

WindowsNamedPipeConnec-
tion, 255

mysqlpp::WriteTimeoutOption, 257
MYSQLPP_HEADER_-

VERSION
mysql++.h, 277

MYSQLPP_VERSION
mysql++.h, 278

mystring.h, 279
name

mysqlpp::mysql_type_info,
105

next_result
mysqlpp::DBDriver, 73

NoExceptions
mysqlpp::NoExceptions, 108

noexceptions.h, 280
now

mysqlpp::DateTime, 61
nr_code

mysqlpp::DBDriver, 67
nr_error

mysqlpp::DBDriver, 67
nr_last_result

mysqlpp::DBDriver, 67
nr_more_results

mysqlpp::DBDriver, 67
nr_not_supported

mysqlpp::DBDriver, 67
Null

mysqlpp::Null, 113
null

null.h, 282
null.h, 281

null, 282
num_�elds

mysqlpp::DBDriver, 73
num_rows

mysqlpp::DBDriver, 73
operator const void ∗

mysqlpp::RefCountedPointer,
155

operator MYSQL_RES ∗
mysqlpp::UseQueryResult, 248

operator Null
mysqlpp::String, 222

operator private_bool_type
mysqlpp::Connection, 42
mysqlpp::Row, 175
mysqlpp::SimpleResult, 187
mysqlpp::StoreQueryResult,

210
operator time_t

mysqlpp::Date, 56
mysqlpp::Time, 231

operator Type &
mysqlpp::Null, 113

operator void ∗
mysqlpp::Query, 137
mysqlpp::RefCountedPointer,

156
operator!=

mysqlpp::String, 222
operator+

mysqlpp::SQLQueryParms,
196

operator<
mysqlpp::Null, 114

operator<<
query.h, 289
vallist.h, 309

operator=
mysqlpp::FieldTypes, 91
mysqlpp::mysql_type_info,

105
mysqlpp::Null, 114
mysqlpp::Query, 138
mysqlpp::RefCountedPointer,

156
mysqlpp::SQLTypeAdapter,

205
mysqlpp::String, 223

operator==
mysqlpp::Null, 114, 115
mysqlpp::String, 223

operator[]
mysqlpp::Row, 175
mysqlpp::String, 223

OptionalExceptions

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

322 INDEX

mysqlpp::OptionalExceptions,
124

options.h, 283
parse

mysqlpp::Query, 138
parse_address

mysqlpp::TCPConnection, 227
ping

mysqlpp::Connection, 42
mysqlpp::DBDriver, 73

protocol_version
mysqlpp::DBDriver, 74

qparms.h, 287
Query

mysqlpp::Query, 131
query

mysqlpp::Connection, 42, 43
query.h, 288

operator<<, 289
query_info

mysqlpp::DBDriver, 74
quote_double_only_type0

manip.h, 274
quote_only_type0

manip.h, 274
quote_q

mysqlpp::mysql_type_info,
105

quote_type0
manip.h, 274

refcounted.h, 290
RefCountedBu�er

sql_bu�er.h, 294
RefCountedPointer

mysqlpp::RefCountedPointer,
154

reference
mysqlpp::Row, 170

refresh
mysqlpp::DBDriver, 74

release
mysqlpp::ConnectionPool, 50

replace

mysqlpp::Query, 138
reset

mysqlpp::Query, 138
result.h, 291
result_empty

mysqlpp::DBDriver, 74
reverse_iterator

mysqlpp::Row, 170
rollback

mysqlpp::Transaction, 239
Row

mysqlpp::Row, 171
row.h, 293

select_db
mysqlpp::Connection, 43

server_status
mysqlpp::DBDriver, 74

server_version
mysqlpp::DBDriver, 75

set
mysqlpp::SQLQueryParms,

196
set_exceptions

mysqlpp::OptionalExceptions,
124

set_option
mysqlpp::Connection, 43
mysqlpp::DBDriver, 75

set_processed
mysqlpp::SQLTypeAdapter,

205
shutdown

mysqlpp::DBDriver, 75
size

mysqlpp::String, 223
sql_bu�er.h, 294

RefCountedBu�er, 294
sql_name

mysqlpp::mysql_type_info,
105

sql_types.h, 295
SQLBu�er

mysqlpp::SQLBu�er, 190
SQLParseElement

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

INDEX 323

mysqlpp::SQLParseElement,
193

SQLQueryParms
mysqlpp::SQLQueryParms,

195
SQLTypeAdapter

mysqlpp::SQLTypeAdapter,
202

SslOption
mysqlpp::SslOption, 207

stadapter.h, 296
store

mysqlpp::Query, 139, 140
store_if

mysqlpp::Query, 140, 141
store_next

mysqlpp::Query, 142
store_result

mysqlpp::DBDriver, 76
storein

mysqlpp::Query, 142
storein_sequence

mysqlpp::Query, 143
storein_set

mysqlpp::Query, 144
str

mysqlpp::Query, 145
stream2string.h, 297
String

mysqlpp::String, 218, 219
string_type

mysqlpp::mysql_type_info,
105

swap
mysqlpp::RefCountedPointer,

157
tcp_connection.h, 298
TCPConnection

mysqlpp::TCPConnection, 226
template_defaults

mysqlpp::Query, 147
thread_aware

mysqlpp::DBDriver, 76
thread_end

mysqlpp::DBDriver, 76

thread_id
mysqlpp::Connection, 44
mysqlpp::DBDriver, 76

thread_start
mysqlpp::Connection, 44
mysqlpp::DBDriver, 76

Time
mysqlpp::Time, 231

tiny_int
mysqlpp::tiny_int, 236

tiny_int.h, 299
to_string

mysqlpp::String, 224
Transaction

mysqlpp::Transaction, 238
transaction.h, 300
type_id

mysqlpp::SQLTypeAdapter,
205

type_info.h, 301
uds_connection.h, 303
UnixDomainSocketConnection

mysqlpp::UnixDomainSocket-
Connection, 242

update
mysqlpp::Query, 145

use
mysqlpp::Query, 146, 147

use_result
mysqlpp::DBDriver, 77

vallist.h, 304
equal_list, 307, 308
operator<<, 309
value_list, 310, 311

value_list
mysqlpp::Row, 176�178
vallist.h, 310, 311

value_list_b
mysqlpp::value_list_b, 251

value_list_ba
mysqlpp::value_list_ba, 253

what_option
mysqlpp::BadOption, 25

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

324 INDEX

WindowsNamedPipeConnection
mysqlpp::WindowsNamed-

PipeConnection, 255
wnp_connection.h, 313
year

mysqlpp::Date, 57
mysqlpp::DateTime, 61, 62

Generated on Thu Nov 27 01:21:16 2008 for MySQL++ by Doxygen

