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1 Introduction 3

1 Introduction

1.1 Notions

Maxima: Open-Source descendant of the computeralgebra system Macsyma, which initially was
developed 1967–1982 at the MIT by order of the US Department of Energy. 1989 a version
of Macsyma was published with the name Maxima under the GNU General Public Licence,
which is now being developed further by an independent group of users. Maxima is written
in Lisp and contains many aspects of functional programming.

Due to its power and free availability there is no reason to use it not.
wxMaxima: One of several graphical user interfaces for Maxima. It enables input and editing

expressions in a working window, as well as the documenting calculations with text and
images. Maxima outputs results and (on demand) graphics into that working window.

Working sessions can be saved, loaded and re-executed; the most common commands are
accessible via menus and control buttons (for notorious mouse-clickers) . Working sessions
can be exported as HTML or as LATEX-file. Export to LATEX may require some corrections by
hand of the resulting TEX-file.

On installing Maxima, wxMaxima is automatically installed as the standard user interface.

COMA (COntrol engineering with MAxima):

Control engineering package for Maxima, it comprises basic methods for system analysis in
time-, frequency- and Laplace-domain, controller design, as well as state space methods:

• Inverse Laplace-transform of transfer functions of arbitrary order (the built-in func-
tion ilt in general fails at orders higher than two).

• Unit step responses

• Nyquist diagrams and Bode plots

• Poles and Zeros, root locus plots

• Stability investigations: stability limit, Hurwitz criterion, stable regions in the param-
eter plane, phase margin, gain margin

• Optimization and controller design: ISE-criterion (integral of squared error), gain
optimum

• State space: Conversion into a transfer function, canonical forms, controllability, ob-
servability

Wilhelm Haager: Control Engineering with Maxima
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1.2 wxMaxima User Interface

À . . . Working window for input and output
Á . . . Gnuplot output window

1.3 Basic Concepts of the Package COMA

• The Laplace variable is considered to be always s, the time variable always t; in functions
concerning the frequency response, the angular frequency is ω. In frequency responses s
is automatically replaced by jω. Transfer functions are rational functions in the variable s,
time delays are not supported, but can be approximated by Padé approximations.

• All functions, which take a transfer function as a parameter, can also take (without explicit
notice) a list of transfer functions as a parameter; in that case the result will also be a list,
of which the elements correspond to the particular transfer functions. That is particularly
important in graphics, where a couple of curves shall be drawn into a single diagram.

The list to be plotted need not have only functions (transfer functions), but can also
contain graphic objects of the Gnuplot interface Draw (explicit, points, implicit,
parametric, polar, polygon, rectangle, ellipse, label). Thus diagrams can be pro-
vided with labels, legends and other graphical elements; furthermore a direct comparison
with measured values is possible.

• Additional to the plotted functions, all plot routines can have optional parameters in the
form option = value, which allow to adapt the graphic with respect to colors, line widths,
scale, graphic type, output etc.

• Priot to its first usage, the package has to be laded using the command load.

Wilhelm Haager: Control Engineering with Maxima
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2 Plot routines

Maxima uses the program Gnuplot [2] for drawing graphics, which is called at the generation
of the graphic. Herein the graphic is drawn either in a seperate Gnuplot window (using the
option wx=false) or directly into the working window of wxMaxima (using the option wx=true,
default).

The plot routines of COMA don’t use the standard functions of Maxima (plot2d, plot3d,
wxplot2d, wxplot3d), but the functions of the additional package Draw (draw2d, draw3d,
wxdraw2d und wxdraw3d), refer [1], [3]. Those functions are a little bit more complicated
in their application, but they offer much more possibilities to adapt the graphics according to
special requirements by the use of options.

All plot routines take a single function as parameter or a list of functions; additional optional
parameters in the form option=value. Options, which apply to particular graphic objects, (color,
line_width etc.), can be given in a list, of which the elements correspond to the respective
graphic objects: option=[val1,val2, . . . ].

2.1 Options of the Gnuplot-Interface Draw

terminal=target output target, possible values: screen (default), jpg,
png, pngcairo, eps, eps_color

file_name=string name of the output file, default: maxima_out.ext

color=c plot color

line_width=w line width

xrange=[x1,x2] plot range in x-direction

yrange=[x1,y2] plot range in y-direction

zrange=[z1,z2] plot range in z-direction

logx=true/false logarithmic scale of the x-axis

logy=true/false logarithmic scale of the y-axis

logz=true/false logarithmic scale of the z-axis

grid=true/false inclusion of grid lines

enhanced3d=true/false coloring of surfaces in 3D-plots

Important options of the Gnuplot-interface Draw

A complete list of the options can be found in in the Maxima manual [1].

Wilhelm Haager: Control Engineering with Maxima
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2.2 Additional Options of COMA

wx=true/false determines the output:
true . . . output into the wxMaxima working window
false . . . output into a seperate Gnuplot window

aspect_ratio=value ratio height/width of the diagram; the value −1 results
in same scale of the x-axis and the y-axis

color=[c1,c2,. . . ] list of colors, which are applied for the particular
elements to be plotted respectively

line_width=[w1,w2,. . . ] list of linewidths, applied to the elements respectively

dimensions=[width,height] width and height of the graphic
...

Global variable:

coma_defaults list containing options in the form option=value

Additional options of COMA

The variable coma_defaults is a list containing default values for settings in the form of key-
value pairs. Contrary to the list draw_defaults of the Gnuplot-interface Draw coma_defaults
can contain also othe options, which are not part of Draw.

2.3 Plot

The function plot performs a two-dimensional depiction of functions f (x) in one variable or a
three-dimensional depiction of functions f (x , y) in two variables.

plot(f(x), opts) plotting the function f (x) in a two-dimensional
coordinate system

plot(f(x,y), opts) plotting the function f (x , y) in 3D-representation

Instead of a single function f , also a list of functions
[ f1, f2, . . . ] can be plotted.

Plot routines for 2D und 3D graphics

The functions of the package Draw (wxdraw2d, draw2d, wxdraw3d, draw3d) are called inter-
nally with appropriate parameters. Thus the (convenient) call of

plot([f(x),g(x)],xrange=[0,10],color=[red,blue])

exactly corresponds to the (less convenient) command

wxdraw2d(xrange=[0,10],color=red, explicit(f(x),x,0,10),

color=blue, explicit(g(x),x,0,10)).

Wilhelm Haager: Control Engineering with Maxima
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The value of the option aspect_ratio, which does not exist in the routines of the package
Draw, is passed to Gnuplot via the option user_preamble in appropriate form.

Loading the control engineering package (%i1) load(coma)$

coma v.1.84, (Wilhelm Haager, 2017−02−24)

List containing default values for the
graphics options

(%i2) coma_defaults ;

(%o2) [grid�true ,wx�true ,dimensions �[600 ,350 ],
user_preamble �set grid linetype 3 lc '#444444' ,
color�[red ,blue ,dark −green ,goldenrod ,violet ,
gray40 ,dark −cyan ,orange ,brown ,sea −green ]]

List of color names (%i3) col:[red,green,brown,blue];

(%o3) [red ,green ,brown ,blue ]

Plotting a list of four functions in one
single variable; internally the function
wxdraw2d is called. The names of the
variables can be different in each
function.

(%i4) plot([sin(5*x)**2,0.8*sin(5*y)**2,x,0.8*y],
xrange=[-0.5,1.5],color=col,
line_type =[solid,solid,dots,dots]);

(%t4) 

Plotting a list of two functions in two
variables each; internally the function
wxdraw3d is called.
The option surface_hide=true
suppresses hidden lines.

(%i5) plot([sin(5*x)**2+0.8*sin(5*y)**2,x+0.8*y],
xrange=[-0.5,1.5],surface_hide =true)$

(%o4) 
(%t5) 

plot evaluates the function to be plotted f before points are calculated. In order to evaluate
the function for every particular point, it has to be quoted. That is especially important e.g. for
characteristic values of transfer functions (section 7), which can only be calculated numerically.

Transfer function with a dependence on
a parameter a

(%i6) f:(s+a)/(s^3+a*s^2+2*s+a);

(%o6) 
s�a

s
3
�a s

2
�2 s�a

Wilhelm Haager: Control Engineering with Maxima
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The damping can only be calculated
numerically, which requires a to have a
fixed value. Thus f has to be quoted to
avoid being evaluated too early.

(%i7) plot('damping_ratio (f),xrange=[0,5]);

(%t7) 

2.4 Contour Lines

The function contourplot draws isolines of a function f (x , y). Contrary to contour_plot,
which is part of Maxima, it uses the Gnuplot interface Draw, like all plot routines of the package
COMA. It also has the same options.

contourplot(f(x,y), x , y, opts) Plotting of isolines of the function f (x , y)

contours=[z1, z2, . . . ] Determining the function values for the isolines

Contour Lines

Transfer function with two parameters a
and b

(%i8) f:1/(s^5+s^4+5*s^3+a*s^2+b*s+1);

(%o7) 

(%o8) 
1

s
5
�s

4
�5 s

3
�a s

2
�b s�1

Isolines for the damping in dependence
on the parameters a and b. The black
line at damping 0 represents the stability
limit, green lines represent stable areas,
red lines unstable areas.

(%i9) contourplot ('damping (f),a,b,xrange=[0,8], 
yrange=[0,7],contours =[-0.3,-0.2,-0.1,0,0.1],
color=[red,red,red,black,green],
ip_grid_in =[20,20])$

(%t9) 

Wilhelm Haager: Control Engineering with Maxima
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3 Transfer functions

COMA provides the following functions for convenient generation of transfer functions, primarily
for testing and experimenting:

rantranf(n) n-th order random transfer function, of wich the
numerator and denominator coefficients are numbers
between 1 and 10

stable_rantranf(n) Stable random transfer function (only up to 6th order)

gentranf(c, k, d, n) n-th order transfer function, (numerator of k-th order)
with the numerator coefficients ci and the denominator
coefficients di

tranftype(F(s)) Type of the transfer function F(s) as a string

ntranfp(F(s)) Yields true, if all coefficients of the transfer function
F(s) evaluate to numbers.

closed_loop(Fo(s)) Calculation of the closed loop transfer function FW (s)
from the open loop FO(s)

open_loop(Fw(s)) Calculation of the open loop transfer function FO(s)
from the closed loop FW (s)

time_delay(T, n, [k]) n-th order Padé approximation for a time delay system.
The order of the numerator k is optional.

impedance_chain(Z1, Z2, . . . [n])
transfer function of an impedance chain with the
impedances Z1, Z2, . . . and an (optional) repeat factor
n

transfer_function(eqs, vars, u, y)
Calculation of the transfer function from the equations
eqs in the variables vars with the inputs u and the
outputs y

sum_form(F(s), n) One of four canonical forms F(s) (in depoendence of n)

product_form(F(s), [n]) Splitting up F(s) into linear und quadratic factors

Generation of transfer cunctions

The function stable_rantranf(n) searches denominator coefficients randomly between 1
and 10, until a stable transfer function is found, which is becoming more difficult at higher
orders, at seventh order computing time is increasing heavily. Thus stable_rantranf is work-
ing only for transfer functions up to sixth order.

Higher orders can be attained by multiplication of several lower order transfer functions. How-
ever, in that case the coefficients are not confined to the range 1. . . 10 any more.

Wilhelm Haager: Control Engineering with Maxima
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Generation of a list of fourth order
random transfer functions, the orders on
the numerators are lower, at least by
one.

(%i1) fli:makelist (rantranf (3),k,1,4);

(%o1) [
4 s

2
�8 s�10

4 s
3
�s

2
�4 s�10

,
9 s�10

7 s
3
�7 s

2
�2 s�4

,

2 s
2
�10 s�7

4 s
3
�5 s

2
�9 s�7

,
2 s

2
�s�10

10 s
3
�10 s

2
�2 s�5

]

Stability test of the transfer functions
(section 7)

(%i2) stablep (fli);

(%o2) [false ,false ,true ,false ]

Generation of a list of stable random
transfer functions

(%i3) fli:makelist (stable_rantranf (3),k,1,4);

(%o3) [
3

2 s
3
�10 s

2
�7 s�4

,
4 s

2
�10 s�1

2 s
3
�3 s

2
�6 s�4

,

8 s�7

2 s
3
�9 s

2
�s�1

,
10

4 s
3
�10 s

2
�4 s�5

]

All are stable. (%i4) stablep (fli);

(%o4) [true ,true ,true ,true ]

List of transfer functions (%i5) fo:[k/s,5/(s*(s+3)),1-b/s];

(%o5) [
k

s
,

5

s
� �

s�3
,1−

b

s
]

Calculation of the closed loop transfer
functions

(%i6) fw:closed_loop (fo);

(%o6) [
k

s�k
,

5

s
2
�3 s�5

,
s−b

2 s−b
]

Determining the types of the transfer
functions as strings

(%i7) tranftype (fw);

(%o7) [PT1 ,PT2 ,PDT1 ]

Check, whether all coefficients of the
transfer functions evaluate to numbers

(%i8) ntranfp (fw);

(%o8) [false ,true ,false ]

Back-calculation to the open loop
transfer functions

(%i9) open_loop (fw);

(%o9) [
k

s
,

5

s
2
�3 s

,
s−b

s
]

gentranf(a,k,b,n) produces a general transfer function with indexed coefficients in the form

a0 + a1s+ a2s2 + · · ·+ aksk

b0 + b1s+ b2s2 + · · ·+ bnsn
.

transfer function with general
coefficients ai and bi

(%i10) gentranf (a,3,b,5);

(%o10) 
a
3
s
3
�a

2
s
2
�a

1
s�a

0

b
5
s
5
�b

4
s
4
�b

3
s
3
�b

2
s
2
�b

1
s�b

0

Time delay systems have transcendental transfer functions, inverse Laplace transform of control
loops containing time delays is not possible analytically in general.
time_delay(T,n,k) yields a n-th order Padé approximation of a time delay system with the
transfer function G(s)=e−sT . The declaration k of the numerator order is optional, its default is
n− 1.

Wilhelm Haager: Control Engineering with Maxima
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Fourth order Padé approximation of the
transfer function of a time delay
G(s)=exp(−sT )

(%i11) time_delay (T,4);

(%o11) 
−4 T

3
s
3
�60 T

2
s
2
−360 T s�840

T
4
s
4
�16 T

3
s
3
�120 T

2
s
2
�480 T s�840

impedance_chain calculates the transfer function of an impdance chain with arbitrary impedances
(of even number); the last (optional integer valued) parameter determines the number of repe-
titions of the impedance chain.

Z1 Z3 Zn−1

Z2 Z4 ZnUE(s) UA(s)

transfer function of an impedance chain
consisting of four elements

(%i12) impedance_chain (R,1/(s*C),s*L+R,1/(s*C));

(%o12) 
1

C
2
L R s

3
�

� �

C
2
R
2
�C L s

2
�3 C R s�1

transfer function of an impedance chain
repeated four times

(%i13) impedance_chain (R,1/(s*C),4);

(%o13) 
1

C
4
R
4
s
4
�7 C

3
R
3
s
3
�15 C

2
R
2
s
2
�10 C R s�1

transfer_function(eqs,vars,u,y) calculates the transfer function from a list of linear equa-
tions eqs, e.g. from a block diagram. vars is a list containing the used variables according to
which the system of equations is to be solved, u is the input, y is the output.
Also multivariable systems can be calculated: When u and y are lists of variables, the corre-
sponding transfer matrix is calculated.

u F2 y

F1

F3

x2

x1

x3

−

x1 = F1 · u
x2 = F2 · (u− x3)

x3 = F3 · y
y = x1 + x2

System of linear equations from the
block diagram

(%i14) eqs:[x1=F1*u,x2=F2*(u-x3),x3=F3*y,y=x1+x2];

(%o14) [x1�F1 u,x2�F2
� �

u−x3 ,x3�F3 y,y�x2�x1]

Calculation of the transfer function from
the equations

(%i15) transfer_function (eqs,[x1,x2,x3,y],u,y);

(%o15) 
F2�F1

F2 F3�1

sum_form(F(s),n) divides the numerator and the denominator of F(s) in dependence of n by a
partitcular coefficient, thus making one of the leading or last coefficients to 1:

n= 1 . . . leading numerator coefficient of F(s)
n= 2 . . . last numerator coefficient of F(s)
n= 3 . . . leading denominator coefficient of F(s)
n= 4 . . . last denominator coefficient of F(s) (default)

Wilhelm Haager: Control Engineering with Maxima
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(%i16) F:(2*s+3)/(4*s^3+5*s^2+6*s+7);

(%o16) 
2 s�3

4 s
3
�5 s

2
�6 s�7

Canonical forms, making the leading or
last numerator coefficient to 1:

(%i17) [sum_form (F,1),sum_form (F,2)];

(%o17) [
s�1.5

2 s
3
�2.5 s

2
�3 s�3.5

,

0.66667 s�1

1.3333 s
3
�1.6667 s

2
�2 s�2.3333

]

Canonical forms, making the leading or
last denominator coefficient to 1:

(%i18) [sum_form (F,3),sum_form (F,4)];

(%o18) [
0.5 s�0.75

s
3
�1.25 s

2
�1.5 s�1.75

,

0.28571 s�0.42857

0.57143 s
3
�0.71429 s

2
�0.85714 s�1

]

product_form splits numerator and denominator of the transfer function into linear and quadratic
factors:

Product form of a transfer function (%i19) product_form (F);

(%o19) 
0.42857

� �

0.66667 s+1.0
� �

0.82799 s+1.0

� �

0.69014 s
2
+0.029158 s+1.0
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4 Laplace Transformation, Step Response

Maxima provides the function laplace(f,t,s) for the Laplace transform; the inverse Laplace
transform is calculated with ilt(f,s,t). The coefficients of the numerator and denominator
polynomials can have symbolic values. However, ilt fails at denominator polynomials of third
or higher order, if no zeros can be found analytically.

The function nilt of the package COMA calculates the zeros of the denominator polynomial
numerically using allroots, thus rational functions of (nearly) arbitrary order can be back-
transformed; however, the polynomial coefficients have to evaluate to numbers in that case.

laplace(ft, timevar, lapvar) Laplace transform of the function ft
(part of Maxima)

ilt(fs, lapvar, timevar) inverse Laplace transform of fs
(part of Maxima)

nilt(fs, lapvar, timevar) inverse Laplace transform of fs with numerically
calculated poles

step_response(F(s), opts) Plotting the unit step response of the transfer function
F(s)

Laplace transform

Laplace transform of a function (%i1) laplace (t^2*sin(a*t),t,s);

(%o1) 
8 a s

2

� �

s
2
�a

2
3
−

2 a
� �

s
2
�a

2
2

Inverse Laplace transform (%i2) ilt(1/(s^3+2*s^2+2*s+1),s,t);

(%o2) %e
−
t

2

� �

� �
� �

sin

� �

� �

	

3 t

2
	

3
−cos

� �

� �

	

3 t

2
�%e

−t

The coefficients can also have symbolic
values.

(%i3) ilt(1/((s+a)^2*(s+b)),s,t);

(%o3) 
%e

−b t

b
2
−2 a b�a

2
�
t %e

−a t

b−a
−

%e
−a t

b
2
−2 a b�a

2

Inverse Laplace transform fails, if no
zeros of the denominator polynomial
can be found analytically.

(%i4) ilt(1/(s^3+2*s^2+3*s+1),s,t);

(%o4) ilt

� �

� �
1

s
3
�2 s

2
�3 s�1

,s,t

nilt calculates the zeros of the
denominator numerically, thus arbitrary
order transfer functions can be
back-transformed.

(%i5) nilt(1/(s^3+2*s^2+3*s+1),s,t);

(%o5) −0.14795 %e
−0.78492 t

sin
� �

1.3071 t −0.54512

%e
−0.78492 t

cos
� �

1.3071 t �0.54512 %e
−0.43016 t
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Generation of a list of PT2-elements with
increasing damping ratio

(%i6) pt2li:create_list (1/(s^2+2*d*s+1), d,
      [0.0001,0.1,0.2,0.3,0.4,0.5]);

(%o6) [
1

s
2
�2.0 10

−4
s�1

,
1

s
2
�0.2 s�1

,
1

s
2
�0.4 s�1

,

1

s
2
�0.6 s�1

,
1

s
2
�0.8 s�1

,
1

s
2
�1.0 s�1

]

Plotting the step responses; unless the
option xrange is given explicitely, the
time range is chosen automatically.

(%i7) step_response (pt2li)$

(%t7) 

PT1-element with additional time delay
in Padé approximation

(%i8) F:time_delay (2,5)*1/(1+s);

(%o8) 
5 s

4
−60 s

3
�315 s

2
−840 s�945

� �

s�1

� �

2 s
5
�25 s

4
�150 s

3
�525 s

2
�1050 s�945

Calculation of the exact step response of
a PT1-element with additional time
delay

(%i9) ft:unit_step (t-2)*ev(ilt(1/(s*(1+s)),s,t),
t=t-2);

(%o9) unit_step
� �

t−2

� �

1−%e
2−t

Comparison of the exact step response
with the Padé approximation; the exact
step response is included as a graphical
object explicit.

(%i10) step_response ([F,explicit (ft,t,0,10)],
yrange=[-0.2,1.2]);

(%t10) 
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5 Frequency Responses

bode_plot(F(s), opts) Bode plot of F( jω)

magnitude_plot(F(s), opts) Magnitude plot of the Bode diagram of F( jω)

logy=false Option for magnitude_plot, yields linear scale of the
magnitude

phase_plot(F(s), opts) Phase plot of the Bode diagram of F( jω)

phase(F(s)) Phase shift of the frequency responsees F( jω) in degree

asymptotic(F(s)) Asymptotic characteristic of the frequency response
F( jω)

nyquist_plot(F(s), opts) Frequency response locus of F( jω)

Frequency responses

Parameters are transfer functions F(s) depending on the Laplace variable s; the plot routines
replace s by jω automatically.

Unless the options xrange and yrange are declared explicitely, the scale is chosen automat-
ically. The axes of Bode plots plot can be linearly-scaled using the option logx=false and
logy=false. bode_plot requires a list of two ranges for the option yrange, one for the magni-
tude plot and one for the phase plot each.

Frequency response locus plots (nyquist_plot) have the same scale in x-direction and y-
direction by default (aspect_ratio=-1), which results in an undistorted image.

Contrary to the Maxima function carg, which calculates the argument of a complex number (in
radiant) always in the interval −π. . .π, phase calculates the actual phase shift between input
and output, which can attain arbitrarily high values; every pole and every zero produce a phase
shift of π/2 (or 90 degrees) with the appropriate sign.

At resonance a significant phase shift is occuring in a small frequency range. In order to attain –
especially in frequency response locus plots – a smooth curve, the number of primarily calculated
points has to be increased explicitely, which can be set with the option nticks=value (default
500).

List of PT2-elements with increasing
daming ratio

(%i1) fli:create_list (1/(s^2+2*d*s+1), d,

      [0.0001,0.1,0.2,0.3,0.4,0.5]);

(%o1) [
1

s
2
�2.0 10

−4
s�1

,
1

s
2
�0.2 s�1

,
1

s
2
�0.4 s�1

,

1

s
2
�0.6 s�1

,
1

s
2
�0.8 s�1

,
1

s
2
�1.0 s�1

]
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Bode plots of the PT2-elements, the
ranges of the y-axes have to be declared
in a list.

(%i2) bode_plot (fli,yrange=[[0.1,10],[-200,20]])$

(%t2) 

Magnitude plots of the PT2-elements
with both axes scaled linearly

(%i3) magnitude_plot (fli,xrange=[0,2],
yrange=[0.1,5],logx=false,logy=false)$

(%t3) 

Phase plots of the PT2-elements with
both axes scaled linearly; the y-axis is
scaled linearly by default.

(%i4) phase_plot (fli,xrange=[0,2],yrange=[-200,20],
logx=false)$

(%t4) 
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Transfer function of a PID-controller (%i5) Fr:2*(1+1/(2*s)+0.1*s/(1+0.02*s));

(%o5) 2

� �

� �0.1 s

0.02 s�1
�

1

2 s
�1

Bode plot of the PID-controller: exact
(red) and asymptotic characteristic
(blue)

(%i6) bode_plot ([Fr,asymptotic (Fr)],
xrange=[0.01,1000],yrange=[[1,100],[-120,120]])$

(%t6) 

Frequency response locus plots of the
PT2-elements; eventually the number of
primarily calculated points has to be
increased with the option nticks.

(%i7) nyquist_plot (fli,xrange=[-5,5],yrange=[-6,1],
    nticks=2000)$

(%t7) 

Third order transfer function (%i8) f:2/(1+2*s+2*s^2+s^3);

(%o8) 
2

s
3
�2 s

2
�2 s�1
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Phase shift of F( jω) by splitting the
frequency response into linear and
quadratic factors and addition of the
partial phase shifts.

(%i9) phase(f);

(%o9) 
180

� �

−atan
� �

1.0 � −atan2

� �

1.0 �,1.0 −1.0 �
2

�

A frequency response locus can be marked and labelled with graphical objects points and
label; arbitrary positions of the labels can be determined with some tricky considerations: the
label for a point lies in a certain distance from the point in orthogonal direction of the curve.

Attention: points and vectors are defined here as lists, not as matrices.

List of ω-values for marking and
labelling of the frequency response locus

(%i10) omegali :makelist (0.1*k,k,1,10);

(%o10) [0.1 ,0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1.0
]

Replacement of s by jω (%i11) fom:ev(f,s=%i*omega);

(%o11) 
2

−%i �
3
−2 �

2
�2 %i ��1

Position of a point on the curve (list of x-
and y-coordinate):

(%i12) dot:[realpart (fom),imagpart (fom)];

(%o12) [
2

� �

1−2 �
2

� �

2 �−�
3

2
�

� �

1−2 �
2

2
,

2

� �

�
3
−2 �

� �

2 �−�
3

2
�

� �

1−2 �
2

2
]

Differentiation gives the direction of the
curve.

(%i13) abl:ratsimp (diff(dot,omega));

(%o13) [
16 �

7
−12 �

5
−8 �

�
12
�2 �

6
�1

,−
6 �

8
−20 �

6
−6 �

2
�4

�
12
�2 �

6
�1

]

Unit vector orthogonal to the curve (%i14) ovec:ratsimp ([-abl[2],abl[1]]/
       sqrt(abl[1]^2+abl[2]^2));

(%o14) [
6 �

8
−20 �

6
−6 �

2
�4




36 �
4
�16 �

2
�16




�
12
�2 �

6
�1

,

16 �
7
−12 �

5
−8 �




36 �
4
�16 �

2
�16




�
12
�2 �

6
�1

]

Position for the label of a point
(%i15) lab:dot+0.3*ovec$

The marks are defined as graphic object
points.

(%i16) punkte:points(map(lambda ([u],ev(dot,omega=u)),
omegali ))$

The labels are defined as graphic object
label.

(%i17) labs:apply(label,map(lambda ([u],[string(u),
ev(lab[1],omega=u),ev(lab[2],omega=u)]),
omegali ))$

Unit circle as parametric curve (%i18) circle:parametric (cos(t),sin(t),t,0,2*%pi);

(%o18) parametric
� �

cos
� �

t ,sin
� �

t ,t,0,2 �
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Frequency response locus plot with
labelled points and the unit circle

(%i19) nyquist_plot ([circle,f,punkte,labs],
xrange=[-2,3],yrange=[-2.5,0.5],
point_type =7,color=[black,red,red,black])$

(%t19) 
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6 Investigations in the Complex s-Plane

6.1 Poles/Zeros-Distribution

poles(F(s)) Poles of the transfer function F(s)

zeros(F(s)) Zeros of the transfer function F(s)

poles_and_zeros(F(s),opts) Image of the Poles/zeros-distribution of the transfer
function F(s) in the complex s-plane

Poles/Zeros-Distribution

The function poles and zeros return the poles and zeros of the transfer function in al list.
poles_and_zeros draws the poles/zeros distribution in the complex s-plane. Herein a pole is
indicated by a × mark, a zero by a ◦ mark. In order to attain an undistorted image, the scales in
x-direction any y-direction are the same by default (aspect_ratio=-1).

List of random transfer functions (%i1) fli:makelist (stable_rantranf (5),k,1,2);

(%o1) [
7 s

4
�2 s

3
�4 s

2
�8 s�4

2 s
5
�4 s

4
�7 s

3
�5 s

2
�5 s�1

,

8 s�1

2 s
5
�4 s

4
�8 s

3
�10 s

2
�3 s�2

]

Zeros (%i2) zeros(fli);

(%o2) [[0.2688 %i−0.61289 ,−0.2688 %i−0.61289 ,

0.47003 −1.0271 %i,1.0271 %i�0.47003 ],[−0.125 ]]

Poles (%i3) poles(fli);

(%o3) [[−0.2408 ,1.0 %i,−1.0 %i,−1.1414 %i−0.8796 ,
1.1414 %i−0.8796 ],[0.49432 %i−0.079394 ,−0.49432 %i−
0.079394 ,−1.6717 %i−0.21887 ,−1.4035 ,1.6717 %i−
0.21887 ]]

Pole/zero distribution in the complex
s-plane

(%i4) poles_and_zeros (fli)$

(%t4) 
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6.2 Root Locus Plots

root_locus(F(s,k),opts) Root locus plot of a transfer function F(s, k) with one
free parameter k in the s-plane

trange=[min,max] Range for the free parameter k, default: [0.001,100]

nticks=n Number of calculated points, default: 500

Root locus plots

root_locus draws the root locus of a transfer function F(s) in dependence of a parameter k,
which need not be (unlike in “classical” root loci) the open loop gain, but can be an arbitrary
parameter influencing the transfer function. If several transfer functions are given in a list, the
names of the parameters can be different, nervertheless their ranges have to be the same for all
transfer functions, determinded by the option trange.

The plot points are distributed over the parameter range logarithmically, thus only positive
values for the range are allowed.

The starting points of the root loci are indicated by a × mark, the endpoints are indicated by a ◦
mark. If the free parameter is the open loop gain, its starting value is sufficiently small, its end
value is sufficiently large, starting and ending points represent the poles and zeros of the open
loop transfer function respectively.

List of transfer functions with various
zeros a and a variating gain k

(%i5) fli:closed_loop (makelist (k*((s-a)*(s+1))
    /(s*(s-2)*(s+7)),a,-11,-8));

(%o5) [
k s

2
�12 k s�11 k

s
3
�k s

2
�5 s

2
�12 k s−14 s�11 k

,

k s
2
�11 k s�10 k

s
3
�k s

2
�5 s

2
�11 k s−14 s�10 k

,

k s
2
�10 k s�9 k

s
3
�k s

2
�5 s

2
�10 k s−14 s�9 k

,

k s
2
�9 k s�8 k

s
3
�k s

2
�5 s

2
�9 k s−14 s�8 k

]

Root locus plots in dependence on the
open loop gain k with various values of
the open loop zero a

(%i6) root_locus (fli,xrange=[-17,3],
   yrange=[-6,6],nticks=5000)$

(%t6) 
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Root locus plot of a PT2-element with
the damping ratio as parameter

(%i7) root_locus (1/(s**2+a*s+1),xrange=[-4,1],
   trange=[1e-4,3],nticks=5000)$

(%t7) 
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7 Stability Behavior

7.1 Stability

stablep(F(s)) Checks the stability of the system with the der transfer
function F(s)

stability_limit(F(s), k) Calculation of the stability limit of the transfer function
F(s, k) with respect to the parameter k

hurwitz(p(s)) Calculation of the Hurwitz-determinants of the
polynomial p(s)

stable_area(F(s, a, b), a, b, opts)
Plot of the stability limit of the transfer function
F(s, a, b) in the a/b-parameter plane

Stability

The function stability_limit(F(s), k) yields conditions for imaginary poles in the form

k = value, ω= value,

which is equivalent to the stability limit for common systems. Herein the value of ω is the
angular frequency of the undamped oscillaion at the stability limit. Those conditions can be
fulfilled also for more than one value of ω. Which condition in fact corresponds to the stability
limit, has to be checked by further considerations.
Exact conditions for stability are provided by the Hurwitz-criterion: All zeros of the polyno-
mial p(s) have a negative realpart (i. e. in exactly that case the transfer function with the de-
nominator p(s) is stable), if all Hurwitz determinants have a value greater zero. The function
hurwitz(p(s)) yields a list of the Hurwitz determinants, the coefficients of p(s) can have sym-
bolic values.
stable_area plots the stability limit of a transfer function with respect to two parameters a
and b in the a/b-parameter plane. Unless the options xrange and yrange are given explicitely,
the axes range from 0 to 1.

Random transfer function (%i1) f:stable_rantranf (5);

(%o1) 
9

s
5
�3 s

4
�9 s

3
�10 s

2
�7 s�6

Calculation of the closed loop transfer
function with a controller gain of k

(%i2) fw:closed_loop (k*f);

(%o2) 
9 k

s
5
�3 s

4
�9 s

3
�10 s

2
�7 s�9 k�6

Calculation of the stability limit; the
result can be more tan one condition for
imaginary poles.

(%i3) lim:stability_limit (fw,k),numer;

(%o3) [[k�−13.709 ,��2.8531 ],[k�0.042326 ,��

0.92733 ]]
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The Hurwitz criterion provides exact
results; the system is stable if and only if
all elements of the resulting list are
positive.

(%i4) ratsimp (hurwitz (denom(fw)));

(%o4) [16−81 k,39−666 k,−81 k
2
−1107 k�47,−81 k

2
−

1107 k�47]

Generation of a list of gains: above, at
and below the stability limit

(%i5) kli:float(ev([1.1*k,k,0.9*k],second(lim)));

(%o5) [0.046559 ,0.042326 ,0.038093 ]

Calculation of the transfer functions of
the corresponding open loops,

(%i6) foli:create_list (k*f,k,kli);

(%o6) [
0.41903

s
5
�3 s

4
�9 s

3
�10 s

2
�7 s�6

,

0.38093

s
5
�3 s

4
�9 s

3
�10 s

2
�7 s�6

,
0.34284

s
5
�3 s

4
�9 s

3
�10 s

2
�7 s�6

]

as well as of the closed loops.
(%i7) fwli:(closed_loop (foli))$

Checking the stability, stablep yields
true in the limit case.

(%i8) stablep (fwli);

(%o8) [false ,true ,true ]

Step responses; the period of the
undamped oscillation at the stability
limit according to T = 2π/ω yields a
value of about 6.7.

(%i9) step_response (fwli,xrange=[0,50])$

(%t9) 

List of PT5-elements with two free
parameters a and b

(%i10) fli:makelist (1/(s^5+3*s^4+k*s^3+a*s^2+b*s+1)

    ,k,2,5);

(%o10) [
1

s
5
�3 s

4
�2 s

3
�a s

2
�b s�1

,

1

s
5
�3 s

4
�3 s

3
�a s

2
�b s�1

,
1

s
5
�3 s

4
�4 s

3
�a s

2
�b s�1

,

1

s
5
�3 s

4
�5 s

3
�a s

2
�b s�1

]

Plotting the borders of the stable areas
in the a/b-parameter plane

(%i11) stable_area (fli,a,b,xrange=[0,20],
    yrange=[0,7],ip_grid_in =[20,20])$

(%t11) 
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7.2 Relative Stability

The relative stability can be validated with the phase margin αR or the gain margin AR. The
corresponding angular frequencies are the gain crossover frequency ωD and the phase crossover
frequency ωr respectively.

gain_crossover(F(s)) Calculation of the gain crossover frequencies ωD of
F( jω) for which holds |F( jωD)|= 1

phase_margin(F(s)) Calculation of the phase margin αR of F( jω) in degree

phase_crossover(F(s)) Calculation of the phase crossover frequency ωr of
F( jω) for which holds arg F( jωr) = −π

gain_margin(F(s)) Calculation of the gain margin AR of F( jω)

damping(F(s)) (absolute) damping of F( jω) (negative realpart of the
rightmost pole)

damping_ratio(F(s)) minimum damping ratio of all pole pairs of F( jω)

Relative Stability

gain_crossover yields a list containing the gain crossover frequenciesωD, at which the absolut
value of the frequency response is equal to 1. phase_margin yields the corresponding phase
margins, the differences to −180◦. Which of those values is actually significant for stability, has
to be checked by further considerations (that can be nore than one values on principle).

Gain crossover frequencies ωD; multiple
values are possible (especially at
occurence of resonance).

(%i12) gain_crossover (foli);

(%o12) [[��0.89261 ,��0.93126 ],[��0.89673 ,��

0.92733 ],[��0.90173 ,��0.92252 ]]

Magnitude plots with more then one
gain crossover frequencies

(%i13) magnitude_plot (foli,xrange=[0.8,1.1],
    yrange=[0,1.5],logx=false,logy=false)$

(%t13) 

Phase margins αR in degree, unstable
control loops have a negative value.

(%i14) phase_margin (foli);

(%o14) [[81.347 ,−6.7748 ],[74.56 ,−5.1512 10
−5
],[

64.484 ,10.065 ]]

Phase crossover frequencies ωr , multiple
values are possible.

(%i15) phase_crossover (foli);

(%o15) [[��

	

9−
	

53
	

2
],[��

	

9−
	

53
	

2
],[��

	

9−
	

53
	

2
]]
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Gain margins AR, unstable control loops
have a value less than 1.

(%i16) gain_margin (foli);

(%o16) [[0.90909 ],[1.0 ],[1.1111 ]]

damping calculates the damping σ of a transfer function. That is the negative realpart of the
outmost right pole or pole pair. It indicates the speed of decaying (or stoking up) of a transient
process. The damping ratio D is the relative damping, related to the natural angular frequency
ωn of a pole pair. damping_ratio calculates the minimum damping ratio of all pole pairs of a
transfer function. Stable transfer functions have positive values of σ and D, unstable transfer
functions have negative values

Damping of three transfer functions (%i17) damping (fwli);

(%o17) [−0.0020036 ,0,0.0020153 ]

Damping ratio of three transfer functions (%i18) damping_ratio (fwli);

(%o18) [−0.0021573 ,0.0 ,0.0021766 ]
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8 Optimization

The performance index according to the ISE-criterion can be calculated according to Parseval’s
theorem directly in the Laplace domain:

IISE =

∫ ∞

0

e2(t)dt =
1

2π j

∫ j∞

− j∞
E(s) · E(−s)ds

Herein e(t) is a function tending to zero with increasing time, usually the deviation of the
controlled variable from its stationary value. According to [6] the integral can be calculated
algebraically.

ise(E(s)) Performance index of the function e(t) according to the
ISE-criterion

Integral performance indexes

Differentiation of the integral with respect to the free parameters (e. g. the controller parame-
ters) and setting the results zo zero yield the optimum values of the parameters.

transfer function with two free
parameters a and b

(%i1) f:1/(s**3+a*s**2+b*s+1);

(%o1) 
1

s
3
�a s

2
�b s�1

Calculation of the deviation from the
stationary value at input step function

(%i2) xs:ratsimp ((1-f)/s);

(%o2) 
s
2
�a s�b

s
3
�a s

2
�b s�1

Preformance index according to the
ISE-criterion

(%i3) iise:ise(xs);

(%o3) 
a b

2
−b�a

2

2 a b−2

Differentiation with respect to the
parameters a and b (Calculation of the
Jacobian matrix)

(%i4) abl:ratsimp (jacobian ([iise],[a,b]));

(%o4) 
a
2
b−2 a

2 a
2
b
2
−4 a b�2

a
2
b
2
−2 a b−a

3
�1

2 a
2
b
2
−4 a b�2

Confinement to real solutions of systems
of equations

(%i5) realonly :true;

(%o5) true

Solving the equations with respect to a
and b, the expressions are assumed to be
set to zero.

(%i6) res:solve(abl[1],[a,b]);

(%o6) [[a�1,b�2]]

Substituting the solutions into f yields
the “optimum” transfer function.

(%i7) fopt:ev(f,res);

(%o7) 
1

s
3
�s

2
�2 s�1
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9 Controller Design

gain_optimum(Fs(s),Fr(s)) Calculation of a controller according to the gain
optimum.

Controller Design

gain_optimum calculates the parameters of an optimum controller FR(s) for a given plant F(s).
The strucuture of the controller and the names of its parameters are freely chooseable on prin-
cipal. It depends on the reasonableness of the assumtions for the controller, whether solutions
for the controller paraneters are found actually (e.g. a PT1-controller will presumeably not yield
soutions).

Transfer function of a plant (%i1) fs:2/((1+5*s)*(1+s)**2*(1+0.3*s));

(%o1) 
2

� �

0.3 s�1
� �

s�1
2 � �

5 s�1

List of an I-, PI- and a PID-controller (%i2) [fri,frpi,frpid]:[1/(s*Ti),
kr*(1+1/(s*Tn)),(1+s*Ta)*(1+s*Tb)/(s*Tc)];

(%o2) [
1

Ti s
,kr

� �

� �1

Tn s
�1 ,

� �

Ta s�1
� �

Tb s�1

Tc s
]

Gain optimum for the I-controller (%i3) g1:gain_optimum (fs,fri);

(%o3) [Ti�
146

5
,Ti�0]

Gain optimum for the PI-controller; the
zero of the controller approximately
compensates the dominating pole of the
plant.

(%i4) g2:gain_optimum (fs,frpi);

(%o4) [kr�
206057

349320
,Tn�

206057

40190
]

Gain optimum for the PID-controllerr;
the zeros of the controller approximately
compensate the two dominating poles of
the plant.

(%i5) g3:float(gain_optimum (fs,frpid));

(%o5) [Tc�3.6197 ,Ta�4.9984 ,Tb�1.3966 ]

Substituting the results into the
controllers

(%i6) reli:float(ev([fri,frpi,frpid],[g1,g2,g3]));

(%o6) [
0.034247

s
,0.58988

� �

� �0.19504

s
�1.0 ,

0.27627
� �

1.3966 s�1.0
� �

4.9984 s�1.0

s
]
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The step responses confirm about 5%
overshoot and rise times in the amount
of about 4.7 times the sum of the
remaining time constants.

(%i7) step_response (float(ev(closed_loop (reli*fs),
    res)),yrange=[0,1.5])$

(%t7) 

The plant can also have symbolic
coefficients.

(%i8) fs:2/((1+a*s)*(1+s**2)*(1+b*s));

(%o8) 
2

� �

a s�1
� �

b s�1

� �

s
2
�1

The results are formulas for the
optimum controller parameters.

(%i9) gain_optimum (fs,frpi);

(%o9) [kr�
b
2
�a

2
−1

4 a b
,Tn�

b
3
�a b

2
�

� �

a
2
−1 b�a

3
−a

b
2
�a b�a

2
−1

]
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10 State Space

System: [A, B, C, D] Definition of a linear system as a list of state matrices A,
B, C und D

systemp(A, B, C [, D])
systemp(system) Checks, whether system is a valid system constiting of

state matrices.

nsystemp(A, B, C [, D])
nsystemp(system) Cecks, whether system forms a valid linear system,

wherein all matrix elements evaluate to numbers.

transfer_function(A, B, C [, D])
transfer_function(System) Calculation of the transfer function (or transfer matrix)

from the state matrices

controller_canonical_form(f)
Calculation of the state matrices according to the
controller canonical from the transfer function f

observer_canonical_form(f)Calculation of the state matrices according to the
observer canonical from the transfer function f

controllability_matrix(A, B)
controllability_matrix(System)

Calculation of the controllability matrix

observability_matrix(A, C)
observability_matrix(System)

Calculation of the observability matrix

State space representation

The notion system means a subsumption of the four state matrices A (system matrix), B (input
matrix), C (output matrix) and D (transit matrix) into a list. The transit matrix D can be omitted
for systems without feedthrough, for systems with one input and one output D can be a scalar
value d.

All funcions, which can have a system as the parameter, can also receive the particular state
matrices as parameters (without subsumption into a list).
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Electrical quadripole with state equations:

R L R L

C Cue uauC1 uC2

I1 I2

di1
dt

=
1
L
· (ue − R · i1 − uC1)

di2
dt

=
1
L
· (uC1 − uC2 − R · i2)

duC1

dt
=

1
C
· (i2 − i1)

duC2

dt
=

1
C
· i2

The state matrices A, B and C result directly from the state equations; a direct feedthrough from
the input voltage ue to the output voltage ua does not exist, thus D= 0 and can be omitted.

System matrix A of the circuit (%i1) A:matrix([-R/L,0,-1/L,0],[0,-R/L,1/L,-1/L],

[1/C1,-1/C1,0,0],[0,1/C1,0,0]);

(%o1) 

−
R

L

0

1

C1

0

0

−
R

L

−
1

C1

1

C1

−
1

L

1

L

0

0

0

−
1

L

0

0

Input matrix B of the circuit (%i2) B:matrix([1/L],[0],[0],[0]);

(%o2) 

1

L

0

0

0

Output matrix C of the circuit (%i3) C:matrix([0,0,0,1]);

(%o3) 0 0 0 1

Subsumption of the state matrices into a
system

(%i4) circuit :[A,B,C];

(%o4) [

−
R

L

0

1

C1

0

0

−
R

L

−
1

C1

1

C1

−
1

L

1

L

0

0

0

−
1

L

0

0

,

1

L

0

0

0

, 0 0 0 1 ]

The list of state matrices are forming a
valid System . . .

(%i5) systemp (circuit );

(%o5) true

. . . however, their elements do not
eveluate to numbers.

(%i6) nsystemp (circuit );

(%o6) false

transfer_function calculates the transfer function (or the transfer matrix in multivariable
systems) from the state matrices. That function is “polymorphic” in a certain sense: if the
parameters are not state matrices but a list of linear equations and lists of variables, the transfer
function is calculated from those equations (section 3).
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Calculation of the transfer function;
providing a system, . . .

(%i7) f:transfer_function (circuit );

(%o7) 
1

C1
2
L
2
s
4
�2 C1

2
L R s

3
�C1

2
R
2
s
2
�3 C1 L s

2
�3 C1 R s�1

. . . as well as particular state matrices is
possible.

(%i8) transfer_function (A,B,C);

(%o8) 
1

C1
2
L
2
s
4
�2 C1

2
L R s

3
�C1

2
R
2
s
2
�3 C1 L s

2
�3 C1 R s�1

Direct calculation of an impedance chain
yields the same result expectedly.

(%i9) f:impedance_chain (R+s*L,1/(s*C1),2);

(%o9) 
1

C1
2
L
2
s
4
�2 C1

2
L R s

3
�

� �

C1
2
R
2
�3 C1 L s

2
�3 C1 R s�1

The state matrices can be calculated from the transfer function according to the controller canon-
ical form or the observer canonical form:

Controller canonical form of the state
matrices

(%i10) circ1:controller_canonical_form (f);

(%o10) [

0

0

0

−
1

C1
2
L
2

1

0

0

−
3 R

C1 L
2

0

1

0

−
C1

2
R
2
�3 C1 L

C1
2
L
2

0

0

1

−
2 R

L

,

0

0

0

1

,
1

C1
2
L
2

0 0 0

0]

Observer canonivcal foem of the state
matrices

(%i11) circ2:observer_canonical_form (f);

(%o11) [

0

1

0

0

0

0

1

0

0

0

0

1

−
1

C1
2
L
2

−
3 R

C1 L
2

−
C1

2
R
2
�3 C1 L

C1
2
L
2

−
2 R

L

,

1

C1
2
L
2

0

0

0

, 0 0 0 1 ,0]

Controllability matrix (%i12) h1:ratsimp (controllability_matrix (A,B));

(%o12) 

1

L

0

0

0

−
R

L
2

0

1

C1 L

0

C1 R
2
−L

C1 L
3

1

C1 L
2

−
R

C1 L
2

0

−
C1 R

3
−2 L R

C1 L
4

−
2 R

C1 L
3

C1 R
2
−2 L

C1
2
L
3

1

C1
2
L
2
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Observability matrix (%i13) h2:observability_matrix (circuit );

(%o13) 

0

0

0

1

C1
2
L

0

1

C1

−
R

C1 L

R
2

C1 L
2
−

2

C1
2
L

0

0

1

C1 L

−
R

C1 L
2

1

0

−
1

C1 L

R

C1 L
2

The system is controllable and
observable.

(%i14) [rank(h1),rank(h2)];

(%o14) [4,4]
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11 Various Functions

The package COMA provides several auxiliary functions which are not specific to control engi-
neering, but can be useful in various calculations.

R1 // R2 Parallel connection of two resistors R1 and R2

Z /_ ϕ Polar coordinate representation of a complex number
z = Z∠ϕ (Z „cis“ ϕ)

z cf Postfix-Operator, outputs the complex number z in
polar coordinate representation Z∠ϕ

chop(x) Replaces all numbers in the expression x, which are less
than 10−10, by 0

coefficient_list(p, x) List of the coefficients of the polynomial p in the
variable x

set_option(name=val, list) Setting or adding an element as a key-value pair to list

delete_option(name, list) Deleting of a key-value pair name from list

option_exists(name, list) Checks, whether a key-value pair name exists in list

list_option_exists(name, list)
Checks, whether a key-value pair with the name name
exists in list and its value is a list itself

Various functions

„//“ and „/_“ are two operators common in electrical enigneering: for the parallel connection
of resistors and for complex quantities in polar coordinate representation. The postfix operator
cf outputs a complex quantity in polar coordinates.

Parallel connection of impedances (%i1) R // 1/(s*C) // s*L + R1;

(%o1) 
L R s

C L R s
2
�L s�R

�R1

Polar coordinate represenation of
complex quantities

(%i2) [U1,U2,U3]:[230,230/_240,230/_120];

(%o2) [230 ,−199.19 %i−115.0 ,199.19 %i−115.0 ]

Output of a complex quantity in polar
coordinates

(%i3) U1+U3 cf;

(%o3) 230.0  /_ 60.0

coefficient_list builds a list of the polynomial coefficients in increasing order:

Polynomial in the variable x (%i4) p:5*(x+y)^2+a*x^5;

(%o4) 5
� �

y�x
2
�a x

5
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List containing the polynomial
coefficients

(%i5) coefficient_list (p,x);

(%o5) [5 y
2
,10 y,5,0,0,a]

The function chop removes all numbers from an expression, which are less than 10−10. That is
useful for “ironing out” numeric bugs:

When the numeric fails, . . . (%i6) x3:expand((s^2-1.1*s+1.1)
   *(s^2+1.1*s+1.1)*(s^2+1));

(%o6) s
6
�1.99 s

4
�2.2204 10

−16
s
3
�2.2 s

2
�1.21

. . . erroneously emerging small numbers
can be removed.

(%i7) chop(x3);

(%o7) s
6
�1.99 s

4
�2.2 s

2
�1.21

An associative array (hash), consisting of key-value pairs, is implemented as a list. It is well
suited for saving preferences (“options”) and for named parameters of functions (e. g. graphic
routines).

Some routines facilitate the handling of associative arrays:

List of key-value pairs (%i8) opts:[color=blue,xrange=[0,10]];

(%o8) [color�blue ,xrange�[0,10]]

Replacing a value (%i9) set_option (color=red,opts);

(%o9) [xrange�[0,10],color�red ]

Unless a key exists, a new key-value pair
is generated.

(%i10) set_option (title="Test",opts);

(%o10) [xrange�[0,10],color�red ,title�Test ]

Removing a key-value pair (%i11) delete_option (color,opts);

(%o11) [xrange�[0,10],title�Test ]

Checking, whether a key exists (%i12) option_exists (xrange,opts);

(%o12) true

Reading a hash value (%i13) get_option (title,opts);

(%o13) Test

Returning a default value, unless a key
exists

(%i14) get_option (color,opts,red);

(%o14) red

The function get_option to read out a value would not be not neccessary on principal, for that
purpose the Maxima function assoc is available. Contrary to assoc, get_option accepts also
lists, which not only contain key-value pairs, but also any arbitrary expression (which is used
internally by other by other COMA-functions).
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