
The Ferite Programming Language 1.0

May 2, 2005

Contents

1 Introduction 2
1.1 What is ferite? . 2
1.2 What does this documentation provide? 2
1.3 Why should I choose ferite? . 2

2 Language Reference 3
2.1 Conventions Used . 3
2.2 Scripts . 3
2.3 Comments . 4
2.4 Types . 5

2.4.1 number . 5
2.4.2 string . 6
2.4.3 array . 7
2.4.4 object . 8
2.4.5 void . 9

2.5 Variables . 9
2.6 Expressions . 11

2.6.1 Truth Values . 11
2.7 Operators . 12

2.7.1 Arithmetic Operators . 12
2.7.2 Bitwise Operators . 13
2.7.3 Incremental and Decremental Operators 14
2.7.4 Assignment Operators . 15
2.7.5 Comparison Operators . 16
2.7.6 Logical Operators . 17
2.7.7 Index Operator . 18
2.7.8 Complex Operators . 19

2.8 Statements and Blocks . 20
2.9 Control Structures . 21

2.9.1 If, Then and Else . 21

1

2.9.2 Looping . 23
2.9.3 Manipulating Loops . 24
2.9.4 Exception Handling . 25
2.9.5 Switch . 25

2.10 Functions . 27
2.10.1 Variable Argument Functions . 29
2.10.2 Returning A Value . 30
2.10.3 Function Overloading . 30
2.10.4 One Line Functions . 31
2.10.5 Pass By Reference . 31

2.11 Classes and Objects . 32
2.11.1 What is a constructor? . 34
2.11.2 Inheritance . 34
2.11.3 Static Members . 37
2.11.4 Access Control: Public, Protected, Private, Abstract and Final . . 39
2.11.5 Protocols . 40
2.11.6 Dynamic Objects . 42
2.11.7 Modifying Existing Classes . 43

2.12 Namespaces . 44
2.12.1 Modifying Existing Namespaces . 45

2.13 Closures . 46
2.13.1 Recipients, Deliver and Using . 48

2.14 Uses and Include . 50
2.14.1 Uses . 51
2.14.2 Include . 51

2.15 Conclusion . 51

3 Solving Common Problems With ferite 53

2

1 Introduction

1.1 What is ferite?

ferite is a small robust scripting engine providing straight forward application inte-
gration, with the ability for the API to be extended very easily. The design goals
for ferite are lightweight - small memory and CPU footprint, fast, thread-safe, and
straight forward both for the programmer of the parent application and the programmer
programming ferite scripts to learn the system.

1.2 What does this documentation provide?

This document is the official commentary on ferite, including language information
such as constructs and known issues. An API guide for the standard objects provided
with every ferite distribution and the means in which to embed ferite are provided
separately.

1.3 Why should I choose ferite?

ferite is designed to be added into other applications. Providing a consistent API,
your application will be able to stay binary compatible with the latest ferite engine,
allowing you, the application programmer, to add powerful scripting to your application
without the worry of the internals of ferite.

ferite provides a language very similar to that of C and Java with additional features
from other languages such as: closures from scheme and namespaces from C++. This
means that the skill set acquired through learning existing main-stream languages can
be instantly applied to the creation of ferite scripts. ferite is not a heavy language
and prides itself on being clean and to the point; it is easy to pick up a script written
long ago and instantly understand what is going on, which, unfortunately, can not be
said for some other languages.

ferite provides a framework for creating structured programs: variables must be de-
clared at the beginning of a block, global variables must declared as such, critical vari-
ables and functions within a thread can be clearly defined as thread-safe. ferite has
classes, objects, namespaces, modules, threading and exception handling. The scripts
are more verbose than other languages but ferite makes it easy to write, maintain and
debug.

If you are looking for a scripting engine that is thread-safe, allowing for thread-safe use
within an application, ferite is the way to go. Not only does ferite remain thread-
safe, it also uses the operating systems native threads; you can now have scripts that
run safely across multiple processors.

3

2 Language Reference

2.1 Conventions Used

Within this document there are a number of conventions used to aid the delivery of
examples when discussing various parts of the language.

To write a complete example for each and every part of the language would be both
confusing and over kill. To aid the understanding of examples the following convention
is used: There will be a >> symbol which means that the result of doing what is on
the left hand side is on the right hand side. If you wish to copy the example you must
remove the >> and the text that follows it. E.g.

1 + 2 >> 3

The above example demonstrates that the result of 1 + 2 is 3.

2.2 Scripts

A script file is a plain text file that usually ends in .fe. Each file consists of three main
parts:

• A set of imports using the uses keyword to give you access to extra functionality
(such as printing out text, string or mathematic functions).

• Zero or more function, class and namespace declarations.

• The code to be executed when the script is first run. E.g. If you can have a script
that does some processing on each argument passed to it; you could have a loop
going through each argument within the startup code which calls a function you
have declared in the middle section of a script.

For example:

// The importing of extra functionality
uses "console", "array";

// Declaration of a function. Classes and Namespaces also go here
function processArgument(string argument) {

Console.println("Argument: " + argument);
}

// The startup code
Array.each(argv) using (argument) {

processArgument(argument);
};

4

First thing; do not worry if you do not understand the above code, you will know what
it means at the end of this manual.

The startup code is what is called when the script is run. The startup code is
equivalent to the main method within a C or Java program.

Having just shown you a more involved script, here is the famous Hello World pro-
gram:

uses "console";
Console.println("Hello World from ferite");

The ’uses’ statement is used to import API either from an external module or from
another script. Its use is described in greater depth later on in this manual. You may
be wondering why it takes two lines of code to print out a line of text; ferite does
not have any built in functions - they all have to be pulled in by the programmer. The
result? The only thing used within ferite is what you need.

2.3 Comments

Writing documentation is not fun, but, it can make your and others lives much easier
in the long run. Commenting code is the same boat. You can reduce the amount of
commenting you do through the use of meaningful variable, function and class names,
and writing clear code. However, there are times when it is not obvious what is happening
within a block of code, which is when comments become important.

ferite supports two methods of commenting code: using block comments (/* */) or
single line comments (//). Block comments cause ferite to ignore everything from
the start of the comment ’/*’ to the end of the comment ’*/’. Single line comments
cause ferite to ignore everything from, and including, the comment start ’//’ to the
end of the line. Comments can be used throughout the scripts you are writing.

// This is a single line comment
/*

This is another comment.
But it is for blocks.
And can span multiple lines.

*/

ferite can handle nested block comments. This allows easy commenting out of code
regardless of the comments or code that is within the block. Note that this is different
from the default behavior of some other languages.

/*
/* Print out some information */
Console.println("Today");

*/

5

2.4 Types

A type is a hint from you, the programmer, to ferite on how to look after and deal with
your information. ferite requires you to state the type of each variable or parameter
you declare. This keeps writing code and debugging easier because ferite can stop you
making mistakes - such as trying to add a string to an object. There are a number of
types within the type system which fall into two main categories: simple types (number
and string) and complicated types (array, object and void).

In this section we talk about not only types but some operators and variables which are
discussed later on in the manual. It is suggested that you read this section and come
back to it when you have made more progress with the other sections.

2.4.1 number

This type encapsulates all integer and floating point numbers within the 64bit IEEE
specification and will automatically handle issues regarding overflow and conversion.
In layman terms that means that they can store really big numbers and will convert
between integer numbers (E.g. 1, 2, 14 - numbers without a decimal point) and floating
point numbers (E.g. 3.14, 23.5 - numbers with a decimal point). Once the conversion
has taken place, the number will remain a floating point number.

• All numbers start out as 64bit signed integers. When the value of a number goes
above what can be stored in 64bits, the number will switch over to being a 64bit
floating point number (allowing for much larger numbers; it should be noted that
accuracy can potentially be tainted when this occurs). This is also true if the
value to be stored is a floating point value. The point where the switch occurs is
+-(2ˆ64/2).

• Comparisons can be made between numbers but it should be noted that once a
number has internally become a floating point number, equality comparisons can
potentially give unexpected results. To try and solve this problem, when floating
point numbers are being compared there is a slight amount of tolerance involved
which means that they do not need to be identical but very close in value. The
default tolerance is 0.000001. At the time of writing the default tolerance can
not be changed by the programmer.

number someValue = 10;
number someOtherValue = 1.21;
number newValue = someValue + someOtherValue;

It is possible to use various different notations for numbers within a script. The different
methods allow for different number bases. ferite supports decimal, real, binary, octal
and hexadecimal notation. Most of the examples within this document use either decimal
or real as they are easily recognized. These notations all end up being stored the same

6

internally, however there are times when it is more useful to use either hexadecimal or
binary to define values depending on what data you wish to manipulate. The following
examples demonstrate how to use the binary, octal and hexadecimal notations.

To define a binary number, a set of ’1’ and ’0’ should be prefixed with ’0b’.

number one = 0b1 >> one is the numerical value 1
number four = 0b100 >> four is the numerical value 4
number twentyone = 0b10101 >> twentyone is the numerical value 21

To define an octal number, a set of numbers from ’0’ to ’7’ should be prefixed with
’0’.

number one = 01 >> one is the numerical value 1
number four = 04 >> four is the numerical value 4
number twentyone = 025 >> twentyone is the numerical value 21

To define a hexadecimal number, a set of numbers ’0’ to ’9’, and a set of alpha characters
’a’ to ’f’, should be prefixed with a ’0x’.

number one = 0x1 >> one is the numerical value 1
number four = 0x4 >> four is the numerical value 4
number twentyone = 0x15 >> twentyone is the numerical value 21

Even though they provide different notations, the above should demonstrate how ferite
interprets them to numbers of the same value.

2.4.2 string

Strings are specified using double quote (””) and contain a string of characters. It is
possible to embed variables and expressions within a string to make complex string
construction easier (such as generating XML). To access individual characters within a
string you can use square brackets along with an index or range. There are a number of
control characters that can be used within a string to provide various formatting options
such as a tab or new line character. These control characters are described in the list
below:

• \n – Adds a new line to the string – Non visible character

• \r – On windows this character provides a line feed. –

• \t – Adds a tab character to the string – Non visible character

• \" – ”

• \x?? – Character with the hexadecimal value e.g. \x20 would provide the space
character. The question marks are where the hexadecimal digits go.

7

• \??? – Character with the octal value e.g. \040 would provide the space character.
The question marks are where the octal digits go.

• \b???????? – Output e.g. \b00100000 would provide the space character. The
question marks are where the binary digits go.

• \a – Audible bell – Cause the computer to beep.

• \f – Form feed – Tell the output to create a new page.

You can reference variables or even place small expressions within a strings that get
evaluated at runtime. This allows for the complicated construction of strings to be less
painful and easier to understand. To reference a variable you simply prefix its name with
a dollar symbol ’$’. When the value of the referenced variable is placed in the string,
it is important to note that the string representation for the variable will be used. For
objects the function toString() will be called and the return value used. To place an
expression within a string you can use a dollar symbol followed by a set of curly brackets
’{ }’ with the expression between them. The following code will print out ”Hello World”
and then print out 2. It is important to note that expressions within a string have effect
outside. For instance using ++ on a variable within the braces would cause the variable
to remain incremented after the string is constructed.

string test = "Hello";
Console.println("$test World");
Console.println("${(1 + 1)}");

Strings can also be defined using single quotes (”). These strings differ from the double
quote notation because everything between the single quotes is use verbatim. As a result
control characters are ignored as well as embedded expressions. There is only one control
code that is obeyed and that is \’ which will insert a single quote within the string.

2.4.3 array

An array allows the sequential or random storage of data that can be retrieved at any
point. They can grow as you need them and are able to store any type of data within
them; they are not limited to a specific type meaning that numbers, string, objects and
even arrays can be stored side by side. To access the contents of an array you need to
use a set of square brackets with a reference between them - this is covered by the Index
Operator.

When declared an array variable contains no elements. To add a value it is possible
to use one of the provided Array functions, use an set of empty square brackets or use
the in-line array notation. The second option allows you to pop a value onto the end of
the array very easily and is demonstrated below. The third allows you to create arrays
using a very simple syntax: a comma separated list of values (they can be expressions),
surrounded in a set of square brackets.

8

array a = [1, 2, 3]; // Declare an array ’a’ and initialize it
to have 3 elements
a[] = 4; // Add the value ’4’ to the end of the array
a[] = 5; // Add the value ’5’ to the end of the array

The above code shows how to use an array in a linear fashion. To initialize and access
arrays using names for look-up and retrieval you can use code similar to the following
example.

array a = [’FirstValue’ => 1, ’SecondValue’ => 2]; // Declare ’a’
with two elements

// ’FirstValue’ maps to the
value 1
Console.println(a[’FirstValue’]); // print out ’1’ to the console
a[’ThirdValue’] = 3; // Set ’ThirdValue’ to map to the value 3

When you create the array using the above notations, it is important to note that ferite
will copy the value and add it to the array. It will not reference the variable you pass to
it. The following correct code should demostrate this fact.

void v;
array a = [v];
a[0] = 10;
v = "ten";

It is possible to mix the different types of values you can store in an array, however,
once a value has been set for a spcific index, it must remain that type. For instance the
following is invalid code because the value at 0 is already a number.

array a = [2];
a[0] = "two";

2.4.4 object

Variables of type object either point to an object or they point to null. Null allows you
to see if an object variable points to something. All object variables, when declared, are
initialized to null. To check if an object variable points to null; it is only necessary to
check for equality to null. Pointing to an object is done in two ways: the new operator,
which creates a new instance of a class, or by assigning it the value that another object
points to. Although this is covered later, it is important to note that two different object
variables can point to the same object and that an object variable can point to any
type of allocated object.

object o = null;
object o2 = new SomeObject();
o2 = new SomeOtherObjectType();

9

2.4.5 void

The void type is ferite’s semi-polymorphic type; only semi-polymorphic because once
it has morphed into a specific type it remains that type. What this means in simpler
terms is that the void variable can be seen as a place holder type. Assigning a value
to a variable of type void will cause it to change to that type; for instance, declaring
a variable of type void and assigning a numerical value to it will cause it to become
a number. This allows you to write dynamic code that does not depend on a specific
type. It is important to note that a variable declared at the beginning of a function will
remain a type for the duration that function is running and will be reset when it is next
called. If it is an object’s instance variable, it will remain that type for that object for
the duration of the object’s life time.

It is important to note that the only thing that can not be assigned to a variable of type
void is a function. You can assign namespaces and classes to variables of type void and
then use them as normal. The ability to assign namespaces and classes is very useful
when writing abstraction layers as it allows you to use different concrete implementations
and pass those references into functions.

void v = null;>>v is now an object pointing to null
void v2 = 42; >> v2 is now a number with the value 42
void v3 = SomeNamespace; >> v3 points to SomeNamespace
void v4 = SomeClass; >> v4 points to SomeClass

Question Is there any performance penalty for using void? In other words, could a lazy
programmer just declare all variables as void and let the type system make all of the
decisions, and not pay a price other than maintainability?

Answer There is no performance penality in using void and a lazy programmer can
declare void if wanted. It is strongly recommended that this practice not be followed
because you drop a core feature (declared types) of ferite which is there to make main-
tenance and debugging less of a headache.

2.5 Variables

Variables are containers for values; the sort of value a variable stores is dependent on
its type. Variables come in a number of similar but distinct varieties: local variable
within a function, a parameter into a function, class, object and namespace variables.
Before it is possible to store, or pass information around, it is necessary to declare your
variables.

modifiers type name [= expression] [, name [= expression], ...]

• modifiers

10

There are a number of modifiers that can be applied to variables. This affects how
they are treated within ferite and allow you, the programmer, to specify what
restrictions you wish to put on them. Depending on the context of the variable
declaration you can use zero of more of the keywords:

– final - the value of the variable, once set, can not be changed.

– atomic - all accesses on the variable (getting the value and setting the value)
are atomic, i.e. thread safe, which means that it is unnecessary to create an
explicit lock for it. It is important to note that this does have an execution
time, and space, overhead to the variable and should therefore be used wisely.

There are a few more that will be discussed in the section about classes and names-
paces (they are public, private, protected, abstract and static).

• type

This is the type of variable that you wish to declare. It can be void, number,
string, array or object.

• name

The name of the variable to be declared. The name must start with an alpha
character (a-z, A-Z) or underscore () and after that may contain underscores,
digits ([0-9]) and other alpha characters.

• [= expression]

Variables can be initialized to a custom default value. If the expression is omitted
the default value will be ’0’ for numbers, an empty string for strings, an empty
array for arrays and null for objects.

Please Note!

When a variable is declared within a function you can specify any valid expression
to be used as the variable’s initializer (assuming the types are correct). E.g. a
return from a function, the addition of two previously declared variables.

However, when the variable is declared within a global, class or namespace block,
it is only possible to use a constant e.g. initialize a number with an integer or real
number (e.g. 120 or 1.20 respectively), a string with a double (without expressions)
or single quoted string. It is not possible to initialize an array or object in a global,
class, or namespace block; these will have to be done using some form of initializer
function.

• [, ...]

Rather than having to declare modifiers and type again for a set of variables it is
possible to simply add more names and initializers in a comma separated list. The

11

modifiers apply to all of the variables declared within the list which should reduce
ambiguity when debugging.

number mynumber = 10, another number;
final string str = "Hello World";
object newObj = null;
array myarray = [1, 2, 3];

A variable’s scope is as local as the function in which it is declared. The exception
being global variables which can be accessed from any function. Global variables can be
accessed anywhere within a script and are declared using the following syntax:

global {
...variable declarations...

}

Unless explicitly defined a variable is considered local. There are a number of predefined
global variables within a ferite script, these are argv, null and err. argv is an
array of strings containing the parameters passed into the top level script that first gets
executed. null is used to allow checking of object variables. err is the error object used
for exception handling.

2.6 Expressions

Almost everything written in ferite is an expression as they are the building blocks
of a program. They are combined to build other expressions which are in turned used
in others using operators. Expressions are built up using various operators, variables
and other expressions, e.g. adding of numbers, or creating an instance of a new object.
Expressions are made clearer when discussing operators as these are what are used to
build them.

2.6.1 Truth Values

The crux of program flow are true and false. It is important to know what constitutes
a truth value.

• A number that is not zero is considered as true, this also means that negative
values are also true. It has to be noted that if a number has switched into real
format it is never likely to be considered false. Currently ferite deals with this
by binding false to the range plus/minus 0.00001.

0 >> false
1 >> true
0.0 >> false
0.2 >> true

12

• A string that has zero characters is considered false, otherwise it is true.

"" >> false
"Any Value" >> true

• An array with no elements is false, otherwise is considered true.

[] >> false
[1, 2, 3] >> true

• An object is considered to be false if it does not reference any instantiated object.

null >> false
(new Object()) >> true

• A void variable can not be true and therefore will always be false. For a variable of
type void to become true, it must be instantiated to a truth value of another type.
This side-effect of void variables is useful because it allows you to, knowing that it
is void, use a simple if statement to see whether the variable has been initialized
or not.

void v >> false

There are currently two keywords that can be used ’true’ and ’false’ these are of type
number. For passing explicit truth values around these are the considered the correct
way.

number shouldKeepDoingThings = true;

2.7 Operators

An operator applies a operation to one or more values. ferite provides a set of operators
that allow you to do basic arithmetic, assignment, comparison and a whole load more
operations. This section is broken down into a set of groups; each containing like-wise
operators. Before we delve into what operators exist, it is important to consider some
terminology. A unary operator is one that operates on only one value and usually prefixes
the value that it is applied to. A binary operator operates on two values; these two values
are called the left hand side and right hand side.

2.7.1 Arithmetic Operators

• The addition operator ’+’ allows you to add two variables together. Addition
requires that the left hand side of the operator should be either a number or a
string. If the left hand side is a number, the right hand side can only be a number;
otherwise an exception will be thrown. If the left hand side is a string, the right
hand side can be of any type: ferite will inspect the right hand side and produce

13

a string representation of that value. If the value is an object, ferite will invoke
the toString() method and use its return value as the right hand side.

1 + 2 >> 3
"How many times? " + 10 >> "How many times? 10"

• The subtraction operator ’-’ is mainly used with numbers. Although if the left
hand side is a string, the right hand side must also be a string, every occurrence
of the string on the right hand side, in the left hand side will be removed.

2 - 1 >> 1
"How many times? " - "How " >> "many times? "
"A B C B D" - "B " >> "A C D"

• Multiplication ’*’ only applies to number types. The result is the left hand side
multiplied by the right hand side.

2 * 2 >> 4

• Division ’/’ also only applies to number types. The result is the left hand side
divided by the right hand side. If both sides of the operation are integer based
numbers, the division will be integer otherwise it will be floating point division.

2 / 2 >> 1
2 / 0.5 >> 4

• Modulus ’%’ - Returns the remainder of integer division between two number
variables. If the numbers are in real format they will be implicitly cast into integers
and then the operation will be done.

2 % 2 >> 0
11 % 10 >> 1

2.7.2 Bitwise Operators

Please note that a if a real number is passed to a bitwise operator, it will be implicitly
cast to a integer number and then the operation applied. The examples within this
section show the resulting number in binary format, however, in ferite, printing the
value out to the console will display the result in decimal format.

10&11.1 >> 10&11

• Bitwise AND ’&’ - does a bitwise AND on the two values passed to it. The result
of the operation is the left hand side value bitwise ’and’ed with the right hand
side. In basic terms, this means that for every bit in the right hand side that has
a value of 1, the corresponding bit in the left hand side will be noted, otherwise 0
will be used.

14

0b1010 & 0b1000 >> 0b1000
0b1111 & 0b0000 >> 0b0000

• Bitwise OR ’|’ - does a bitwise OR on the two values passed to it. The result of
the operation is the left hand side bitwise ’or’ed with the right hand side. In basic
terms, this means that for corresponding bits on each side, if either bit is 1, 1 is
used otherwise 0.

0b1010 | 0b1000 >> 0b1010
0b1111 | 0b0000 >> 0b1111

• Bitwise XOR ’ˆ’ - does a bitwise XOR on the two values passed to it. The result
of the operation is the left hand value bitwise ’xor’ed with the right hand side. In
basic terms, this means that for corresponding bits on each side, if either bit is 1,
1 is used otherwise if both bits equal 0 or 1, then 0 is used.

0b1010 ˆ 0b1000 >> 0b0010
0b1111 ˆ 0b0000 >> 0b1111

• Left Shift ” - does a bitwise left shift on the left hand value by the right hand value
number of bits. For each bit shift, it is equivalent to multiplying the left hand
value by 2. All new bits resulting in the shift will be set to 0.

0b0010 2 >> 0b1000
0b1111 2 >> 0b1100

• Right Shift ” - does a bitwise right shift on the left hand value by the right hand
value number of bits. For each bit shift, it is equivalent to dividing the left hand
value by 2. All new bits resulting in the shift will be set to 0.

0b0010 2 >> 0b0000
0b1111 2 >> 0b0011

2.7.3 Incremental and Decremental Operators

Incremental operators allow in-line incrementing and decrementing of numerical values
and should be applied to variables of type number. There are two flavors of both
incrementing and decrementing: pre and post operators. When using the prefix operator,
the variable’s value is incremented and the expression evaluates to the new value. The
postfix operator differs slightly because it will evaluate to the variable’s current value
and increment it afterwards.

• Prefix Increment ’++’

number var = 10; >> variable ’var’ of value 10
10 + (++var) >> 21, var is incremented to 11 and the value is
added to 10

15

• Postfix Increment ’++’

number var = 10; >> variable ’var’ of value 10
10 + (var++) >> 20, var is added to 10, resulting in 20, but
var now has the value 11

• Prefix Decrement ’–’

number var = 10; >> variable ’var’ of value 10
10 + (--var) >> 19, var is decremented to 9 and the value is
added to 10

• Postfix Decrement ’–’

number var = 10; >> variable ’var’ of value 10
10 + (var--) >> 20, var is added to 10, resulting in 20, but
var now has the value 9

The examples hopefully demonstrate the subtle differences of the operators and their
variants. These operators are often used within looping.

2.7.4 Assignment Operators

The basic assignment operator is ’=’. The operator will take the value of the expression
on the right hand side and place that value in the variable on the left hand side.

number a = 10; >> the variable a contains the numerical value 10
string b = "Hello World"; >> the variable b contains the string value
"Hello World"

It is useful to note that an obvject variable can point to any object. This means that
an object variable could point to an object of type Foo, and then point to an object of
type Bar.

class Foo { number idx; }
class Bar { number idx; }

object f = new Foo();
f = new Bar();

There are a number of short hands using assignment: they couple one operator with
assignment. For instance, in the example below, to add-assign you could use the first
expression, however you could use the second shorter and less clunky version.

number a = 10; >> a is initialized to 10
a = a + 100; >> a now contains 110
a += 100; >> a now contains 210

16

You can use the short hand of an operator with any of the arithmetic or bitwise op-
erators, just prefix the assignment operator with the operator you wish to use. For
instance:

b -= "many" >> remove "many" from the string b
c *= 10 >> multiple c by 10
a += 12; >> ’a’ now is equal to a+12
b += " From Ferite"; >> ’b’ now is equal to b+" From Ferite"

A variable of type void can be morphed into a specific type through assignment. In the
example below the variable c is morphed into a number, and variable d morphed into a
string. These variables can not be changed into a different type once morphed.

void c = 42; >> c has been morphed into a number
void d = "Now A String"; >> d has been morphed into a string

2.7.5 Comparison Operators

Comparison operators allow the differences between two values to be checked. ferite
provides a standard set of comparison operators that should be found in all programming
languages. It is important to note that ferite will not throw an exception if different
types are used (such as a string and a number) within a comparison, instead the result
will be set to false. Comparison operators are used for conditional statements and loops
(discussed later).

• Equal To ’==’ - true if both sides are equal, false otherwise.

10 == 11 >> false, 10 does not equal 11
4 == (2 + 2) >> true, 4 does equal 2 + 2

• Not Equal To ’ !=’ - true if both sides are not equal, false otherwise

10 != 11 >> true, 10 does not equal 11
4 != (2 + 2) >> false, 4 does equal 2 + 2

• Less Than ” - true if the left hand side is less than the right, false otherwise.

10 11 >> true, 10 is less then 11
4 (2 + 2) >> false, 4 is equal to 2 + 2

• Less Than Or Equal To ” - true if the left is less than or equal to the right hand
side, false otherwise.

10 11 >> true, 10 is less then 11
4 (2 + 2) >> true, 4 is equal to 2 + 2

• Greater Than ’¿’ - true if the left hand side is greater than the right, false otherwise.

17

10 > 11 >> false, 10 is less then 11
4 > (2 + 2) >> false, 4 is equal to 2 + 2

• Greater Than Or Equal To ’¿=’ - true if the left is greater than or equal to the
right hand side, false otherwise.

10 >= 11 >> false, 10 is less then 11
4 >= (2 + 2) >> true, 4 is equal to 2 + 2

• isa ’isa’ - true if the left hand side expression is of type stated on the right hand
side.

"Hello World" isa string >> true
42 isa string >> false, 42 is a number

• instanceOf ’instanceof’ - true if the left hand side expression is an instance of the
class stated on the right hand side.

Console.stdin instanceof Sys.StdioStream >> true
Console.stdin instanceof Test >> false

2.7.6 Logical Operators

These operators are useful for connecting comparison operators to build bigger expres-
sions.

• Not ’ !’ - true if the expression it is applied to is false.

!(4 > (2+2)) >> true, (4 > (2+2)) evaluates to false, the ! operator
flips this to true.
!(10 > 4) >> false, (10 > 4) evaluates to true, the ! operator
flips this to false.

You can also use the keyword not to represent the operator. This is present in
ferite because sometimes the ’ !’ can get lost in the expression. ’not’ is the same
as ’ !’.

not (4 > (2+2)) >> true
not (10 > 4) >> false

• And ’&&’ - true if both variables/expressions are true.

true && (4 > (2+2)) >> false, (4 > (2+2)) is false, therefore
true && false >> false
true && (10 > 4) >> true, (10 > 4) is true, therefore true &&
true >> true

It is also possible to use the keyword and to represent this operator.

18

true and (4 > (2+2)) >> false
true and (10 > 4) >> true

• Or ’||’ - true if either variable/expression is true.

true || (4 > (2+2)) >> true, (4 > (2+2)) is false, therefore true
|| false >> true
true || (10 > 4) >> true, (10 > 4) is true, therefore true || true
>> true

It is also possible to use the keyword or to represent this operator.

true or (4 > (2+2)) >> true
true or (10 > 4) >> true

It is important to note that to make sure the operators are evaluated in the expected
order it is often necessary to use brackets. The example below demonstrates how an
extra set of brackets changes the order of evaluation.

not (4 > 2) and (4 > 4) >> false
not ((4 > 2) and (4 > 4)) >> true

2.7.7 Index Operator

The index operator provides a mechanism for pulling information out of an array or a
string. There are a number of variations of the operator that are explained below.

• ’[]’ - This works on only the array type. When used in this form, the operator adds
a new void variable onto the end of the array and then provides it ready for use.
The main aim of this variant of the index operator is to provide an easy way of
placing new values onto the end of an array.

array a;
a[] = 1;
a[] = 2;
a[] = 3; >> a being an array with three elements: [1, 2, 3
]

For the record the above example can be re-written as shown in the example below.
This does not make the above example invalid, we just ask you to imagine lots of
code between each line.

array a = [1, 2, 3]

• [expression] - this variant is the main way you can pull either a value or character
out of an array or string respectively. When used with an array, if the expression
evaluates to a number, the operator will evaluate the value at that index. If the
expression is of any other type, the value will be used to create a hash index to get

19

the array value. If the operator is applied to a string, only a numerical expression
can be used; the operator will evaluate to the character at that index.

array a = [1, 2, ’Hello World’ => 3];
a[0] >> the first value within the array, in this example ’1’
a["Hello World"] >> the value pointed to by "Hello World", in
this example ’3’
a[2] >> the third value (created using the 4th line of the example)

It is important to note that counting for an index starts at 0 (for historical reasons),
therefore a value in position 10 will have an index 9.

• [lower bound expression..upper bound expression] (also referred to as the slice op-
erator) - This is a range expression. With strings and arrays it allows you to take
a slice of the variable; in the case of an array, the operator will evaluate to a new
array containing the values described within the range, in the case of a string, a
new string with the described range will be evaluated to.

The range can be ascending - in which case the order in the variable is preserved,
or descending in which case, the slice is made with the contents being reversed.
It is possible to leave out the upper or lower bound expression dictating that the
operator should go to the end or from the beginning respectively. If a negative
number is given, ferite interprets the expression to imply an offset from the end
of the variable’s range.

string s = "Hello";
string t = s[-1..0]; >> a slice of the entire string and reverse
it
string u = s[..2]; >> a slice of the first 3 characters in the
string s
array a = [1, 2, 3];
array b = a[1..]; >> a slice of a containing [2, 3]

2.7.8 Complex Operators

These are not complicated operators. They are actually very friendly and nice opera-
tors. In-fact they are quite simple. Just slightly more complicated than the previous
operators.

I wish to apologize. I am listening to a goon show and couldn’t come up with a better
introduction and I felt it was necessary to write something rather than leave it blank.
Besides, it is not often you get something silly about something nice and important
;)

• Instantiate an object ’new’ - this operator takes a class name and a set of values
and will create a new object based upon that class. It will call the constructor of

20

that class and then return the object.

new SomeClass(10) >> a new object from SomeClass

It should be noted that multiple object variables can point to the same object
created using the new keyword. This is discussed later on within Objects and
Classes section .

object newObject = new SomeClass("aString", 10);
object anoObject = newObject; >> both variables point to the
same object

• Evaluate a string ’eval’ - The eval operator allows you to on the fly compile and
execute a script and get a return value. They say a picture is worth a thousand
words, so here is an example of eval. If the string supplied to the operator is
invalid, an exception will be thrown.

eval("Console.println(\"Hello World\");");

The above example is the same as running the following script:

Console.println("Hello World");

To return a value, you just use the return keyword (mentioned within the function
documentation in the next section). The code below will return ’42’, which will in
turn be assigned to the variable value.

number value = eval("return 42;");

This is of course a very simple example and does not show what a useful operator
it is, but it does allow you to, at runtime, modify the behavior of code. It should
also be noted that there are potential security risks involved with this operator
and it should be considered carefully; it is advised that you never eval a string
that is from an unknown source.

Later on in this manual, the operator include is discussed. This operator is similar
to eval except it will evaluate a file.

2.8 Statements and Blocks

Statements are basically a collection of expressions followed by a ’;’.

x = 1 + 2;
x++;

A block is a set of statements sat between two braces ’{}’. It is possible to declare new
variables but they must be declared at the beginning of a block.

{
number x = 10;

21

x = x + 2;
x++;

}

Sometimes it is useful to isolate variables to a specific block in a large chunk of code. To
make writing code easier, ferite allows you to nest blocks allowing you to, if required,
reduce the number of variable declarations at the beginning of functions and/or re-use
variable names. The example below shows this in action.

{
number x = 10;
{

string str = "Some Value";
}

}

Even though it is possible to re-use variable names within blocks it is not recommended
as it can introduce ambiguity. However, ferite will correctly use the most locally
declared variable.

{
number x = 10; // 1st x
x = 20; // 1st x
{

number x = 20; // 2nd x
x = 30; // 2nd x

}
x = 40; // 1st x

}

2.9 Control Structures

ferite contains methods for changing the program flow, these are formally called con-
trol structures. The control structures can be nested as deeply as you need, however,
we strongly urge you to not nest them too deeply as it can cause confusion and ambi-
guity.

2.9.1 If, Then and Else

This allows for the conditional execution of ferite scripts based upon the result of a
test in the form of an expression. There are two types you can employ: one that will
execute code if test is true, the other will do the same as the first but also execute a
different bit of code if the test is false.

22

if (expression) {
statements if the expression is true

}

if (expression) {
statements if the expression is true

} else {
statements if the expression is false

}

It is not necessary to place braces around the statement block if it is only one state-
ment.

if (a < 10)
a = a + 2;

The truth value of the expression is determined when the control structure is executed
based upon the definition of the truth values in the truth values .

if (a < b)
Console.println("A is less than B");

if (b > c) {
Console.println("B is greater than C");
Console.println("This could be fun.");

} else {
Console.println("It’s all good.");

}

There is the age old problem of the dangling else problem. With ferite the else binds
to the closest if statement within the same block. For instance:

if (foo) if (bar) Console.println("one"); else Console.println("two");

Is equivalent to:

if (foo) {
if (bar) {

Console.println("one");
} else {

Console.println("two");
}

}

23

2.9.2 Looping

You can not do very much without the ability to loop over data. Each time the block
of a loop is executed it is called an iteration. There are several forms of iterating over
data in ferite: while, for and do..while loop.

while Loop

The first type of loop ferite supports is the while loop; this allows you to keep looping
until the expression, used as the test, evaluates to false. Each time the loop executes,
the test is evaluated and if it is true, the body of the while will run.

while (expression) {
statements if the expression is true

}

while (expression)
single statement if the expression is true

The following code will keep looping until n is equal to 10. On each loop the code will
print out the current value of n from 0 to 9 on a new line and then increment the value
of n by 1.

number n = 0;
while (n < 10) {

Console.println("$n");
n++;

}

for Loop

All of ferite’s looping constructs can be modeled using the while loop, however, it is
often useful to use the for loop.

for (initiator; test; post-block) {
statements if the expression is true

}

for (initiator; test; post-block)
single statement if the expression is true

The initiator expression is executed unconditionally at the beginning of the loop. This
is useful, as an example, for setting the initial value of a loop variable. The test is used
in the same fashion as a while loop; if it evaluates to true the looping continues, if it
evaluates to false the loop will terminate. The main difference to the while loop is the
ability to execute a statement at the end of each iteration - often used to increment a
variable.

24

If the test is empty it will automatically evaluate to true, causing the loop to continue
until break is used.

number i = 0;
for (i = 0; i < 10; i++)

Console.println("variable i currently equals " + i); // print
out the value of i

It is possible to declare a loop variable within the first section of a for loop declaration.
This allows you to use loop only variables, knowing that there will be no impact on the
surrounding code. This is commonly done when using for loops. The above example,
re-written to take advantage of the feature looks like this:

for (number i = 0; i < 10; i++)
Console.println("variable i currently equals " + i); // print

out the value of i

do .. while Loop

The do .. while loop is a variation of the while loop, the one difference being that it
guarantees at least one execution of its body. It will only then complete looping until
the expression evaluates to false.

do {
statements if the expression is true

} while (expression)

do
single statement if the expression is true

while (expression)

2.9.3 Manipulating Loops

Break

break will end the current for, while, do .. while, or switch loop it is executed in. It
allows you to easily escape the current loop if you wish to.

Continue

continue will cause execution flow to jump to the end of the block of the currentfor,
while, do .. while, or switch loop it is executed in. continure is useful to move onto the
next iteration before the current one has finished.

25

2.9.4 Exception Handling

This control structure provides the exception handling within ferite. There are three
main components to this structure: the code to execute that may throw an exception,
the code to execute if an exception is thrown and an optional block to execute if an
exception is not thrown.

iferr {
statements

} fix {
statements to clean up in case of an exception

} else {
statements if no exception has occurred

}

It is possible to nest iferr-fix-else blocks. When an exception does occur a global
variable called err is instantiated and given information relating to the thrown exception.
The object has two attributes, a string ’str’ and number ’num’ - these provide information
on the error that occurred. Exceptions are propagated up through the system until
a handler is found; if no iferr-fix-else block catches the exception, ferite will cease
execution of the script.

2.9.5 Switch

This allows you to write blocks of code that are only executed when an expression
evaluates to a certain value. This is roughly equivalent to doing a number of successive
if blocks, but it is cleaner, tidier and easier to understand.

switch (expression) {
case expression:

... code ...
... more case blocks ...

default:
... code ...

}

When the switch statement is executed, the expression at the top is evaluated and its
value stored for comparison. A case expression is evaluated to see if it equals the value
previously stored for comparison. If it does, the cases block is executed until the end of
the switch statement (including other case blocks). To restrict the flow of execution to
that of the matching case block, the break is used. ’break’ will cause the execution to
jump to the end of the switch statement. If you use continue, the first expression will
be re-evaluated, effectively causing the switch statement to start again.

26

It is possible to define a catch-all case block using the default identifier. If no case
blocks match the switch expression, this case block will be executed.

switch(input) {
case 0:
Console.println("case 0");

case 1:
Console.println("case 1");
break;

case 2:
input++;
Console.println("case 2");
continue;

case "3":
Console.println("case 3");
break;

default:
Console.println("default");

}

When the variable input is equal to 0, the following will be printed out to the console.
The first two case blocks are executed because there is no break at the end of the first
case block.

case 0
case 1

When input = 1, the following will be output-ed to the console. The break at the end
of the second case block causes execution of the switch statement to finish.

case 1

When input = 2, the following will be output-ed to the console. The third case block
increments the value of input and causes the execution of the switch statement to be
restarted. The value of input increases to the numerical value of 3; as there is no case
block that can catch that value the default case block is executed. At first it may seem
that the fourth case block may be used, but its expression is the string representation
of 3.

case 2
default

When input = ”3”, the following will be output-ed to the console. Once again, the break
causes the switch statement to finish.

case 3

When input is anything else:

27

default

It is very important to note that you can use any valid expression as the case expression.
It can even have different types than the first switch expression (there won’t be any
exceptions thrown). This makes switch a very powerful construct. You do not need to
supply a default block if you do not wish to have one.

2.10 Functions

Blocks of statements have been discussed before and functions are just a block of code
with a name attached to it. Using this name you can re-use the block of code, creating
a library of functions to solve common tasks.

A function consists of a name, a parameter list declaration and a block of code - but
before delving into the creating of functions, it is important to look at how to call a
function.

x = add numbers(1, 2);

To call a function, you use its name and pass it a set of values. The above example shows
a function call to a function named add numbers; it is passed two values: the number
1 and the number 2. Any value can be passed to a function and is often the result of
evaluating an expression; ferite will throw an exception if the types mismatch those of
the function being called. All functions may return a value and, in the above example,
it is assigned to some variable x. You can ignore the return value from a function call if
you so wish, ferite will automatically handle the return and discard it as needed.

As mentioned before, a function consists of a name, a parameter list and a block of code.
It looks like the example below.

function function name(parameter declarations){
block of code

}

• function name - This is the name of the function and must obey the same rules
for naming as the rules for naming variables . It is recommended that the name
should reflect the purpose of the function, e.g. open, close, add; rather than how
the function works.

• parameter declarations - This is a comma separated list of variables. For each vari-
able it is only necessary to supply the type of a variable and its name. Sometimes
it is necessary to pass a variable by reference; ferite allows this to happen by
allowing the name of the variable to be prefixed with a ’&’. Passing variables by
reference is covered later in passing variables by reference .

• block of code - To what a block consists of you should see the section statements
.

28

/*
This function will add the string "foo" onto the end of the string

it has been
given and then return it.

*/
function foo(string bar) {

bar += "foo";
return bar;

}

It is important to note that ferite falls into the category of call-by-value languages. This
means that when a function is called, ferite takes each value passed to the function,
copies it and assigns it to the variable for that parameter. This means that variables
passed into a function call will not be modified by that function call and will remain the
same afterwards. This is the same for all types, including arrays, strings and objects.
There is a slight oddity with objects: whereas with strings and arrays, you get a complete
copy of the original value, with an object variable you get a copy of the reference to the
object it points to. Therefore making a function call, or changing a variable, on an
object reference (even though it is copied) will change that object and that change will
be seen after the function call; this is because the reference to the object and not the
object itself that has been copied.

The following example demonstrates this effect with arrays and objects. (It is as-
sumed that StringObject used within the example holds a string that can be set us-
ing setString() and obtained by calling stringValue() and using the return value.
For more information about classes and objects please read the section Classes and
Objects

function test(array a, object b) {
a[] = "Add Item On The End"; // Add an item to the end of the

array
b.setString("Set A String In Test");

}

array a = [1, 2, 3, 4];
object b = new StringObject("Hello World");
Console.println("Before call to test: ${a}, ${b.stringValue()}"
);
test(a);
Console.println("After call to test: ${a}, ${b.stringValue()}"
);

The output of the above program is shown below. Note how the array has remained the
same but the object has been changed.

Before call to test: [1, 2, 3, 4], Hello World

29

After call to test: [1, 2, 3, 4], Set A String In Test

Functions provide an easy way of grouping statements together to perform a task and
are the corner stone of any nutritious ferite script.

2.10.1 Variable Argument Functions

Sometimes it is hard to know how many values you wish to pass into a function; to aid
you, ferite provides an easy mechanism to write functions that depend on an unknown
set of values. When executed it is possible for the function to get a list of the arguments
by invoking the arguments() strong. This returns an array containing the values passed
into the function, with the last value being the name of the function being called.

Although arguments() is often used in a variable argument setting, it is possible to use
it within any function.

Declaring a function with variable arguments is the same as declaring a normal function,
except the last item in a parameter list is This tells ferite that the function can
accept more values including and beyond that point within the parameter list. The fol-
lowing program listing shows how to declare and use variable argument functions.

uses "array", "console";

function test(string fmt, ...){
number i = 0;
array fncArgs = arguments();

Console.println("test() called with ${ Array.size(fncArgs) } args"
);

Console.println(fmt);

for(i = 0; i < Array.size(fncArgs); i++){
Console.println("Arg[$i]: ${ fncArgs[i] }");

}
}

test("nice");
test("nice", "two", "pretty");

This is an important concept as it is used elsewhere in ferite to provide a clean method
of dynamic programming when used with dynamic programming with objects
.

30

2.10.2 Returning A Value

If there is not an explicit return statement then the function will return nothing in the
form of a void variable. To return a value from a function, it is as simple as using the
return keyword.return takes an expression and returns the result of its evaluation to
the caller of the function. Just as values are passed in by copying them to the parameter
variables, the return value from a function is also copied to the function calling it.

return someValue * 10;
return 0;
return "Hello World";

The default return from a function is a void variable. The two functions below will
return exactly the same value to the caller. ferite has a default return value to remove
the necessity of requiring the programmer to always supply one.

function foo() {
void x;
return x;

}
function bar() {

}

2.10.3 Function Overloading

There are times when you wish to have the same operation applied to different data types,
for example, a print method where you wish to handle various different types and/or
number of arguments. ferite provides a function overloading mechanism which allows
you to write a set of functions all with the same name but with different parameters.
When the program is run ferite will automatically choose the best function for the job
based upon the types being passed into the function.

uses "console";

function print(number n){
Console.println("Number: $n");

}

function print(string s){
Console.println("String: $s");

}

print(10);
print("Hello World");

31

The above code declares two functions with the name print. If the script is run the
following output would occur.

Number: 10
String: Hello World

2.10.4 One Line Functions

Some functions return the result of a single expression, or call a different function. Using
braces is somewhat over kill and can cause clutter within the code. ferite allows you
to use one line functions; these are best explained through the use of an example.

uses "console";

function printNumber(number n)
Console.println("Number: $n");

function printString(string s)
Console.println("String: $s");

printNumber(10);
printString("Hello World");

2.10.5 Pass By Reference

Earlier in this section on functions, it was mentioned that ferite passes parameters in
by value. This is fine for small strings and arrays, but there are times when you do not
want the overhead of copying a large array or large string from one function to another.
Or you would like a function to return more than one value. To make life easier ferite
allows you to pass a variable in by reference; this means that when you change the value
of a parameter, the value of the variable in the calling function is modified - there is no
copying.

This feature is enabled through the use of a ’&’ before the name of the parameter. The
following example should help demonstrate what happens and how it differs from the
normal behavior of ferite. In the example, the function test has two parameters: a
number ’b’ which is marked as pass-by-reference and a string str which will maintain
normal behavior.

uses "console";

function test(number &b, string str){
b = 2;
str += "From Foo";

32

}

number a = 1;
string str = "bar";

Console.println("This should be 1: $a, should be ’bar’: $str"
);
test(a, str);
Console.println("This should be 2: $a, should be ’bar’: $str"
);

The result of running the program, is the number ’a’ passed into ’test’ is passed by
reference which means that rather than the value being passed the variable is passed
into test. When test changes the value of the parameter to be ’2’, the variable ’a’ is
changed. Even though test changes the value of the string parameter, it is only changing
the value of the copy. The output of this code running is shown below.

This should be 1: 1, should be ’bar’: bar
This should be 2: 2, should be ’bar’: bar

This can be a very useful tool for speeding up programs or returning multiple values; it is
recommended that it is used sparingly because it can potentially cause confusion.

2.11 Classes and Objects

Object oriented programming (OOP) is a proven methodology for implementing large
complicated systems. The core idea behind object orientation is the grouping of likewise
data and methods into special containers called objects. Each object provides a specific
purpose, for instance: you could have an ’Employee’ object that stores data about an
employee, such as name, age and salary and has a set of functions that do things with
the data within the object, such as increasing the salary or incrementing the age of the
employee. OOP allows you to think of a programs structure as you do the real world
and therefore plays a critical role within ferite.

Objects within ferite have already been mentioned before, however, this section covers
them in great depth: such as creating classes (the templates that objects are created
from), instantiating objects and how to use ferite to implement a clean object base
architecture. Before we can talk about objects, we must discuss classes. A class is a
description of a structure; it describes how an object is put together: what information
it can hold and what functions can be called on that data. Every single object within
ferite is an instance of a class; the following code shows what a class looks like.

class ExampleClass {
string stringValue;

33

function constructor(string str){
self.stringValue = str;

}

function printString(){
Console.println(self.stringValue);

}
}

The above code snippet declares a class called ExampleClass. The class declares
the variable stringValue and two functions, a constructor constructor and normal
function printString. When an object is created from a class definition it said to have
been ’instantiated’ from that class; we say that the object is an instance. It is possible,
and often the case, that each class will have more than one instance within a program.
When an object is instantiated, ferite takes the description provided by the class,
creates the variables within that object and then calls the constructor. constructors are
covered in constructors section .

To create an instance of a class the new keyword is used; it takes the name of the class,
the values to be passed onto the class’s constructor and will return an object. The code
below shows how to create a new object and then call the function printString on
it.

object someObj = new ExampleClass("Hello World");
someObj.printString(); // will output Hello World

What good is an object if you can not do anything with it? To access the variables,
or call a function, in an object requires two things to be known: what you want to
access/call and which object to use. Using the above example, we call the function
printString() on the object someObj; the trick is with the ’.’, it tells ferite to apply
the function call on the right hand side to the object on the left hand side.

To reference variables and functions from within an object’s function, it is necessary
to prefix the variable with self. or simply a .. Just as in the above example, we use
someObj on the outside of the object, on the inside - the class description - we use
self to refer to the object we are in. This can be seen in use in the definition of the
class ExampleClass; in the function printString we use the self variable to access the
string contained in the object.

Lots of objects can cause a lot of headaches, especially when you have to make sure to
clean them up when finished. ferite comes to the rescue with a garbage collector; a
behind the scenes helper that deletes objects from memory when they are no longer in
use. An object is considered in use when there is at least one variable of type object
pointing to it. When the number of variables referencing an object drops to 0, the object
will be deleted because it is no longer reachable from the program. ferite’s garbage
collector is designed to deal with large and small programs and should have minimal

34

performance impact on the execution of a program. There are no guarantees as to when
an object will be deleted.

2.11.1 What is a constructor?

A constructor is a special function that is called, if it exists, when a object is instantiated
from a class. It provides a mechanism for setting up the default values for an object
when it is created. Like normal functions, a constructor may have a parameter list and
obtains the value through the new keyword. An example constructor can be seen in
the body of ExampleClass. This constructor assigns the value of the parameter to the
string contained in the object. All constructors are called constructor.

2.11.2 Inheritance

One of the best pieces of advice when developing a program is to re-use code. Inheritance
provides a clean mechanism of re-using the functionality in your classes. As an example,
let’s say that a program needs to deal with vehicle information. You want to store
information about different vehicles and for simplicity we shall say that there are three
types: motor bikes, cars and trains. There is a common set of details that can be stored
about them: the size of engine, make, model, top speed, number of wheels. We have to
create a new class, for each vehicle type, that deals with all the pieces of information;
this can introduce bugs, inconsistencies and make life complicated. Inheritance to the
rescue! To solve this problem, we create a class that contains all the information that
can be shared. We then create a set of classes that inherit from our class; each new class
contains the vehicle specific information. The example below shows how to implement
the solution within ferite.

class Vehicle {
string make;
string model;
number engineSize;
number topSpeed;
number wheelCount;

}

class MotorBike extends Vehicle {
number handleBarType;

}

class Car extends Vehicle {
number doorCount;

}

35

class Train extends Vehicle {
number carriageCount;

}

To extend a class, the extends keyword is used; it tells ferite to note that this class
inherits the variables and methods from the class named on the right of the keyword. In
the example above, a class Motor Bike inherits from the class Vehicle. When an an
instance of Motor Bike has been created; it is possible to set the value of each variable
named in both Motor Bike and Vehicle. The code below demonstrates how it is possible
to use the variables.

object bike = new MotorBike();
bike.handleBarType = 1; // From ’MotorBike’
bike.make = "Honda"; // From ’Vehicle’
bike.model = "Fireblade"; // From ’Vehicle’

ferite only supports single inheritance; a class may inherit from a maximum of one
other class. This distinction is being made because some languages support multiple
inheritance. If we have two classes, A and B, and B inherits from A, we call A the
’super’ class, and B the ’sub’ class.

There are a few important points that should be noted about inheritance:

• It is possible to create a function in a subclass with the same name as a function
in the super class. This allows you to create custom functionality and change the
way the super class’s implementation may work.

class A {
function someFunction() {

Console.println("someFunction in A");
}

}

class B extends A {
function someFunction() {

Console.println("someFunction in B");
}

}

If an object of type A is created and someFunction called, the output will be:

someFunction in A

However, as we have changed the someFunction in B, the output for an object
from B will be:

someFunction in B

36

• When we inherit values or functions from a super class we sometimes want to
access them as if we are an object of that super class; ferite allows you to prefix
items with the keyword super. This is similar to self except that the object is
seen as an instance of its super class. E.g. super.someFunction() will call the
function someFunction as if it was coming from an object created from the parent
class.

class B extends A {
function someFunction() {

super.someFunction(); // Call the someFunction in A
Console.println("someFunction in B");

}
}

The result in making the above addition to someFunction in B, will cause the
following output, if someFunction called.

someFunction in A
someFunction in B

• As mentioned before, it is possible for ferite to invoke a constructor on an ob-
ject when it is created. It is important that if the class the object is being in-
stantiated from inherits from another class, there is a call to the super class’s
constructor - it is not done automatically. This can either be done by doing su-
per.NameOfconstructor() or super().

class B extends A {
function constructor() {

super(); // Let the super class initialize the object
}

}

• You do not need to re-implement each function within a class. If a function is called
on an object, and the subclass does not have an implementation for it, ferite will
go up the tree of inheritance until it can find one.

class A {
function someFunction() {

Console.println("someFunction in A");
}

}

class B extends A {
}

object o = new B();
o.someFunction(); // Will use the implementation in class A

37

The output to the above example will be:

someFunction in A

• You can inherit from a class as many times as you like and you can inherit from
classes that inherit from other classes.

class A {
}

class B extends A {
}

class C extends B {
}

class D extends B {
}

class E extends D {
}

• It is possible to call the constructor of the parent class by using the special function
super().

class A {
function constructor() {

Console.println("A");
}

}

class B extends A {
function constructor() {

super(); // Call the constructor in A
Console.println("B");

}
}

2.11.3 Static Members

When ferite creates an object from a class, all the variables and functions are added
to the object; however, it is potentially useful to tie variables or functions to a class. An
example of this need is generating a unique id for each object that has been created: the
current id is stored in the class and a function to get the next id. To tell ferite that
you want this behavior, it is necessary to use the static modifier. When ferite sees

38

the keyword it notes that the function or variable it is used with must remain within
the class and not appear in any instances.

The code below shows how to solve the unique id problem mentioned above.

class SpecialClass {
// The class only items

static number currentID;

static function getNextUniqueID() {
// self refers to the class
self.currentID++;
return self.currentID;

}

// The object only items

number myID;

function constructor() {
// self refers to the object that has been created
self.myID = SpecialClass.getNextUniqueID();

}
}

There are a number of important things to note about the use of static items: the
keyword static prefixes the items to be made static; to reference a static member of a
class you must first use the class name and then the member you want - even if you are
making the reference from within an object from that class. If you do try and access a
static member within an object through self, ferite will throw an exception.

There is another trick that can be used with classes: static constructors. These allow
you to run initialization code on a class once ferite has finished compiling it. The code
will run during compilation not execution. Static constructors are the same as normal
constructors with a few differences: there is no guaranteed order of execution (class A
may be called before class B but it is not guaranteed), they must have no parameters
and they have the static keyword prefix. An example of how to write a static constructor
is below.

class A {
static function constructor() {

Console.println("Boot Strapping Class A");
}

}

39

2.11.4 Access Control: Public, Protected, Private, Abstract and Final

Programmers are notoriously good at creating bugs, it is, therefore, sometimes necessary
to lay down some rules on how classes and objects should be used. ferite has a
set of access controls that allow you, the programmer, to specify how functions and
variables can be accessed from outside or inside an object. Why would you want to add
restrictions? Sometimes it is important to hide the mechanisms within an object or class
and add a well specified interface; if you change the way things work in the background,
impact on existing code should be minimal. The variables within an object are that
object’s data and it should be up to the object to change the values, not an external
entity fishing about. If some other piece of code changed a variable without the object’s
consent, all manner of mayhem could occur.

What restrictions can be specified? Public, Protected, Private, Abstract and Final.

• public: a public variable or function that may be accessed from any part of a
program; there are no restrictions. By default everything is made public.

class A {
public number objectID;

}

• private: when applied to a function or variable, it will only be accessible from
that object or class. private will hide the variable or function from any subclasses
that may exist.

class A {
private string mutableBuffer;

}

• protected: protected sits between private and public; a protected variable or
function may only be accessed from within an object it is part of, however, unlike
private, a protected item can be accessed from any subclass.

class A {
protected number databaseRefID;

}

• final: Sometimes it is necessary to make sure that a variable can not be changed.
final does a couple of things. With a variable, final tells ferite that, once a value
has been assigned to it, the variable must not be modified. This is a great way of
setting up constants within a program. If a program attempts to assign a new value
to a final variable an exception will be thrown. When used with a class, final will
make sure that another class can not inherit from it. This is useful feature allowing
you, as the programmer, to dictate whether or not you want people changing the
behavior of your class.

40

class A {
static final number maxObjectCount = 1024;

}

• abstract: this can only be applied to classes. An abstract class can not be instan-
tiated; a programmer may only inherit from an abstract class. This is useful when
enforcing a factory-methods style of programming. There is the top level abstract
class which all concrete implementations inherit from; functionality is driven using
the abstract class. E.g. an abstract protocol class with concrete implementations
for HTTP, ftp and HTTPS.

abstract class Protocol {
function sendRequest(string req) { ... };
function receiveRequest() { ... };

}

class HTTP extends Protocol {
...

}

2.11.5 Protocols

Protocols are your friend and solve the problem of multiple inheritance. What are they
for? Sometimes it is necessary to have an agreed upon protocol between a collection
of objects. For example, if there is an event engine that you wish to register an object
with, it is important that two properties are true: the event engine can quickly and easily
check to see if the object responds to the function calls the event engine expects, and
that a programmer can easily craft an object that contains the correct functions.

Protocols allow, in our example, the event engine developer to define the interface that
it expects all registered objects to respond to. The definition contains a set of functions
without implementation and, using this protocol, developing a client to the event engine,
programmers can specify that the class they are developing should conform to the proto-
col. When ferite finishes compiling a class it first executes, if it exists, the class’s static
constructor and then checks to see if the class implements all the functions described in
the protocol list. If the class fails to conform to any of the protocols, compilation will
halt with a compile error.

protocol EventHandler {
function respondsToEvent(string event);
function handleEvent(string event, array data);

}

This is a protocol definition. It defines a protocol called EventHandler with two
functions. A class that implements this protocol must have two functions with the same

41

names and signatures as these two functions. Protocols look very similar to classes in
their structure.

class EventEngine {
function registerEventHandler(object eventh) {

if(eventh.getClass().conformsToProtocol(EventHandler)
) {

// register the event
return true;

}
return false;

}
}

This code shows how to test if an object conforms to a protocol. The getClass()
function returns the class that the object is instantiated from. conformsToProtocol
is a function that all classes respond to; it takes one parameter and that is the name
of the protocol to check for. It returns true if the class supports the protocol and false
otherwise. If true, it is safe to call the functions described within the protocol.

class KeystrokeEvent implements EventHandler {
function respondsToEvent(string event) {

return true;
}
function handleEvent(string event, array data) {

...
}

}

This class shows how to tell ferite that a class should conform to a protocol. The
important part of the above example is the implements EventHandler; it tells ferite
that the class should ’implement’ the protocol ’EventHandler’. It is possible for a class
to conform to more that one protocol at a time; instead of a single protocol name, you
use a comma separated list.

class Keystroke implements EventHandler, LogClient {
...

}

It is important to note that if you are using protocols, the extends clause must come
before the implements clause.

class SomeClass extends AnotherClass implements SomeProtocol {
...

}

42

2.11.6 Dynamic Objects

Sometimes you do not know what you will have to deal with at runtime as information
and structure can change. ferite provides mechanisms to catch missing variables and
functions within objects. The mechanism makes building dynamic systems easier; for
instance, a generic database table object does not know what fields may exist. To keep
usage consistent with the way values are obtained from an object, the table object can
implement attribute missing. When ferite can not locate a variable within an object,
the runtime will call, if it exists, the attribute missing function. It passes a string to
the function which contains the name of the required variable. In the case of the table
object, the attribute missing function loads the value from the database and returns
it.

class DatabaseTable {
function attribute missing(string variable) {

void v = load value from db(”sometable”, variable);
return v;

}
}

The mechanism for missing functions is method missing. When ferite calls this
function it provides all the original parameters as well as the name of the function as
the last parameter. To get the parameters it is possible to use the variable arguments
mechanism. This functionality is used extensively within ferite’s rmi module.

class RemoteSystem {
function method missing(...)
{

number i = 0;
array args = arguments();

Console.println("Function called: " + args[Array.size(args)-1]
);

Console.println("With arguments:\n");
for(i = 0; i < Array.size(args)-1; i++)

Console.println("\tArgument ${(i+1)} = ’" +
args[i] +
"’ (${Reflection.type(args[i])})");

Console.println("");
}

}

The above code prints out the name of the function and then prints out each argument
and the argument’s type.

43

2.11.7 Modifying Existing Classes

ferite has a number of features that allow you to modify existing classes. Why is this
useful? Well, say you have a class that is used all over the place, let’s say File, and
you wish to debug a method, or re-implement a method to work around a bug, or even
just add a method. It transparently allows you to shape an existing class to be how you
want it to be.

To do this you use a few keywords: modifies, alias and rename. Here is an example:

class modifies File {

rename readln oldReadln;
rename open oldOpen;

function readln(){
return self.oldReadln(1024);

}

function open(string file, string mode){
Console.println("Opening file $file");
self.oldOpen(file, mode, "");

}

function toString(){
string str = "";

while(!self.eof())
str += self.readln();

return str;
}

function newName() {
...

}
alias oldName newName;

}

To modify a class you use the syntax ’class modifies nameOfClass’, this will tell ferite
that the target for modification is ’nameOfClass’; the class must exist otherwise you will
get a compile error. Once this is done you can add new methods and variables, and
manipulate the existing ones.

rename - this takes two labels, the current name and the new name and renames it. The
advantage of this approach is that you can drop in a replacement method and still call

44

the old method within your new method. The above example re-implements the readln
method within the File class such that it does not require the passing of a number of
bytes to read.

alias - this allows you to create a pointer to a function using a different name. This is use-
ful when an API gets renamed to keep existing code functioning whilst it is moved over.
In the above example the name oldName is aliased to the function newName.

The above example also adds a new toString() which will return the file’s contents in
a string.

WARNING: you can potentially cause a lot of confusion using this mechanism, but it
is very useful for debugging and various other uses. You can modify any class within
a program. This mechanism can not be applied to a class with a final modifier - it
attempted, ferite will halt the compliation.

2.12 Namespaces

Namespaces are defined in the following manner:

namespace name of namespace {
variable, namespace, class, and function declarations

}

Namespaces are a means of grouping likewise data and functions into a box to reduce the
potential for name conflicts. Functions, Variables, Classes and even other namespaces
can be defined within a namespace. For example, say we have several different methods
for delivering error messages to a user depending on their preference. We have a couple
of ways we can do it: the non namespace approach or with namespaces.

function text deliverErrorMessage(string msg) {}
function gtk deliverErrorMessage(string msg) {}
function qt deliverErrorMessage(string msg) {}
function network deliverErrorMessage(string msg) {}

It quickly gets confusing. It can only get worse when you start to add yet another
function e.g. for delivering a warning. What we need is a little organization and to the
rescue are namespaces.

namespace Text {
function deliverErrorMessage(string msg){}

}
namespace Gtk {

function deliverErrorMessage(string msg){}
}
namespace Qt {

function deliverErrorMessage(string msg){}

45

}
namespace Network {

function deliverErrorMessage(string msg){}
}

The namespace approach is cleaner and more concise. We know that all we have to do
is call the ’deliverErrorMessage’ in the correct namespace. The code below shows how
you can use the magic of void variables to get a handle on a namespace and then call
the functions within it.

void outputMechanism;

if(wantGtk)
outputMechanism = Gtk;

else
outputMechanism = Text;

outputMechanism.deliverErrorMessage("We have an Error");

They promote clean and precise code. When a function is defined within a namespace it
has to reference stuff within the namespace as code outside does, e.g. someNamespace.resource.

Some readers will note that this can also be achieved with classes and static members,
however namespaces are useful for grouping similar functionality that does not neces-
sarily operate on the same data; such as a namespace full of mathematical functions for
numbers or string routines.

2.12.1 Modifying Existing Namespaces

There is also an alternative syntax for namespaces allowing you to extend an already
existing namespace or create a new one if it does not already exist. This is done like
so:

namespace modifies name of namespace {
variable, namespace, class and function declarations

}

When this modifies the namespace it places all items within it in the block in the
namespace mentioned. e.g:

namespace foo {
number i;

}

namespace modifies foo {

46

number j;
}

In the above example the namespace foo has a number i and a number j. The main reason
for this syntax is to allow module writers to easily intermingle native and script code
within the namespace. There are times when placing something in another namespace
makes more sense. e.g. placing a custom written network protocol within a Network
namespace.

It is possible to use the same set of commands on namespaces as you can on classes. See
modifying existing classes for more information.

2.13 Closures

A closure is best described as an environment capturing anonymous function. They
can provide the core mechanism for a number of different methods of programming.
The most prominent use is iteration: closures can provide a very natural method and
syntax for iterating over a set of elements no matter what their source. Another use is
registering code to be executed when necessary. Both these will be covered within this
section.

We shall first observe how closures can be used in the most basic of forms.

number x = 1;
number y = 1;

object o = closure {
number z = y;

y = 1000;
return x + z;

};

y = 10;
x = 10;

Console.println("If this works the next number should be 20: ${o.invoke()}"
);
Console.println("And y should be 1000: $y");

The above code does the following: declares two variables, creates a closure, sets the
default values for the variables and then invokes the closure by calling invoke on it.
All parts are straight forward except creating a closure. So what happens when ferite
compiles a closure?

47

A function is created and compiled as you would expect, however there is one exception:
if there is a reference to a variable that is not declared within the closure, ferite will
create a binding to the variable outside the closure. The binding means that the closure
can be passed to another function, stored in an array and accessed at a later point
and the bound variables will be accessible. In the above example the variables x and y
are both referenced within the closure, when a change to the value of x and y is done,
the variables that they are bound to are updated. In the above example the variable
y is changed from 1 (declared value) to 1000 and this change is reflected in the above
code. This form of binding is known as static binding: it means that the variables are
bound in the context of the closure’s creation rather than at the time of the closure’s
execution.

Closures are seen by ferite as objects making it easy to pass them from one function
to another. The code below is a modification to the above example and demonstrates
passing values into a closure.

function incrementBy(object c, number value) {
number x = 99;
return c.invoke(value);

}

function closureEx() {
number x = 1;
object c = closure(ivalue) {

x = x + ivalue;
};

// x = 1
incrementBy(c, 10);
// x = 11
incrementBy(c, 100);
// x = 111

}

The above function closureEx creates a closure that accepts one value, in this example
called ivalue, and adds it to the current value of x. The closure binds to the x variable
declared above it. The function incrementBy takes a closure object and a number,
invokes the closure passing it the number. The function incrementBy is provided to
demonstrate the nature of binding: even though there is an x variable in incrementBy,
the closure has already bound to the x variable in closureEx.

Passing values into a closure is straight forward, it is the same as calling a function.
Declaring is as easy as declaring the parameters a function requires, except you do not
declare the types. Each parameter is of type void making closures useful for dynamic
programming.

48

function nTimes(number multiplier) {
return closure(base) {

return base * multiplier;
};

}

object times two = nTimes(2);
object times ten = nTimes(10);

Console.println("multiple of 2: 2: ${times two.invoke(2)}");
// (1)
Console.println("multiple of 2: 5: ${times two.invoke(5)}");
// (2)
Console.println("multiple of 10: 2: ${times ten.invoke(2)}");
// (3)
Console.println("multiple of 10: 5: ${times ten.invoke(5)}");
// (4)

The above is yet another example of binding: even when a function exits, a variable
bound within a closure will not be deleted from the program until the closure itself
is deleted (by the garbage collector). The function nTimes creates a closure that will
return the multiplication of the base parameter and the bound multiplier value. The
creation of the times two closure binds its multiplier value to ’2’ and the creation of
the times ten binds its multiplier value to ’10’. Therefore the results of the printout
lines are as follows:

multiple of 2: 2: 4
multiple of 2: 5: 10
multiple of 10: 2: 20
multiple of 10: 5: 50

Hopefully you should have a reasonable understanding of the core features of closures.
More examples on how they can be applied to real world programming problems will be
presented in section 3.

2.13.1 Recipients, Deliver and Using

Closures are a great way of injecting custom actions into generic code. For instance,
if you have written an advanced structure, you may want to provide a generic sorting
function or a generic walking function. However there is a slight problem: you do not
know what type of information may be stored in your structure. The solution is to write
a generic walking or sorting algorithm and use a passed in closure that can deal with the
specifics of the data and provide the overall functionality. This solution can be applied
to a lot of different mechanisms and to make code less ambiguous, ferite provides a

49

special interface to passing a closure into a function, checking to see if a function has
received a closure and executing the supplied closure.

To demonstrate how to use the special interface here is the implementation of the func-
tion Array.each and some code that uses it.

namespace Array {
function each(array a) {

if(recipient() != null)
{

number i = 0;
number size = Array.size(a);

for(i = 0; i < size; i++)
{

void val = deliver(a[i]);
if(val == false or val == null)

break;
}

}
}

}

array a = [1, 2, 3, 4, 5];
Array.each(a) using (value) {

Console.println("Array value: $value");
};

The above example passes an array and a closure to Array.each, which then iterates over
each element within the array and delivers the value to the supplied closure. When the
closure is invoked it prints out the value passed to it.

The new keywords introduced in this example are highlighted in bold: recipient(),
deliver() and using. ’recipient()’ is a special function, like ’arguments()’, that is core
to the ferite engine; the job of the call is to return an object or null if there is, or is
not, a supplied recipient: a closure. ’deliver()’ is another special function that delivers
a set of values to a closure, it simply gets the recipient and calls the invoke function on
it. If there is no recipient, deliver will throw an exception. ’using’ is how you provide
a closure to the function call: you append using after the function call and then define
your closure without the closure keyword.

The code below demonstrates the difference in manually writing the above mecha-
nism.

namespace Array {
function each(array a, object c) {

50

if(c != null)
{

number i = 0;
number size = Array.size(a);

for(i = 0; i < size; i++)
{

void val = c.invoke(a[i]);
if(val == false or val == null)

break;
}

}
}

}

array a = [1, 2, 3, 4, 5];
Array.each(a, closure (value) {

Console.println("Array value: $value");
});

It is generally more untidy and and less clear what the intended operation for Array.each
is; hence the addition of this syntax. It is possible to pass a closure onto another function
by using recipient() rather than a new closure.

function someFunction() {
anotherFunction() using recipient();

}

someFunction() using (v) {
...

};

2.14 Uses and Include

Both the uses and the include() instructions tell ferite to include another script
within the current one. The main difference is that uses is a compile time directive and
include() is a runtime directive.

It is important to note that ferite will, when using or including a script, use a set of
paths to resolve relative file names. It will always try and find the script relative to the
current script file first and then search in the global paths.

In the case of the ferite strong line application, $prefix/lib/ferite is searched for
scripts plus any directories that are added on the strong line by using the -I flag. Native
modules are placed in $prefix/lib/ferite/$platform, where $platform is of the form

51

os-cpu. If either the script or the module can not be found the compilation of the script
will cease with an error. It is suggested that these are placed at the top of the script
(although this is not a requirement).

2.14.1 Uses

The uses keyword is used to import API from other external modules and scripts. The
uses keyword is a compile time directive and provides the method for building up the
environment. It can either pull in an external module, or compile in another script. The
syntax is as follows:

uses ”name of module or script file”, ...;

The name must be in quotes. When ferite gets this call it will do the following: if
there is no extension it will try loading a script in the system’s library paths trying the
extensions ’.fe’, ’.fec’ and ’.feh’. The paths for the native and scripts are defined by the
parent application. If an extension is given, ferite will check to see if it equals .lib, if it
does it will load the correct native module, e.g. uses "array.lib"; will cause ferite
to load array.so under unices and array.dll under windows. This gives a platform
independent method to tell ferite to load a native library. This is the method used to
load a native module. If it does not equal .lib, ferite will treat it as a script and load
it.

2.14.2 Include

include() operates the same way as uses, except that it can currently only import other
scripts. Once the call has been made - the facilities provided by the imported script can
be used. It should be noted that the return value from the include() call is the return
of the main method when the script is loaded. This allows items to be passed to the
parent script.

void v = include (”someScript.fe”);

The above code will assign the return value from ’someScript.fe’s main code to the
variable v. This is a useful mechanism for writing plug-in architectures: include a script
and have the return be an object that represents the loaded plug-in.

2.15 Conclusion

We have been on an epic journey: a once foreign language should be familiar and dancing
around in your head, making life easier. It is important that we can now look back at the
first example given in this manual: it should now be easy to recognize and understand
what is going on. To aid you a little further, keywords have been made bold.

52

// The importing of extra functionality
uses "console", "array";

// Declaration of a function. Classes and Namespaces also go here
function processArgument(string argument) {

Console.println("Argument: " + argument);
}

// The startup code
Array.each(argv) using (argument) {

processArgument(argument);
};

53

3 Solving Common Problems With ferite

How to solve problems using ferite.

54

