Oracle Berkeley DB

Getting Started with
Transaction Processing

for C

11g Release 2
Library Version 11.2.5.3

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 5/11/2012

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o] = = Lo \%
Conventions Used in this BOOKcceeiiietiiiieiiiiiieieriiaerererreneerenaeeranaesaaneens \%

FOr More Informationeeieeiirei ittt e et eeneeeeeeerennrenanaesannnanans vi
(00 31 t- Vot 6 e vi

LIPS 10T 11 Tt o o T 1
Transaction Benefitscieiirii i et e e e e e e e e e e aenneeaaanans 1

A Note on System Failureeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiteeeenireeeeeeeeniaeeeeesennnanaeens 2
Application ReQUINTEMENES .uiiiiiiittiiiiiiiiteieeiieeeereeineeeeeeesnneeessessnnassssennes 2
Multi-threaded and Multi-process AppliCationscivviieiiiiiiiiiiieireiiiieeereennnaneens 4
(o) =101 111 1Y A PP PP 4
PerformanCe TUNING ..uuueeeeiiiiiieeteeeeiieeeeeeeeneeeeeeeesnneseesesnnnsessesessnnesesseennns 5

2. ENAbling TranSaCTiONS iviiiuueeeieeeiieeeeeeeeieeeeeeeesnaseeeesensassesesssnnssssssssnnnssssesanns 6
o YT 0T T 0 = 6

FIle NaMING ciiiiiiiiiiiiiii i ieiiiiteeeeeeineeeeresennaneeeessnnnseessessnnnsessesannnes 7
Specifying the Environment Home DireCtorycceeivviiineriiieiiineneeenennnnes 7

Specifying File LOCAtioNS ..vvuuueiiiiiiiiieiiiiiiteeeeiieeeeeeennnneseesennnnnnes 7

Identifying Specific File LOCAtioNS ..ccvuveiiiiiiiiientiiieiiieeeieniineneeeeannnnns 8

g o] YU o] o Yo] o A PP 10

Shared MemMOry REGIONS .uuvieiiiieettereiiiereereerineeeeeeesrnneeessessnneseessssnnaneens 10

Regions Backed DY FileSceiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeiiieeeeeennnnnneenns 11

Regions Backed by Heap MEMOIY ..uuiiiiiiiiiiiiiiiiiiiiieiiiiiieeeenennnneeeenns 11

Regions Backed by System MemOrycciieiiiiiiiiiiiiiiiieeeeeeiiieeeeeaennnnes 11

Security CoNSIAErations .uviieeieeeeeeeeiieeeereeereeeeeeeesneseesessnnaneseessnnneeeens 12

Opening a Transactional Environment and Databaseccceivviiiiiiiiiiiiiinneeennnnns 13

TR 1 =g Y- Ut [) T = =T ok 17
Committing @ TranSACTION ..uviiiiiiiietetiieiiieeeeeeerneeeeeeenneneeeesesnnseseesennnnneeenns 20
NON-Durable TranSaCtioNSceeeeereeerertereetereeerenneeraneeeeaneerenneeseneesennnerannes 21
ADOrting @ TranSACTION tiiuuuetteiiiiieteteeeiineeeeeeearneeeeeeessnneeeeeessnnsneessssnnnnsasees 22
U o T o3 2 141 22

[N (= W= e B =T 1= Lot o] L 25
TranSaCTiONAL CUMSOTS .uuueerntereeteeetereetereeeeeeneerannreranneeennnesennnesannesennneses 26
Secondary Indices with Transaction AppliCationsceeeviiiereeieiiiieeeeeeeeninneeeeanns 28
Configuring the Transaction SUDSYSTEMiiiiiiiiiiiiiiiiiiii it ieeriieeeeeeennnas 29

N 0o] [o(¥ | ¢ ¢ =) Lo A PP 32
Which DB Handles are Free-Threadedccceiiiieiiiiiiiriiiiiiiiiiiiriiaeneneeneneens 33
Locks, BLOCks, and DEAALOCKSueeeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseesesennnns 33
0 o £ P 33

LOCK RESOUICES ..uvtinnteiet et eeetereatereneteeaneerannnerannneeannesannnennns 34

TYPES Of LOCKS tnnntietiiiiiiiitteeeiiiieeeeeeeeiaeeeeesenaneeessssnnnseseesennnnes 34

LOCK Lifetime ooeneiiiiii i et e e e e re et e e e e eeeneesannnanans 35

50 35

Blocking and Application Performancecceeeiiiiiinereeeeiinneeeeeeennneneens 36

AVOIAING BlOCKS uunrieeiiiiiiii ittt eeeeiiieeeeeeaenrneeeeesesnneeesesennnnes 37

7= U o Yol 14 38

(D=7 Vo FoTol (@Y \¥ o] [-1 o ol P 39

The LoCKING SUDSYSTEM 1.uuiiiiiiiiiiii ittt eeiiireeeeteeenneeeeeeennnneeseresnnnnneens 39

5/11/2012 Using Transactions with DB Page iii

Configuring the Locking SUbSYStemc.civiiiiiiiiiniieiieiieerereeeenneeeenneeeanns.. 40
Configuring Deadlock Detectionccivvveiiiiiiiiieiiniieiiieeneieeeenneeeenneennnes. 42
ReSOIVING DEAAIOCKS +evuureireetieietreieereneeeeneerenneeeeeeeesneesenneeesnaeeanneeees 44
Setting Transaction Prioriti€seeeeieriiiiiiiiiiiiiiiiiieiiieieiineeeeeenenneeess.. 46

[E7o - Lo o PPN 4
Supported Degrees of 1SOlationcieveiiiiiiriieiieiitiiiieieiieeeeineerenneeenneeeas. 48
Reading Uncommitted Datacceevvieiiiiiiiiiiiniieiieieeereneeeenneeeeneeeneneeeanns 49
Committed REAdS ...icviineiiiiiiiiiiiiiitiiiieiiiiiieiieeieeiieeineeeneeenneeneseneses D1
Using Snapshot 1Solationcceeieieiiiiiiiiieiiiiieeriietieiieerenneeesneeeesneeeennesss 24
Snapshot 1S0lation COSt .ieuuiiirieeieiieereiteeeieerenieeeeieeeeseeeesneeeanneeannes 24

Snapshot Isolation Transactional Requirementsccceevevveveeenneeeanne.. 54

When to Use Snapshot 1Solationcceeeeiiiiiiiiiiiiiiiiiiiieiieeenneeeenne.. 4

How to use Snapshot 1Solationceeeeiieiiiiiiieiiieniieeeiieeeeneeeanneeaass D5
Transactional Cursors and Concurrent Applicationsceeveeieiieeeniieeeeieeenneeennnness D7
Using Cursors with Uncommitted Datacceveveeiiiieiieiiinnneeeenneeneneeennneeaas D7
Exclusive Database Handlesceiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieiiieeneeeaeseaeseess 99
Read/Modify/WIEE ..uuiiieiiiiiiiiiii i ieii et eeeneeeenneereneseesnessennssssnaseannessss 00
NO Wait 0N BLOCKS ..uvnuiieiieiiieiiiiiieiiteiiteiiteeiteentieteresnaeraeesseesneeeneeaneesss O1
Reverse BTree SPLILS vivvvuiiirietieiitiiiiteeeieeeenieeeennteeeneeeesneeecsneeesnassesnsessnneeass 01
5. ManAgINg DB FileS veiiuuiiiitiiiiiiiiitiiiittreitereneteesneeresneeeensssesneesennsessnessanneeeaes 04
CheCKPOINES tietiiiitieiitiei ettt eeeteeernteeeneeeeaneeeasnneesnsesesnessssnseesnnssanneeess 04
BaCKUP PrOoCEAUIES ...uuiiiittiiittiiitieeeteeeneereneeeeaneesesneesesassesnsesennsessnnssannees OF
About Unix Copy UTIlItIES teuueirieiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeneeeaeneeeanneeaens 07
Offling BaCKUPS .vvventiieitiiiietieiietientereneeeeaneeresaeerseeeesneerasnssesnsssanness 08

(o1 2 - ol (U o T PPN ¢ -
Incremental BaCKUPS ...vvieeeeirieieeiteeaieeeenieeeenneeesieeeesseeessnecessaesasneseaes 09
RECOVEIY ProCEAUIES ...viiieiiiiietiiieereietieieereraeeeereeresneesenaesesneesennsssonasennness 09
NOrMal RECOVETY .nuueiiiiiiiiiiiiiii it eeeieteeieeeeneeeesneeranneesansesesnsesanneess 10
CatastrophiC RECOVEIY ..uiiiiriiiiiitieiietiiiiteeeieeeeneeeeneeeenneeesnaesasnesesnneeees 71
Designing Your Application for RECOVENYuiiiiuiiiiiiiiiiieiiieeiieeeeneeennneceanneeaes 73
Recovery for Multi-Threaded Applicationscoveiiiiiiiiiiiiiiieeneieennneeeenne. 73
Recovery in Multi-Process AppliCationsceeveveiirieiienniereneeeenneerenneeeanneess 74
Effects of Multi-Process RECOVENYuiviiiiiiiiiiiiiiiiiiieeeineeasneeennneeaans 1D

Process Registrationieeeieiiiiiiiiiiiiiiiiiiiiiiieiiinierreeenannessecenanns 1D

Failure ChecKing ..vviiieiiiiiiiiii it iiiieiireieeeeneeeesneescnneessneeeass 10

UsSiNg HOt FailoVErS ..uviiiiiiiiiiiiii it iiiiieiieieeeeneeeeeneeeenneeeenaesanneenannees 17
REMOVING LOZ FileS 1uuuiiiiiiiiiiiiiiiii it iiiit et eeenaeenaneeeanneeesnaeessnesesnneens 19
Configuring the Logging SUbSYStemcceiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeneerenneeeenes. 80
Setting the Log File Size ..ccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieiieeeeneeenneeeanneese. 80
Configuring the Logging Region Sizecivviiiiiiiiiiiiieiiieniieeeeieeeneneeennne.. 81
Configuring IN-Memory LOZZING ...eeevriiriiereerieeeenneeeeieeeesieeessneeessaesecneeeaens O1
Setting the In-Memory Log Buffer Sizeccevviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeennee... 84

6. SumMmMary and EXamPLles ...eieueeiiiieiiiitiiiitiiieeraieeeeaeereneeeraneeessneceenasessnesesnnees 8D
Anatomy of a Transactional ApplicCationc.eeiiiiiiiiiiiiiiieeiieeeeieeeerieeeenneeeanes. 85
Transaction EXamMPLe .iuueiiiieeiiiitiiiieiiteeeieeeeaeeeeineeesneesesneeessnesessassssneeeaes 80O
In-Memory Transaction EXampleccceeiiiieiiiiiiiiiiiiiiieiieneennieeecnneeeenecennneenenes 97

5/11/2012 Using Transactions with DB Page iv

Preface

This document describes how to use transactions with your Berkeley DB applications. It is
intended to describe how to transaction protect your application's data. The APIs used to
perform this task are described here, as are the environment infrastructure and administrative
tasks required by a transactional application. This book also describes multi-threaded and
multi-process DB applications and the requirements they have for deadlock detection.

This book describes Berkeley DB 11g Release 2, which provides library version 11.2.5.3.

This book is aimed at the software engineer responsible for writing a transactional DB
application.

This book assumes that you have already read and understood the concepts contained in the
Getting Started with Berkeley DB guide.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are method names. For example:
"DB->open() is a method on a DB handle."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory.”

Program examples are displayed in a monospaced font on a shaded background. For example:

/* File: gettingstarted_common.h */

typedef struct stock_dbs {
DB *inventory_dbp; /* Database containing inventory information */
DB *vendor_dbp; /* Database containing vendor information */

char *db_home_dir; /* Directory containing the database files */
char *inventory_db_name; /* Name of the inventory database */
char *vendor_db_name; /* Name of the vendor database */

} STOCK_DBS;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

typedef struct stock_dbs {
DB *inventory_dbp; /* Database containing inventory information */

DB *vendor_dbp; /* Database containing vendor information */
DB *itemname_sdbp; /* Index based on the item name index */
char *db_home_dir; /* Directory containing the database files */

char *itemname_db_name; /* Itemname secondary database */
char *inventory_db_name; /* Name of the inventory database */
char *vendor_db_name; /* Name of the vendor database */

} STOCK_DBS;

5/11/2012 Using Transactions with DB Page v

Note

Finally, notes of special interest are represented using a note block such as this.

For More Information

Contact Us

Beyond this manual, you may also find the following sources of information useful when
building a transactional DB application:

o Getting Started with Berkeley DB for C

» Berkeley DB Getting Started with Replicated Applications for C
» Berkeley DB Programmer's Reference Guide

» Berkeley DB C APl Reference Guide

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumiD=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

5/11/2012

Using Transactions with DB Page vi

http://download.oracle.com/docs/cd/E17076_02/html/gsg/C/BerkeleyDB-Core-C-GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/C/Replication_C_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Introduction

This book provides a thorough introduction and discussion on transactions as used with
Berkeley DB (DB). It begins by offering a general overview to transactions, the guarantees
they provide, and the general application infrastructure required to obtain full transactional
protection for your data.

This book also provides detailed examples on how to write a transactional application. Both
single threaded and multi-threaded (as well as multi-process applications) are discussed. A
detailed description of various backup and recovery strategies is included in this manual, as is
a discussion on performance considerations for your transactional application.

You should understand the concepts from the Getting Started with Berkeley DB guide before
reading this book.

Transaction Benefits

Transactions offer your application’s data protection from application or system failures. That
is, DB transactions offer your application full ACID support:

o Atomicity

Multiple database operations are treated as a single unit of work. Once committed, all write
operations performed under the protection of the transaction are saved to your databases.
Further, in the event that you abort a transaction, all write operations performed during the
transaction are discarded. In this event, your database is left in the state it was in before
the transaction began, regardless of the number or type of write operations you may have
performed during the course of the transaction.

Note that DB transactions can span one or more database handles.
« Consistency

Your databases will never see a partially completed transaction. This is true even if your
application fails while there are in-progress transactions. If the application or system fails,
then either all of the database changes appear when the application next runs, or none of
them appear.

In other words, whatever consistency requirements your application has will never be
violated by DB. If, for example, your application requires every record to include an
employee ID, and your code faithfully adds that ID to its database records, then DB will
never violate that consistency requirement. The ID will remain in the database records until
such a time as your application chooses to delete it.

« [solation

While a transaction is in progress, your databases will appear to the transaction as if there
are no other operations occurring outside of the transaction. That is, operations wrapped
inside a transaction will always have a clean and consistent view of your databases. They
never have to see updates currently in progress under the protection of another transaction.

5/11/2012

Using Transactions with DB Page 1

Library Version 11.2.5.3 Introduction

A Note on

Note, however, that isolation guarantees can be relaxed from the default setting. See
Isolation (page 47) for more information.

 Durability

Once committed to your databases, your modifications will persist even in the event of
an application or system failure. Note that like isolation, your durability guarantee can be
relaxed. See Non-Durable Transactions (page 21) for more information.

System Failure

From time to time this manual mentions that transactions protect your data against 'system or
application failure.’ This is true up to a certain extent. However, not all failures are created
equal and no data protection mechanism can protect you against every conceivable way a
computing system can find to die.

Generally, when this book talks about protection against failures, it means that transactions
offer protection against the likeliest culprits for system and application crashes. So long as
your data modifications have been committed to disk, those modifications should persist even
if your application or OS subsequently fails. And, even if the application or OS fails in the
middle of a transaction commit (or abort), the data on disk should be either in a consistent
state, or there should be enough data available to bring your databases into a consistent state
(via a recovery procedure, for example). You may, however, lose whatever data you were
committing at the time of the failure, but your databases will be otherwise unaffected.

Note

Be aware that many disks have a disk write cache and on some systems it is enabled
by default. This means that a transaction can have committed, and to your application
the data may appear to reside on disk, but the data may in fact reside only in the
write cache at that time. This means that if the disk write cache is enabled and there
is no battery backup for it, data can be lost after an OS crash even when maximum
durability mode is in use. For maximum durability, disable the disk write cache or use
a disk write cache with a battery backup.

Of course, if your disk fails, then the transactional benefits described in this book are only

as good as the backups you have taken. By spreading your data and log files across separate
disks, you can minimize the risk of data loss due to a disk failure, but even in this case it is
possible to conjure a scenario where even this protection is insufficient (a fire in the machine
room, for example) and you must go to your backups for protection.

Finally, by following the programming examples shown in this book, you can write your code
so as to protect your data in the event that your code crashes. However, no programming API
can protect you against logic failures in your own code; transactions cannot protect you from
simply writing the wrong thing to your databases.

Application Requirements

In order to use transactions, your application has certain requirements beyond what is
required of non-transactional protected applications. They are:

5/11/2012

Using Transactions with DB Page 2

Library Version 11.2.5.3 Introduction

Environments.

Environments are optional for non-transactional applications, but they are required for
transactional applications.

Environment usage is described in detail in Transaction Basics (page 17).
Transaction subsystem.

In order to use transactions, you must explicitly enable the transactional subsystem for your
application, and this must be done at the time that your environment is first created.

Logging subsystem.

The logging subsystem is required for recovery purposes, but its usage also means your
application may require a little more administrative effort than it does when logging is not
in use. See Managing DB Files (page 64) for more information.

DB_TXN handles.

In order to obtain the atomicity guarantee offered by the transactional subsystem (that is,
combine multiple operations in a single unit of work), your application must use transaction
handles. These handles are obtained from your DB_ENV objects. They should normally be
short-lived, and their usage is reasonably simple. To complete a transaction and save the
work it performed, you call its commit () method. To complete a transaction and discard its
work, you call its abort () method.

In addition, it is possible to use auto commit if you want to transactional protect a single
write operation. Auto commit allows a transaction to be used without obtaining an explicit
transaction handle. See Auto Commit (page 22) for information on how to use auto
commit.

Database open requirements.

In addition to using environments and initializing the correct subsystems, your application
must transaction protect the database opens, and any secondary index associations, if
subsequent operations on the databases are to be transaction protected. The database open
and secondary index association are commonly transaction protected using auto commit.

Deadlock detection.

Typically transactional applications use multiple threads of control when accessing the
database. Any time multiple threads are used on a single resource, the potential for lock
contention arises. In turn, lock contention can lead to deadlocks. See Locks, Blocks, and
Deadlocks (page 33) for more information.

Therefore, transactional applications must frequently include code for detecting and
responding to deadlocks. Note that this requirement is not specific to transactions - you
can certainly write concurrent non-transactional DB applications. Further, not every
transactional application uses concurrency and so not every transactional application
must manage deadlocks. Still, deadlock management is so frequently a characteristic of

5/11/2012

Using Transactions with DB Page 3

Library Version 11.2.5.3 Introduction

transactional applications that we discuss it in this book. See Concurrency (page 32) for
more information.

Multi-threaded and Multi-process Applications

DB is designed to support multi-threaded and multi-process applications, but their usage
means you must pay careful attention to issues of concurrency. Transactions help your
application's concurrency by providing various levels of isolation for your threads of control. In
addition, DB provides mechanisms that allow you to detect and respond to deadlocks.

Isolation means that database modifications made by one transaction will not normally be
seen by readers from another transaction until the first commits its changes. Different threads
use different transaction handles, so this mechanism is normally used to provide isolation
between database operations performed by different threads.

Note that DB supports different isolation levels. For example, you can configure your
application to see uncommitted reads, which means that one transaction can see data that
has been modified but not yet committed by another transaction. Doing this might mean
your transaction reads data "dirtied"” by another transaction, but which subsequently might
change before that other transaction commits its changes. On the other hand, lowering your
isolation requirements means that your application can experience improved throughput due
to reduced lock contention.

For more information on concurrency, on managing isolation levels, and on deadlock
detection, see Concurrency (page 32).

Recoverability

An important part of DB's transactional guarantees is durability. Durability means that once a
transaction has been committed, the database modifications performed under its protection
will not be lost due to system failure.

In order to provide the transactional durability guarantee, DB uses a write-ahead logging
system. Every operation performed on your databases is described in a log before it is
performed on your databases. This is done in order to ensure that an operation can be
recovered in the event of an untimely application or system failure.

Beyond logging, another important aspect of durability is recoverability. That is, backup and
restore. DB supports a normal recovery that runs against a subset of your log files. This is a
routine procedure used whenever your environment is first opened upon application startup,
and it is intended to ensure that your database is in a consistent state. DB also supports
archival backup and recovery in the case of catastrophic failure, such as the loss of a physical
disk drive.

This book describes several different backup procedures you can use to protect your on-
disk data. These procedures range from simple offline backup strategies to hot failovers.
Hot failovers provide not only a backup mechanism, but also a way to recover from a fatal
hardware failure.

This book also describes the recovery procedures you should use for each of the backup
strategies that you might employ.

5/11/2012

Using Transactions with DB Page 4

Library Version 11.2.5.3 Introduction

For a detailed description of backup and restore procedures, see Managing DB Files (page
64).

Performance Tuning

From a performance perspective, the use of transactions is not free. Depending on how you
configure them, transaction commits usually require your application to perform disk I/0
that a non-transactional application does not perform. Also, for multi-threaded and multi-
process applications, the use of transactions can result in increased lock contention due to
extra locking requirements driven by transactional isolation guarantees.

There is therefore a performance tuning component to transactional applications that is

not applicable for non-transactional applications (although some tuning considerations do
exist whether or not your application uses transactions). Where appropriate, these tuning
considerations are introduced in the following chapters. However, for a more complete
description of them, see the Transaction tuning and Transaction throughput sections of the
Berkeley DB Programmer's Reference Guide.

5/11/2012 Using Transactions with DB Page 5

http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/transapp_tune.html
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/transapp_throughput.html

Chapter 2. Enabling Transactions

In order to use transactions with your application, you must turn them on. To do this you
must:

« Use an environment (see Environments (page 6) for details).

« Turn on transactions for your environment. You do this by providing the DB_INIT TXN
flag to the DB_ENV->open() method. Note that initializing the transactional subsystem
implies that the logging subsystem is also initialized. Also, note that if you do not initialize
transactions when you first create your environment, then you cannot use transactions
for that environment after that. This is because DB allocates certain structures needed
for transactional locking that are not available if the environment is created without
transactional support.

« Initialize the in-memory cache by passing the DB_INIT_MPOOL flag to the DB_ENV->open()
method.

« Initialize the locking subsystem. This is what provides locking for concurrent applications.
It also is used to perform deadlock detection. See Concurrency (page 32) for more
information.

You initialize the locking subsystem by passing the DB_INIT_LOCK flag to the DB_ENV-
>open() method.

« Initialize the logging subsystem. While this is enabled by default for transactional
applications, we suggest that you explicitly initialize it anyway for the purposes of code
readability. The logging subsystem is what provides your transactional application its
durability guarantee, and it is required for recoverability purposes. See Managing DB
Files (page 64) for more information.

You initialize the logging subsystem by passing the DB_INIT_LOG flag to the DB_ENV-
>open() method.

» Transaction-enable your databases. If you are using the base API, transaction-enable your
databases. You do this by encapsulating the database open in a transaction. Note that the
common practice is for auto commit to be used to transaction-protect the database open.
To use auto-commit, you must still enable transactions as described here, but you do not
have to explicitly use a transaction when you open your database. An example of this is
given in the next section.

Environments

For simple DB applications, environments are optional. However, in order to transaction
protect your database operations, you must use an environment.

An environment, represents an encapsulation of one or more databases and any associated
log and region files. They are used to support multi-threaded and multi-process applications
by allowing different threads of control to share the in-memory cache, the locking tables,
the logging subsystem, and the file namespace. By sharing these things, your concurrent

5/11/2012

Using Transactions with DB Page 6

Library Version 11.2.

5.3 Enabling Transactions

File Naming

Specifying the

application is more efficient than if each thread of control had to manage these resources on
its own.

By default all DB databases are backed by files on disk. In addition to these files, transactional
DB applications create logs that are also by default stored on disk (they can optionally be
backed using shared memory). Finally, transactional DB applications also create and use
shared-memory regions that are also typically backed by the filesystem. But like databases
and logs, the regions can be maintained strictly in-memory if your application requires it. For
an example of an application that manages all environment files in-memory, see In-Memory
Transaction Example (page 97).

Warning

Using environments with some journaling filesystems might result in log file
corruption. This can occur if the operating system experiences an unclean shutdown
when a log file is being created. Please see Using Recovery on Journaling Filesystems
in the Berkeley DB Programmer's Reference Guide for more information.

In order to operate, your DB application must be able to locate its database files, log files,
and region files. If these are stored in the filesystem, then you must tell DB where they are
located (a number of mechanisms exist that allow you to identify the location of these files -
see below). Otherwise, by default they are located in the current working directory.

Environment Home Directory

The environment home directory is used to determine where DB files are located. Its location
is identified using one of the following mechanisms, in the following order of priority:

« If no information is given as to where to put the environment home, then the current
working directory is used.

« If a home directory is specified on the DB_ENV->open() method, then that location is
always used for the environment home.

« If a home directory is not supplied to DB_ENV->open(), then the directory identified by
the DB_HOME environment variable is used if you specify either the DB_USE_ENVIRON or
DB_USE_ENVIRON_ROOT flags to the DB_ENV->open() method. Both flags allow you to
identify the path to the environment’'s home directory using the DB_HOME environment
variable. However, DB_USE_ENVIRON_ROOT is honored only if the process is run with root or
administrative privileges.

Specifying File Locations

By default, all DB files are created relative to the environment home directory. For example,
suppose your environment home is in /export/myAppHome. Also suppose you hame your
database data/myDatabase.db. Then in this case, the database is placed in: /export/
myAppHome/data/myDatabase.db.

That said, DB always defers to absolute pathnames. This means that if you provide an
absolute filename when you name your database, then that file is not placed relative to the

5/11/2012

Using Transactions with DB Page 7

../../programmer_reference/transapp_journal.html

Library Version 11.2.5.3 Enabling Transactions

environment home directory. Instead, it is placed in the exact location that you specified for
the filename.

On UNIX systems, an absolute pathname is a name that begins with a forward slash ('/"). On
Windows systems, an absolute pathname is a name that begins with one of the following:

e A backslash (\').

» Any alphabetic letter, followed by a colon (:'), followed by a backslash ('\').

Note

Try not to use absolute path names for your environment's files. Under certain
recovery scenarios, absolute path names can render your environment unrecoverable.
This occurs if you are attempting to recover your environment on a system that does
not support the absolute path name that you used.

Identifying Specific File Locations

As described in the previous sections, DB will place all its files in or relative to the
environment home directory. You can also cause a specific database file to be placed in
a particular location by using an absolute path name for its name. In this situation, the
environment's home directory is not considered when naming the file.

It is frequently desirable to place database, log, and region files on separate disk drives. By
spreading |/0 across multiple drives, you can increase parallelism and improve throughput.
Additionally, by placing log files and database files on separate drives, you improve your
application’s reliability by providing your application with a greater chance of surviving a disk
failure.

You can cause DB's files to be placed in specific locations using the following mechanisms:

File Type To Override

database files You can cause database files to be created in a directory
other than the environment home by using the DB_ENV-
>add_data_dir() method. The directory identified here
must exist. If a relative path is provided, then the directory
location is resolved relative to the environment's home
directory.

This method modifies the directory used for database files
created and managed by a single environment handle; it does
not configure the entire environment. This method may not
be called after the environment has been opened.

You can also set a default data location that is used

by the entire environment by using the add_data_dir
parameter in the environment's DB_CONFIG file. Note that
the add_data_dir parameter overrides any value set by the
DB_ENV->set_data_dir() method.

5/11/2012

Using Transactions with DB Page 8

Library Version 11.2.5.3 Enabling Transactions

File Type To Override

Log files You can cause log files to be created in a directory other
than the environment home directory by using the DB_ENV-
>set_1g dir() method. The directory identified here
must exist. If a relative path is provided, then the directory
location is resolved relative to the environment's home
directory.

This method modifies the directory used for database files
created and managed by a single environment handle; it does
not configure the entire environment. This method may not
be called after the environment has been opened.

You can also set a default log file location that is used

by the entire environment by using the set_1g dir
parameter in the environment's DB_CONFIG file. Note that
the set_lg dir parameter overrides any value set by the
DB_ENV->set_1lg dir() method.

Temporary files You can cause temporary files required by the environment to
be created in a directory other than the environment home
directory by using the DB_ENV->set_tmp_dir() method.

The directory identified here must exist. If a relative path is
provided, then the directory location is resolved relative to
the environment's home directory.

You can also set a temporary file location by using the
set_tmp_dir parameter in the environment's DB_CONFIG file.
Note that the set_tmp_dir parameter overrides any value
set by the DB_ENV->set_tmp_dir() method.

Metadata files You can cause persistent metadata files required by the
replicated applications to be created in a directory other
than the environment home directory by using the DB_ENV-
>set_metadata_dir() method. The directory identified
here must exist. If a relative path is provided, then the
directory location is resolved relative to the environment's
home directory.

You can also set a metadata directory location by using
the set_metadata_dir parameter in the environment's
DB_CONFIG file. Note that the set_metadata_dir
parameter overrides any value set by the DB_ENV-
>set_metadata_dir() method.

Region files If backed by the filesystem, region files are always placed in
the environment home directory.

5/11/2012 Using Transactions with DB Page 9

Library Version 11.2.5.3 Enabling Transactions

Note that the DB_CONFIG must reside in the environment home directory. Parameters are
specified in it one parameter to a line. Each parameter is followed by a space, which is
followed by the parameter value. For example:

Error Support

add_data_dir /exportl/db/env_data_files

To simplify error handling and to aid in application debugging, environments offer several
useful methods. Note that many of these methods are identical to the error handling methods
available for the DB structure. They are:

set_errcall()

Defines the function that is called when an error message is issued by DB. The error
prefix and message are passed to this callback. It is up to the application to display this
information correctly.

This is the recommended way to get error messages from DB.

set_errfile()

Sets the C library FILE * to be used for displaying error messages issued by the DB library.
set_errpfx()

Sets the prefix used to for any error messages issued by the DB library.

err()

Issues an error message based upon a DB error code a message text that you supply. The
error message is sent to the callback function as defined by set_errcall(). If that method
has not been used, then the error message is sent to the file defined by set_errfile(). If
none of these methods have been used, then the error message is sent to standard error.

The error message consists of the prefix string (as defined by set_errprefix()), an
optional printf-style formatted message, the DB error message associated with the
supplied error code, and a trailing newline.

errx()

Behaves identically to err() except that you do not provide the DB error code and so the
DB message text is not displayed.

In addition, you can use the db_strerror() function to directly return the error string
that corresponds to a particular error number. For more information on the db_strerror()
function, see the Error Returns section of the Getting Started with Berkeley DB guide.

Shared Memory Regions

The subsystems that you enable for an environment (in our case, transaction, logging, locking,
and the memory pool) are described by one or more regions. The regions contain all of

5/11/2012

Using Transactions with DB Page 10

Library Version 11.2.5.3 Enabling Transactions

the state information that needs to be shared among threads and/or processes using the
environment.

Regions may be backed by the file system, by heap memory, or by system shared memory.

Regions Backed by Files

By default, shared memory regions are created as files in the environment's home directory
(not the environment's data directory). If it is available, the POSIX mmap interface is used to
map these files into your application’s address space. If mmap is not available, then the UNIX
shmget interfaces are used instead (again, if they are available).

In this default case, the region files are named __ db.##4# (for example, db.ee1, db.ee2,
and so on).

Regions Backed by Heap Memory

If heap memory is used to back your shared memory regions, then you can only open a single
handle for the environment. This means that the environment cannot be accessed by multiple
processes. In this case, the regions are managed only in memory, and they are not written to
the filesystem. You indicate that heap memory is to be used for the region files by specifying
DB_PRIVATE to the DB_ENV->open() method.

Note that you can also set this flag by using the set_open_flags parameter in the DB_CONFIG
file. See the Berkeley DB C API Reference Guide for more information.

(For an example of an entirely in-memory transactional application, see In-Memory
Transaction Example (page 97).)

Regions Backed by System Memory

Finally, you can cause system memory to be used for your regions instead of memory-mapped
files. You do this by providing DB_SYSTEM_MEM to the DB_ENV->open() method.

When region files are backed by system memory, DB creates a single file in the environment's
home directory. This file contains information necessary to identify the system shared memory
in use by the environment. By creating this file, DB enables multiple processes to share the
environment.

The system memory that is used is architecture-dependent. For example, on systems
supporting X/Open-style shared memory interfaces, such as UNIX systems, the shmget(2) and
related System V IPC interfaces are used. Additionally, VxWorks systems use system memory.
In these cases, an initial segment ID must be specified by the application to ensure that
applications do not overwrite each other's environments, so that the number of segments
created does not grow without bounds. See the DB_ENV->set_shm_key() method for more
information.

On Windows platforms, the use of system memory for the region files is problematic because
the operating system uses reference counting to clean up shared objects in the paging file
automatically. In addition, the default access permissions for shared objects are different
from files, which may cause problems when an environment is accessed by multiple processes
running as different users. See Windows notes or more information.

5/11/2012

Using Transactions with DB Page 11

Library Version 11.2.5.3 Enabling Transactions

Security Considerations

When using environments, there are some security considerations to keep in mind:

« Database environment permissions

The directory used for the environment should have its permissions set to ensure that files
in the environment are not accessible to users without appropriate permissions. Applications
that add to the user's permissions (for example, UNIX setuid or setgid applications), must
be carefully checked to not permit illegal use of those permissions such as general file
access in the environment directory.

e Environment variables

Setting the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT flags so that environment variables

can be used during file naming can be dangerous. Setting those flags in DB applications with
additional permissions (for example, UNIX setuid or setgid applications) could potentially
allow users to read and write databases to which they would not normally have access.

For example, suppose you write a DB application that runs setuid. This means that when
the application runs, it does so under a userid different than that of the application's caller.
This is especially problematic if the application is granting stronger privileges to a user than
the user might ordinarily have.

Now, if the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT flags are set for the environment,
then the environment that the application is using is modifiable using the DB_HOME
environment variable. In this scenario, if the uid used by the application has sufficiently
broad privileges, then the application's caller can read and/or write databases owned by
another user simply by setting his DB_HOME environment variable to the environment used
by that other user.

Note that this scenario need not be malicious; the wrong environment could be used by the
application simply by inadvertently specifying the wrong path to DB_HOME.

As always, you should use setuid sparingly, if at all. But if you do use setuid, then you
should refrain from specifying the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT flags for the
environment open. And, of course, if you must use setuid, then make sure you use the
weakest uid possible - preferably one that is used only by the application itself.

« File permissions

By default, DB always creates database and log files readable and writable by the owner
and the group (that is, S_IRUSR, S_IWUSR, S_IRGRP and S_IWGRP; or octal mode 0660 on
historic UNIX systems). The group ownership of created files is based on the system and
directory defaults, and is not further specified by DB.

« Temporary backing files

If an unnamed database is created and the cache is too small to hold the database in
memory, Berkeley DB will create a temporary physical file to enable it to page the database
to disk as needed. In this case, environment variables such as TMPDIR may be used to

5/11/2012

Using Transactions with DB Page 12

Library Version 11.2.5.3 Enabling Transactions

specify the location of that temporary file. Although temporary backing files are created
readable and writable by the owner only (S_IRUSR and S_IWUSR, or octal mode 0600 on
historic UNIX systems), some filesystems may not sufficiently protect temporary files
created in random directories from improper access. To be absolutely safe, applications
storing sensitive data in unnamed databases should use the DB_ENV->set_tmp_dir()
method to specify a temporary directory with known permissions.

Opening a Transactional Environment and Database

To enable transactions for your environment, you must initialize the transactional subsystem.
Note that doing this also initializes the logging subsystem. In addition, you must initialize the
memory pool (in-memory cache). You must also initialize the locking subsystem. For example:

Notice in the following example that you create your environment handle using the
db_env_create() function before you open the environment:

#tinclude <stdio.h>
#tinclude <stdlib.h>

#tinclude "db.h"

int
main(void)
{
int ret, ret_c;
u_int32_t env_flags;
DB_ENV *envp;
const char *db_home_dir = "/tmp/myEnvironment";

envp = NULL;

/* Open the environment */
ret = db_env_create(&envp, 0);
if (ret != 0) {
fprintf(stderr, "Error creating environment handle: %s\n",
db_strerror(ret));
return (EXIT_FAILURE);

}

env_flags = DB_CREATE | /* Create the environment if it does
* not already exist. */
DB_INIT_TXN | /* Initialize transactions */
DB_INIT_LOCK | /* Initialize locking. */
DB_INIT_LOG | /* Initialize logging */
DB_INIT_MPOOL; /* Initialize the in-memory cache. */

ret = envp->open(envp, db_home_dir, env_flags, 9);
if (ret !=0) {
fprintf(stderr, "Error opening environment: %s\n",
db_strerror(ret));

5/11/2012 Using Transactions with DB Page 13

Library Version 11.2.5.3

Enabling Transactions

err:

}

goto err;

/* Close the environment */
if (envp != NULL) {
ret_c = envp->close(envp, 9);
if (ret_c !=0) {
fprintf(stderr, "environment close failed: %s\n",
db_strerror(ret_c));
ret = ret_c;

}

return (ret == @ ? EXIT_SUCCESS : EXIT_FAILURE);

You then create and open your database(s) as you would for a non-transactional system. The
only difference is that you must pass the environment handle to the db_create() function,
and you must open the database within a transaction. Typically auto commit is used for this
purpose. To do so, pass DB_AUTO_COMMIT to the database open command. It is recommended
that you close all your databases before you close your environment. For example:

#tinclude <stdio.h>
#tinclude <stdlib.h>

#tinclude "db.h"

int

main(void)

{

int ret, ret_c;

u_int32_t db_flags, env_flags;

DB *dbp;

DB_ENV *envp;

const char *db_home_dir = "/tmp/myEnvironment";
const char *file_name = "mydb.db";

dbp = NULL;
envp = NULL;

/* Open the environment */
ret = db_env_create(&envp, 0);
if (ret !=0) {
fprintf(stderr, "Error creating environment handle: %s\n",
db_strerror(ret));
return (EXIT_FAILURE);

}

env_flags = DB_CREATE | /* Create the environment if it does

5/11/2012

Using Transactions with DB Page 14

Library Version 11.2.5.3 Enabling Transactions

* not already exist. */
DB_INIT_TXN | /* Initialize transactions */
DB_INIT_LOCK | /* Initialize locking. */
DB_INIT_LOG | /* Initialize logging */
DB_INIT_MPOOL; /* Initialize the in-memory cache. */

ret = envp->open(envp, db_home_dir, env_flags, 9);
if (ret !=0) {
fprintf(stderr, "Error opening environment: %s\n",
db_strerror(ret));
goto err;

}

/* Initialize the DB handle */
ret = db_create(&dbp, envp, 0);
if (ret != 0) {
envp->err(envp, ret, "Database creation failed");

goto err;
}
db_flags = DB_CREATE | DB_AUTO_COMMIT;
ret = dbp->open(dbp, /* Pointer to the database */
NULL, /* Txn pointer */
file_name, /* File name */
NULL, /* Logical db name */

DB_BTREE, /* Database type (using btree) */
db_flags, /* Open flags */
0); /* File mode. Using defaults */
if (ret != 0) {
envp->err(envp, ret, "Database '%s' open failed",
file_name);
goto err;

err:
/* Close the database */
if (dbp !'= NULL) {
ret_c = dbp->close(dbp, 0);
if (ret_c !=0) {
envp->err(envp, ret_c, "Database close failed.");
ret = ret_c;

/* Close the environment */
if (envp != NULL) {
ret_c = envp->close(envp, 9);

5/11/2012 Using Transactions with DB Page 15

Library Version 11.2.5.3 Enabling Transactions

if (ret_c !=0) {
fprintf(stderr, "environment close failed: %s\n",
db_strerror(ret_c));
ret = ret_c;

}

return (ret == @ ? EXIT_SUCCESS : EXIT_FAILURE);

Note

Never close a database that has active transactions. Make sure all transactions are
resolved (either committed or aborted) before closing the database.

5/11/2012 Using Transactions with DB Page 16

Chapter 3. Transaction Basics

Once you have enabled transactions for your environment and your databases, you can use
them to protect your database operations. You do this by acquiring a transaction handle
and then using that handle for any database operation that you want to participate in that
transaction.

You obtain a transaction handle using the DB_ENV->txn_begin() method.

Once you have completed all of the operations that you want to include in the transaction,
you must commit the transaction using the DB_TXN->commit () method.

If, for any reason, you want to abandon the transaction, you abort it using DB_TXN->abort().

Any transaction handle that has been committed or aborted can no longer be used by your
application.

Finally, you must make sure that all transaction handles are either committed or aborted
before closing your databases and environment.

Note

If you only want to transaction protect a single database write operation, you can use
auto commit to perform the transaction administration. When you use auto commit,
you do not need an explicit transaction handle. See Auto Commit (page 22) for more
information.

For example, the following example opens a transactional-enabled environment and database,
obtains a transaction handle, and then performs a write operation under its protection. In the
event of any failure in the write operation, the transaction is aborted and the database is left
in a state as if no operations had ever been attempted in the first place.

#tinclude <stdio.h>
#tinclude <stdlib.h>

#tinclude "db.h"

int
main(void)
{
int ret, ret_c;
u_int32_t db_flags, env_flags;
DB *dbp;
DB_ENV *envp;
DBT key, data;
DB_TXN *txn;
const char *db_home_dir = "/tmp/myEnvironment";
const char *file_name = "mydb.db";
const char *keystr ="thekey";
const char *datastr = "thedata";

5/11/2012

Using Transactions with DB Page 17

Library Version 11.2.5.3 Transaction Basics

dbp = NULL;
envp = NULL;

/* Open the environment */
ret = db_env_create(&envp, 0);
if (ret !=0) {
fprintf(stderr, "Error creating environment handle: %s\n",
db_strerror(ret));
return (EXIT_FAILURE);

}

env_flags = DB_CREATE | /* Create the environment if it does
* not already exist. */
DB_INIT_TXN | /* Initialize transactions */
DB_INIT_LOCK | /* Initialize locking. */
DB_INIT_LOG | /* Initialize logging */
DB_INIT_MPOOL; /* Initialize the in-memory cache. */

ret = envp->open(envp, db_home_dir, env_flags, 9);
if (ret != 0) {
fprintf(stderr, "Error opening environment: %s\n",
db_strerror(ret));
goto err;

}

/* Initialize the DB handle */
ret = db_create(&dbp, envp, 9);
if (ret != 0) {
envp->err(envp, ret, "Database creation failed");

goto err;
}
db_flags = DB_CREATE | DB_AUTO_COMMIT;
/*

* Open the database. Note that we are using auto commit for the open,
* so the database is able to support transactions.

*/

ret = dbp->open(dbp, /* Pointer to the database */
NULL, /* Txn pointer */
file _name, /* File name */
NULL, /* Logical db name */

DB_BTREE, /* Database type (using btree) */
db_flags, /* Open flags */
9); /* File mode. Using defaults */
if (ret != 0) {
envp->err(envp, ret, "Database '%s' open failed",
file_name);
goto err;

5/11/2012 Using Transactions with DB Page 18

Library Version 11.2.5.3

Transaction Basics

err:

/* Prepare the DBTs */
memset (&key, 0, sizeof(DBT));
memset (&data, @, sizeof(DBT));

key.data = &keystr;

key.size = strlen(keystr) + 1;
data.data = &datastr;

data.size = strlen(datastr) + 1;

/* Get the txn handle */

txn = NULL;

ret = envp->txn_begin(envp, NULL, &txn, 0);

if (ret != 0) {
envp->err(envp, ret, "Transaction begin failed.");
goto err;

}

/*
* Perform the database write. If this fails, abort the transaction.
*/
ret = dbp->put(dbp, txn, &key, &data, 0);
if (ret != 0) {
envp->err(envp, ret, "Database put failed.");
txn->abort(txn);
goto err;

}

/*
* Commit the transaction. Note that the transaction handle
* can no longer be used.
*/
ret = txn->commit(txn, 0);
if (ret != 0) {
envp->err(envp, ret, "Transaction commit failed.");
goto err;

/* Close the database */
if (dbp != NULL) {
ret_c = dbp->close(dbp, 9);
if (ret_c !=0) {
envp->err(envp, ret_c, "Database close failed.");
ret = ret_c

5/11/2012

Using Transactions with DB Page 19

Library Version 11.2.5.3 Transaction Basics

/* Close the environment */
if (envp != NULL) {
ret_c = envp->close(envp, 9);
if (ret_c !=0) {
fprintf(stderr, "environment close failed: %s\n",
db_strerror(ret_c));
ret = ret_c;

}

return (ret == @ ? EXIT_SUCCESS : EXIT_FAILURE);
}

Committing a Transaction

In order to fully understand what is happening when you commit a transaction, you must
first understand a little about what DB is doing with the logging subsystem. Logging causes
all database write operations to be identified in logs, and by default these logs are backed
by files on disk. These logs are used to restore your databases in the event of a system or
application failure, so by performing logging, DB ensures the integrity of your data.

Moreover, DB performs write-ahead logging. This means that information is written to the logs
before the actual database is changed. This means that all write activity performed under
the protection of the transaction is noted in the log before the transaction is committed. Be
aware, however, that database maintains logs in-memory. If you are backing your logs on disk,
the log information will eventually be written to the log files, but while the transaction is on-
going the log data may be held only in memory.

When you commit a transaction, the following occurs:

« A commit record is written to the log. This indicates that the modifications made by the
transaction are now permanent. By default, this write is performed synchronously to disk so
the commit record arrives in the log files before any other actions are taken.

« Any log information held in memory is (by default) synchronously written to disk. Note that
this requirement can be relaxed, depending on the type of commit you perform. See Non-
Durable Transactions (page 21) for more information. Also, if you are maintaining your
logs entirely in-memory, then this step will of course not be taken. To configure your logging
system for in-memory usage, see Configuring In-Memory Logging (page 81).

« All locks held by the transaction are released. This means that read operations performed
by other transactions or threads of control can now see the modifications without resorting
to uncommitted reads (see Reading Uncommitted Data (page 49) for more information).

To commit a transaction, you simply call DB_TXN->commit().

Notice that committing a transaction does not necessarily cause data modified in your memory
cache to be written to the files backing your databases on disk. Dirtied database pages are
written for a number of reasons, but a transactional commit is not one of them. The following
are the things that can cause a dirtied database page to be written to the backing database
file:

5/11/2012 Using Transactions with DB Page 20

Library Version 11.2.5.3 Transaction Basics

» Checkpoints.

Checkpoints cause all dirtied pages currently existing in the cache to be written to disk, and
a checkpoint record is then written to the logs. You can run checkpoints explicitly. For more
information on checkpoints, see Checkpoints (page 64).

e Cache is full.

If the in-memory cache fills up, then dirtied pages might be written to disk in order to free
up space for other pages that your application needs to use. Note that if dirtied pages are
written to the database files, then any log records that describe how those pages were
dirtied are written to disk before the database pages are written.

Be aware that because your transaction commit caused database modifications recorded

in your logs to be forced to disk, your modifications are by default "persistent” in that they
can be recovered in the event of an application or system failure. However, recovery time is
gated by how much data has been modified since the last checkpoint, so for applications that
perform a lot of writes, you may want to run a checkpoint with some frequency.

Note that once you have committed a transaction, the transaction handle that you used for
the transaction is no longer valid. To perform database activities under the control of a new
transaction, you must obtain a fresh transaction handle.

Non-Durable Transactions

As previously noted, by default transaction commits are durable because they cause the
modifications performed under the transaction to be synchronously recorded in your on-disk
log files. However, it is possible to use non-durable transactions.

You may want non-durable transactions for performance reasons. For example, you might

be using transactions simply for the isolation guarantee. In this case, you might not want a
durability guarantee and so you may want to prevent the disk 1/0 that normally accompanies a
transaction commit.

There are several ways to remove the durability guarantee for your transactions:

» Specify DB_TXN_NOSYNC using the DB_ENV->set_flags() method. This causes DB to not
synchronously force any log data to disk upon transaction commit. That is, the modifications
are held entirely in the in-memory cache and the logging information is not forced to the
filesystem for long-term storage. Note, however, that the logging data will eventually make
it to the filesystem (assuming no application or OS crashes) as a part of DB's management of
its logging buffers and/or cache.

This form of a commit provides a weak durability guarantee because data loss can occur due
to an application or OS crash.

This behavior is specified on a per-environment handle basis. In order for your application
to exhibit consistent behavior, you need to specify this flag for all of the environment
handles used in your application.

You can achieve this behavior on a transaction by transaction basis by specifying
DB_TXN_NOSYNC to the DB_TXN->commit() method.

5/11/2012

Using Transactions with DB Page 21

Library Version 11.2.5.3 Transaction Basics

« Specify DB_TXN_WRITE_NOSYNC using the DB_ENV->set_flags() method. This causes
logging data to be synchronously written to the OS's file system buffers upon transaction
commit. The data will eventually be written to disk, but this occurs when the operating
system chooses to schedule the activity; the transaction commit can complete successfully
before this disk 1/0 is performed by the OS.

This form of commit protects you against application crashes, but not against OS crashes.
This method offers less room for the possibility of data loss than does DB_TXN_NOSYNC.

This behavior is specified on a per-environment handle basis. In order for your application
to exhibit consistent behavior, you need to specify this flag for all of the environment
handles used in your application.

« Maintain your logs entirely in-memory. In this case, your logs are never written to disk. The
result is that you lose all durability guarantees. See Configuring In-Memory Logging (page
81) for more information.

Aborting a Transaction

When you abort a transaction, all database modifications performed under the protection of
the transaction are discarded, and all locks currently held by the transaction are released.
In this event, your data is simply left in the state that it was in before the transaction began
performing data modifications.

Once you have aborted a transaction, the transaction handle that you used for the transaction
is no longer valid. To perform database activities under the control of a new transaction, you
must obtain a fresh transactional handle.

To abort a transaction, call DB_TXN->abort().

Auto Commit

While transactions are frequently used to provide atomicity to multiple database operations,
it is sometimes necessary to perform a single database operation under the control of a
transaction. Rather than force you to obtain a transaction, perform the single write operation,
and then either commit or abort the transaction, you can automatically group this sequence of
events using auto commit.

To use auto commit:

1. Open your environment and your databases so that they support transactions. See
Enabling Transactions (page 6) for details.

Note that frequently auto commit is used for the environment or database open. To use
auto commit for either your environment or database open, specify DB_AUTO_COMMIT to
the DB_ENV->set_flags() or DB->open() method. If you specify auto commit for the
environment open, then you do not need to also specify auto commit for the database
open.

2. Do not provide a transactional handle to the method that is performing the database
write operation.

5/11/2012

Using Transactions with DB Page 22

Library Version 11.2.5.3 Transaction Basics

Note that auto commit is not available for cursors. You must always open your cursor
using a transaction if you want the cursor's operations to be transactional protected. See
Transactional Cursors (page 26) for details on using transactional cursors.

Note

Never have more than one active transaction in your thread at a time. This is
especially a problem if you mix an explicit transaction with another operation that
uses auto commit. Doing so can result in undetectable deadlocks.

For example, the following uses auto commit to perform the database write operation:

#tinclude <stdio.h>
#tinclude <stdlib.h>

#tinclude "db.h"

int

main(void)

{
int ret, ret_c;
u_int32_t db_flags, env_flags;
DB *dbp;
DB_ENV *envp;
DBT key, data;
const char *db_home_dir = "/tmp/myEnvironment";
const char *file_name = "mydb.db";
const char *keystr ="thekey";
const char *datastr = "thedata";

dbp = NULL;
envp = NULL;

/* Open the environment */
ret = db_env_create(&envp, 0);
if (ret != 0) {
fprintf(stderr, "Error creating environment handle: %s\n",
db_strerror(ret));
return (EXIT_FAILURE);

}

env_flags = DB_CREATE | /* Create the environment if it does
* not already exist. */
DB_INIT_TXN | /* Initialize transactions */
DB_INIT_LOCK | /* Initialize locking. */
DB_INIT_LOG | /* Initialize logging */
DB_INIT_MPOOL; /* Initialize the in-memory cache. */

ret = envp->open(envp, db_home_dir, env_flags, 9);
if (ret !=0) {

5/11/2012

Using Transactions with DB Page 23

Library Version 11.2.5.3

Transaction Basics

fprintf(stderr, "Error opening environment: %s\n",
db_strerror(ret));
goto err;

}

/* Initialize the DB handle */
ret = db_create(&dbp, envp, 9);
if (ret !=0) {
envp->err(envp, ret, "Database creation failed");

goto err;
}
db_flags = DB_CREATE | DB_AUTO_COMMIT;
/*

* Open the database. Note that we are using auto commit for the open,
* so the database is able to support transactions.

*/

ret = dbp->open(dbp, /* Pointer to the database */
NULL, /* Txn pointer */
file _name, /* File name */
NULL, /* Logical db name */

DB_BTREE, /* Database type (using btree) */
db_flags, /* Open flags */
9); /* File mode. Using defaults */
if (ret != 0) {
envp->err(envp, ret, "Database '%s' open failed",
file_name);
goto err;

}

/* Prepare the DBTs */
memset (&key, @, sizeof(DBT));
memset (&data, @, sizeof(DBT));

key.data = &keystr;

key.size = strlen(keystr) + 1;
data.data = &datastr;

data.size = strlen(datastr) + 1;

/*
* Perform the database write. A txn handle is not provided, but the
* database support auto commit, so auto commit is used for the write.
*/
ret = dbp->put(dbp, NULL, &key, &data, 9);
if (ret != 0) {
envp->err(envp, ret, "Database put failed.");
goto err;

5/11/2012

Using Transactions with DB Page 24

Library Version 11.2.5.3 Transaction Basics

err:
/* Close the database */
if (dbp != NULL) {
ret_c = dbp->close(dbp, 9);
if (ret_c !=0) {
envp->err(envp, ret_c, "Database close failed.");
ret = ret_c

/* Close the environment */
if (envp != NULL) {
ret_c = envp->close(envp, 9);
if (ret_c !=0) {
fprintf(stderr, "environment close failed: %s\n",
db_strerror(ret_c));
ret = ret_c;

}

return (ret == @ ? EXIT_SUCCESS : EXIT_FAILURE);
}

Nested Transactions

A nested transaction is used to provide a transactional guarantee for a subset of operations
performed within the scope of a larger transaction. Doing this allows you to commit and abort
the subset of operations independently of the larger transaction.

The rules to the usage of a nested transaction are as follows:

While the nested (child) transaction is active, the parent transaction may not perform any
operations other than to commit or abort, or to create more child transactions.

Committing a nested transaction has no effect on the state of the parent transaction. The
parent transaction is still uncommitted. However, the parent transaction can now see any
modifications made by the child transaction. Those modifications, of course, are still hidden
to all other transactions until the parent also commits.

Likewise, aborting the nested transaction has no effect on the state of the parent
transaction. The only result of the abort is that neither the parent nor any other
transactions will see any of the database modifications performed under the protection of
the nested transaction.

If the parent transaction commits or aborts while it has active children, the child
transactions are resolved in the same way as the parent. That is, if the parent aborts, then
the child transactions abort as well. If the parent commits, then whatever modifications
have been performed by the child transactions are also committed.

5/11/2012

Using Transactions with DB Page 25

Library Version 11.2.5.3 Transaction Basics

» The locks held by a nested transaction are not released when that transaction commits.
Rather, they are now held by the parent transaction until such a time as that parent
commits.

« Any database modifications performed by the nested transaction are not visible outside
of the larger encompassing transaction until such a time as that parent transaction is
committed.

» The depth of the nesting that you can achieve with nested transaction is limited only by
memory.

To create a nested transaction, simply pass the parent transaction's handle when you created
the nested transaction's handle. For example:

/* parent transaction */

DB_TXN *parent_txn, *child_txn;

ret = envp->txn_begin(envp, NULL, &parent_txn, 0);

/* child transaction */

ret = envp->txn_begin(envp, parent_txn, &child_txn, 0);

Transactional Cursors

You can transaction-protect your cursor operations by specifying a transaction handle at the
time that you create your cursor. Beyond that, you do not ever provide a transaction handle
directly to a cursor method.

Note that if you transaction-protect a cursor, then you must make sure that the cursor is
closed before you either commit or abort the transaction. For example:

#include <stdio.h>

#include <stdlib.h>

#tinclude "db.h"

int
main(void)
{
DBT key, data;
DBC *cursorp;
DB_TXN *txn = NULL;
int ret, c_ret;
char *replacementString = "new string";

/* environment and db handle creation omitted */

/* Get the txn handle */
txn = NULL;
ret = envp->txn_begin(envp, NULL, &txn, 0);
if (ret !=0) {
envp->err(envp, ret, "Transaction begin failed.");

5/11/2012

Using Transactions with DB Page 26

Library Version 11.2.5.3

Transaction Basics

err:

goto err;

}

/* Get the cursor, supply the txn handle at that time */

ret = dbp->cursor(dbp, txn, &cursorp, 0);

if (ret !=0) {

envp->err(envp, ret, "Cursor open failed.");

txn->abort(txn);
goto err;

}
/*

* Now use the cursor. Note that we do not supply any txn handles to

* these methods.
*/
/* Prepare the DBTs */
memset (&key, 0, sizeof(DBT));
memset (&data, @, sizeof(DBT));
while (cursor->get(&key, &data, DB_NEXT)

data->data = (void *)replacementString;
data->size = (strlen(replacementString)

0) {

+ 1) * sizeof(char);

c_ret = cursor->put(cursor, &ey, &data, DB_CURRENT);

if (c_ret !=0) {

/* abort the transaction and goto error */
envp->err(envp, ret, "Cursor put failed.");

cursorp->close(cursorp);
cursorp = NULL;
txn->abort(txn);

goto err;

}
/*

* Commit the transaction. Note that the transaction handle

* can no longer be used.

*/

ret = cursorp->close(cursorp);
if (ret != 0) {

envp->err(envp, ret, "Cursor close failed.");

txn->abort(txn);

goto err;
}
ret = txn->commit(txn, 9);
if (ret != 0) {

envp->err(envp, ret, "Transaction commit failed.");

goto err;

5/11/2012

Using Transactions with DB

Page 27

Library Version 11.2.5.3 Transaction Basics

/* Close the cursor (if the handle is not NULL)
* and perform whatever other cleanup is required */

/* Close the database */

/* Close the environment */

if (c_ret = 0)
ret = c_ret;

return (ret == @ ? EXIT_SUCCESS : EXIT_FAILURE);
}

Secondary Indices with Transaction Applications

You can use transactions with your secondary indices so long as you open the secondary index
so that it supports transactions (that is, you wrap the database open in a transaction, or

use auto commit, in the same way as when you open a primary transactional database). In
addition, you must make sure that when you associate the secondary index with the primary
database, the association is performed using a transaction. The easiest thing to do here is to
simply specify DB_AUTO_COMMIT when you perform the association.

All other aspects of using secondary indices with transactions are identical to using secondary
indices without transactions. In addition, transaction-protecting cursors opened against
secondary indices is performed in exactly the same way as when you use transactional cursors
against a primary database. See Transactional Cursors (page 26) for details.

Note that when you use transactions to protect your database writes, your secondary indices
are protected from corruption because updates to the primary and the secondaries are
performed in a single atomic transaction.

For example:
#include <db.h>

DB_ENV *envp; /* Environment pointer */

DB *dbp, *sdbp; /* Primary and secondary DB handles */
u_int32_t flags; /* Primary database open flags */

int ret; /* Function return value */

/* Environment and primary database opens omitted */

/* Secondary */
ret = db_create(&sdbp, envp, 0);
if (ret !=0) {

/* Error handling goes here */

5/11/2012

Using Transactions with DB Page 28

Library Version 11.2.5.3 Transaction Basics

¥
/* open the secondary database */
ret = sdbp->open(sdbp, /* DB structure pointer */

NULL, /* Transaction pointer */
"my_secdb.db", /* On-disk file that holds the
* database. */

NULL, /* Optional logical database name */
DB_BTREE, /* Database access method */
DB_AUTO_COMMIT, /* Open flags */

9); /* File mode (using defaults) */

if (ret != 0) {
/* Error handling goes here */

}
/* Now associate the secondary to the primary */
dbp->associate(dbp, /* Primary database */
NULL, /* TXN id */
sdbp, /* Secondary database */

get_sales _rep, /* Callback used for key creation. This
* is described in the Getting Started
* guide. */

DB_AUTO_COMMIT);/* Flags */

Configuring the Transaction Subsystem

Most of the configuration activities that you need to perform for your transactional DB
application will involve the locking and logging subsystems. See Concurrency (page 32) and
Managing DB Files (page 64) for details.

However, there are a couple of things that you can do to configure your transaction subsystem
directly. These things are:

 Configure the maximum number of simultaneous transactions needed by your application.
In general, you should not need to do this unless you use deeply nested transactions or
you have many threads all of which have active transactions. In addition, you may need to
configure a higher maximum number of transactions if you are using snapshot isolation. See
Snapshot Isolation Transactional Requirements (page 54) for details.

By default, your application can support 20 active transactions.
You can set the maximum number of simultaneous transactions supported by your
application using the DB_ENV->set_tx_max() method. Note that this method must be

called before the environment has been opened.

If your application has exceeded this maximum value, then any attempt to begin a new
transaction will fail.

This value can also be set using the DB_CONFIG file's set_tx_max parameter. Remember
that the DB_CONFIG must reside in your environment home directory.

5/11/2012

Using Transactions with DB Page 29

Library Version 11.2.5.3 Transaction Basics

» Configure the timeout value for your transactions. This value represents the longest

period of time a transaction can be active. Note, however, that transaction timeouts are
checked only when DB examines its lock tables for blocked locks (see Locks, Blocks, and
Deadlocks (page 33) for more information). Therefore, a transaction's timeout can have
expired, but the application will not be notified until DB has a reason to examine its lock
tables.

Be aware that some transactions may be inappropriately timed out before the transaction
has a chance to complete. You should therefore use this mechanism only if you know your
application might have unacceptably long transactions and you want to make sure your
application will not stall during their execution. (This might happen if, for example, your
transaction blocks or requests too much data.)

Note that by default transaction timeouts are set to 0 seconds, which means that they never
time out.

To set the maximum timeout value for your transactions, use the DB_ENV->set_timeout()
method. This method configures the entire environment; not just the handle used to set the
configuration. Further, this value may be set at any time during the application’s lifetime.

This value can also be set using the DB_CONFIG file's set_txn_timeout parameter.

For example:

#tinclude <stdio.h>
#tinclude <stdlib.h>

#include "db.h"

int
main(void)
{
int ret, ret_c;
u_int32_t db_flags, env_flags;
DB *dbp;
DB_ENV *envp;
DB_TXN *txn;

const char *db_home_dir = "/tmp/myEnvironment”;
const char *file _name = "mydb.db";
envp = NULL;

/* Open the environment */
ret = db_env_create(&envp, 0);
if (ret !'=0) {
fprintf(stderr, "Error creating environment handle: %s\n",
db_strerror(ret));
return (EXIT_FAILURE);

}

env_flags = DB_CREATE | /* If the environment does not

5/11/2012

Using Transactions with DB Page 30

Library Version 11.2.5.3 Transaction Basics

* exist, create it. */
DB_INIT_LOCK | /* Initialize locking */
DB_INIT_LOG | /* Initialize logging */
DB_INIT_MPOOL | /* Initialize the cache */
|

DB_THREAD /* Free-thread the env handle. */
DB_INIT_TXN; /* Initialize transactions */
/*
* Configure a maximum transaction timeout of 1 second.
*/

ret = envp->set_timeout(envp, DB_SET_TXN_TIMEOUT, 1000000);
if (ret != 0) {
fprintf(stderr, "Error setting txn timeout: %s\n",
db_strerror(ret));

goto err;
}
/*
* Configure 40 maximum transactions.
*/

ret = envp->set_tx_max(envp, 490);
if (ret != 0) {
fprintf(stderr, "Error setting max txns: %s\n",
db_strerror(ret));
goto err;

}

ret = envp->open(envp, db_home_dir, env_flags, 9);
if (ret != 0) {
fprintf(stderr, "Error opening environment: %s\n",
db_strerror(ret));
goto err;

* From here, you open your databases, proceed with your
* database operations, and respond to deadlocks as
* is normal (omitted for brevity).

5/11/2012 Using Transactions with DB Page 31

Chapter 4. Concurrency

DB offers a great deal of support for multi-threaded and multi-process applications even when
transactions are not in use. Many of DB's handles are thread-safe, or can be made thread-safe
by providing the appropriate flag at handle creation time, and DB provides a flexible locking
subsystem for managing databases in a concurrent application. Further, DB provides a robust
mechanism for detecting and responding to deadlocks . All of these concepts are explored in
this chapter.

Before continuing, it is useful to define a few terms that will appear throughout this chapter:

» Thread of control

Refers to a thread that is performing work in your application. Typically, in this book that
thread will be performing DB operations.

Note that this term can also be taken to mean a separate process that is performing work —
DB supports multi-process operations on your databases.

Also, DB is agnostic with regard to the type or style of threads in use in your application. So
if you are using multiple threads (as opposed to multiple processes) to perform concurrent
database access, you are free to use whatever thread package is best for your platform and
application. That said, this manual will use pthreads for its threading examples because
those have the best chance of being supported across a large range of platforms.

Locking

When a thread of control obtains access to a shared resource, it is said to be locking that
resource. Note that DB supports both exclusive and non-exclusive locks. See Locks (page
33) for more information.

Free-threaded

Data structures and objects are free-threaded if they can be shared across threads of
control without any explicit locking on the part of the application. Some books, libraries,
and programming languages may use the term thread-safe for data structures or objects

that have this characteristic. The two terms mean the same thing.

For a description of free-threaded DB objects, see Which DB Handles are Free-
Threaded (page 33).

Blocked

When a thread cannot obtain a lock because some other thread already holds a lock on that
object, the lock attempt is said to be blocked. See Blocks (page 35) for more information.

Deadlock

Occurs when two or more threads of control attempt to access conflicting resource in such a
way as none of the threads can any longer make further progress.

5/11/2012

Using Transactions with DB Page 32

Library Version 11.2.5.3 Concurrency

For example, if Thread A is blocked waiting for a resource held by Thread B, while at the
same time Thread B is blocked waiting for a resource held by Thread A, then neither thread
can make any forward progress. In this situation, Thread A and Thread B are said to be
deadlocked.

For more information, see Deadlocks (page 38).

Which DB Handles are Free-Threaded

The following describes to what extent and under what conditions individual handles are free-
threaded.

« DB_ENV

Free-threaded so long as the DB_THREAD flag is provided to the environment open()
method.

DB

Free-threaded so long as the DB_THREAD flag is provided to the database open() method, or
if the database is opened using a free-threaded environment handle.

e DBC

Cursors are not free-threaded. However, they can be used by multiple threads of control so
long as the application serializes access to the handle.

« DB_TXN

Access must be serialized by the application across threads of control.

Locks, Blocks, and Deadlocks

Locks

It is important to understand how locking works in a concurrent application before continuing
with a description of the concurrency mechanisms DB makes available to you. Blocking and
deadlocking have important performance implications for your application. Consequently,
this section provides a fundamental description of these concepts, and how they affect DB
operations.

When one thread of control wants to obtain access to an object, it requests a lock for that
object. This lock is what allows DB to provide your application with its transactional isolation
guarantees by ensuring that:

» no other thread of control can read that object (in the case of an exclusive lock), and

» no other thread of control can modify that object (in the case of an exclusive or non-
exclusive lock).

5/11/2012

Using Transactions with DB Page 33

Library Version 11.2.5.3 Concurrency

Lock Resources

Types of Locks

When locking occurs, there are conceptually three resources in use:
1. The locker.

This is the thing that holds the lock. In a transactional application, the locker is a
transaction handle. For non-transactional operations, the locker is a cursor or a DB
handle.

2. The lock.

This is the actual data structure that locks the object. In DB, a locked object structure in
the lock manager is representative of the object that is locked.

3. The locked object.

The thing that your application actually wants to lock. In a DB application, the locked
object is usually a database page, which in turn contains multiple database entries (key
and data). However, for Queue databases, individual database records are locked.

You can configure how many total lockers, locks, and locked objects your application is
allowed to support. See Configuring the Locking Subsystem (page 40) for details.

The following figure shows a transaction handle, Txn A, that is holding a lock on database
page 002. In this graphic, Txn A is the locker, and the locked object is page 002. Only a single
lock is in use in this operation.

N\
Txn A
N\
AN
AN
4\

DB applications support both exclusive and non-exclusive locks. Exclusive locks are granted
when a locker wants to write to an object. For this reason, exclusive locks are also sometimes
called write locks.

An exclusive lock prevents any other locker from obtaining any sort of a lock on the object.
This provides isolation by ensuring that no other locker can observe or modify an exclusively
locked object until the locker is done writing to that object.

Non-exclusive locks are granted for read-only access. For this reason, non-exclusive locks are
also sometimes called read locks. Since multiple lockers can simultaneously hold read locks on
the same object, read locks are also sometimes called shared locks.

5/11/2012

Using Transactions with DB Page 34

Library Version 11.2.5.3 Concurrency

Lock Lifetime

Blocks

A non-exclusive lock prevents any other locker from modifying the locked object while

the locker is still reading the object. This is how transactional cursors are able to achieve
repeatable reads; by default, the cursor's transaction holds a read lock on any object that the
cursor has examined until such a time as the transaction is committed or aborted. You can
avoid these read locks by using snapshot isolation. See Using Snapshot Isolation (page 54)

for details.

In the following figure, Txn A and Txn B are both holding read locks on page 002, while Txn
C is holding a write lock on page 003:

N\
Txn A

N\
Txn B

A locker holds its locks until such a time as it does not need the lock any more. What this
means is:

1. A transaction holds any locks that it obtains until the transaction is committed or
aborted.

2. All non-transaction operations hold locks until such a time as the operation is completed.
For cursor operations, the lock is held until the cursor is moved to a new position or
closed.

Simply put, a thread of control is blocked when it attempts to obtain a lock, but that attempt
is denied because some other thread of control holds a conflicting lock. Once blocked, the
thread of control is temporarily unable to make any forward progress until the requested lock
is obtained or the operation requesting the lock is abandoned.

Be aware that when we talk about blocking, strictly speaking the thread is not what is
attempting to obtain the lock. Rather, some object within the thread (such as a cursor) is
attempting to obtain the lock. However, once a locker attempts to obtain a lock, the entire
thread of control must pause until the lock request is in some way resolved.

For example, if Txn A holds a write lock (an exclusive lock) on object 002, then if Txn B tries
to obtain a read or write lock on that object, the thread of control in which Txn B is running
is blocked:

5/11/2012

Using Transactions with DB Page 35

Library Version 11.2.5.3 Concurrency

N\
Txn A

001
N\ N

Txn B \
< __ \
'y

002 003

However, if Txn A only holds a read lock (a shared lock) on object 802, then only those
handles that attempt to obtain a write lock on that object will block.

N\
Txn A

~
~

/-\ Read locks ™
acquired ~

/\ ~ /Wr'ite lock

Txn C blocked

Note

The previous description describes DB's default behavior when it cannot obtain a lock.
It is possible to configure DB transactions so that they will not block. Instead, if a lock
is unavailable, the application is immediately notified of a deadlock situation. See No
Wait on Blocks (page 61) for more information.

Blocking and Application Performance

Multi-threaded and multi-process applications typically perform better than simple single-
threaded applications because the application can perform one part of its workload (updating
a database record, for example) while it is waiting for some other lengthy operation to
complete (performing disk or network 1/0, for example). This performance improvement is
particularly noticeable if you use hardware that offers multiple CPUs, because the threads and
processes can run simultaneously.

That said, concurrent applications can see reduced workload throughput if their threads of
control are seeing a large amount of lock contention. That is, if threads are blocking on lock
requests, then that represents a performance penalty for your application.

5/11/2012

Using Transactions with DB Page 36

Library Version 11.2.5.3 Concurrency

Consider once again the previous diagram of a blocked write lock request. In that diagram,
Txn C cannot obtain its requested write lock because Txn A and Txn B are both already
holding read locks on the requested object. In this case, the thread in which Txn C is running
will pause until such a time as Txn C either obtains its write lock, or the operation that is
requesting the lock is abandoned. The fact that Txn C's thread has temporarily halted all
forward progress represents a performance penalty for your application.

Moreover, any read locks that are requested while Txn C is waiting for its write lock will also
block until such a time as Txn C has obtained and subsequently released its write lock.

Avoiding Blocks

Reducing lock contention is an important part of performance tuning your concurrent DB
application. Applications that have multiple threads of control obtaining exclusive (write)
locks are prone to contention issues. Moreover, as you increase the numbers of lockers and as
you increase the time that a lock is held, you increase the chances of your application seeing
lock contention.

As you are designing your application, try to do the following in order to reduce lock
contention:

« Reduce the length of time your application holds locks.

Shorter lived transactions will result in shorter lock lifetimes, which will in turn help to
reduce lock contention.

In addition, by default transactional cursors hold read locks until such a time as the
transaction is completed. For this reason, try to minimize the time you keep transactional
cursors opened, or reduce your isolation levels - see below.

« If possible, access heavily accessed (read or write) items toward the end of the transaction.
This reduces the amount of time that a heavily used page is locked by the transaction.

« Reduce your application’s isolation guarantees.

By reducing your isolation guarantees, you reduce the situations in which a lock can block
another lock. Try using uncommitted reads for your read operations in order to prevent a
read lock being blocked by a write lock.

In addition, for cursors you can use degree 2 (read committed) isolation, which causes
the cursor to release its read locks as soon as it is done reading the record (as opposed to
holding its read locks until the transaction ends).

Be aware that reducing your isolation guarantees can have adverse consequences for

your application. Before deciding to reduce your isolation, take care to examine your
application’s isolation requirements. For information on isolation levels, see Isolation (page
47).

« Use snapshot isolation for read-only threads.

5/11/2012 Using Transactions with DB Page 37

Library Version 11.2.5.3 Concurrency

Snapshot isolation causes the transaction to make a copy of the page on which it is holding
a lock. When a reader makes a copy of a page, write locks can still be obtained for the
original page. This eliminates entirely read-write contention.

Snapshot isolation is described in Using Snapshot Isolation (page 54).

 Consider your data access patterns.
Depending on the nature of your application, this may be something that you can not do
anything about. However, if it is possible to create your threads such that they operate only

on non-overlapping portions of your database, then you can reduce lock contention because
your threads will rarely (if ever) block on one another's locks.

Note

It is possible to configure DB's transactions so that they never wait on blocked
lock requests. Instead, if they are blocked on a lock request, they will notify the
application of a deadlock (see the next section).

You configure this behavior on a transaction by transaction basis. See No Wait on
Blocks (page 61) for more information.

Deadlocks
A deadlock occurs when two or more threads of control are blocked, each waiting on a
resource held by the other thread. When this happens, there is no possibility of the threads
ever making forward progress unless some outside agent takes action to break the deadlock.
For example, if Txn A is blocked by Txn B at the same time Txn B is blocked by Txn A then
the threads of control containing Txn A and Txn B are deadlocked; neither thread can make
any forward progress because neither thread will ever release the lock that is blocking the
other thread.
N\
Txn A blocked
Txn A by Txn B
N ~
N
A N7
Txn B | N
~ N
Txn B blocked ~—~
by Txn A — \‘
Txn A and Txn B are deadlocked
5/11/2012 Using Transactions with DB Page 38

Library Version 11.2.5.3 Concurrency

When two threads of control deadlock, the only solution is to have a mechanism external
to the two threads capable of recognizing the deadlock and notifying at least one thread
that it is in a deadlock situation. Once notified, a thread of control must abandon the
attempted operation in order to resolve the deadlock. DB's locking subsystem offers a
deadlock notification mechanism. See Configuring Deadlock Detection (page 42) for more
information.

Note that when one locker in a thread of control is blocked waiting on a lock held by another
locker in that same thread of the control, the thread is said to be self-deadlocked.

Deadlock Avoidance

The things that you do to avoid lock contention also help to reduce deadlocks (see Avoiding
Blocks (page 37)). Beyond that, you can also do the following in order to avoid deadlocks:

« Never have more than one active transaction at a time in a thread. A common cause of this
is for a thread to be using auto-commit for one operation while an explicit transaction is in
use in that thread at the same time.

» Make sure all threads access data in the same order as all other threads. So long as threads
lock database pages in the same basic order, there is no possibility of a deadlock (threads
can still block, however).

Be aware that if you are using secondary databases (indexes), it is not possible to obtain
locks in a consistent order because you cannot predict the order in which locks are obtained
in secondary databases. If you are writing a concurrent application and you are using
secondary databases, you must be prepared to handle deadlocks.

« If you are using BTrees in which you are constantly adding and then deleting data, turn
Btree reverse split off. See Reverse BTree Splits (page 61) for more information.

» Declare a read/modify/write lock for those situations where you are reading a record in
preparation of modifying and then writing the record. Doing this causes DB to give your
read operation a write lock. This means that no other thread of control can share a read
lock (which might cause contention), but it also means that the writer thread will not
have to wait to obtain a write lock when it is ready to write the modified data back to the
database.

For information on declaring read/modify/write locks, see Read/Modify/Write (page 60).

The Locking Subsystem

In order to allow concurrent operations, DB provides the locking subsystem. This subsystem
provides inter- and intra- process concurrency mechanisms. It is extensively used by DB
concurrent applications, but it can also be generally used for non-DB resources.

This section describes the locking subsystem as it is used to protect DB resources. In
particular, issues on configuration are examined here. For information on using the locking
subsystem to manage non-DB resources, see the Berkeley DB Programmer's Reference Guide.

5/11/2012 Using Transactions with DB Page 39

Library Version 11.2.5.3 Concurrency

Configuring the Locking Subsystem

You initialize the locking subsystem by specifying DB_INIT_LOCK to the DB_ENV->open()
method.

Before opening your environment, you can configure various values for your locking
subsystem. Note that these limits can only be configured before the environment is opened.
Also, these methods configure the entire environment, not just a specific environment handle.

Finally, each bullet below identifies the DB_CONFIG file parameter that can be used to specify
the specific locking limit. If used, these DB_CONFIG file parameters override any value that
you might specify using the environment handle.

The limits that you can configure are as follows:

» The number of lockers supported by the environment. This value is used by the environment
when it is opened to estimate the amount of space that it should allocate for various
internal data structures. By default, 1,000 lockers are supported.

To configure this value, use the DB_ENV->set _memory_init() method to configure the
DB_MEM_LOCKER structure.

As an alternative to this method, you can configure this value using the DB_CONFIG file's
set_lk_max_lockers parameter.

» The number of locks supported by the environment. By default, 1,000 locks are supported.

To configure this value, use the DB_ENV->set _memory_init() method to configure the
DB_MEM_LOCK structure.

As an alternative to this method, you can configure this value using the DB_CONFIG file's
set_1k_max_locks parameter.

» The number of locked objects supported by the environment. By default, 1,000 objects can
be locked.

To configure this value, use the DB_ENV->set _memory_init() method to configure the
DB_MEM_LOCKOBIJECT structure.

As an alternative to this method, you can configure this value using the DB_CONFIG file's
set_1lk_max_objects parameter.

For a definition of lockers, locks, and locked objects, see Lock Resources (page 34).

For example, to configure the number of locks that your environment can use:
#tinclude <stdio.h>
#tinclude <stdlib.h>

#include "db.h"

int
main(void)

5/11/2012 Using Transactions with DB Page 40

Library Version 11.2.5.3 Concurrency
{
int ret, ret_c;
u_int32_t env_flags;
DB_ENV *envp;
const char *db_home_dir = "/tmp/myEnvironment";
envp = NULL;
/* Open the environment */
ret = db_env_create(&envp, 0);
if (ret != 0) {
fprintf(stderr, "Error creating environment handle: %s\n",
db_strerror(ret));
return (EXIT_FAILURE);
}
env_flags = DB_CREATE | /* If the environment does not
* exist, create it. */
DB_INIT_LOCK | /* Initialize locking */
DB_INIT_LOG | /* Initialize logging */
DB_INIT_MPOOL | /* Initialize the cache */
DB_THREAD | /* Free-thread the env handle.
DB_INIT_TXN; /* Initialize transactions */
/* Configure max locks */
ret = envp->set_memory_init(envp, DB_MEM_LOCK, 5000);
if (ret != 0) {
fprintf(stderr, "Error configuring locks: %s\n",
db_strerror(ret));
goto err;
}
/* Open the environment. */
ret = envp->open(envp, db_home_dir, env_flags, 9);
if (ret != 0) {
fprintf(stderr, "Error opening environment: %s\n",
db_strerror(ret));
goto err;
}
err:
/* Close the environment */
if (envp != NULL) {
ret_c = envp->close(envp, 9);
if (ret_c !=0) {
fprintf(stderr, "environment close failed: %s\n",
db_strerror(ret_c));
ret = ret_c;
}
5/11/2012 Using Transactions with DB Page 41

Library Version 11.2.5.3

Concurrency

}

return (ret == @ ? EXIT_SUCCESS : EXIT_FAILURE);

Configuring Deadlock Detection

In order for DB to know that a deadlock has occurred, some mechanism must be used to
perform deadlock detection. There are three ways that deadlock detection can occur:

1.

Allow DB to internally detect deadlocks as they occur.

To do this, you use DB_ENV->set_lk_detect(). This method causes DB to walk its
internal lock table looking for a deadlock whenever a lock request is blocked. This
method also identifies how DB decides which lock requests are rejected when deadlocks
are detected. For example, DB can decide to reject the lock request for the transaction
that has the most number of locks, the least nhumber of locks, holds the oldest lock, holds
the most number of write locks, and so forth (see the API reference documentation for a
complete list of the lock detection policies).

You can call this method at any time during your application’s lifetime, but typically it is
used before you open your environment.

Note that how you want DB to decide which thread of control should break a deadlock
is extremely dependent on the nature of your application. It is not unusual for some
performance testing to be required in order to make this determination. That said,

a transaction that is holding the most number of locks is usually indicative of the
transaction that has performed the most amount of work. Frequently you will not want
a transaction that has performed a lot of work to abandon its efforts and start all over
again. It is not therefore uncommon for application developers to initially select the
transaction with the minimum number of write locks to break the deadlock.

Using this mechanism for deadlock detection means that your application will never have
to wait on a lock before discovering that a deadlock has occurred. However, walking the
lock table every time a lock request is blocked can be expensive from a performance
perspective.

Use a dedicated thread or external process to perform deadlock detection. Note that this
thread must be performing no other database operations beyond deadlock detection.

To externally perform lock detection, you can use either the DB_ENV->1lock_detect()
method, or use the db_deadlock command line utility. This method (or command) causes
DB to walk the lock table looking for deadlocks.

Note that like DB_ENV->set_1lk_detect(), you also use this method (