
HRC Language Reference
28 April 2005
This version:

take5.beta4: 28 April 2005
(Available as HTML, PDF, DocBook)

Previous versions:
take5.beta4(draft): 19 February 2005
take5.beta3: 30 January 2004
take5.beta2: 12 September 2003
take5.beta1: 30 March 2003
take5.alpha3: 1 March 2003
take5.alpha2: 30 January 2003

Author:
Igor Russkih <irusskih at gmail.com>

Copyright © 2003, 2004, 2005 Igor Russkih (Cail Lomecb)

Abstract

This reference defines syntax and semantics of the HRC language, used in
Colorer-take5 Library to represent and describe syntax and lexical structure of
target programming languages. This description is used by library to parse and
colorize text in editors or other systems.

1

http://colorer.sf.net/hrc-ref/
http://colorer.sf.net/hrc-ref/hrc-ref.zip

Table of Contents
1. Introduction ..2
2. Core Syntax ..3

2.1. File Types ..4
2.2. Namespaces ...8

3. Scheme syntax ...9
3.1. Keyword lists ..11
3.2. Regular Expressions ..12
3.3. Blocked context switch ...13
3.4. Scheme boundaries and priority ..14

4. Inter-scheme links ..16
4.1. Inheritance ...16
4.2. Schemes substitutions ...16

5. HRC Language Coding Conventions ...16
5.1. Object naming ...16
5.2. Default package ..17
5.3. Coding Recommendations ..18

A. Regular Expressions syntax ..18
1. Introduction ..18
2. Syntax ..18
3. Metacharacters ...19
4. Extended metacharacter ...20
5. Operators ..20
6. Extended operators ...21
7. Examples ..21

B. Format of catalog.xml file ...22
C. Format of HRD color schemes ..24
D. XML Schema for HRC Language ..26
E. History of the changes ...31
References ..32

1. Introduction
HRC is a script language which is describes parsing process of text files to produce
syntax highlighting. It is based on XML markup, and defines its own XML vocabulary
and structure. HRC language is developed to achieve most flexible and efficient pro-
cess of describing programming language structures.

Started nearly in year 1999, it was a simple XML-like structure, describing some com-
mon language constructions. But later it has grown into the much more complex and
powerful language with complex relations between different languages and syntax con-
texts.

HRC Language Reference

2

HRC is based on Regular Expressions, which allow to achieve flexible recognition of
text elements, lexemes and tokens. But Regular Expressions (RE) allows recognition
of rather limited syntax constructions, and often it is needed to describe more complex
languages. Because this, HRC language uses special construction, named "scheme",
which allows to describe more powerful, recursive class of languages (context free)
and in combination with RE brings HRC to strong declarative language.

2. Core Syntax
HRC language allows describing and storing syntax rules for numerous languages. All
language descriptions are divided into two parts: informal part (used to describe differ-
ent properties of the language, initial choose rules, service information - prototype
element), and formal part, which defines syntax and semantics of the target parsed lan-
guage (type element). Prototypes are used to determine, which type should be applied
to the currently opened file, they define some internal application-dependent properties
and other useful information about language. Because you may separate prototype
definition from real language definition, full type loading only occurs when it is really
requested by the user. Also, all the prototype definitions, collected in one initial source
file, allow user to see list of languages, supported by the library and guarantee fast lib-
rary's bootstrap.

Structure. Each HRC file contains declaration of one or more prototypes or one lan-
guage type. Root XML content starts with hrc element, which contains all other HRC
definitions. Each HRC language object is defined using XML elements and attributes.

Element Name: hrc, type: hrc
Root of the HRC file XML structure.

Attribute: version, type: xs:NMTOKEN
Specifies version of HRC language. For example, 'take5' for Colorer-
take5.

Content:
Element: annotation, type: annotation

Defines formal documentation for the HRC language elements.
Element: prototype, type: prototype

Defines prototype of single target programming language.
Element: package, type: package

Defines prototype of the defined file type, but use this type as an internal
hidden package structure.

Element: type, type: type
Language container, used to store all parser specific information.

definitions. Each HRC language object is defined using XML elements and attributes.
You can find definition of the HRC XML Syntax in Appendix D, XML Schema for
HRC Language. For instance, mostly all HRC definitions start with the next syntax:

HRC Language Reference

3

http://www.w3.org/TR/xmlschema-2#NMTOKEN

Example 1. Common HRC file

<?xml version="1.0"?>
<!DOCTYPE hrc PUBLIC "-//Cail Lomecb//DTD Colorer HRC take5//EN"
"http://colorer.sf.net/2003/hrc.dtd">

<hrc version="take5" xmlns="http://colorer.sf.net/2003/hrc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://colorer.sf.net/2003/hrc

http://colorer.sf.net/2003/hrc.xsd">
<annotation>
<documentation>
your documentation...
</documentation>
</annotation>

your definitions...

</hrc>

Each element in HRC can be documented with XML Schema-like elements: Annota-

Element Name: annotation, type: annotation
Defines formal documentation for the HRC language elements.

Content:
Element: appinfo, type: appinfo

Formal annotation part, used for tools processing.
Element: documentation, type: documentation

Human documentation part.
Element: contributors, type: contributors

Contribute information part.

Each element in HRC can be documented with XML Schema-like elements: Annota-
tion object can be used anywhere in the HRC context to document and describe any of
the HRC elements.

2.1. File Types
Each language prototype requires definition of the language's name and description.
These properties are used to determine language in context of the other language defin-
itions and in inter-language linkage process.

2.1.1. Prototypes

Prototypes are declared with <prototype> elements. For instance:

HRC Language Reference

4

Example 2. Prototype definition

<prototype name="cpp" group="main" description="C++">
<location link="base/cpp.hrc"/>
<filename>/\.(cpp|cxx|cc|hpp|h)$/i</filename>
<firstline>/^\s*(\/* | \/\/)/xi</firstline>
<firstline>/\#include/</firstline>
<firstline>/\#define|\#if/</firstline>

</prototype>

declares "C++" language and it properties. These are language's group, description,
location of HRC file with language's syntax declaration; RE mask, used to identify this
type by file name extension, and one or more masks, used to identify type by file's first
line.

Element Name: prototype, type: prototype
Defines prototype of single target programming language. This proto-
type must have name, equals to real type, defined in the linked resource.

Attribute: name, type: xs:NCName
Common internal name of this language type. Must be valid XML non-
qualified name.

Attribute: description, type: xs:string
User description, used to represent language in target IDE.

Attribute: group, type: xs:Name
Group of languages, this language belongs to.

Attribute: targetNamespace, type: xs:anyURI
Applicable to the XML group of languages. Specifies namespace, this
HRC file describing. Allows automatically linking and combining dif-
ferent XML languages in HRC.

Content:
Element: annotation, type: annotation

Defines formal documentation for the HRC language elements.
Element: location, type: location

Points to the location of a HRC file with this language description.
Element: filename, type: filename

Defines Regular Expression, used to identify programming language by
its file name.

Element: firstline, type: firstline
Defines Regular Expression, used to identify programming language by
its starting content.

Element: parameters, type: parameters
Custom parameters, used to specify additional properties of this lan-
guage type. These can include different language resources (icons, tem-

HRC Language Reference

5

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#Name
http://www.w3.org/TR/xmlschema-2#anyURI

plates and so on). Also these parameters could be referenced from
schema declaration, this allows to customize schemes loading process.

Each language must be chosen by the library before starting syntax highlighting pro-
cess. This is made with help of firstline and filename parameters. Each
matched instance of one of these parameters adds some additional weight to the total
language weight (choosing probability). This value is taken by default, or can be
changed explicitly with weight attribute of these elements. When total weights of all
types are evaluated, first language with maximum weight is selected to assign to the
opening file.

Element Name: filename, type: filename
Defines Regular Expression, used to identify programming language by
its file name. This can include file's extension or some more complex
dependencies.

Attribute: weight, type: xs:decimal, default: 2
This attribute defines weight, added to the total language weight, when
choosing one from a list of available.

Element Name: firstline, type: firstline
Defines Regular Expression, used to identify programming language by
its starting content. First line can be used, or some small part of text.
This entry has less default weight against filename one.

Attribute: weight, type: xs:decimal, default: 1
This attribute defines weight, added to the total language weight, when
choosing one from a list of available.

If any of these two operators is used more than once, each its matched instance adds a
specified weight to the total language weight.

If real language definition is separated from the prototype and placed in other resource,
it location is pointed with location element. Real type loading occurs when the de-
scribed type will be really requested.

Element Name: location, type: location
Points to the location of a HRC file with this language description. Link
is a well formed URI address of the requested HRC file. This location
can be relative to the current location of the parent type, or absolute
(with URI schemas, supported by library). If URI schema is absent,
'file://' is assumed.

Attribute: link, type: xs:anyURI

HRC Language Reference

6

http://www.w3.org/TR/xmlschema-2#decimal
http://www.w3.org/TR/xmlschema-2#decimal
http://www.w3.org/TR/xmlschema-2#anyURI

2.1.2. Packages

You can define file type with a special meaning of the internal type, which is used by
other types and is not visible to user. This role is managed by the package element:

Element Name: package, type: package
Defines prototype of the defined file type, but use this type as an internal
hidden package structure.

Attribute: name, type: xs:NCName
Common internal name of this package. Must be valid XML non-
qualified name.

Attribute: description, type: xs:string
User description, used to represent package in target IDE.

Attribute: targetNamespace, type: xs:anyURI
Applicable to the XML group of languages. Specifies namespace, this
HRC file describing. Allows automatically linking and combining dif-
ferent XML languages in HRC.

Content:
Element: annotation, type: annotation

Defines formal documentation for the HRC language elements.
Element: location, type: location

Points to the location of a HRC file with this language description.

other types and is not visible to user. This role is managed by the package element:
This element doesn't contain filename or firstline properties because it doesn't
directly map to any file type or language. As for the rest, all its behavior is like proto-
type's one. For example:

Example 3. Package definition

<package name="def" group="packages" description="core definitions">
<location link="default.hrc"/>

</package>
<package name="regexp" group="packages" description="Regexp common

library">
<location link="lib/regexp.hrc"/>

</package>

type's one. For example:

2.1.3. Types

Each prototype (or package) defines its linkage with real file type, describing informa-

HRC Language Reference

7

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#anyURI

tion, specific for the syntax parsing process. This information is stored in basic units,
called types. Normally, each type must be defined in a separate file, which contains

Element Name: type, type: type
Language container, used to store all parser specific information. These
defines are used by parser to analyze and colorize target text data.

Attribute: name, type: xs:NCName
HRC Language type name.

Content:
Element: annotation, type: annotation

Defines formal documentation for the HRC language elements.
Element: import, type: import

External type import statement.
Element: region, type: region

Definition of basic syntax region - text range with assigned syntax
meaning.

Element: entity, type: entity
HRC Entity definition.

Element: scheme, type: scheme
HRC scheme is a basic unit, which represents some fixed set of lexemes,
tokens and syntax regions (lexical context).

called types. Normally, each type must be defined in a separate file, which contains
this type and optionally its prototype (if there is no this prototype definition in the
global repository). This allows each file to be loaded only once, when required type is
really requested by the user.

2.2. Namespaces
Each type defines its own namespace, where different objects are resided. Each object
must have unique identifier (name) in this namespace, which is used to reference to it
from other objects. Uniqueness is only required for objects of the same type. So, you
can create objects of different types with the same name and there will be no conflicts.
If object must be referenced from the other type, its fully qualified name is used in
form of typename:objectname. But often there are too many inter-type links, so
it is too tedious to use qualified names each time. To eliminate this, HRC language has
an import statement. If used, it 'imports' all the object names from the imported type
into the current one. There can be as much import statements, as needed. Unqualified
name resolving occurs in order of their definition.

Element Name: import, type: import
External type import statement. This statement imports all definitions
from the specified type into the current one, so you can use them
without explicit type qualifier.

HRC Language Reference

8

http://www.w3.org/TR/xmlschema-2#NCName

Attribute: type, type: xs:NCName

For instance, you can write to import all definitions from the 'def' type into the current

<import type='def'/>

For instance, you can write to import all definitions from the 'def' type into the current
one. Note, that if multiple imported types have equal local names, they would be re-
solved in order of import declarations.

3. Scheme syntax
Scheme is a common construction in the HRC language, used to express and describe
syntax of target languages. Each scheme represents syntax context, which contains dif-
ferent syntax elements, matched in order of text analysis. For example, scheme for
"C++" language contains different keywords, string and number tokens, comments,
and others. To describe all the information, required to be highlighted, region ob-
jects are used. Each region defines some syntactically meaningful element. This ele-
ment always has a name and sometimes a reference to its parent region (if exists).
When parsed, source text is described in terms of these regions. This description con-
tains groups of the regions with specified positions and lengths.

In the next stage of the text processing, each region is associated with some handler.
For example, a handler can assign color and font style information to the each of the
regions, or can produce some operations over these structures.

Each region is defined using a region element:

Element Name: region, type: region
Definition of basic syntax region - text range with assigned syntax
meaning. Later, these regions can be mapped into required color inform-
ation and displayed on screen.

Attribute: name, type: xs:NCName
HRC Region name.

Attribute: parent, type: QName
Region's parent reference. If region has parent, its properties can be in-
herited from this one. Also region inheritance creates tree structure of
HRC Regions.

Attribute: description, type: xs:string
Optional description, used to represent region's purpose and to show it to
user in convient and friendly way.

Each region is defined using a region element:

Scheme is a common construction in the HRC language, which contains syntax defini-
tion of the described programming language. Each element in scheme, while parsing,

HRC Language Reference

9

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#string

creates one or more syntax regions which are used to highlight parsed text. Resulting
parse information contains not only a list of the regions, it also contains a recursive
scheme tree, which shows overall text structure.

Each type can define as much schemes, as needed, provided that all of them have
names, unique in this type scope. Scheme is defined using scheme element: Each

Element Name: scheme, type: scheme
HRC scheme is a basic unit, which represents some fixed set of lexemes,
tokens and syntax regions (lexical context). Each time at any position in
the text only one schema is active. Its content is applied to the current
text position. When the text parsing process starts, the scheme is used
whose name equals the name of the corresponding type (the base
scheme of the type).

Attribute: name, type: xs:NCName
HRC Scheme name. Unique in this type scope.

Attribute: if, type: xs:NCName
Load and use this scheme's content only if parameter, to which refer-
ences this attribute is truth. In other case this scheme is used as an empty
one.

Attribute: unless, type: xs:NCName
Load and use this scheme's content only if parameter, to which refer-
ences this attribute is not truth. In other case this scheme is used as an
empty one.

Content:
Element: annotation, type: annotation

Defines formal documentation for the HRC language elements.
Element: regexp, type: regexp

Regular Expression token.
Element: block, type: block

Context switch operator.
Element: keywords, type: keywords

List of tokens with equal properties.
Element: inherit, type: inherit

Scheme inheritance construction.

names, unique in this type scope. Scheme is defined using scheme element: Each
type must have one scheme, called "base scheme" - this scheme is required to be de-
clared in each type. Only types, declared as package can ignore this requirement be-
cause they are never used as top level types. Each base scheme must have local
(unqualified) name equal to its type name. Base scheme in each type is used as an
entry point for parse process.

HRC Language Reference

10

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#NCName

Example 4. Sample type definition

<type name="somelang">
<region name="Keyword" description="This language's keyword"/>
<scheme name="somelang">
<keywords region="Keyword">
<word name='word1'/><word name='word2'/>
<word name='otherkeyword'/>

</keywords>
<regexp match="/other(keyword)?/i" region="Keyword"/>

</scheme>
</type>

You can customize scheme loading and overall HRC structure using if/unless attributes
of the scheme element. If used, they have to reference to a common parameter declara-
tion of this scheme's type. These parameters values could be changed within Colorer's
API, this allows to customize HRC loading and suggest different language profiles to
user's choice.

The next sections will describe different types of syntax elements, available in the
HRC language.

3.1. Keyword lists
This common and often used syntax construction describes a list of keywords with
similar properties.

Element Name: keywords, type: keywords
List of tokens with equal properties. Keywords, symbols and so on...
These lists are used to make processing of many tokens faster, when it
isn't required to use RE to define syntax tokens.

Attribute: ignorecase, default: yes
Match this list of tokens with case sensitive or no.

Attribute: region, type: QName
Region, assigned to this list of tokens. Each token can define its custom
region.

Attribute: priority, type: priority, default: low
Priority of any token can be normal and low.

Attribute: worddiv, type: REworddiv
Class of characters, used to search words edges.

Content:
Element: word, type: word

Keyword tokens - use specified word edges.
Element: symb, type: symb

HRC Language Reference

11

Symbol tokens - ignores specified word edges.

Element Name: word, type: word
Keyword tokens - use specified word edges.

Attribute: name, type: xs:string

Attribute: region, type: QName
A pair of type name and valid XML name.

Element Name: symb, type: symb
Symbol tokens - ignores specified word edges.

Attribute: name, type: xs:string

Attribute: region, type: QName
A pair of type name and valid XML name.

Each element in this list can define its own region assignment or derive the global one,
defined in keywords element. Symbols never checks for characters surrounding
them, while words only can matches if they are surrounded by not-word symbols.
These word dividers can be redefined using worddiv attribute of keywords ele-
ment.

3.2. Regular Expressions
Regular expression tokens are used to create custom syntax elements. These elements
are described with RE rules, which makes them very powerful and flexible. Each RE
token can be used to create a number of different syntax regions (up to 16).

Element Name: regexp, type: regexp
Regular Expression token.

Attribute: region, type: QName
A pair of type name and valid XML name.

Attribute: priority, type: priority, default: normal
Priority of any token can be normal and low.

For details of colorer-take5 regular expressions syntax please see Appendix A, Regular
Expressions syntax. This syntax is used in match attribute. Each <regexp> region
can have a number of optional attributes - region0, region1, ... regionf
(total 16 regions). A value of each attribute is a name of the corresponding syntax re-
gion, which will be used to highlight text. A number in attribute's name means corres-
ponding bracket in a RE. region0 means full matched range of the RE (this could be

HRC Language Reference

12

http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string

changed with \m and \M RE metasymbols). Regular Expression can also include
named brackets in syntax of (?{name} ...). In this case the name of the bracket
itself is a name of corresponding syntax region.

Each RE definition can include references to any predefined sequence of RE code.
Such references are called “entities”. Entities are defined on a type level and have
their own qualified namespace. To include entity's value into RE, special syntax of
%entityname; is used.

Element Name: entity, type: entity
HRC Entity definition. Entities are some form of macro-definitions, they
lately can be used in regular expressions syntax to make them simpler.
Each entity consists of Entity name and Entity content, which would be
substituted into regular expression, when parser finds entity reference.
Each entity can be referenced with %entityname; syntax.

Attribute: name, type: xs:NCName
HRC Entity name.

Attribute: value, type: REentity
HRC Entity value, used to substitute entity in RE string.

Each RE has a defined priority attribute (by default it normal). This means normal
RE priority over enwrapped syntax elements. Enwrapped element is an element, which
waits to be matched from a top-level scheme in a parse sequence. low priority means
that such a top-level element (such a end attribute of a block element) will be
matched first, if there will be choice conflict between these two.

3.3. Blocked context switch
Although regular expressions is very powerful feature, their syntax doesn't allow to ex-
press some complex language constructions. First, this is due to general limitation of
colorer's RE parser - single line of text scope. This means that no regular expression
can work on multiple lines of the parsed text. Often programming languages have con-
structions which could be wrapped into each other unlimited number of times. This is
also an area, where Regular Expression would not help much.

To express much more complex syntax and allow to declare context-free grammar con-
structions, HRC defines a special token, named "block".

Element Name: block, type: block
Context switch operator. Used to switch currently used context into the
specified one. Context is switched, if RE pattern, placed in 'start' attrib-
ute, is matches. Switched context is closed, when parser finds match of
the 'end' RE.

Attribute: start, type: REstring
Regular Expression

HRC Language Reference

13

http://www.w3.org/TR/xmlschema-2#NCName

Attribute: end, type: REstring
Regular Expression

Attribute: scheme, type: QName
A pair of type name and valid XML name.

Attribute: priority, type: priority, default: normal
Priority of any token can be normal and low.

Attribute: content-priority, type: priority, default: normal
Priority of any token can be normal and low.

Attribute: inner-region, default: no
Defines if this scheme region to be located inside of the start/end region
edges. In this case all the block's regions are located outside of the
scheme region. By default ("no" value) scheme region is a background
region for all this block's start/end regions, and wraps them all.

Content:
Element: start, type: blockInner

Alternative style of RE definition.
Element: end, type: blockInner

Alternative style of RE definition.

Element Name: blockInner, type: blockInner
Alternative style of RE definition. Could be used, when RE is very com-
plex and it is easier to use character (or CDATA) sections to define it.

Attribute: match, type: REstring
RE syntax

Each block defines its start and end tags, each with a RE syntax already described.
Everything enwrapped within these two marks will be highligted as a syntax of some
other scheme, also pointed in this element's attribute.

This means that using block attribute you can switch context between differen high-
ligting schemas. This allows to define great number of syntax variations and particu-
lars.

3.4. Scheme boundaries and priority
Both regular expressions and block'ed scheme switches work in the same scheme con-
text, and tested against text in order they were defined in HRC. This means that any
conflict between multiple match possibilities is resolved according to order of RE,
defined in HRC file. After RE match the parse position is increased by width of that
RE. By default the width is from first matched symbol till last matched. However it is
possible to redefine regular expression boundaries and therefore shift somehow parse
position increase. This could be done with special \m (redefines RE start) and \M
(redefines RE end) metasymbols. Such a behaviour allows you to define overlapped

HRC Language Reference

14

tokens, where next token parse starts somewere in the middle of the previous. In such a
case color definitions occur in the order they are parsed.

3.4.1. priority

Additional selection rules are applied to a usecase, where return occurs from an inner
scheme to its caller scheme (via end tag of the block element). Information about re-
lative position of the block element can't help here to determine, what to apply: end
RE of the outer block, or a next regular expression/keyword/block, defined in the inner
(called) scheme. To resolve such a conflict HRC defines a special attribute for reg-
exp and block objects: priority. This attribute's default value is "normal".
When changed to low it tells Colorer not to take this object into account, when resolv-
ing conflicts upon exit from inner scheme. This means that end tag of the outer
block element will be used instead of the object with lowered priority (when a con-
flict will occur). When reviewing nested block tags, priority attribute relates to
the inner object's start tag.

3.4.2. content-priority

Often it is required to define a behavior of an element dynamically, depending on us-
age context. With priority attribute it is impossible to change element's priority de-
pending on called context. The element will always be the same priority. But it is pos-
sible to change whole scheme's definition priority (i.e. all it's elements priority) - using
content-priority attribute of a block element.

When changed into low it causes all the elements of that scheme to change their prior-
ity to low, no matter the value of their particular priority attribute.

3.4.3. inner-region

While defining scheme context switch there is a possibility to set a default region, used
for all called scheme content. This region will be used as a "background" for all other
regions, defined in that scheme. It is possible to manage boundaries this region will use
while instantiation. In a normal case all the scheme's content including its start and
end attributes is handled inside of this default region. Therefore the region starts
where start token starts, and ends where end token ends.

Sometimes it is required to change this behaviour and handle start and end tokens
(and all the regions they instantiate) outside of called scheme default region. This
could be achieved with inner-region attribute with "yes" value. When defined it
tells parser to include start/end regions outside of called scheme, and to change called
scheme default region boundaries. In this case they start at the end of start token
and ends just before end token area.

Inner region feature could be used to implement special wrapped areas and in general
can affect special background color treatment.

HRC Language Reference

15

4. Inter-scheme links
4.1. Inheritance

Element Name: inherit, type: inherit
Scheme inheritance construction. If one scheme is inherited in another,
then the latter scheme takes all the definitions from the former, as it was
included directly in place of inherit operator. One scheme can't inherit
another, if that scheme is already makes inheritance (even indirect) of
the first one.

Attribute: scheme, type: QName
Inherited scheme name.

Content:
Element: virtual, type: virtual

Inheritance substitution element.

Element Name: virtual, type: virtual
Inheritance substitution element. While inheriting one scheme in anoth-
er, it is possible to redefine inner inherited schemes with some others.
This can be used to change inherited language behavior.

Attribute: scheme, type: QName
Redefined scheme.

Attribute: subst-scheme, type: QName
Scheme to use instead redefined one.

4.2. Schemes substitutions

5. HRC Language Coding Conventions
Although HRC itself could be used in an arbitrary way, Colorer-take5 library has a
number of coding, naming and other conventions, which applies not to HRC syntax it-
self, but to the library which reads and parses output of an analizer.

5.1. Object naming
All regions in Colorer-take5 HRC database are going to be named in a same way:
name starts with capital letter, each name-part also starts with capital letter. For in-
stance: StringQuote. Any separate type or package is named in low-case letters

HRC Language Reference

16

with possible shortcuts, to make package name shorter. Any region in this case is ad-
dressed as def:StringQuote.

Scheme names are going to be context dependent and could be used in any case. Dash
or Dot delimiter is often used to make them looks better: <scheme
name="Comment.content"> for instance.

All files in file system storage should be placed in low-case with possible Dash or Dot
delimiters. External XML entities should be used to simplify complex HRC files struc-
ture and make more easier autogenerated HRC files creation and integration. External
entities should not have hrc extension. They should use a xml, as more compliant.

5.2. Default package
Colorer-take5 defines special package type to declare general syntax regions frame-
work, simplify HRC database support and decouple parse content and its presentation.
The name of this package is def. It is placed in hrc/lib/default.hrc. The gen-
eral purpose of this file is to declare a basic number of syntax regions, all other HRC
regions should be inherited from this set. This allows to flexibly define HRD color
highlighting rules to make them unique across all supported syntaxes and languages.
Any HRC package can explicitly import and use them. Or it can declare its own syntax
regions, derived from the defaults.

5.2.1. Pair construction matching

Colorer-take5 library itself (independently on HRC syntax) implements a number of
extensions to make editing process more flexible. These are paired construction match-
ing and file's structure/error list outlining. These features are implemented through the
specially declared regions, which are mapped to more complex syntax region values.
To declare a matching paired construction, package should instantiate regions with
special def:PairStart and def:PairEnd. These regions parse layout should be
properly enwrapped in a valid recursive sequence. Using this information Colorer-
take5 library can make actions to provide user an ability to jump over text blocks in
target language and highlight them during editing process.

5.2.2. Outliner construction

Another feature Colorer-take5 library can provide is a possibility to build a tree of
some valuable syntax tokens with possibility to quickly navigate over them in editor.
These tokens can represent programming language's functions, procedures, or any oth-
er logical structure of the text. While parsing such constructions are collected into a
special outline container which can represent them to user in realtime or by request.
Colorer-take5 editor implements two basic forms of outliner: functions and errors list.
Any programming language can instantiate token with region equals or derived from
def:Outlined. All tokens with this region are considered to be outliner-targeted
tokens and collected while parsing. Outliner can also take into account information
about parse tree structure to generate tree-like text outliners. Moreover, any language
can provide special algorithmic support or logic to implement special outlined regions

HRC Language Reference

17

parsing and building valid outline tree. For instance EclipseColorer editor evaluates a
name of each outlined region and searches an icon with such a name. If found, it uses
this icon to customize outliner window items with graphic objects, not only text.

Outliner can generally be setted up agains any region type. It works as a kind of filter,
gathering from parser only required information. In such a way works Errors list,
which collects regions, derived from def:Error. Each language uses this region to
mark problems in text, it found during parsing.

5.3. Coding Recommendations
HRC database has long standing up history, many times its format, syntax and mean-
ing were changed to reach more logic and formal structure. Because of this there are
still some file type descriptions, which are not fully comply with general HRC conven-
tions. These should not be supported in their current form, but should be reworked to
be more complient with all HRC descriptions. In general these includes invalid pack-
age naming, invalid region/schemes naming.

It is good point in HRC to have an import feature, which allows to use other pack-
age's objects in their unqualified names, but in general this feature should not be over-
used. It is much more convenient to use fully qualified regions and schemes names to
explicitly show the package reusage/intersections.

A. Regular Expressions syntax

1. Introduction
All work of the Colorer library and HRC language is based on the regular expressions
(RE) usage. They allow you to create universal syntax rules of highlighting in HRC.

Regular expressions consist of the set of characters. Some of these are simple, and
some are special metacharacters. All metacharacters (escapes) are divided into three
categories: first - zerolength (words boundaries and so on); second - class metacharac-
ters (\w, \s .); and the third class is operators. RE operators can be applied to single
character, to block, enwrapped in brackets or into other operators. You can use brack-
ets to group any sequence of characters. Regular expressions in HRC Language are
like Perl regexp in their base syntax. There are some differences in extended operators.

2. Syntax
All regexps must be in slashes /.../. After the end slash there can be the next para-
meters:

• i - ignore symbol case

• x - ignore direct spaces and crlf (for comfort)

HRC Language Reference

18

• s - suppose, that regexp is single line - it means, than '.' class should include \r\n
symbols.

Each symbol in RE is linearly compared with the target string. Everything, that doesn't
looks like metacharacters, means simple character.

3. Metacharacters

Table A.1. Metacharacters

^ Match the beginning of the line

$ Match the end of the line

. Match any character (except \r\n)

[...] Match characters in set

[^...] Match characters not in set. All the operat-
ors are disabled here, but you can use oth-
er metacharacters and range operator: a-z
means all chars from first to second (a - z),
[{ASSIGNED}-[{Lu}]-[{Ll}]] -
unicode classes reference. -[] - Class sub-
straction. &&[] - Class join (can be
dropped). |[] - Class intersection.

\# Next symbol '#' after slash (except a-z and
1-9)

\b Word break at this point

\B No word break at this point

\xHH, \x{HHHH} HH, HHHH - character code (hex)

\n 0x10 (lf)

\r 0x13 (cr)

\t 0x09 (tab)

\s Whitespace character (tab/space/cr/lf)

\S Not whitespace

\w Word symbol (chars, digits, _)

\W Not word symbols

\d Digit

\D Not Digit

\u Uppercase symbol

\l Lowercase symbol

HRC Language Reference

19

4. Extended metacharacter
These metacharacters are incompatible with Perl

Table A.2. Extended Metacharacters

\c Means 'not word' before

\N Link inside of regexp to one of its brack-
ets. N - needed brackets pair. This operator
works only with non-operator symbols in
a bracket.

The next operators are only available in Colorer-take5 regexp module parser, when in
compiled for Colorer library:

Table A.3. Colorer-take5 Parsing Metacharacters

~ Matches for the start of parent scheme
(end of start tag).

\m Changes start of regexp

\M Changes end of regexp

\yN \YN \y{name} \Y{name} Link to the external regexp (in end token
to start token param). N - required
bracket pair, name - named bracket.

For more information about \m \M meaning see in Section 3.4, “Scheme boundaries
and priority”.

5. Operators
Operators can't be used without some preceding character sequence. Each operator
must be applied to the appropriate character, metacharacter, or block of their combina-
tion (enclosed with brackets).

Table A.4. Operators

() Group and remember characters to form
one pattern.

(?{name}) Group and remember characters into the
named group.

HRC Language Reference

20

(?{}) or (?:) Group but don't remember characters into
the group (unnamed group).

(?{}) Group and remember characters into the
unnamed uncounted group.

| Match previous or next pattern.

* Match previous pattern 0 or more times.

+ Match previous pattern 1 or more times.

? Match previous pattern 0 or 1 times.

{n} Repeat n times.

{n,} Repeat n or more times.

{n,m} Repeat from n to m times.

If you'll add ? after operator, it becomes nongreedy. For example * operator becomes
nongreedy if placing *? Greedy operator tries to take as much in string, as it can. Non-
greedy takes by minimum.

6. Extended operators

Table A.5. Extended Operators

?#N Look-behind. N - symbol number to look
behind.

?~N Negative look-behind.

?= Look-ahead.

?! Negative Look-ahead.

Note, that two last operators exist in Perl - in form of (?=foobar). But colorer uses
syntax (foobar)?=

7. Examples

Example A.1. RE examples

/foobar/ will match "foobar", "foobar barfoo"

/ FOO bar /ix will match "foobar" "FOOBAR" "foobar and two other foos"

HRC Language Reference

21

/(foo)?bar/ will match "foobar", "bar"

/^foobar$/ will match _only_ with "foobar"

/([\d\.])+/ will match any number

/(foo|bar)+/ will match "foofoofoobarfoobar", "bar"

/f[obar]+r/ will match "foobar", "for", "far"

B. Format of catalog.xml file
Catalog of all Colorer Library resources is a convenient way to unify creation and
management of all the Colorer features. This catalog is stored in catalog.xml file,
and mapped into the ParserFactory class. Catalog supports storing of all installed HRC
modules, management of error logging and listing of available HRD sets.

Element Name: catalog, type: catalog
Describes all available Colorer Library resources.

Content:
Element: hrc-sets, type: hrc-sets

Lists all installed root locations of HRC codes.
Element: hrd-sets, type: hrd-sets

Lists all available HRD sets.

Element Name: hrc-sets, type: hrc-sets
Lists all installed root locations of HRC codes. These locations are
loaded when HRC bases are created.

Attribute: log-location, type: xs:string
Path to the default library log file. If missed, there is no logging.

Content:
Element: location, type: location

Single resource location.

Element Name: hrd-sets, type: hrd-sets
Lists all available HRD sets. Each HRD Entry describes single color
scheme, used to represent colored text. Note, that one Entry

Content:
Element: hrd, type: hrd-entry

Describes one HRD properties set.

HRC Language Reference

22

http://www.w3.org/TR/xmlschema-2#string

Element Name: hrd-entry, type: hrd-entry
Describes one HRD properties set.

Attribute: class, type: xs:NMTOKEN
HRD class. Currently available 'console', 'rgb' and 'text' classes.

Attribute: name, type: xs:NMTOKEN
Internal name of this set, used to referring from executable codes.

Attribute: description, type: xs:string
User-friendly description of this HRD set.

Content:
Element: location, type: location

Single resource location.

Element Name: location, type: location
Single resource location. Path can be relative to the catalog location, or
absolute URI with or without URI schema specification.

Attribute: link, type: xs:string

<schema targetNamespace="http://colorer.sf.net/2003/catalog"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<element name="catalog" type="catalog"/>

<complexType name="catalog">
<sequence>
<element name="hrc-sets" type="hrc-sets"/>
<element name="hrd-sets" type="hrd-sets"/>

</sequence>
</complexType>

<complexType name="hrc-sets">
<sequence>
<element name="location" type="location" maxOccurs="unbounded"/>

</sequence>
<attribute name="log-location" type="xs:string">
</attribute>

</complexType>

<complexType name="hrd-sets">
<sequence>
<element name="hrd" type="hrd-entry" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>

</complexType>

<complexType name="hrd-entry">
<sequence>
<element name="location" type="location" maxOccurs="unbounded"/>

</sequence>
<attribute name="class" type="xs:NMTOKEN" use="required">
</attribute>

HRC Language Reference

23

http://www.w3.org/TR/xmlschema-2#NMTOKEN
http://www.w3.org/TR/xmlschema-2#NMTOKEN
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string

<attribute name="name" type="xs:NMTOKEN" use="required">
</attribute>
<attribute name="description" type="xs:string">
</attribute>

</complexType>

<complexType name="location">
<attribute name="link" type="xs:string" use="required"/>

</complexType>
</schema>

C. Format of HRD color schemes
HRD storage is used to assign each HRC Region with some editor-specific properties.
Commonly, these include color and style information. HRD file consists of the list of
the entries, each of them describing one HRC Region.

Element Name: hrd, type: hrd
List of assigns between regions and their external properties. These
properties commonly include text decoration parameters, such as color,
style, font and so on... Global color layering model can be chosen by the
target application, depending on its text presentation style, features and
requirements. In general, all transparent colors inherit color value from
its parent schema fill color. If the current schema is a top-level, default
fore- and back-ground colors are used. Default Colors can be stored in
HRD, using standard default region 'def:Text', or can be requested by
application from the GUI environment. Note that color properties are re-
quested from Region's parent (in HRC structure) if this region is not de-
clared in HRD. However if region was declared but misses some proper-
ties, they are requested from underlying schema fill region which is de-
termined in runtime.

Content:
Element: assign, type: assign

Single entry, describes region's properties.

Element Name: assign, type: assign
Single entry, describes region's properties. If an entry is specified more
than one time, then the latest definition is used. This allows several
HRD files to be processed to complete color description of target HRC
regions.

Attribute: name, type: region-name
Full qualified region name (a pair [type:name]). Note, that if region has
no HRD properties associations, it inherits properties from its parent. If
any of its ancestors has no assigned properties, region visualization must
be skipped (it becomes fully transparent).

Attribute: fore, type: color

HRC Language Reference

24

Foreground color. If missed, transparent color assumed.
Attribute: back, type: color

Background color. If missed, transparent color assumed.
Attribute: style, type: style

Style bits (bold, italic, underline).
Attribute: stext, type: xs:string

Text prefix mapping (foreground).
Attribute: etext, type: xs:string

Text prefix mapping (background).
Attribute: sback, type: xs:string

Text Suffix mapping (foreground).
Attribute: eback, type: xs:string

Text Suffix mapping (background).

It is possible to maintain different HRD settings for different languages, or to compile
them into one single HRD file. The former allows you to distribute recommended set-
tings with each language, and the latter - to unify modifying and storing changed HRD
settings with provided UI.
<schema targetNamespace="http://colorer.sf.net/2003/hrd"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<element name="hrd" type="hrd"/>

<complexType name="hrd">
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="assign" type="assign"/>

</sequence>
</complexType>

<complexType name="assign">
<attribute name="name" use="required" type="region-name">
</attribute>
<attribute name="fore" type="color">
</attribute>
<attribute name="back" type="color">
</attribute>
<attribute name="style" type="style">
</attribute>
<attribute name="stext" type="xs:string">
</attribute>
<attribute name="etext" type="xs:string">
</attribute>
<attribute name="sback" type="xs:string">
</attribute>
<attribute name="eback" type="xs:string">
</attribute>

</complexType>

<simpleType name="region-name">
<restriction base="xs:string">
<pattern value="\i\c*\:\i\c*"/>

</restriction>

HRC Language Reference

25

http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string

</simpleType>

<simpleType name="color">
<restriction base="xs:string">
<pattern value="#?[\dA-Fa-f]{1,6}"/>

</restriction>
</simpleType>

<simpleType name="style">
<restriction base="xs:string">
<pattern value="\d"/>

</restriction>
</simpleType>

</schema>

D. XML Schema for HRC Language
This XML Schema instance was automatically generated from the original hrc.xsd
source, available at http://colorer.sf.net/2003/hrc.xsd. All comments and documenta-
tion tags were stripped to achieve more compact format. To use this schema in other,
than informational purposes, use up-to-date version, available on the link above.
<schema targetNamespace="http://colorer.sf.net/2003/hrc"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<simpleType name="REstring">
<restriction base="xs:string">
<whiteSpace value="collapse"/>
<pattern value="/.*/[ix]*"/>

</restriction>
</simpleType>

<simpleType name="REworddiv">
<restriction base="xs:string">
<whiteSpace value="collapse"/>
<pattern value="\[.*\]|%.*;"/>

</restriction>
</simpleType>

<simpleType name="REentity">
<restriction base="xs:string">
<whiteSpace value="collapse"/>
<pattern value=".*"/>

</restriction>
</simpleType>

<simpleType name="REstring-or-null">
<union memberTypes="REstring">
<simpleType>
<restriction base="xs:string">
<enumeration value=""/>

</restriction>
</simpleType>

</union>
</simpleType>

<simpleType name="QName">
<restriction base="xs:QName">
<pattern value="(\i\c*:)?\i\c*"/>

HRC Language Reference

26

http://colorer.sf.net/2003/hrc.xsd

</restriction>
</simpleType>

<attributeGroup name="regionX">
<attribute name="region0" type="QName"/>
<attribute name="region1" type="QName"/>
<attribute name="region2" type="QName"/>
<attribute name="region3" type="QName"/>
<attribute name="region4" type="QName"/>
<attribute name="region5" type="QName"/>
<attribute name="region6" type="QName"/>
<attribute name="region7" type="QName"/>
<attribute name="region8" type="QName"/>
<attribute name="region9" type="QName"/>
<attribute name="regiona" type="QName"/>
<attribute name="regionb" type="QName"/>
<attribute name="regionc" type="QName"/>
<attribute name="regiond" type="QName"/>
<attribute name="regione" type="QName"/>
<attribute name="regionf" type="QName"/>

</attributeGroup>

<element name="hrc" type="hrc"/>

<complexType name="hrc">
<sequence>
<element name="annotation" type="annotation" minOccurs="0"/>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="prototype" type="prototype"/>
<element name="package" type="package"/>
<element name="type" type="type"/>

</choice>
</sequence>
<attribute name="version" type="xs:NMTOKEN" use="required">
</attribute>

</complexType>

<complexType name="annotation">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="appinfo">
<complexType mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>

</sequence>
</complexType>

</element>
<element name="documentation">
<complexType mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="skip"/>

</sequence>
</complexType>

</element>
<element name="contributors">
<complexType mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>

</sequence>
</complexType>

</element>
</choice>

</complexType>

<complexType name="package">
<sequence>

HRC Language Reference

27

<element name="annotation" type="annotation" minOccurs="0"/>
<element name="location" type="location" minOccurs="0"/>

</sequence>
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="description" type="xs:string" use="required">
</attribute>
<attribute name="targetNamespace" type="xs:anyURI">
</attribute>

</complexType>

<complexType name="prototype">
<sequence>
<element name="annotation" type="annotation" minOccurs="0"/>
<element name="location" type="location" minOccurs="0"/>
<element name="filename" type="filename" minOccurs="0"

maxOccurs="unbounded"/>
<element name="firstline" type="firstline" minOccurs="0"

maxOccurs="unbounded"/>
<element name="parameters" minOccurs="0">
<complexType>
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="param">
<complexType>
<attribute name="name" type="xs:string"

use="required"/>
<attribute name="value" type="xs:string"

use="required"/>
<attribute name="description" type="xs:string"

use="optional"/>
</complexType>

</element>
</sequence>

</complexType>
</element>

</sequence>
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="description" type="xs:string" use="required">
</attribute>
<attribute name="group" type="xs:Name">
</attribute>
<attribute name="targetNamespace" type="xs:anyURI">
</attribute>

</complexType>

<complexType name="location">
<attribute name="link" type="xs:anyURI" use="required"/>

</complexType>

<complexType name="filename">
<simpleContent>
<extension base="REstring">
<attribute name="weight" type="xs:decimal" default="2">
</attribute>

</extension>
</simpleContent>

</complexType>

<complexType name="firstline">
<simpleContent>
<extension base="REstring">
<attribute name="weight" type="xs:decimal" default="1">
</attribute>

</extension>

HRC Language Reference

28

</simpleContent>
</complexType>

<complexType name="type">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="annotation" type="annotation"/>
<element name="import" type="import"/>
<element name="region" type="region"/>
<element name="entity" type="entity"/>
<element name="scheme" type="scheme"/>

</choice>
<attribute name="name" type="xs:NCName" use="required">
</attribute>

</complexType>

<complexType name="scheme">
<sequence>
<element name="annotation" type="annotation" minOccurs="0"/>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="regexp" type="regexp"/>
<element name="block" type="block"/>
<element name="keywords" type="keywords"/>
<element name="inherit" type="inherit"/>

</choice>
</sequence>
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="if" type="xs:NCName" use="optional">
</attribute>
<attribute name="unless" type="xs:NCName" use="optional">
</attribute>

</complexType>

<complexType name="import">
<attribute name="type" type="xs:NCName" use="required"/>

</complexType>

<complexType name="entity">
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="value" type="REentity" use="required">
</attribute>

</complexType>

<complexType name="region">
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="parent" type="QName">
</attribute>
<attribute name="description" type="xs:string">
</attribute>

</complexType>

<complexType name="regexp">
<complexContent>
<extension base="blockInner">
<attribute name="region" type="QName"/>
<attribute name="priority" type="priority" default="normal"/>

</extension>
</complexContent>

</complexType>

<simpleType name="priority">
<restriction base="xs:string">
<enumeration value="low"/>

HRC Language Reference

29

<enumeration value="normal"/>
</restriction>

</simpleType>

<complexType name="block">
<sequence minOccurs="0">
<element name="start" type="blockInner"/>
<element name="end" type="blockInner"/>

</sequence>
<attribute name="start" type="REstring"/>
<attribute name="end" type="REstring"/>
<attribute name="scheme" type="QName" use="required"/>
<attribute name="priority" type="priority" default="normal"/>
<attribute name="content-priority" type="priority"

default="normal"/>
<attribute name="inner-region" default="no">
<simpleType>
<restriction base="xs:string">
<enumeration value="yes"/>
<enumeration value="no"/>

</restriction>
</simpleType>

</attribute>
<attributeGroup ref="regionXX"/>

</complexType>

<attributeGroup name="regionXX">
<attribute name="region" type="QName"/>
<attribute name="region00" type="QName"/>
<attribute name="region01" type="QName"/>
<attribute name="region02" type="QName"/>
<attribute name="region03" type="QName"/>
<attribute name="region04" type="QName"/>
<attribute name="region05" type="QName"/>
<attribute name="region06" type="QName"/>
<attribute name="region07" type="QName"/>
<attribute name="region08" type="QName"/>
<attribute name="region09" type="QName"/>
<attribute name="region0a" type="QName"/>
<attribute name="region0b" type="QName"/>
<attribute name="region0c" type="QName"/>
<attribute name="region0d" type="QName"/>
<attribute name="region0e" type="QName"/>
<attribute name="region0f" type="QName"/>
<attribute name="region10" type="QName"/>
<attribute name="region11" type="QName"/>
<attribute name="region12" type="QName"/>
<attribute name="region13" type="QName"/>
<attribute name="region14" type="QName"/>
<attribute name="region15" type="QName"/>
<attribute name="region16" type="QName"/>
<attribute name="region17" type="QName"/>
<attribute name="region18" type="QName"/>
<attribute name="region19" type="QName"/>
<attribute name="region1a" type="QName"/>
<attribute name="region1b" type="QName"/>
<attribute name="region1c" type="QName"/>
<attribute name="region1d" type="QName"/>
<attribute name="region1e" type="QName"/>
<attribute name="region1f" type="QName"/>

</attributeGroup>

<complexType name="blockInner">
<simpleContent>
<extension base="REstring">

HRC Language Reference

30

<attributeGroup ref="regionX"/>
<attribute name="match" type="REstring">
</attribute>

</extension>
</simpleContent>

</complexType>

<complexType name="inherit">
<sequence>
<element name="virtual" type="virtual" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>
<attribute name="scheme" type="QName" use="required">
</attribute>

</complexType>

<complexType name="virtual">
<attribute name="scheme" type="QName" use="required">
</attribute>
<attribute name="subst-scheme" type="QName" use="required">
</attribute>

</complexType>

<complexType name="keywords">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="word" type="word"/>
<element name="symb" type="symb"/>

</choice>
<attribute name="ignorecase" default="yes">
<simpleType>
<restriction base="xs:string">
<enumeration value="yes"/>
<enumeration value="no"/>

</restriction>
</simpleType>

</attribute>
<attribute name="region" type="QName">
</attribute>
<attribute name="priority" type="priority" default="low"/>
<attribute name="worddiv" type="REworddiv">
</attribute>

</complexType>

<complexType name="symb">
<attribute name="name" type="xs:string" use="required"/>
<attribute name="region" type="QName"/>

</complexType>

<complexType name="word">
<attribute name="name" type="xs:string" use="required"/>
<attribute name="region" type="QName"/>

</complexType>
</schema>

E. History of the changes

take5.beta4, 28 April 2005

• New Section 3.4.3, “inner-region” attribute description.

HRC Language Reference

31

• Minor HRD schema clarifications.

take5.beta4(draft), 19 February 2005

• Clarification of regexp and block regions usage.

• "Scheme boundaries and priority" explained.

• "HRC Language Coding Conventions" section was added.

References
[XML 1.0] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, Eve Maler, editors.

Extensible Markup Language (XML) 1.0 Second Edition. W3C (World Wide
Web Consortium), 2000.

[XSLT 1.0] James Clark, editor. XSL Transformations (XSLT) 1.0. W3C (World Wide
Web Consortium), 1999.

[W3C XML Schema Structures] Henry S. Thompson, David Beech, Murray Maloney,
Noah Mendelsohn, editors. XML Schema Part 1: Structures. W3C (World
Wide Web Consortium), 2001.

[W3C XML Schema Datatypes] Paul V. Biron, Ashok Malhotra, editors. XML Schema
Part 2: Datatypes. W3C (World Wide Web Consortium), 2001.

HRC Language Reference

32

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

	HRC Language Reference
	Table of Contents
	1. Introduction
	2. Core Syntax
	2.1. File Types
	2.1.1. Prototypes
	2.1.2. Packages
	2.1.3. Types

	2.2. Namespaces

	3. Scheme syntax
	3.1. Keyword lists
	3.2. Regular Expressions
	3.3. Blocked context switch
	3.4. Scheme boundaries and priority
	3.4.1. priority
	3.4.2. content-priority
	3.4.3. inner-region

	4. Inter-scheme links
	4.1. Inheritance
	4.2. Schemes substitutions

	5. HRC Language Coding Conventions
	5.1. Object naming
	5.2. Default package
	5.2.1. Pair construction matching
	5.2.2. Outliner construction

	5.3. Coding Recommendations

	A. Regular Expressions syntax
	1. Introduction
	2. Syntax
	3. Metacharacters
	4. Extended metacharacter
	5. Operators
	6. Extended operators
	7. Examples

	B. Format of catalog.xml file
	C. Format of HRD color schemes
	D. XML Schema for HRC Language
	E. History of the changes
	References

