
4tH, the friendly Forth compiler

J.L. Bezemer

June 13, 2022

Contents

1 What’s new 19

I Getting Started 22

2 Overview 23

2.1 Introduction . 23

2.2 History . 23

2.3 Applications . 24

2.4 Architecture . 24

2.4.1 The 4tH language . 26

2.4.2 H-code . 26

2.4.3 H-code compiler . 27

2.4.4 Error handling . 28

2.4.5 Interfacing with C . 28

3 Installation Guide 30

3.1 About this package . 30

3.1.1 Example code . 30

3.1.2 Main program . 30

3.1.3 Unix package . 31

3.1.4 Linux package . 32

3.1.5 MS-DOS package . 36

3.1.6 MS-Windows package . 36

3.2 Setting up your working directory . 38

3.3 Now what? . 38

3.4 Pedigree . 38

3.5 Contributors . 39

3.6 Questions . 39

3.6.1 4tH website . 40

3.6.2 4tH Google group . 40

3.6.3 Newsgroup . 40

1

CONTENTS 2

4 A guided tour 41

4.1 4tH interactive . 41

4.2 Starting up 4tH . 41

4.3 Running a program . 42

4.4 Starting an editing session . 42

4.5 Writing your first 4tH program . 43

4.6 A more complex program . 47

4.7 Advanced features . 51

4.8 Suspending a program . 58

4.9 Calculator mode . 60

4.10 Epilogue . 60

5 Frequently asked questions 61

II Primer 64

6 Introduction 65

7 4tH fundamentals 66

7.1 Making calculations without parentheses 66

7.2 Manipulating the stack . 67

7.3 Deep stack manipulators . 68

7.4 Passing arguments to functions . 68

7.5 Making your own words . 69

7.6 Adding comment . 70

7.7 Text-format of 4tH source . 70

7.8 Displaying string literals . 70

7.9 Creating variables . 71

7.10 Using variables . 71

7.11 Built-in variables . 71

7.12 What is a cell? . 72

7.13 What is a literal expression? . 72

7.14 Declaring arrays of numbers . 72

7.15 Using arrays of numbers . 73

7.16 Copying arrays of numbers . 73

7.17 Declaring and using constants . 73

7.18 Built-in constants . 74

7.19 Using booleans . 75

CONTENTS 3

7.20 IF-ELSE constructs . 75

7.21 FOR-NEXT constructs . 75

7.22 WHILE-DO constructs . 76

7.23 REPEAT-UNTIL constructs . 77

7.24 Infinite loops . 77

7.25 Including source files . 77

7.26 Getting a number from the keyboard . 78

8 4tH arrays 79

8.1 Aligning numbers . 79

8.2 Creating arrays of constants . 79

8.3 Using arrays of constants . 79

8.4 Using values . 80

8.5 Creating string variables . 81

8.6 What is an address? . 81

8.7 String literals . 82

8.8 String constants . 82

8.9 Initializing string variables . 83

8.10 Initializing a NULL string variable . 83

8.11 Getting the length of a string variable . 83

8.12 Printing a string variable . 84

8.13 Copying a string variable . 84

8.14 The string terminator . 84

8.15 Slicing strings . 85

8.16 Appending strings . 86

8.17 Comparing strings . 86

8.18 Finding a substring . 87

8.19 Replacing substrings . 88

8.20 Deleting substrings . 88

8.21 Removing trailing spaces . 89

8.22 Removing leading spaces . 89

8.23 Upper and lower case . 90

8.24 String literals and string variables . 90

8.25 Printing individual characters . 91

8.26 Distinguishing characters . 91

8.27 Getting ASCII values . 92

8.28 Printing spaces . 92

8.29 Fetching individual characters . 93

8.30 Storing individual characters . 93

8.31 Getting a string from the keyboard . 95

CONTENTS 4

9 Character Segment 96

9.1 The Character Segment . 96

9.2 What is the TIB? . 96

9.3 What is the PAD? . 97

9.4 How do I use TIB and PAD? . 97

9.5 Simple parsing . 97

9.6 Converting a string to a number . 99

9.7 Controlling the radix . 99

9.8 Pictured numeric output . 102

9.9 printf() like formatting . 105

9.10 Converting a number to a string . 106

9.11 Aborting a program . 107

9.12 Opening a file . 108

9.13 Reading and writing from/to a file . 109

9.14 Closing a file . 110

9.15 Writing text-files . 110

9.16 Reading text-files . 111

9.17 Reading long lines . 111

9.18 Reading binary files . 112

9.19 Writing binary files . 112

9.20 Reading and writing block files . 113

9.21 Parsing textfiles . 114

9.22 Parsing binary files . 115

9.23 Parsing comma-delimited files . 116

9.24 Parsing fixed-width text files . 117

9.25 Advanced parsing . 119

9.26 scanf() like parsing . 119

9.26.1 Specifying the width . 121

9.26.2 Return values . 122

9.27 Appending to existing files . 123

9.28 Using pipes . 123

9.29 Opening a file in read/write mode . 125

9.30 Using random access files . 125

9.31 The layout of the I/O system . 127

9.32 Using a printer . 127

9.33 The layout of the Character Segment . 128

CONTENTS 5

10 Integer Segment and Code Segment 130

10.1 The Code Segment . 130

10.2 The address of a colon-definition . 130

10.3 Vectored execution . 131

10.4 Execution tokens . 132

10.5 The Integer Segment . 132

10.6 A portable way to access application variables 133

10.7 Returning a result to the host program . 133

10.8 Using commandline arguments . 134

10.9 The layout of the Variable Area . 134

10.10The stacks . 135

10.11Saving temporary values . 136

10.12The Return Stack and the DO..LOOP . 137

10.13Other Return Stack manipulations . 138

10.14Altering the flow with the Return Stack 138

10.15Leaving a colon-definition . 140

10.16The layout of the Stack Area . 140

10.17Booleans and numbers . 141

10.18Using ’ with other names . 142

10.19Deleting files . 143

10.20Querying environment variables . 143

10.21What is not implemented . 144

10.22Known bugs and limitations . 144

11 Advanced programming 145

11.1 Compiletime calculations . 145

11.2 Conditional compilation . 146

11.3 Checking the environment at compiletime 148

11.4 Checking a definition at compiletime . 149

11.5 Exceptions . 149

11.6 Enumerations . 152

11.7 Forward declarations . 153

11.7.1 Deferred words . 153

11.7.2 Trampoline . 154

11.7.3 Which one should you use? . 155

11.8 Recursion . 155

11.9 Private declarations . 156

CONTENTS 6

11.10Aliases . 156

11.11Changing behavior of data . 157

11.12Multidimensional arrays . 159

11.13Binary string constants . 159

11.14Binary string variables . 161

11.15Records and structures . 161

11.16Unions . 164

11.17Complex control structures . 165

11.18Alternative branch- and loop constructs 166

11.19CASE-OF constructs . 167

11.20Optimization . 168

11.21Static variable pointers . 172

11.22Assertions . 173

11.23Breakpoints . 175

11.24Debugging . 176

11.25Running 4tH programs from the Unix shell 177

11.26Embedding 4tH programs in a batch file 178

12 Standard libraries 179

12.1 Adding your own library . 179

12.2 Adding templates . 181

12.3 Parsing the command line . 183

12.4 Mixing character and number data . 184

12.5 Dynamic memory allocation . 185

12.6 Using two heaps . 187

12.7 Tweaking dynamic memory . 187

12.8 Garbage collection . 189

12.9 Dynamic strings . 190

12.10Dynamic arrays . 191

12.10.1 Random access . 191

12.10.2 Sequential access . 192

12.11Application stacks . 193

12.12Local variables . 194

12.13Random numbers . 198

12.14Sorting . 200

12.15Bitfields . 202

12.16Bit arrays . 203

CONTENTS 7

12.17Associative arrays (using hash tables) . 204

12.18Associative arrays (using binary trees) . 206

12.19Lookup tables with integer keys . 207

12.20Lookup tables with string keys . 210

12.21Lookup tables with multiple keys . 210

12.22Lookup tables with duplicate keys . 211

12.23Binary search tables . 212

12.24Dynamic binary search tables . 214

12.25Fixed point calculation . 215

12.25.1 Fractions . 216

12.26Double numbers . 217

12.27Floating point numbers (unified stack) . 219

12.28Floating point numbers (separate stack) 220

12.29Floating point functions . 223

12.30Floating point configurations . 224

12.31Forth Scientific Library . 225

12.32Statistical functions . 226

12.33Numerical integration . 227

13 Special libraries 234

13.1 Infix formula translation1 . 234

13.2 Evaluating infix formulas at runtime2 . 236

13.3 Converting infix formulas3 . 237

13.4 Interpreters . 237

13.5 Menus . 239

13.6 Finite state machines4 . 241

13.7 Virtual memory . 243

13.8 Triple numbers . 245

13.9 Timers . 246

13.10Time & date . 246

13.11Tokenizing strings . 248

13.12Regular expressions5 . 249

13.13String pattern matching . 251

1Article written and contributed by David Johnson.
2Article written and contributed by David Johnson.
3Article written and contributed by David Johnson.
4Part of this section is based on an article in Forthwrite UK by Jenny Brien.
5Part of this text is derived from http://http://misc.yarinareth.net/regex.html by Dorothea Salo under the ”Cre-

ative Commons Attribution 3.0 United States License”.

CONTENTS 8

13.14Wildcard pattern matching . 255

13.15Escape characters . 255

13.16Internationalization . 256

13.17Chinese characters . 259

13.18Sequences . 259

13.19Managing INI files . 261

13.20Extract, transform and load . 263

13.21Writing spreadsheet files . 265

13.22Writing other tabular formats . 266

13.23Writing LATEX files . 267

13.24Writing RTF files . 270

13.25Writing HTML files . 271

13.26Converting to XML and HTML . 273

13.27Databases . 274

13.28Indexing a database . 276

13.29Binding the indexes . 278

13.30Connecting to the WWW . 280

13.31Speech synthesis . 281

13.32GUI applications . 281

13.33Card games . 283

14 Graphics libraries 285

14.1 Portable bitmap graphics . 285

14.2 More lines . 288

14.3 Circles, ellipses and arcs . 289

14.4 Filling shapes . 291

14.5 Turtle graphics . 292

14.6 Annotating portable bitmap images . 293

14.7 Color palettes . 294

14.8 Viewing and modifying bitmap images . 295

14.9 3D plotting . 296

14.103D turtle graphics . 299

CONTENTS 9

15 Preprocessor libraries 302

15.1 Introduction . 302

15.2 Stack instructions . 303

15.3 Coroutines . 304

15.4 Interpretation . 305

15.5 Closures . 306

15.6 Object orientation . 307

15.6.1 Encapsulation . 307

15.6.2 Subtype polymorphism . 309

15.6.3 Inheritance . 311

15.6.4 Using curly braces . 314

15.6.5 Lazy initialization . 315

15.6.6 Forward declaration of classes . 316

15.6.7 Determining the type and size of an object 316

15.6.8 Namespace pollution . 317

15.6.9 Design patterns . 317

15.7 This is the end . 318

III Reference guide 320

16 Glossary 321

17 Editor manual 426

17.1 Introduction . 426

17.2 Selecting a screen and input of text . 426

17.3 Line editing . 426

17.4 Line editing commands . 427

17.5 Screen editing commands . 427

17.6 Cursor control and string editing . 427

17.7 Commands to position the cursor . 428

17.8 String editing commands . 428

17.9 Saving and exiting . 428

17.10Calculator mode . 428

18 Shell manual 430

18.1 Introduction . 430

18.2 Loading and saving . 431

18.3 Task management . 431

18.4 Scripting . 431

18.5 Stack, I/O and arithmetic . 432

CONTENTS 10

19 Preprocessor manual 433

19.1 Introduction . 433

19.2 Macros . 434

19.2.1 Back quoted strings . 434

19.2.2 Registers . 434

19.2.3 Parsing strings . 435

19.2.4 The string stack . 435

19.2.5 Phony variables . 436

19.2.6 Branching and looping . 436

19.2.7 Functions . 437

19.3 Invocation (script) . 438

19.3.1 Options . 438

19.4 Invocation (executable) . 438

19.4.1 Options . 439

19.5 Preprocessor commands . 439

19.6 Error messages . 440

19.7 Known bugs and limitations . 441

19.8 Preprocessor libraries . 442

20 uBasic manual 444

20.1 Introduction . 444

20.2 Statements . 444

20.3 Functions . 448

20.4 Error messages . 451

20.4.1 System messages . 452

21 TopITSM manual 453

21.1 Introduction . 453

21.1.1 Classes . 453

21.2 Requirements . 454

21.3 Installing TopITSM . 454

21.4 Using TopITSM . 455

21.4.1 Help . 455

21.4.2 Calculator . 455

21.4.3 TopITSM documents . 456

21.4.4 TopITSM views . 456

21.4.5 Generating documents . 456

CONTENTS 11

21.4.6 Error handling . 457

21.5 Backup and restore . 457

21.5.1 Backup . 457

21.5.2 Restore . 457

21.5.3 Changing node properties . 458

22 ANS Forth statement 459

22.1 ANS-Forth Label . 459

22.2 Unsupported CORE words . 460

22.3 Supported ANS Forth word sets . 461

22.3.1 Core Extensions word set . 461

22.3.2 Block Extensions word set . 462

22.3.3 Double number word set . 462

22.3.4 Double number Extensions word set 463

22.3.5 Facility Extensions word set . 463

22.3.6 File-Access word set . 463

22.3.7 File-Access Extensions word set 463

22.3.8 Floating-Point word set . 464

22.3.9 Floating-Point Extensions word set 464

22.3.10 Programming-Tools word set . 465

22.3.11 Programming-Tools Extensions word set 465

22.3.12 String word set . 466

22.3.13 XCHAR word set . 466

22.3.14 XCHAR Extensions word set . 466

23 Porting guide 467

23.1 Introduction . 467

23.2 General guidelines . 467

23.3 Differences between 4tH and ANS-Forth 468

23.3.1 Strings . 468

23.3.2 Double numbers . 468

23.3.3 Booleans . 468

23.3.4 CREATE..DOES> . 470

23.3.5 HERE . 471

23.3.6 2>R and 2R> . 471

23.3.7 Interpretation and compilation mode 471

23.3.8 BEGIN..WHILE..REPEAT . 472

CONTENTS 12

23.3.9 DO..LOOP . 472

23.3.10 I/O . 474

23.4 Easy 4tH . 475

23.4.1 Enabling the String Space . 475

23.4.2 The structure of Easy 4tH . 476

23.5 The preprocessor . 476

23.6 Converting ANS-Forth programs to 4tH 477

24 Errors guide 478

24.1 How to use this manual . 478

24.2 Interpreter (exec_4th) . 478

24.3 Compiler (comp_4th) . 484

24.4 Loader (load_4th) . 490

24.5 Saver (save_4th) . 492

25 4tH library 493

25.1 4tH library files . 493

25.2 FOOS classes . 510

25.3 Library dependencies . 510

26 Change log 517

26.1 What’s new in version 3.64.0 . 517

26.2 What’s new in version 3.62.5 . 522

26.3 What’s new in version 3.62.4 . 523

26.4 What’s new in version 3.62.3 . 525

26.5 What’s new in version 3.62.2 . 527

26.6 What’s new in version 3.62.1 . 531

26.7 What’s new in version 3.62.0 . 532

26.8 What’s new in version 3.61.5 . 534

26.9 What’s new in version 3.61.4 . 536

26.10What’s new in version 3.61.3 . 539

26.11What’s new in version 3.61.2 . 541

26.12What’s new in version 3.61.1 . 543

26.13What’s new in version 3.61.0 . 544

26.14What’s new in version 3.60.1 . 547

26.15What’s new in version 3.60.0 . 549

26.16What’s new in version 3.5d, release 3 . 551

26.17What’s new in version 3.5d, release 2 . 553

CONTENTS 13

26.18What’s new in version 3.5d . 553

26.19What’s new in version 3.5c, release 3 . 555

26.20What’s new in version 3.5c, release 2 . 555

26.21What’s new in version 3.5c . 557

26.22What’s new in version 3.5b, release 2 . 558

26.23What’s new in version 3.5b . 559

26.24What’s new in version 3.5a, release 2 . 560

26.25What’s new in version 3.5a . 561

26.26What’s new in version 3.3d, release 2 . 565

26.27What’s new in version 3.3d . 567

26.28What’s new in version 3.3c . 569

26.29What’s new in version 3.3a . 570

26.30What’s new in version 3.2e . 572

26.31What’s new in version 3.1d . 574

IV Development guide 578

27 Compiling the source 579

27.1 Introduction . 579

27.2 Recommended and preferred compilers 579

27.3 Compiling 4th . 580

27.4 Compiling the library . 581

27.5 Choosing Makefiles . 582

27.6 Shared library . 583

27.7 64-bit platforms . 583

27.8 Regenerating the include files . 584

27.9 Optimizations . 585

27.10GCC specific optimizations . 585

27.11Using the library . 586

27.12Convert 4tH programs to native executables 587

28 Using the 4tH API 589

28.1 Introduction . 589

28.2 A sample program . 589

28.3 A first look at open_4th() . 591

28.4 A closer look at H-code . 592

28.5 A closer look at HX-code . 592

CONTENTS 14

28.6 A first look at comp_4th() . 596

28.7 A first look at exec_4th() . 597

28.8 A first look at free_4th() . 599

28.9 A first look at save_4th() . 601

28.10A first look at load_4th() . 602

28.11A first look at error-trapping . 602

28.12A first look at dump_4th() . 603

28.13A first look at cgen_4th() . 606

28.14Converting HX-files . 607

28.15A first look at fetch_4th() . 607

28.16A first look at store_4th() . 608

28.17Examples of embedded HX code . 609

28.18Suspended execution . 610

28.19Useful variables . 615

29 Modifying 4tH 617

29.1 Introduction . 617

29.2 Understanding 4tHs versioning . 617

29.3 A closer look at comp_4th() . 618

29.4 Adding a constant . 620

29.5 Adding a word . 621

29.6 A closer look at exec_4th() . 623

29.7 A first look at name_4th() . 625

29.8 Extending the compiler . 626

29.9 Making aliases . 628

29.10Giving a name to an application variable 628

29.11Adding new variables . 629

29.12Resizing the 4tH environment . 631

29.13Tuning pipe failure detection . 632

29.14Adding new error messages . 634

29.15Sizing the Code Segment . 635

29.16Adding inline macros . 637

29.17Adding string words . 638

29.18Adding words with arguments . 641

29.19Packing several words into one token . 642

29.20Adding conditionals . 643

29.21Extending the I/O subsystem . 648

CONTENTS 15

29.22Using the symbol table . 649

29.23Using variables and datatypes . 652

29.24Other tools . 653

29.25Patching 4tH . 654

29.25.1 Tokens . 654

29.25.2 Words . 654

29.25.3 The virtual machine . 655

29.25.4 Immediate words . 656

29.25.5 Applying the patches . 657

29.25.6 Error messages . 658

List of Figures

2.1 Integer segment layout . 25

2.2 Character segment layout . 26

2.3 Hcode structure . 27

4.1 Editor architecture . 43

9.1 Character segment . 96

9.2 The 4tH I/O system . 127

10.1 Integer segment . 133

13.1 GTK demo . 282

14.1 Bézier curve with end points P0 and P2 and control point P1 291

14.2 ASCII art view of a color bitmap image 296

14.3 Mirrored boxes . 298

14.4 Two boxes . 301

25.1 Floating point I/O stacks . 515

25.2 Double, mixed and floating point word dependencies (ANS) 516

25.3 Double, mixed and floating point word dependencies (Zen) 516

28.1 Hcode structure . 592

16

List of Tables

8.1 Character typing words . 91

9.1 Picture library formatting characters . 105

9.2 List of supported printf() flags . 107

9.3 Width and precision of printf() . 108

9.4 List of supported printf() specifiers 109

9.5 Supported scanf() specifications . 121

12.1 NELL equivalents . 185

12.2 gmkiss randomizers and their registers . 199

12.7 Examples of single and double number counterparts 218

12.8 Range and digits of precision . 221

12.9 Examples of single and floating point number counterparts 222

12.10IEEE 754 FP math errors . 223

12.3 4tH randomizers . 230

12.4 4tH sorting algorithms (address based) . 231

12.5 4tH sorting algorithms (index based) . 232

12.6 Fraction words . 232

12.11ANS-Forth functions . 232

12.12Floating point configurations . 233

12.13Statistical functions . 233

13.1 KPRE supported metacharacters . 250

13.2 KPRE character classes . 250

13.3 Supported control characters . 255

13.4 Spreadsheet formats supported by 4tH . 265

13.5 Example spreadsheet . 266

13.6 Spreadsheet words . 267

13.7 Other tabular formats . 267

17

LIST OF TABLES 18

13.8 LATEX table format . 269

14.5 Viewing and modifying bitmap images . 297

14.6 3D plotting wordset . 300

14.7 3D plotting examples . 300

17.2 DC commands . 429

18.1 4tsh commands . 432

19.1 Macro commands . 443

20.2 Arguments for INFO() . 451

23.1 Dumb words . 471

26.1 Database index conversion . 527

26.2 Forth-79 to ANS conversion . 574

27.1 List of compilers . 580

28.1 API functions . 590

28.2 HX type-byte encoding . 593

29.1 comp_4th() variables . 618

29.2 exec_4th() basic API . 623

29.3 comp_4th() basic API . 627

29.4 Examples of aliases . 628

29.5 Mapping between 4tH and C variables . 629

29.6 Mapping between 4tH and C variable names 629

29.7 Accessing 4tH data from C . 641

29.8 exec_4th() data access API . 642

29.9 Example execution plan . 645

29.10Branch resolving API . 645

29.11Members of Stream[] structure . 649

29.12Device status macros . 649

29.13Symboltable API . 649

29.14Table search API . 651

Chapter 1

What’s new

What’s new in version 3.64.1

Words

• The words PROTO: and :PROTO were added.

• The words TO and IS were changed.

Functionality

• The words PROTO: and :PROTO were added.

• REFILL now supports CR-delimited files.

• Radixsort LSB and Binary Quicksort were added to the sort algorithms.

• A functional equivalent of the scanf() C-function was added.

• sprintf.4th now supports unsigned, octal and hexadecimal formats.

• A lighter version of the FPOUT library, sfpout.4th, was added.

• An interface to Wget and cURL was added.

• Another dynamic array library, more suited for sequential access, was added.

Bugfixes

• A bug in comp_4th.c caused 4tH to allocate too many symboltable entries when
using IS or TO.

• A bug in comp_4th.c caused 4tH to complain about empty strings when there was
more than one space between CHAR, [CHAR], [DEFINED] or [UNDEFINED] and
the string or name following it.

• A bug in 4th.c, mon.4th and editor.4th caused a crash when CRTL-D was
pressed.

• A bug in 4tsh.c caused a memory leak when too many tasks were added.

• Several Zen FP routines were upgraded to 64-bit accuracy.

19

CHAPTER 1. WHAT’S NEW 20

Developer

• The words PROTO: and :PROTO were added.

• The words TO and IS were changed.

• REFILL now supports CR-delimited files.

• Radixsort LSB (radxsort.4th) and Binary Quicksort (binquick.4th) were
added to the sort algorithms.

• A functional equivalent of the scanf() C-function was added (sscanf.4th).

• sprintf.4th now supports unsigned, octal and hexadecimal formats.

• The names of the words in fpdot.4th were changed.

• A lighter version of the FPOUT library, sfpout.4th, was added.

• An interface to Wget and cURL was added (wwwopen.4th).

• Another dynamic array library (darray.4th), more suited for sequential access,
was added.

Documentation

• All documentation now reflects the functionality of the current version;

• The installation guide for Android was removed;

• The section on forward declarations was expanded.

• The section on dynamic arrays was expanded.

• A section on scanf() was added.

• A section on cURL and Wget was added.

Hints

Porting your v3.64.0 programs to v3.64.1 shouldn’t be any problem. Most source files will
compile correctly without modification. There are a few things to consider:

TO and IS

In previous versions it was possible - although discouraged - to use TO without a preceding
VALUE - and IS without a preceding DEFER. This practice interfered with source code
analysis 4tH performs before actual compilation begins - and hence the size estimations
were slightly off.

This has been corrected in this version, but may lead to compilation errors of previously
correctly compiling programs. If such errors occur, the easiest fix is to declare the offending
VALUE or DEFER at the beginning of the program, right after all library members have been
included.

CHAPTER 1. WHAT’S NEW 21

FPDOT.4TH

The names were changed in order to bring them in accordance with the names used in
dblsharp.4th. Libraries dependent on fpdot.4th habe been changed accordingly
and should not require any additional changes. The new names are: <F#, F#, F#S, FSIGN,
F#> and F#,S.

LUHN.4TH

The name of this word was changed from LUHN to LUHN? in order to bring it in accordance
with the names in other validation libraries.

CTRL-D

It is a common practice in Unices to quit a program using CTRL-D. It is also available in
Microsoft’s Operating Systems, but there CTRL-Z and <ENTER> have to be pressed. In
effect, it closes stdin, so it returns EOF when accessed. It was a common practice in 4tH
to simply drop the value returned by REFILL when reading the keyboard. This practice is
now deprecated.

When REFILL is used in e.g. an interpreter loop, you should use:

BEGIN REFILL WHILE (..) REPEAT

Instead of:

BEGIN REFILL DROP (..) REPEAT

When a single entry is read from the keyboard, use:

REFILL UNLESS ABORT THEN

Or:

REFILL 0= ABORT" User abort”

Instead of:

REFILL DROP

Note the appropriate libraries (like enter.4th, fenter.4th) have been changed ac-
cordingly. They now throw an exception, which you might want to cater for in your pro-
grams.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are PROTO: and :PROTO.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed1)
ANS-Forth standard, except for porting purposes.

1A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

Part I

Getting Started

22

Chapter 2

Overview

2.1 Introduction

In essence, 4tH is Forth without the typical Forth architecture - a conventional compiler
that compiles Forth to portable bytecode and will seamlessly blend in your C development
environment. You can bind 4tH to your own C-program and call it as if it were just another
function.

But most people regard 4tH as a standalone compiler - which is absolutely fine.

2.2 History

To understand 4tH you have to know how it came to be. As most things in life, 4tH
developed slowly. Its predecessor is a C-function called strcalc(). This function is an
implementation of a RPN calculator in one very compact function (about 6 kB source). It
works with signed 32 (or 64) bits integers and has about 20 commands and 20 variables.
The C-programmer can add additional variables.

Using it in a C-program is very easy too. Just pass the source as a string and add any
variables you need. It will return the result of that calculation.

Well, although primitive it can still be very useful. You can implement an interactive RPN
calculator in less than 5 lines of C. It can also be used to make calculations from sources
stored elsewhere, like in a file or an environment-variable. If you can store a string there,
you can store strcalc() source.

But we were not satisfied. We wanted to create some successor to strcalc() that could
be used to create applets, small applications that can be embedded in an application. Like
strcalc() it had to be fast and compact and easy to use. All these requirements and
’Reverse Polish Notation’. What language comes to mind first? Forth.

There were a few advantages and disadvantages to that approach. First, if it looked like
Forth, it had to be compatible with Forth up to a certain point. Second, if it looked like
Forth, we wouldn’t have to write thick manuals and explain how to use the language. Third,
if it looked like Forth, could we make it crash-proof?

A user can easily crash a Forth-system. Store something at a wrong address and your
system hangs. We don’t like that, even when the user is at fault. So we had to make a few
concessions somewhere, since adding checks means the program will be less compact and
slower.

23

CHAPTER 2. OVERVIEW 24

For a very long time we just didn’t get the right idea. Then on a dark night in October 1994,
it happened. The baby was called 4tH and could do everything strcalc() did.

It took quite a while before 4tH had successfully got away from its strcalc() roots.
The very first version was very buggy and little more than an RPN calculator with (incom-
patible) flowcontrol and some string facilities. It required two passes to compile a source
and the resulting bytecode could not be saved. The I/O was C-based and very primitive.
There was no Character Segment.

The second version got string and file facilities. The I/O and flowcontrol was completely
rewritten, so they now were fully Forth-compatible. The second pass was discarded and
H-code could finally be saved. The first move to ANS-Forth was made.

The third version came to be when the H-code eXecutable was created. This fileformat
made it possible to port bytecode across platforms. At the same time, 4tH moved more and
more toward ANS-Forth. Exception-handling and assertions were introduced. And in the
spring of 1997, version 3.1c was released to the general public.

Of course, 4tH didn’t stop there. Since then, a lot of features have been added - up to the
complete development environment it is today.

2.3 Applications

4tH is an excellent platform to learn Forth. It looks and behaves like a conventional com-
piler, but essentially is Forth. A Forth that detects virtually every error and reports what
was wrong and where it went wrong, but still is quite fast and compact.

But like any good teacher 4tH is quite strict. Forth allows constructions that should be
avoided. 4tH on the other hand, either does not implement these words or restricts their
usage.

Other Forth concepts are hard to handle, like the different wordsets for different kinds of
numbers. Plain 4tH only uses signed 32 (or 641) bit integers, which enables the programmer
to make a wide range of applications without being bothered by overflow. Pointers, integers
and characters are transparently converted.

But for those who wish to venture into the world of Object Orientation, mixed, double,
triple or floating point numbers - rest assured, we have all the facilities you might need.
Just include the appropriate library.

2.4 Architecture

4tH is a segmented Forth. There are different segments for constant strings, characters,
cells and tokens. This shows you where each data-type is located:

• Return stack (Integer Segment)

• Data stack (Integer Segment)

• Variables & values (Integer Segment)

• Vectors (Integer Segment)

• String variables (Character Segment)

1When compiled on a 64 bit platform.

CHAPTER 2. OVERVIEW 25

• Temporary storage (Character Segment)

• Compiled code (Code Segment)

• Compiled constants (Code Segment)

• String constants (String Segment)

• Symbols (Symbol Table)

The return-stack, data-stack and variables are allocated in one large array of signed 32 (or
64) bit integers. On top of that 4tHs primitives check all parameters. This makes 4tH a
very safe environment.

4tH also propagates clean programming. E.g. storing and fetching of the data-stack is not
allowed. You can only store and fetch in the Variable Area.

In effect, as far as we know 4tH cannot be crashed by a user-program. The memory layout
of the Integer Segment looks like figure 2.1.

User variables

C variables

4tH variables

Read only variables

System variables

Return stack

Variable Area

System Area

Stack Area

Data stack

Figure 2.1: Integer segment layout

The allocation of variables is totally trans-
parent to the C-programmer. He can also
transfer C-variables to the user-program
(application variables). These variables
can be used like any other variable.

Combining return- and data-stack means
the C-programmer only has to worry about
the size of the stack and not the sizes of
both stacks, thus allowing a wider range
of user-applications with different require-
ments.

The Code Segment contains words. A
word is a structure that contains an un-
signed byte (the token) and a signed long
integer (the argument). Only the argument
can be accessed by the 4tH programmer.
He cannot change the program in memory,
since we never really liked self-modifying
code.

True, this scheme has some redundancy,
but a more elaborate scheme means a more
code to encode and decode the tokens and
arguments. That means the memory-space
we saved by compacting the program-code
will make the compiler and interpreter less
compact. And it certainly won’t run any
faster!

The String Segment contains all string constants. The words which use strings contain an
offset to the ASCIIZ strings in the String Segment. The 4tH programmer can copy strings
from this segment, but cannot write any. Constants are constants.

Finally there is a chunk of memory the user can manipulate at will. It contains the TIB, the
PAD and all string variables (if any). The memory layout of the Character Segment looks
like figure 2.2.

CHAPTER 2. OVERVIEW 26

User strings

PAD

TIB

Figure 2.2: Character seg-
ment layout

The 4tH programmer can store and fetch anything here.
Since 4tH uses some C-functions ASCIIZ strings are used.
The words that act on counted strings take the same param-
eters and deliver functionally the same results.

File I/O is supported too in a more Forth-like way than
Forth itself. You can have six concurrently open files
and/or pipes. 4tH has threads too. A thread can be saved
to disk and reloaded. The only restriction is that all files
are closed when the execution of a thread is suspended.

2.4.1 The 4tH language

A Forth programmer has to know how much address-units
a cell takes. Since every data-type in 4tH has its own
segment, the address-unit of a segment is always one, re-
gardless the data-type. Consequently, ANS- Forth words like ’CELLS’ and ’CHARS’ are
’NOOP’s. Which fits 4tH nicely.

Although 4tH has different words for storing and fetching different data- types, most of its
vocabulary is still compatible with Forth. E.g. the word "C!" takes an address in the Char-
acter Segment and "!" takes an address in the Integer Segment. Since the Code Segment
and String Segment do not allow any writing, there is no need for such operators.

Each segment has its own allocation operators too. ’VARIABLE’, ’ARRAY’ and ’VALUE’
allocate space in the Integer Area. ’STRING’ allocates space in the Character Area. Other
words like ”’ and ’CREATE’ have restricted functionality and compatibility with Forth.

4tH was originally loosely based on the Forth-79 standard, but now it supports most of the
CORE wordset of ANS-Forth. Note that compatibility never had the highest priority. 4tH
was designed to write applets, not to be the next "fully ANS-Forth compatible compiler
with a little difference". If that is what you want, 4tH is not for you.

2.4.2 H-code

Long before the dawn of the original IBM-XT there was a language called UCSD Pascal.
Like Forth, it was a compiler and an interpreter. In fact, it didn’t compile source into object-
code for some silicon-based processor. Instead it made P-code. So if you wanted to execute
it, you needed a P-code interpreter for your system.

Such an interpreter can run faster than an ordinary interpreter since it doesn’t interpret
source-statements with all of its symbolic labels intact, but optimized P-code. It seems
to have been discovered again, since Java and previous versions of Visual Basic work the
same way. Visual Basic hides the interpreter in a DLL, but basically it doesn’t work any
different.

The 4tH uses the same basic architecture. First the source is compiled into H-code. Then
the H-code interpreter is run. A token is a very simple structure. It’s got a single byte
instruction and an argument. Here’s a sample of disassembled H-code:

Addr| Opcode Operand Argument

62| cr 0
63| value 2
64| +literal -1
65| dup 0
66| to 2
67| 0branch 62

CHAPTER 2. OVERVIEW 27

BTW, building a decompiler for tokenized code is quite simple. There is one for Visual Ba-
sic and it seems like one emerged for Java too. The H- code was the result after compiling
this little piece of source code:

cr begin times @ 1- dup times ! until

You can clearly see that everything is actually compiled. Flow-statements are compiled
into BRANCH and 0BRANCH instructions pointing to addresses in the Code Segment.

S

t

r

i

n

g

S

e

g

m

e

n

t

I

n

t

e

g

e

r

S

e

g

m

e

n

t

C

o

d

e

S

e

g

m

e

n

t

C

h

a

r

a

c

t

e

r

S

e

g

m

e

n

t

Hcode header
*Hcode

S

y

m

b

o

l

T

a

b

l

e

Figure 2.3: Hcode structure

Compiled H-code can be used on
its own. It can be kept in mem-
ory, loaded, saved, decompiled
and executed. H-code is a combi-
nation of the String Segment, the
Code Segment and a header (fig-
ure 2.3). The header contains all
the information to set up the run-
time environment and some in-
formation on the String- and the
Code Segments. The Integer Seg-
ment and the Character Segment
are created at runtime. You can
also force 4tH2 to retain its Sym-
bol Table, so it can be used to re-
solve symbols when decompiling.

Although speed was an issue
when 4tH was designed and de-
veloped, it is beaten by some
other Forths. There are several
possible explanations.

• 4tH uses 32 (or 64) bit numbers, while some Forths still use 16 bit numbers;

• 4tH checks all parameters, while other Forths depend on signals or don’t do any
checking at all;

• 4tH is written in C, while some other Forths are written in assembler.

When 4tH is compiled with a 32 (or 64) bit compiler it outruns Python, Ruby, Perl and most
other C-based Forths (upto 4 times) or has a comparable performance (with the possible
exception of GCC optimized Forth compilers). In real life applications the difference is
barely noticeable.

To make compiled H-code portable, a separate scheme was developed: the Hcode-eXecutable.
Or HX-file for short. It contains all the information in the header, a compacted Code Seg-
ment, the String Segment and some additional information on compatibility and integrity.
Numbers are stored in an architecture-independant way. Optionally, you can also save the
Character- and Integer Segments - but not the Symbol Table.

2.4.3 H-code compiler

The H-code compiler looks a lot like any conventional compiler or assembler. Basically
it is a simple one-pass compiler. In order to understand the workings of 4tH you have to
know that not all H-code instructions are equal:

2Use the ’[NAMES]’ directive.

CHAPTER 2. OVERVIEW 28

• Immediate words (flow control, declarations, etc.)

• Predefined constants (addresses, aliases, etc.)

• Simple words (do not require an argument)

• Symboltable entries (user-definitions)

To determine the initial size of both the Code Segment and the Symbol Table the source
is parsed first and the actual number of words counted. This determines the initial size of
the Code Segment with a high degree of accuracy, so extending the Code Segment is never
necessairy. After compilation the Code Segment will be shrunk to its actual size.

The parser can distinguish between directives and string constants. The size of the Symbol
Table is determined by simply counting all definitions. Every definition needs one Symbol
Table entry. That makes determining the size of the Symbol Table very easy.

During compilation all simple words are compiled into tokens without a valid argument.
When a definition is encountered, like a colon-definition or a variable-declaration, a symbol
is added to the symbol-table.

There are four compiler directives which determine how a number is interpreted. ’[BI-
NARY]’ interprets numbers as binary numbers, ’[HEX]’ interprets them as hexadecimal
numbers. ’[DECIMAL]’ and ’[OCTAL]’ are available too. The "simple words" ’HEX’,
’DECIMAL’ and ’OCTAL’ only act during execution and do not determine how a number
is interpreted during compilation.

During compilation the compiler also resolves all flow words. It simply matches the cor-
rect instruction and enters the jump-address into the argument of the ’BRANCH’, ’?DO’,
’LOOP’, ’+LOOP’, ’CALL’ or ’0BRANCH’ word. The way 4tH handles flow control is
almost completely identical to Forth.

It may sound strange, but colon-definitions are also treated like flow-words. The colon
simply compiles into a ’BRANCH’ instruction that skips the colon definition.

When the user calls a colon definition, it simply compiles into a ’CALL’ instruction that
puts the current address on the return-stack and jumps inside the colon definition, after the
’BRANCH’. The semi-colon works like a RETURN instruction that pops the return address
from the return-stack. Yes, like a subroutine in BASIC or assembler!

2.4.4 Error handling

When 4tH finds an error during compilation or execution it stops and sets the H-code mem-
ber ErrNo. It works like errno in C. You can optionally link in an array of error-messages.
ErrNo is an index to this array, which makes issuing the correct error message very simple.
The instruction pointer is frozen at the point where the error occured, so it is very easy to
find out where the error occured.

2.4.5 Interfacing with C

A minimal compiler would take only a few lines of C-code. The C-programmer can send
C-variables to the interpreter, just like strcalc().

E.g. a compile takes a string-pointer as argument and returns a pointer to H-code:

object = comp_4th (source);

CHAPTER 2. OVERVIEW 29

Executing H-code is easy too:

ReturnVal = exec_4th (object, argc, argv, 3, Var1, Var2, Var3);

Which would preload variables Var1, Var2 and Var3. You must specify how many
variables are preloaded. Also argc and **argv are available from the 4tH program.

The value returned by exec_4th() and stored into ReturnVal is the value of the 4tH
variable ’OUT’, which initially contains CELL_MIN. If an error occurs exec_4th()will
always return CELL_MIN, regardless the value stored in ’OUT’.

Chapter 3

Installation Guide

3.1 About this package

4tH will compile ordinary text-files (MS-DOS and Unix) as well as block-files produced by
the 4tH editor. The user-interface of this line-editor is highly compatible with conventional
Forth block-editors.

4tHs special architecture almost forces you to write "clean" code, so you will learn Forth
the proper way. This does not mean that you can’t write portable code with 4tH. In fact,
because Forth is so flexible you can usually write a small interface to your well-written
4tH-code in a matter of minutes.

You can use 4tH in virtually every environment, from Linux to MS-Windows. You don’t
even have to recompile your applications since 4tH uses a special executable format, that
is interpreted by the 4tH virtual machine.

3.1.1 Example code

There are a lot of example programs, written in 4tH. From line-editors and calculators
to adventure-games. Not all have been especially written for 4tH. There are quite a few
programs from the hand of people like Professor C.H. Ting and Leo Brodie that started
their existence as Forth-programs.

Most are available in source. That means they have the extension ’.4th’. You can examine
or edit them like any other source-file. Source-files written with the 4tH editor get the
extension ’.scr’. They can only be edited with the 4tH editor or other Forth blockfile editors.
Executables have the extension ’.hx’ (Hcode eXecutable).

3.1.2 Main program

You will find a binary program within this package called 4tH. You can copy this binary
to any directory. 4tH is a small development system by itself. When you start it, it will
automatically enter interactive mode and show you a menu not unlike early versions of
Turbo Pascal. You can edit, compile, run and debug programs from the 4tH prompt. Please
read chapter 4 for more details.

You can also use 4tH from the commandline:

30

CHAPTER 3. INSTALLATION GUIDE 31

4th <commands> <file> [file | argument .. argument]

It takes most combinations of these ten commands:

m enter interactive mode

e edit a 4tH screenfile

c load a sourcefile (.4th) and compile it

l load an objectfile (.hx)

d decompile a 4tH program

g generate a C sourcefile (default: out.c)

s save a 4tH program (default: out.hx)

x execute a 4tH program

v enter verbose mode

q suppress copyright message

A few examples:

• To compile a 4tH program and save the object code: 4th csv <source.4th>
[object.hx]

• To compile a 4tH program and execute it: 4th cx <source.4th>

• To decompile object code: 4th ld <object.hx>

• To convert object code to C source: 4th lg <object.hx> [source.c]

• To load and execute object code: 4th lx <object.hx> [arguments]

• To load and execute object code without arguments: 4th <object.hx>

• To edit a 4tH screenfile: 4th e <source.scr>

• To enter interactive mode: 4th m <source.scr>

• To enter interactive mode (without loading a screenfile): 4th

Note: don’t include the "[]" and "<>" in your commandline. They are just there to show
whether an argument is optional ([arg]) or mandatory (<arg>).

3.1.3 Unix package

It is not possible for us to provide Unix binaries for all possible platforms, not now and not
in the future, simply because we don’t have access to them all. Here is a list of the Unix
(like) platforms that are known to compile 4tH:

• Intel - FreeBSD

• Intel - Coherent

• Intel - BeOS

CHAPTER 3. INSTALLATION GUIDE 32

• Intel - Plan9

• RS/6000 - AIX

• NeXT - NS

• Apple - OS/X

• Sun - Solaris

• ARM - RISC/OS

• ARM - Android

• Intel - Linux

• Zaurus - Linux

• Raspberry Pi - Linux

• Ben Nanonote - Linux

• Zipit Z2 - Linux

• Nokia N810 - Linux

• Apple - Linux

If your platform is not listed, give it a try anyway. The chances are it will compile flaw-
lessly, since we’ve never had a report of a Unix platform that refused to compile or run 4tH.
Please send us an email with your results, so we can add it (or remove it) from our list.

You have to compile 4tH yourself, which is not difficult if you read the ’Developers Guide’.
Usually this will do the trick:

make
make install

If you have any special needs, feel free to edit the makefile.

3.1.3.1 Updating

Simply install the package. Unless you’ve used a different location or different options the
previous time, it will simply overwrite the previous executables. If you still have 4thd,
4thg, 4thx or 4thc somewhere on your drive, delete them. That’s ancient stuff!

3.1.4 Linux package

You will find Linux binaries in this package. They will run under most modern Linux
distributions for Intel. If the Linux binary doesn’t run, you can easily recompile it. Just
enter:

make
make install

CHAPTER 3. INSTALLATION GUIDE 33

You don’t have to run ’./configure’. If you have a different environment or any special
needs, feel free to edit the makefile, e.g. compiling for the Zaurus means you have to add
the ’-DZAURUS’ option.

You’ll also find some icons for KDE or GNOME and a ’man’ page. However, you have to
install them manually. If you want to embed 4tH in KDE or GNOME you have to do that
manually as well. Please consult your KDE or GNOME documentation.

You can place the 4tH executable any place you want. It doesn’t require any external files.

3.1.4.1 Copying the tarball to your platform

If you’re using an exotic platform like the ones listed here, you may experience some
problems getting the tarball onto your device. We will give you some directions on selected
platforms.

Ben Nanonote

The easiest way is to copy the tarball onto a micro-SD card and boot your Ben Nanonote.
You’ll find the tarball under /card. Copy it to the location of your choice and proceed as
usual.

If not, perform this procedure. First, be sure you have set the password of ”root” under your
Ben Nanonote. Second, you have to connect the Ben Nanonote to the USB port of your
host computer. Finally, enter the following commands (as root) on your host computer:

ifconfig usb0 192.168.254.100
scp <4tH tarball> root@192.168.254.101:~/

The 4tH tarball will end up in the $HOME directory of ”root” on your Ben Nanonote.
Proceed as usual.

3.1.4.2 /etc/magic

If you want Linux to recognize your 4tH files, you have to add the following lines to your
/etc/magic file:

From The.Beez.speaks@gmail.com
These are the magic numbers for 4tH HX files

0 belong 0x01020400 4tH eXecutable
>9 leshort x \b, version %x

E.g. if you enter:

file editor.hx

It will respond:

editor.hx: 4tH eXecutable, version 364

N.B.: if you’re working on a 64 bit Operating System these values may be completely
different. You’l get the proper signature by submitting od -tx1 example.hx:

0000000 01 02 04 00 ff ff ff 7f 04 64 03 08 02 09 08 08

The relevant sequence should stop shortly after the bytes ”04”, ”64” and ”03”.

CHAPTER 3. INSTALLATION GUIDE 34

3.1.4.3 Using binfmt_misc

There is a module in Linux that will allow you to execute 4tH programs from the prompt
without explicitly calling the 4tH interpreter. It is called ’binfmt_misc’. 4tH has built-in
support for this module. Just add the following lines to your ’boot.local’1 file:

insmod binfmt_misc
cd /proc/sys/fs/binfmt_misc
echo ’:HX:M::\x01\x02\x04\x00\xff\xff\xff\x7f\x04\x64\x03\x08:

:/usr/local/bin/4thx:’ >register

If you use a kernel version later than 2.4.13 you have to add these lines:

insmod binfmt_misc
mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
cd /proc/sys/fs/binfmt_misc
echo ’:HX:M::\x01\x02\x04\x00\xff\xff\xff\x7f\x04\x64\x03\x08:

:/usr/local/bin/4thx:’ >register

You can find out whether 4tH support has been properly installed by issuing:

cd /proc/sys/fs/binfmt_misc
cat HX

And Linux should answer:

enabled
interpreter /usr/local/bin/4thx
offset 0
magic 01020400ffffff7f04640308

Finally, you should go to the directory where 4tH has been installed (usually /usr/local/bin)
and enter:

ln -s 4th 4thx

Now, after you’ve compiled a program you should make it executable and it will run like it
is a native executable, e.g.:

4th cs asc2html.4th asc2html
chmod 755 asc2html
asc2html ascii7.4th ascii7.html

Note you have to be root in order to run some of these commands! N.B.: if you’re working
on a 64 bit Operating System these values may be completely different. You’l get the proper
signature by submitting od -tx1 example.hx:

0000000 01 02 04 00 ff ff ff 7f 04 64 03 08 02 09 08 08

The relevant sequence should stop shortly after the bytes ”04”, ”64” and ”03”.

1On SuSE ’boot.local’ is located in the /sbin/init.d directory.

CHAPTER 3. INSTALLATION GUIDE 35

3.1.4.4 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot
be found in the current directory, the compiler2 will try to get it here. You can set this
environment variable in your .profile or .bashrc file. Simply login into your default
user account and type:

cd
vi .profile

or:

cd
vi .bashrc

This will launch the editor and allow you to edit the appropriate file. In this example your
default 4tH directory is /home/joe/4th:

export DIR4TH=/home/joe/4th/

If 4tH is unable to find a sourcefile, e.g. lib/anscore.4th, it will try to load /home/joe/4th-
/lib/anscore.4th. Do not forget to add the trailing slash. If you do, it will not work
properly.

3.1.4.5 EDIT4TH environment variable

This variable is used by the 4tH executable to launch an external editor, e.g. vi, instead
of the built-in block editor. You can set this environment variable in your .profile or
.bashrc file. Simply login into your default user account and type:

cd
vi .profile

or:

cd
vi .bashrc

This will launch the editor and allow you to edit the appropriate file. In this example the
external editor is vi:

export EDIT4TH=vi

It works exactly the same as the familiar EDITOR environment variable3.

3.1.4.6 Updating

Simply install the package. Unless you’ve used a different location or different options the
previous time, it will simply overwrite the previous executables. If you still have 4thd,
4thg, 4thx or 4thc somewhere on your drive, delete them. That’s ancient stuff!

2That is: the compiler, not the editor or anything else.
3https://en.wikibooks.org/wiki/Guide_to_Unix/Environment_Variables#EDITOR

CHAPTER 3. INSTALLATION GUIDE 36

3.1.5 MS-DOS package

The "4th.exe" that is included in the MS-DOS package is a 32-bit MS-DOS version of the
main Unix utility. It will only run on 80386 class machines and up. It allows you to compile
and run very large 4tH programs. It requires CWSDPMI.EXE somewhere in your path. It
is also available as "4th86.exe", which will run on any IBM-PC with 256 KB memory. This
version is slower and you may experience some memory restrictions.

3.1.5.1 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot be
found in the current directory, the compiler4 will try to get it here. You can set this envi-
ronment variable in your autoexec.bat file. In this example your default 4tH directory
is C:\4th:

set DIR4TH=C:\4th\

If 4tH is unable to find a sourcefile, e.g. lib/anscore.4th, it will try to load C:\4th\-
lib\anscore.4th. Do not forget to add the trailing backslash. If you do, it will not
work properly.

3.1.5.2 EDIT4TH environment variable

This variable is used to indicate which external editor the 4tH executable should load if you
do not want to use its built-in block editor. You can set this environment variable in your
autoexec.bat file. In this example you’re using edit:

set EDIT4TH=edit

If the external editor is not in the PATH, you should provide the entire path.

3.1.5.3 Updating

Simply install the package. Unless you’ve used a different location or different options
the previous time, it will simply overwrite the previous executables. If you still have
4thd.com, 4thg.com, 4thx.com or 4thc.com somewhere on your drive, delete
them. That’s ancient stuff!

3.1.6 MS-Windows package

Run "setup.exe" to install the package. It runs with Windows 95 OSR2 and up, Windows
NT 4.0, Windows 2000, Windows XP, Windows Vista, Windows 7 and Windows 10.

You can launch Explorer and double-click an HX-file. Windows will complain it doesn’t
recognize the file and tell you what to do. Browse to "4th.exe" and select it. After that you
can click on an HX-file and it will be executed. You can even add HX-files to your desktop
where they will start and run like ordinary Windows applications.

This is a true 32-bit version, so it does take long filenames, but you can’t run it with Win-
dows V3.x and early versions of Windows 95. It is a console application, so you’ll need
an MS-DOS box to run and use it. Note that it will exit immediately once a program has
halted. We recommend you run 4tH from the MS-DOS prompt when you’re using 4tH as
a development environment.

4That is: the compiler, not the editor or anything else.

CHAPTER 3. INSTALLATION GUIDE 37

3.1.6.1 Environment variables

The DIR4TH variable is used to indicate where 4tHs default directory is. If a sourcefile
cannot be found in the current directory, the compiler5 will try to get it here. In this example
your default 4tH directory is C:\4th:

set DIR4TH=C:\4th\

If 4tH is unable to find a sourcefile, e.g. lib/anscore.4th, it will try to load C:\4th\-
lib\anscore.4th. Do not forget to add the trailing backslash. If you do, it will not
work properly.

The EDIT4TH variable is used to indicate which external editor the 4tH executable should
load if you do not want to use its built-in block editor. In this example you’re using
notepad:

set EDIT4TH=notepad

If the external editor is not in the PATH, you should provide the entire path.

MS-Windows 9x While it is possible to set environment variables in the same way as for
MS-DOS by editing autoexec.bat, it is easier to use msconfig. First run msconfig
from the task bar by selecting ”Run ”.

Select the "Autoexec.bat" pane, then go to the bottom of the window, select the last entry
and click the "New" button. A small input window appears below the last entry, and in this
you should type a new entry with the exact syntax as shown in the example above. Then
click "OK" and a small pen appears against the entry, indicating that autoexec.bat will
be modified. You may have to reboot afterwards.

MS-Windows NT+ Click on the ”My computer” icon or the ”Start” menu, then click on
the ”Control panel”. Click on the "System" icon to get the "System Properties" dialog box.
For Windows NT+ use the "Environment" tab instead of the "Advanced" tab. Click on the
"Environment Variables" button and select ”New”. Enter the DIR4TH and its value in the
boxes and then click "OK". You can repeat the procedure for EDIT4TH if you wish.

If there are several users on the PC, it is probably better to set the variables as "System
variables", rather than "User variables" since they will then automatically be accessible for
all users. You will need to have Administrator rights to do this.

MS-Windows 10 Open the Start Search, type in “env” and choose “Edit the system en-
vironment variables”. Click on the "Environment Variables..." button and select ”New”.
Enter the DIR4TH and its value in the boxes and then click "OK". You can repeat the
procedure for EDIT4TH if you wish.

If there are several users on the PC, it is probably better to set the variables as "System
variables", rather than "User variables" since they will then automatically be accessible for
all users. You will need to have Administrator rights to do this.

5That is: the compiler, not the editor or anything else.

CHAPTER 3. INSTALLATION GUIDE 38

3.1.6.2 Updating

Be sure to properly uninstall the previous package before installing the new one. If you
don’t it may suggest to overwrite the package and simply refresh the group. Be sure the
installation is verbatim. If there are any changes, the uninstaller may refuse to uninstall the
package.

3.2 Setting up your working directory

The best thing to do is to create a directory under your home directory. In Windows, your
home directory is called My documents, in Unix-like environments simply type ’cd’
and you’re there.

The rest largely depends whether you are the only one developing 4tH programs on your
system or whether you want a system wide installation. If you are the only one develop-
ing programs you could create a lib subdirectory and copy all library files there. Your
DIR4TH environment variable can now simply point at your own 4tH directory.

If you want a system wide installation or your Linux distribution already installed the li-
brary files for you, the smartest thing is to let your DIR4TH environment variable point to
the 4tH system directory, e.g. /usr/share/4th or C:\Program files\4tH. Do
not forget to add the trailing slash when setting the your DIR4TH environment variable.

Most people find it a lot easier to use 4tH from the prompt, so if you want to start a session,
start up your favorite command line shell and navigate manually to your personal 4tH
directory. When you just want to run a 4tH program, it depends on whether you want to
run it as a script, a bytecode image, a shell script or a native executable. Please consult
either your Operating System manual or the appropriate sections of this document.

3.3 Now what?

After you’ve installed and played around with the utilities, we suggest you either click the
4tH icon on your desktop or start an interactive session by entering:

4th m session1.scr

And start reading chapter 6, the Primer. When you’ve thoroughly read and understood the
very first section you’re ready to go on. Start up your favourite editor (or use the built-in
editor if you don’t have a favorite one) and make your own very first 4tH program using
chapter 4.

If you encounter an error during compilation or execution, refer to chapter 24, the ’Errors
Guide’ for a detailled description what it means, what probable causes are and how you
can fix it.

3.4 Pedigree

4tH is basically an original work. However, some concepts have been derived from the
work of other, much smarter people.

• The pictured numeric output and flow-control routines are based on Abersoft Forth.

CHAPTER 3. INSTALLATION GUIDE 39

• The exception handler is based on the dpANS-6 implementation.

• The enumerations are based on the Swift-Forth implementation.

• The structures are based on the GForth implementation and suggested by Stephen
Pelc.

• The ’ASSERT(’ and ’)’ words are based on an idea implemented in GForth.

• The implementation of ’[DECIMAL]’, ’[HEX]’, ’[OCTAL]’ and ’[BINARY]’ was
suggested by William Tanksley.

• The implementation of ’:REDO’ and ’DOES>’ was suggested by Astrobe.

• The implementation of unions was suggested by Tim Trussel and Bruce McFarlane.

• The binding of the Symbol Table into the 4tH structure was suggested by Ron Aaron.

• The HX-format was suggested by Mikael Cardell.

4tH was discussed in Volume XVIII, Number 3 of Forth Dimensions. Thank you, Marlin
Ouverson for giving me that opportunity.

3.5 Contributors

You may get the suggestion that I did all this myself, but that is hardly true:

Will Baden 4tH to ANS-Forth interface;

G.B. Stott 4tH Makefile;

AltLinux team Shared libraries;

Ed ANS-Forth compatible floating point I/O libraries;

Bill Cook George Marsaglia random number libraries;

David Johnson Zenfloat floating point, Zenfloat SQRT, Gem4tH, Portable Bitmap graph-
ics, Turtle graphics, 3D plotting, infix formula translation, selected li-
brary members and example programs.

Furthermore, I’d like to thank all those people who have helped me to port 4tH to different
machines, expecially Wim Slangewal, Zbigniew, Ron K. Jeffries, Rubén Berenguel and
Greg Schmidt. Finally, I humbly apologize to all those who have been forgotten in the
course of 4tH’s 25+ years history or whose contributions have been superseded by other
developments.

3.6 Questions

We tried to provide you with all the documentation you’ll probably ever need. That doesn’t
mean that you’ll never have any questions. NEVER EMAIL THE PEOPLE WHOSE SITE
YOU GOT THIS FROM! THEY DON’T KNOW EITHER! INSTEAD, MAIL TO:

the.beez.speaks@gmail.com

You’ll usually get fast answers, although when your question is very complex we’ll proba-
bly give you just some general directions. We have to stress that any comment is welcome,
always.

CHAPTER 3. INSTALLATION GUIDE 40

3.6.1 4tH website

You can visit our website, which is dedicated to 4tH:

http://thebeez.home.xs4all.nl/4tH/

3.6.2 4tH Google group

We’ve got a Google group for discussions about 4tH. You will find all the latest information
there, including additions and bugfixes. If you want to interact with other 4tH users, we
recommend you subscribe to this group. You will also have to become a Google member
if you are not already, e.g. when you already have a gmail account:

http://groups.google.com/group/4th-compiler

Important! Your posts will not be accepted by the server if you don’t subscribe first! Your
first messages will be moderated.

3.6.2.1 Conditions of use

This group has been created as a service to, and in support of, the 4tH (and Forth) commu-
nity. As in most discussion groups, there are a few rules to ensure the survivability of the
group for the future.

1. This group is for discussions of 4tH problems, 4tH questions and answers. It is not
to be used for non-4tH discussions.

2. This is not an 4tH advocacy group. Stick to 4tH questions and problem-solving or
move your discussion to an appropriate channel. i.e. alternative site or private e-mail.

3. Flames, insults, foul language will not be tolerated. You will be unsubscribed and
barred from re-subscribing under your present e-mail address.

3.6.2.2 What to discuss?

Well, Problems, wishes, needs, solutions (how you did something) basically anything 4tH
related.

3.6.3 Newsgroup

There is no special newsgroup for 4tH. However, comp.lang.forth will prove to be able to
answer most of your questions.

Chapter 4

A guided tour

4.1 4tH interactive

4tH’s interactive mode is fully compatible with even the most ancient versions, so you can
continue to use all your external IDE’s and script files. The interactive mode is especially
useful when you are using an environment where other tools are not available or impossible
to use. This document shows you how to use interactive mode and get the most out of it.

Note we assume you have fully installed 4tH according to the instructions, including setting
the DIR4TH environment variable. If you haven’t you may not be able to complete this tour
due to unexpected errors.

4.2 Starting up 4tH

You can enter 4tH’s interactive mode by just clicking the icon (when you are using MS-
Windows) or by issuing this command on the Unix or MS-DOS commandline:

4th

If you’re using a recent version of Linux, you may want to use the rlwrap utility1 to make
your life easier, especially when editing:

rlwrap 4th

4tH will respond by showing you this screen:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>_

This is the main menu. It is slightly reminiscent to the earlier versions of Turbo Pascal. At
the bottom is the prompt. Just press the appropriate key and hit enter, e.g. "S", which stands
for the name of the screenfile. 4tH will now prompt you for the name of the screenfile. Note
that 4tH is not case sensitive, so both "s" and "S" will do.

1It provides persistent history, completion and line editing using the cursor keys. Issue: sudo apt
install rlwrap to install. See also: https://github.com/hanslub42/rlwrap

41

CHAPTER 4. A GUIDED TOUR 42

4.3 Running a program

We assume you’ve installed 4tH according to the instructions2. If not, this might not work.
Now press ”S” and hit enter. 4tH will prompt you for the name of a screenfile:

Screen file name:

Answer by typing ”examples/romans.scr”3 and hit enter. 4tH will return to the menu:

Screen file name: examples/romans.scr

(S)creen file: examples/romans.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

Now hit ”R” and press enter. What now appears is your program that is actually running:

>r
Enter number: 2005
Roman number: MMV

After the program has ended, you will return to the menu. Well, that wasn’t too hard, was
it? You can quit 4tH by pressing ”q” and hitting the enter key.

4.4 Starting an editing session

After we’ve started 4tH again, we enter the editor mode by typing ”e” and hitting enter.
Ignore any file opening errors, you’re fine. The ”OK” prompt shows you you’re now in the
editor. Now type:

0 clear

This will erase the first screen and select it for editing. 4tH’s editor is a typical Forth editor.
Forth organizes its mass storage into "screens" of 1024 characters. Forth may have one
screen in memory at a time for storing text. The screens are numbered, starting with screen
0.

Each screen is organized as 16 lines with 64 characters4. The Forth screens are merely an
arrangement of virtual memory and do not correspond to the screen format of the target
machine.

Depending on memory model and operating system, you have either 28, 32 or 64 screens
available. This will be sufficient in most situations. These screens correspond to a region
in memory, which acts like a RAM drive.

The actual editing is done in an area that is called the ’workspace’. With the word ’clear’
you wipe all information in the workspace. With the word ’list’ you can select a certain
screen for editing and load its information from the RAM disk into the workspace. The

CHAPTER 4. A GUIDED TOUR 43

Workspace

Screen 1

Screen 2

Screen n

File

flush

list

write

(editor)

Figure 4.1: Editor architecture

figure below shows you how to transfer information between the screenfile, the RAM disk
and the workspace (figure 4.1).

When you enter the editor the file is automatically loaded into the RAM disk. With ’list’
you transfer the source from a screen in the RAM disk into the workspace. Since we started
a new file (that’s why you got the error message) all screens are empty. To make absolutely
sure a screen is fit to receive new code we cleared screen 0 and selected it for editing. You
can quit the editor by pressing ”q” and hitting the enter key. This will discard any changes.
You can quit 4tH by pressing ”q” again and hitting the enter key.

4.5 Writing your first 4tH program

After we’ve started 4tH again, we start by giving our new program a name. Press ”s” and
enter ”hello.scr”. Now we’re going to enter the source text, so we start up the editor by
pressing ”e” (you know by now you have to press the enter key afterwards). Again, ignore
any file opening errors. Then we select screen 0 for editing by entering:

0 clear

If you want to know what you’ve entered so far you can list the editing screen by entering:

l

The editor will now show you a full listing:

Scr # 0
0
1
2

2That means you’ve installed 4tH using make install or - if you used a binary package - placed all the
executables and libraries in their proper directories.

3This works for both Windows and Unix type Operating Systems. Note that quotes are simply there to separate
what you have to type at the prompt from the rest of the text. Don’t enter them.

4Except when you’re working with a small screens like the Zaurus or the Ben Nanonote. These have typically
8 lines with 32 character screens.

CHAPTER 4. A GUIDED TOUR 44

3
4
5
6
7
8
9
10
11
12
13
14
15

^ 0 OK

The first line will tell you which screen you’re working on, which is screen 0. Then all
sixteen lines are listed, all blank of course. Finally it will show you the current line, which
is line 0. The ”^” is the cursor, which is at the beginning of the line. You can move the
cursor around with the ”m” command. Try:

10 m

The editor will respond with:

^ 0 OK

And shows you this way that the cursor has moved 10 positions. If you want to move the
cursor backwards, you can do that too. Just enter a negative value, like:

-5 m

And the cursor will move back five positions:

^ 0 OK

If you enter a larger value, that is perfectly acceptable too:

128 m

Note that every line is 64 characters long, so the editor will tell you you’ve just moved to
line 2:

^ 2 OK

Don’t be afraid that you’ll do something wrong and lose your source. Note that this is 4tH,
not Forth. If you try something funny like entering a very large value, the editor will just
issue an error message:

1024 m

Off screen OK

CHAPTER 4. A GUIDED TOUR 45

You just tried to go beyond the workspace and the editor won’t allow you to do that. Okay,
we’ve moved around enough. How about writing that program? After all that moving
around, let’s start by doing something sane:

top

That moves the cursor to its ”home” position. You can enter text with the ”p” command,
which stands for ”PUT”. Just provide the editor with the appropriate linenumber and the
text:

0 p ."Hello world!" cr

Let’s list our screen:

l

Scr # 0
0 ."Hello world!" cr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

^."Hello world!" cr 0 OK

That’s it. That’s it? What about all that red tape like ”Program Hello” or ”int main()”,
opening parenthesis or closing braces? Hey, this is Forth5, not C or something. You’ve just
told the compiler it has to print the text ”Hello world!” and write a newline. Isn’t that what
you wanted?

According to figure 4.1, we first have to save the workspace to the RAM disk by entering
”flush”, then save the whole shebang to disk by entering ”write” and subsequently leave
the editor by entering ”q”.

Although perfectly correct, it is a lot of typing for just saving and exiting. You can do that
a lot faster by just entering ”wq”, which stands for ”Write and Quit”:

wq

Now we’re back in the main menu and we want to see our program run. Just hit ”R” and
press enter:

r

5If you are not familiar with Forth and want to learn it, please read the primer. Everything you want to know
is explained there in detail.

CHAPTER 4. A GUIDED TOUR 46

Don’t we have to compile it first? Sure, but 4tH will notice your program hasn’t been com-
piled yet and will compile it automatically for you. You’ll probably get an error message
like this:

Compiling; Word 0: Undefined name

Then you know you’ve just made a classical beginners error: there is no space between ."
and the text. You’ll have to go back to the editor to correct it. Reload screen 0 by entering:

e
0 list

Scr # 0
0 ."Hello world!" cr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
OK

Now let’s see where our cursor is:

0 m

^."Hello world!" cr 0 OK

Now we know we have to move our cursor two positions and enter a space. Entering text at
the cursor position is done by the ”c” command, which stands for ”COPY”. Note that you
have to add a space after each command, so adding a space at the cursor position is done
by entering a ”c” with two spaces:

2 m

."^Hello world!" cr 0 OK
c

." ^Hello world!" cr 0 OK

Well, did that work out for you? Or were you a naughty boy and forgot to enter a ”c” with
two spaces? If so, just do it again - but this time right. A ”c” with two spaces will do the
trick.

Now we can exit the editor again and rerun our program. Yes, 4tH will know you’ve
changed the text and recompile your program automatically:

wq

(S)creen file: new.scr

CHAPTER 4. A GUIDED TOUR 47

(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>r
Hello world!

That’s it! You’ve just successfully entered, compiled and ran your very first 4tH program!
You can quit 4tH by pressing ”q” and hitting the enter key.

4.6 A more complex program

Note that this is not a tutorial on Forth. If you do not know the language you’ll probably
won’t understand the statements we’re going to enter. You don’t have to, but if you need to
please refer to our highly acclaimed 4tH primer.

Okay, let’s presume you’re looking at your 4tH prompt. We want to write a program which
converts Unix ASCII files to DOS ASCII files. Unix ASCII files use a single linefeed to
signify the end of a line while DOS ASCII files use an carriage return/linefeed pair for that
purpose.

First, we need to name our program, so we press ”s” to enter the name of the screen file.
We’ll call it ”convert.scr”. Then we enter the editor by pressing ”e” and are greeted by the
”OK” prompt. First we’ll define a word (that’s what a subroutine is called in Forth) that
converts a file. You type the commands, which are bold:

0 clear
OK
0 p : ProcessFile
OK
1 p begin
OK
2 p refill
OK
3 p while
OK
4 p 0 parse-word
OK
5 p type 13 emit 10 emit
OK
6 p repeat
OK
7 p ;
OK

Note that 4tH confirms you after each line that everything is ”OK”, but we left those mes-
sages out. When we list our program it looks like this:

l

Scr # 0
0 : ProcessFile
1 begin
2 refill
3 while
4 0 parse-word
5 type 13 emit 10 emit

CHAPTER 4. A GUIDED TOUR 48

6 repeat
7 ;
8
9
10
11
12
13
14
15

^: ProcessFile 0 OK

It is a good custom to start each screen with a comment line, so others will know what
we’ve been doing. However, line 0 is already taken. To insert a blank line we use the ”s”
command, which stands for ”SPREAD”. All lines following it will move down. If you
happen to use line 15 you’re in trouble since that one will be lost:

0 s 0 s l

Scr # 0
0
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11
12
13
14
15

^ 0 OK

Yes, as long as you’re not entering a command with a trailing text parameter, you can enter
multiple commands on a single line. So this one tells the editor ”spread at line 0, spread at
line 0, list”. Now we’re going to enter our comment line:

0 p (Conversion from UNIX ASCII files to DOS ASCII files - I)
OK
l

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11
12
13
14

CHAPTER 4. A GUIDED TOUR 49

15

^(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

That will do nicely. Although this word will do the job, we still have to open the input- and
the output file. Since we want to test our program quickly we make a quick and dirty word
that will do the job:

11 p : test s" code.txt" inpud open s" out.txt" outpud open
12 p error? rot error? rot or abort" Error!" use use;
13 p ttest ProcessFile
wq

When we try to compile this program by entering ”c”, it doesn’t work:

Compiling; Word 16: Undefined name

Oops, we’ve obviously made an error, but where? Word 16? Where is word 16? We can
find that out by decompiling the program and see where it went wrong. Just press ”d”:

>d
4tH message: Undefined name at word 16
Object size: 16 words
String size: 9 chars
Variables : 0 cells
Strings : 0 chars
Symbols : 0 names
Reliable : No

Addr| Opcode Operand Argument

7| type 0
8| literal 13
9| emit 0
10| literal 10
11| emit 0
12| branch 0
13| exit 0
14| branch 0
15| s" 0 code.txt

The last thing it compiled was the start of the ’TEST’ definition. It must have gone wrong
right after that one. So we go back to the editor by pressing ”e” and find out. Sure, ”inpud”
must be ”input”. We can even find out it we made more errors like this:

f pud

: test s" code.txt" inpud^ open s" out.txt" outpud open 11 OK
n

: test s" code.txt" inpud open s" out.txt" outpud^ open 11 OK
n
Not found OK

And yes, we did. On line eleven to be exact. Twice. With the ”f” command (which stand
for ”FIND”) we can find a string. By entering ”n” (which stands for ”NEXT”) we can find
the same text again. Now we have to correct it. We’ll get back to the top of the screen and
find the offending word:

CHAPTER 4. A GUIDED TOUR 50

top f pud

: test s" code.txt" inpud^ open s" out.txt" outpud open 11 OK

Note that the cursor is positioned at the end of ”inpud”. We only have to wipe one character
and insert the correct one:

1 w c t

: test s" code.txt" inpu^ open s" out.txt" outpud open 11
: test s" code.txt" input^ open s" out.txt" outpud open 11 OK

Of course, we could destructively backup the cursor by one position by issuing ”1 w” and
then enter the ’t’ at the cursor position by using the ”c” command. However, we won’t do
that, since there is a quicker way:

x pud

: test s" code.txt" input open s" out.txt" out^ open 11 OK
c put

: test s" code.txt" input open s" out.txt" output^ open 11 OK

The ”x” command works very much like ”f”, but it does not only find the string, it also
deletes it. Still, there are other errors left in the source:

f test

ttest^ ProcessFile 13 OK
b

t^test ProcessFile 13 OK
1 w

^test ProcessFile 13 OK

Yes, ”test” has an extra ”t”. So we find the next occurrance of ”test”. Note that a search is
always performed from the cursor position, so the definition of ”test” is not found. The ”b”
command will move the cursor backwards up to the point where ”test” begins and we can
delete the superfluous ”t” with the command ”1 w”. The final typo we have to correct is a
lacking space between ”use” and the semicolon. That can be fixed pretty quickly:

top f use

error? rot error? rot or abort" Error!" use^ use; 12 OK
n

error? rot error? rot or abort" Error!" use use^; 12 OK
till ;

error? rot error? rot or abort" Error!" use use^ 12 OK

The ”till” command deletes everything from the current cursor position (indicated by the
caret, remember?) to the end of the following string. In this case the semicolon but you can
use any string. Finally, we copy the correct string into the text, which is a space followed by
a semicolon. Don’t forget you need an extra space to separate ”c” from the space and the
semi-colon following it. So that is ”c”, followed by two spaces and finally a semi-colon:

CHAPTER 4. A GUIDED TOUR 51

c ;

error? rot error? rot or abort" Error!" use use ;^ 12 OK

If that didn’t work, you didn’t add two spaces as indicated. Four errors corrected. Let’s
write the screen back to RAM disk and see what we have got:

flush l

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11 : test s" code.txt" input open s" out.txt" output open
12 error? rot error? rot or abort" Error!" use use ;
13 test ProcessFile
14
15

error? rot error? rot or abort" Error!" use use ;^ 12 OK

Seems to be okay. Let’s go back to the main 4tH screen by issuing the ”wq” command. We
recompile the source by pressing ”c” and presto: we got a program!

But first we have to stress that you don’t have to use 4tHs editor. You can use any editor
you like. Shame you’ve already entered and saved your source. But there is a way out. And
you don’t have to go too far. Just start up the editor again by entering ”e” and enter:

OK
export convert.4th
OK

You’ll find an ordinary file called ”convert.4th” in your working directory hat you can
modify with any text editor you like. You’re still in the editor now, of course. We assume
you know by now how to get out of here. Ok, you win: type ”q”, press enter, type ”q”
again, press enter.

4.7 Advanced features

Important!
We assume you have fully and correctly in-
stalled 4tH. If you haven’t you may not be
able to complete this tour due to unexpected
errors.

What we actually want is a program we can run from the prompt, something like:

convert in.txt out.txt

CHAPTER 4. A GUIDED TOUR 52

And if you do not provide the required parameters it has to issue an error message:

Usage: convert infile outfile

We will get there, but we still have some coding to do. First of all, we have to structure our
program. We already have a working word6 called ”ProcessFile”. It seems like a good idea
to define two others, one that opens the files and one that closes the files. And we have to
get rid of our ”test” word.

So let’s start 4tH, enter ”convert.scr” after issuing ”s” and fire up the editor by issuing ”e”.
You type the commands, which are bold:

OK
0 list

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11 : test s" code.txt" input open s" out.txt" output open
12 error? rot error? rot or abort" Error!" use use ;
13 test ProcessFile
14
15
OK
11 d l

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11 error? rot error? rot or abort" Error!" use use ;
12 test ProcessFile
13
14
15

^(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

You can remove lines with the ”d” command, which stands for ”DELETE”. This will re-
move the line and move all remaining lines up. Line 15 becomes blank. But there is another
way to get rid of unwanted lines:

11 e l

6A subroutine in Forth is called a ”word”, remember?

CHAPTER 4. A GUIDED TOUR 53

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11
12 test ProcessFile
13
14
15

^(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

The ”e” command, which stands for ”ERASE”, will leave every line at exactly the same
position. It just blanks that line. Let’s finish this:

11 p : Convert OpenFiles ProcessFile ;
OK
12 e
OK
13 p Convert
OK
l

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11 : Convert OpenFiles ProcessFile ;
12
13 Convert
14
15

^(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

Seems neat enough, but we still haven’t got a ”OpenFiles” word. This has to be defined
before ”Convert”, but do we have still have room for that on screen 0? No, we haven’t.
Fortunately, you can insert screens with the 4tH editor7. Don’t forget to flush. That is not
only a good practice when you’ve visited the bathroom, but also when you’re working with
a Forth editor:

flush 0 insert
OK

We start our screen with a comment of course. We’ll use the same comment as in our
previous screen, so why not copy it?

7Note that this command is usually not available in other Forth editors!

CHAPTER 4. A GUIDED TOUR 54

1 list 0 h 0 list 0 r

That produced a lot of output! What happened here? First, we switched to screen 1, which
is our previous screen 0. Then we used the ”h”8 command, which copied line 0 into PAD.
PAD is a buffer, which is able to hold the contents of a single line. Note that line 0 of screen
1 remains intact. It is only copied.

Then we switched back to screen 0 and issued the ”r” command, which stands for ”RE-
PLACE”. It replaces whatever is on line 0 with the contents of the PAD. Finally, we listed
the screen. Let’s play around a little with this PAD thing:

1 r 1 t

^(Conversion from UNIX ASCII files to DOS ASCII files - I) 1 OK

Yes, the line we copied was still in PAD! We also used the command ”t” to ”TYPE” line 1.
This command is very similar to ”h”, since it copies line 1 to PAD. But is also moves the
cursor to the beginning of the line and types it. Let’s see if you can explain this one:

1 d 2 r 2 t

^(Conversion from UNIX ASCII files to DOS ASCII files - I) 2 OK

Sure, the ”d” command not only deletes the line, it also copies it to PAD. So when the ”r”
command is issued, it replaces line 2 with the contents of the line we deleted. Let’s do one
final test:

0 i l

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1 (Conversion from UNIX ASCII files to DOS ASCII files - I)
2
3 (Conversion from UNIX ASCII files to DOS ASCII files - I)
4
5
6
7
8
9
10
11
12
13
14
15

^ 2 OK

Here we used the ”i” command, which stands for ”INSERT”. It inserted the contents of
PAD at line 0 and moved all the remaining lines down. Note that the cursor didn’t move a
bit. That’s enough play for one day, let’s get back to work:

1 e 3 e 2 p : OpenFile
OK
3 p args 2dup 2>r rot open error?
OK

8In case you wondered, ”h” stands for ”HOLD”.

CHAPTER 4. A GUIDED TOUR 55

4 p if
OK
5 p drop ." Cannot open " 2r> type cr abort
OK
6 p else
OK
7 p dup use 2r> 2drop
OK
8 p then
OK
9 p ;
OK
l

Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : OpenFile
3 args 2dup 2>r rot open error?
4 if
5 drop ." Cannot open " 2r> type cr abort
6 else
7 dup use 2r> 2drop
8 then
9 ;
10
11
12
13
14
15

^: OpenFile 2 OK

Hmm, it seems like we’re going to need another screen. It is always wise to leave some
room for future extensions, so this screen is full enough. But don’t forget the commentline.
We don’t want to enter that one again, so let’s store it in PAD:

0 h flush 1 insert 0 r l

Scr # 1
0 (Convert UNIX ASCII files to DOS ASCII files - I)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

^ 2 OK

Hold the line in PAD, flush the screen, insert screen 1 and replace line 0 with the contents
in PAD. But the commentline is not entirely correct, so let’s fix it:

top x I)

CHAPTER 4. A GUIDED TOUR 56

(Convert UNIX ASCII files to DOS ASCII files - ^ 0 OK
c II)

(Convert UNIX ASCII files to DOS ASCII files - II)^ 0 OK

The cursor is still on line 2, so we move it to the top again. Then we find and delete ”I)”.
Finally we copy in ”II)”. We can do that since the cursor is at the right position. Now let’s
enter our final word:

2 p : OpenFiles
OK
3 p argn 3 < abort" Usage: convert infile outfile"
OK
4 p input 1 OpenFile
OK
5 p output 2 Openfile
OK
6 p ;
OK
l

Scr # 1
0 (Conversion from UNIX ASCII files to DOS ASCII files - II)
1
2 : OpenFiles
3 argn 3 < abort" Usage: convert infile outfile"
4 input 1 OpenFile
5 output 2 Openfile
6 ;
7
8
9
10
11
12
13
14
15

(Conversion from UNIX ASCII files to DOS ASCII files - II)^ 0 OK

Almost there! We just have to fix the commentline in screen 2:

flush 2 list
Scr # 2
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11 : Convert OpenFiles ProcessFile ;
12
13 Convert
14
15
OK
top x I)

CHAPTER 4. A GUIDED TOUR 57

(Convert UNIX ASCII files to DOS ASCII files - ^ 0 OK
c III)

(Convert UNIX ASCII files to DOS ASCII files - III)^ 0 OK

The current screen is flushed, then screen 2 is listed. We position the cursor at the top, find
and delete ”I)” and copy ”III)” in at the cursor position. Done! Let’s leave the editor and
see what we have got:

wq

It compiles cleanly (type ”c” in the menu) and when we run it (type ”r” in the menu) it
answers:

Usage: convert infile outfile

Sure, but what we actually want is to convert a file. Well, you can do that too without
leaving 4tH. Just press ”a” and enter the filenames, just like you would do at the prompt.
In this example we have chosen ”code.txt” and ”out.txt” - which probably aren’t there in
your PC, but you catch my drift:

(S)creen file: convert.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>a
Arguments: code.txt out.txt

When you press ”r” now, the arguments entered will be passed to your 4tH program, just
like they would at the prompt. To clear the arguments, press ”a” again and just hit enter
when prompted for arguments.

But how do we run it from the prompt? Easy, just press ”o” and enter ”convert.hx” at the
prompt. Now press ”b”:

(S)creen file: convert.scr
(O)bject file: convert.hx

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>b

If 4tH has nothing to complain about, it doesn’t complain, so you can safely assume that
everything is okay. Now we can go to the prompt9 by pressing ”q” and run it:

user@linux:~ > 4th lxq convert.hx code.txt out.txt
Cannot open code.txt
user@linux:~ >

9Windows users can do this by starting an MS-DOS session.

CHAPTER 4. A GUIDED TOUR 58

That was to be expected. It is always a good idea to test all exceptions as well. There
could be a bug in that code too. Well, it seems to work.. But what we really want is a
standalone program. One that can be run without invoking 4tH and shared with our friends
and families. Why this ”.hx” thing? HX-files do have their merits. First of all, it is very
small, a little over 150 bytes. But most importantly, you can take this file and run it on
a Windows NT, MS-DOS or other Unix machine without modification or recompilation,
provided a 4tH is available for that platform10.

If you still want a standalone program, startup 4tH, press ”s” and enter ”convert.scr” at the
prompt. Then press ”o” and enter ”convert.c”. Isn’t that the extension of a C-program?
Yes, it is. 4tH is able to generate C code. Just press ”g” and you’ve created a C program.
You don’t even have to know C.

If you know how to compile a C program that’s more than enough11. In case you want to
try, you should have installed the 4tH library and header files, since those are needed to
compile ”convert.c”12.

Is that all? No, that’s not all 4tH can do. We have a few surprises left.

4.8 Suspending a program

We’ve entered this program:

Scr # 0
0 ." Is everybody in? The ceremony is about to begin.." cr
1 44596 36 base !
2 pause
3 ." Wake up! Do you remember where it was?" cr
4 ." Has this dream stopped? " . cr
5
6
7
8
9
10
11
12
13
14
15

The first line is simply a string we print to screen. The next line, we push a number on the
stack and we change the radix. Then we go to sleep. After that, we wake up again, print a
few lines and retrieve the number on the stack. Let’s quit the editor by pressing ”wq” and
run it:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>r

1032 bit platforms and 64 bit platforms are usually not interchangeable.
11Windows users need to consult the documentation that came with their C compiler. MS-DOS users are

encouraged to use the ’DJGPP’ compiler, which is free. Most Linux users already have ”gcc” installed.
12Read the ”Developers Guide” if you are not sure how to do this.

CHAPTER 4. A GUIDED TOUR 59

Is everybody in? The ceremony is about to begin..

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>

At first, it seems like ’PAUSE’ is nothing more than an alias for ’ABORT’, but that is not
entirely true. Let’s save the executable and enter ”r” one more time:

>b

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>r
Wake up! Do you remember where it was?
Has this dream stopped? YES

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>

Now the second part of the program is run, that is the part after ’PAUSE’. Note that both
the stack and the radix have remained intact. Every time ’PAUSE’ is invoked, it will return
you to the prompt. When you enter ”r” again, it will continue where it left off, until it meets
one of the following three conditions:

1. It encounters another ’PAUSE’; entering ”r” will continue where it left off.

2. It encounters ’ABORT’, ’QUIT’ or ’ABORT”’; entering ”r” will restart the program.

3. There are no more instructions to execute; entering ”r” will restart the program.

But why did we save an executable? We’ll have to go back to the shell to show you:

user@linux:~> 4th lxq out
Wake up! Do you remember where it was?
Has this dream stopped? YES
user@linux:~>

Entering ”b” during suspension will save the program in its suspended state. When you run
the resulting executable, it will behave like you’ve entered ”r”. That’s neat, isn’t it?

CHAPTER 4. A GUIDED TOUR 60

4.9 Calculator mode

Startup 4tH. If you feel quite confident now and this large menu is starting to annoy you,
you can enable the ”expert mode” by pressing ”x”. This will just leave a tiny prompt. Don’t
worry - make an error and the menu will reappear. BTW, just pressing <ENTER> will do
the trick as well.

Now enter the editor by pressing ”e”. We’re going to show you this baby can do a lot more
than just editing:

OK
.(Hello world!) cr
Hello world!
OK

Hey, that is a lot like the very first program we ran! Yes, it is. You can enter a subset of
the 4tH language at the editor prompt, so you can test simple programs like this without
getting into the ”edit-compile-run” cycle. You can even make some simple calculations:

OK
23 45 + .
68 OK

Simple? Aren’t the operators and operands entered in the wrong order? No, they aren’t.
4tH uses Reverse Polish Notation, which is also used by HP calculators and the Unix ”dc”
command. 4tH has even eight built-in variables in which you can store numbers:

23 45 + A. !
OK
A. ?
68 OK

It even understands binary, hexadecimal and octal numbers:

23 45 + binary .
1000100 OK
1000011111 hex FACE octal 765 + + decimal .
65250 OK

This is called the ”calculator mode” and you don’t have to do anything if you want to use
it. It is part of the editor command set. You can mix editor commands and calculations13

as you like. Nice extra, isn’t it?

4.10 Epilogue

This concludes our tour of the 4tH interactive mode. We hope we’ve shown you what you
can do with it and how to use it. Of course, you don’t have to use 4tH’s interactive mode. It
will happily reside and cooperate with existing external IDE’s, editors and the like. But if
memory is tight and you have nothing else, 4tH will prove to be a completely selfcontained
environment.

If you’re still wondering what you can do with Forth and 4tH in particular, let me tell you
this: if you worked your way through this tour, you’ve been working with Forth all the
time. The entire editor is a 4tH program, embedded in the 4tH executable, taking up less
than 3 KB. It is run by the very same interpreter as your initial ”Hello world!” program.
Have fun!

13The full calculator command set is listed in the ”Editor reference guide”.

Chapter 5

Frequently asked questions

QUESTION: Why has exec_4th() this enormous switch() statement? Why
wasn’t a structure used with pointers to functions?

ANSWER: That one was built too, but it proved to be upto four times slower on all
platforms. Which is perfectly understandable, because every time you
evaluate a token, you have to take the overhead of calling a function into
account.

QUESTION: Why are the tokens of exec_4th() listed in a random order?

ANSWER: We have statistically analyzed which tokens are used more often. They
are up front. Some C-compilers generate a jumptable. Others generate
a repeated "if .. elif .. endif" construction. Compilants produced by the
latter perform better when tokens are ordered this way.

QUESTION: Do I have to use 4tHs builtin editor?

ANSWER: No. You can use any editor you like. 4tH will happily compile all vanilla
MS-DOS, MS-Windows and Unix text files and most block files as well.
Just use your favorite editor to create your source and compile it at the
command line. Note the editor is capable of exporting vanilla text files.
You can also set the environment variable EDIT4TH to your favorite edi-
tor, e.g. ”export EDIT4TH=vi” or ”set EDIT4TH=notepad.exe”.
Note that - exactly like the built in editor - you have to save your work
and exit the editor before you can continue.

QUESTION: I get ”I/O error” all the time. What am I doing wrong?

61

CHAPTER 5. FREQUENTLY ASKED QUESTIONS 62

ANSWER: If you’re working with Windows and you’re trying to compile some ex-
ample programs, type ’S’ and enter the relative path to the example file,
e.g. ”examples/romans.scr”. Note you can only compile, decom-
pile or run it. If you’re working on some other Operating System, be
sure you’ve also installed the library files. Now go to the directory where
you have installed them, e.g. ”cd /home/john/4th/lib” and type
”cd ..”. From this working directory use the relative or absolute path
to your source file when you compile it. Be sure the path of the environ-
ment variable DIR4TH is correct.

QUESTION: When I use 4tHs builtin editor and try to save my file I get ”Cannot
open file” all the time. What am I doing wrong?

ANSWER: This happens most often to Windows users, who either try to update
one of the example files, e.g. ”examples/romans.scr”, or fail to
override 4tHs default file setting using ’S’. In both cases, you try to write
a file to a protected directory, which Windows does not allow. It’s quite
easy to fix. Copy any example programs you want to change to your
home directory. If you want to create a new file, type ’S’ and give the
full path to a file in your home directory. If you don’t know what your
home directory is, open CMD.EXE and type ’cd’.

QUESTION: When I first open 4tHs builtin editor I get ”Cannot open file”.
What am I doing wrong?

ANSWER: Probably nothing. 4tH just informs you it cannot load the file you issued
at the main menu or the command line. This is always the case when you
start a new file.

QUESTION: When I try to use 4tHs builtin editor or run 4tsH I get ”Bad object”
all the time. What am I doing wrong?

ANSWER: You’re probably running 4tH under a 64 bit operating system. The only
thing you can do is to recompile 4tH (see sections 27.7 and 27.8).

QUESTION: When I try to load a screen file or execute an .hx file, 4tH doesn’t seem
to take the DIR4TH environment variable into account.

ANSWER: The DIR4TH environment variable is used by the compiler when it tries
to pull all source files from their different locations at compiletime. Note
that it only reads files. When the editor would start writing files where
you don’t expect it to, things might get very dangerous. The .hx files are
executables and your Operating System already offers several ways to
find them.

CHAPTER 5. FREQUENTLY ASKED QUESTIONS 63

QUESTION: The DIR4TH environment variable doesn’t work.

ANSWER: The DIR4TH environment variable requires a trailing slash or backslash
- depending on your operating system. If you forget it, then, yes, the
DIR4TH environment variable doesn’t work. So, ”set DIR4TH=c:/users/myname”
doesn’t work, but ”set DIR4TH=c:/users/myname/” does. I promise.

QUESTION: When I open up the editor in 4tH, it takes most 4tH code like an actual
Forth compiler, but not my colon definitions. Why?

ANSWER: The 4tH editor mimics Forth, that’s true. But it is actually a Forth like
environment on top of 4tH. It may seem like you’re working on a Forth
prompt, but you’re not. You can use the editor only for editing or some
quick calculations, but if you want to use the full capabilities of 4tH,
you’re stuck to the menu.

QUESTION: Can I load shared libraries with 4tH and call the external functions de-
fined there?

ANSWER: No. 4tH is (almost) entirely composed of ANSI-C and since ANSI-C
doesn’t define loading and using shared libraries you can’t. Furthermore,
it would violate 4tH’s ”uncrashable” design objective, since it is impossi-
ble to trap all possible errors when you call external functions. However,
if you know C, it shouldn’t be too difficult to add that functionality your-
self.

QUESTION: When I compile a 4tH program, I get messages like: ”Word 381:
Undefined name” . How do I know where that is?

ANSWER: 4tH is a single pass compiler and keeps the partial compilant in memory
for you to examine. Simply decompile it by pressing ”D” or add the ”d”
option to the command line. Section 11.24 will give you all the details.

QUESTION: I’m running OS/X and I’m unable to compile 4tH myself. Can I get a
native executable for my platform?

ANSWER: I don’t have access to that particular platform, but a third party Darwin
port is available here: https://ports.macports.org/port/4th/
After installing MacPorts, 4tH can be installed with (no quotes, of course):
”sudo port install 4th”. You will automatically get a 4tH build
that matches your OS version. Similarly, thousands of other Open Source
software packages can be installed, upgraded and otherwise managed
with MacPorts.

Part II

Primer

64

Chapter 6

Introduction

Don’t you hate it? You’ve just got a new programming language and you’re trying to write
your first program. You want to use a certain feature (you know it’s got to be there) and
you can’t find it in the manual.

I’ve had that experience many times. So when I wrote 4tH I promised myself, that would
not happen to 4tH-users. In this manual you will find many short features on all kind of
topics. How to input a number from the keyboard, what a cell is, etc.

I hope this will enable you to get quickly on your way. If it didn’t, email me at ’the.beez.-
speaks@gmail.com’. You will not only get an answer, but you will help future 4tH users
as well.

You can use this manual two ways. You can either just get what you need or work your
way through. Every section builds on the knowledge you obtained in the previous sections.
All sections are grouped into levels. We advise you to use what you’ve learned after you’ve
worked your way through a level.

First, 4tH fundamentals. It assumes a working knowledge of programming and covers the
basics. Second, 4tH arrays. We’ll try to explain to you what an address is and teach you
basic string handling.

Third, 4tHs Character Segment. We’ll explain you how it is laid out and what you can do
with it. Fourth, 4tHs Integer Segment and Code Segment. We’ll explain you how it is laid
out and what you can do with it.

Finally, advanced programming techniques. First the builtin facilities 4tH offers and after
that the extra features the 4tH library offers. We’ll teach you how to program multilevel
exits, write interpreters, use jump-tables, emulate floating point calculation and a whole lot
more!

It’s gonna be a wild ride. So strap in and have fun!

65

Chapter 7

4tH fundamentals

7.1 Making calculations without parentheses

To use 4tH you must understand Reverse Polish Notation. This is a way to write arithmetic
expressions. The form is a bit tricky for people to understand, since it is geared towards
making it easy for the computer to perform calculations; however, most people can get used
to the notation with a bit of practice.

Reverse Polish Notation stores values in a stack. A stack of values is just like a stack of
books: one value is placed on top of another. When you want to perform a calculation,
the calculation uses the top numbers on the stack. For example, here’s a typical addition
operation:

1 2 +

When 4tH reads a number, it just puts the value onto the stack. Thus 1 goes on the stack,
then 2 goes on the stack. When you put a value onto the stack, we say that you push it onto
the stack. When 4tH reads the operator ’+’, it takes the top two values off the stack, adds
them, then pushes the result back onto the stack. This means that the stack contains:

3

after the above addition. As another example, consider:

2 3 4 + *

(The ’*’ stands for multiplication.) 4tH begins by pushing the three numbers onto the stack.
When it finds the ’+’, it takes the top two numbers off the stack and adds them. (Taking a
value off the stack is called popping the stack.) 4tH then pushes the result of the addition
back onto the stack in place of the two numbers. Thus the stack contains:

2 7

When 4tH finds the ’*’ operator, it again pops the top two values off the stack. It multiplies
them, then pushes the result back onto the stack, leaving:

14

66

CHAPTER 7. 4TH FUNDAMENTALS 67

The following list gives a few more examples of Reverse Polish expressions. After each,
we show the contents of the stack, in parentheses.

7 2 - (5)
2 7 - (-5)
12 3 / (4)
-12 3 / (-4)
4 5 + 2 * (18)
4 5 2 + * (28)
4 5 2 * - (-6)

7.2 Manipulating the stack

You will often find that the items on the stack are not in the right order or that you need a
copy. There are stack-manipulators which can take care of that.

To display a number you use ’.’, pronounced "dot". It takes a number from the stack and
displays it. ’SWAP’ reverses the order of two items on the stack. If we enter

2 3 . . cr

4tH answers:

3 2

If you want to display the numbers in the same order as you entered them, you have to
enter:

2 3 swap . . cr

In that case 4tH will answer:

2 3

You can duplicate a number using ’DUP’. If you enter:

2 . . cr

4tH will complain that the stack is empty. However, if you enter:

2 dup . . cr

4tH will display:

2 2

Another way to duplicate a number is using ’OVER’. In that case not the topmost number
of the stack is duplicated, but the number beneath. E.g.

2 3 dup . . . cr

will give you the following result:

CHAPTER 7. 4TH FUNDAMENTALS 68

3 3 2

But this one:

2 3 over . . . cr

will give you:

2 3 2

Sometimes you want to discard a number, e.g. you duplicated it to check a condition, but
since the test failed, you don’t need it anymore. ’DROP’ is the word we use to discard
numbers. So this:

2 3 drop .

will give you "2" instead of "3", since we dropped the "3".

The final one I want to introduce is ’ROT’. Most users find ’ROT’ the most complex one
since it has its effects deep in the stack. The thirdmost item to be exact. This item is taken
from its place and put on top of the stack. It is ’rotated’, as this small program will show
you:

1 2 3 \ 1 is the thirdmost item
. . . cr \ display all numbers

(This will display ’3 2 1’ as expected)
1 2 3 \ same numbers stacked
rot \ performs a ’ROT’
. . . cr \ same operation

(This will display ’1 3 2’!)

7.3 Deep stack manipulators

No, there are no manipulators that can dig deeper into the stack. A stack is NOT an array!
So if there are some Forth-83 users out there, I can only tell you: learn Forth the proper
way. Programs that have so many items on the stack are just badly written. Leo Brodie
agrees with me.

If you are in ’deep’ trouble you can always use the returnstack manipulators. Check out
that section.

7.4 Passing arguments to functions

There is no easier way to pass arguments to functions as in 4tH. Functions have another
name in 4tH. We call them "words". Words take their "arguments" from the stack and leave
the "result" on the stack.

Other languages, like C, do exactly the same. But they hide the process from you. Because
passing data to the stack is made explicit in 4tH it has powerful capabilities. In other
languages, you can get back only one result. In 4tH you can get back several!

All words in 4tH have a stack-effect-diagram. It describes what data is passed to the stack
in what order and what is returned. The word ’*’ for instance takes numbers from the stack,
multiplies them and leaves the result on the stack. It’s stack-effect-diagram is:

CHAPTER 7. 4TH FUNDAMENTALS 69

n1 n2 -- n3

Meaning it takes number n1 and n2 from the stack, multiplies them and leaves the product
(number n3) on the stack. The rightmost number is always on top of the stack, which means
it is the first number which will be taken from the stack. The word ’.’ is described like this:

n --

Which means it takes a number from the stack and leaves nothing. Now we get to the most
powerful feature of it all. Take this program:

2 (leaves a number on the stack)
3 (leaves a number on the stack on top of the 2)

* (takes both from the stack and leaves the result)
. (takes the result from the stack and displays it)

Note that all data between the words ’*’ and ’.’ is passed implicitly! Like putting LEGO
blocks on top of another. Isn’t it great?

7.5 Making your own words

Of course, every serious language has to have a capability to extend it. So has 4tH. The
only thing you have to do is to determine what name you want to give it. Let’s say you
want to make a word which multiplies two numbers and displays the result.

Well, that’s easy. We’ve already seen how you have to code it. The only words you need
are ’*’ and ’.’. You can’t name it ’*’ because that name is already taken. You could name
it ’multiply’, but is that a word you want to type in forever? No, far too long.

Let’s call it ’*.’. Is that a valid name? If you’ve programmed in other languages, you’ll
probably say it isn’t. But it is! The only characters you can’t use in a name are whitespace
characters (<CR>, <LF>, <space>, <TAB>). Note that 4tH is not case-sensitive!

So ’*.’ is okay. Now how do we turn it into a self-defined word. Just add a colon at the
beginning and a semi-colon at the end:

: *. * . ;

That’s it. Your word is ready for use. So instead of:

2 3 * .

We can type:

: *. * . ;
2 3 *.

And we can use our ’*.’ over and over again. Hurray, you’ve just defined your first word in
4tH!

CHAPTER 7. 4TH FUNDAMENTALS 70

7.6 Adding comment

Adding comment is very simple. In fact, there are two ways to add comment in 4tH. That
is because we like programs with a lot of comments.

You’ve already encountered the first form. Let’s say we want to add comment to this little
program:

: *. * . ;
2 3 *.

So we add our comment:

: *. * . ; This will multiply and print two numbers
2 3 *.

4tH will not understand this. It will desperately look for the words ’this’, ’will’, etc. How-
ever the word ’\’ will mark everything up to the end of the line as comment. So this will
work:

: *. * . ; \ This will multiply and print two numbers
2 3 *.

There is another word called ’(’ which will mark everything up to the next ’)’ as comment.
Yes, even multiple lines. Of course, these lines may not contain a ’)’ or you’ll make 4tH
very confused. So this comment will be recognized too:

: *. * . ; (This will multiply and print two numbers)
2 3 *.

Note that there is a whitespace-character after both ’\’ and ’(’. This is mandatory! However
the closing paren) does not have to have a leading blank space. It is optional.

7.7 Text-format of 4tH source

4tH source is a simple ASCII-file. And you can use any layout as long a this rule is fol-
lowed:

All words are separated by at least one whitespace character!

Well, in 4tH everything is a word or becoming a word. Yes, even ’\’ and ’(’ are words!
And you can add all the empty lines or spaces or tabs you like, 4tH won’t care and your
harddisk supplier either.

7.8 Displaying string literals

Displaying a string is as easy as adding a comment. Let’s say you want to make the ultimate
program, one that is displaying "Hello world!". Well, that’s almost the entire program. The
famous ’hello world’ program is simply this in 4tH:

CHAPTER 7. 4TH FUNDAMENTALS 71

." Hello world!"

Compile this and it works. Yes, that’s it! No declaration that this is the main function and
it is beginning here and ending there. May be you think it looks funny on the display. Well,
you can add a carriage return by adding the word ’CR’. So now it looks like:

." Hello world!" cr

Still pretty simple, huh?

7.9 Creating variables

One time or another you’re going to need variables. Declaring a variable is easy.

variable one

The same rules for declaring words apply for variables. You can’t use a name that already
has been taken. A variable is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive!

7.10 Using variables

Of course variables are of little use when you could not assign values to them. This assigns
the number 6 to variable ’ONE’:

6 one !

We don’t call ’!’ bang or something like that, we call it ’store’. Of course you don’t have
to put a number on the stack to use it, you can use a number that is already on the stack. To
retrieve the value stored in ’ONE’ we use:

one @

The word ’@’ is called ’fetch’ and it puts the number stored in ’one’ on the stack. To
display it you use ’.’:

one @ .

There is a shortcut for that, the word ’?’, which will fetch the number stored in ’ONE’ and
displays it:

one ?

7.11 Built-in variables

4tH has only three built-in variables. They are called ’BASE’, ’>IN’ and ’OUT’. ’BASE’
controls the radix at run-time, ’>IN’ is used by ’PARSE’ and ’OUT’ returns a value to the
host program.

CHAPTER 7. 4TH FUNDAMENTALS 72

7.12 What is a cell?

A cell is simply the space a number takes up. So the size of a variable is one cell. The size
of a cell is important since it determines the range 4tH can handle. It also helps make code
portable across machines with different cell sized, for example 16 bit and 32 big systems.
We’ll come to that further on.

7.13 What is a literal expression?

A literal expression is simply anything that compiles to a literal. All numbers, all defined
constants and some expressions are compiled to a literal. In the glossary you can find what
compiles to a literal, but we list them here too:

’ <name>
[’] <name>
[DEFINED] <name>
[UNDEFINED] <name>
CHAR <char>
[CHAR] <char>
<literal> [NOT]
<literal> [SIGN]
<literal> NEGATE
<literal> 1+
<literal> 1-
<literal> 2*
<literal> /FIELD
<literal> +FIELD <name>
<literal> ENUM <name>
<literal> <literal> *
<literal> <literal> /
<literal> <literal> +
<literal> <literal> -
<literal> <literal> [=]
<literal> <literal> [MAX]

7.14 Declaring arrays of numbers

You can make arrays of numbers very easily. It is very much like making a variable. Let’s
say we want an array of 16 numbers:

16 array sixteen

That’s it, we’re done! You must omit the word ’CELLS’, since ’ARRAY’ implicates that
you want an array of numbers, not characters. The size is a literal expression. You can’t
take it from the stack, so this is invalid:

3 dup + array sixteen

4tH will let you know that this is not a valid construction, but in case you wonder..

CHAPTER 7. 4TH FUNDAMENTALS 73

7.15 Using arrays of numbers

You can use arrays of numbers just like variables. The array cells are numbered from 0 to
N, N being the size of the array minus one. Storing a value in the 0th cell is easy. It works
just like a simple variable:

5 sixteen 0 th !

Which will store ’5’ in the 0th cell. So storing ’7’ in the 8th cell is done like this:

7 sixteen 8 th !

Of course when you want to store a value in the first, second or third cell you have to
use ’TH’ too, since it is a word. If you don’t like that try defining ’ST’, ’ND’ and ’RD’
yourself:

: st th ;
: nd th ;
: rd th ;
4 sixteen 1 st !
5 sixteen 2 nd !
6 sixteen 3 rd !

Isn’t 4tH wonderful? Fetching is done the same of course:

sixteen 0 th @
sixteen 4 th @

Plain and easy.

7.16 Copying arrays of numbers

If you want to move chunks of data around, there is ’SMOVE’:

1024 array a
1024 array b

a b 512 smove

This will define two arrays of 1024 cells. ’SMOVE’ will move the first 512 cells of array
”a” to array ”b”.

7.17 Declaring and using constants

Declaring a simple constant is easy too. Let’s say we want to make a constant called
”FIVE”:

5 constant five

Now you can use ”FIVE” like you would ’5’. E.g. this will print five spaces:

CHAPTER 7. 4TH FUNDAMENTALS 74

five spaces

The same rules for declaring words apply for constants. You can’t use a name that already
has been taken. A constant is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive. By the way, ’5’ is a literal expression. You can’t take it from
the stack or calculate it.

A special kind of constant is the so-called ”plus-constant”. This constant will automatically
add itself to the top of the stack when executed, e.g.:

10 +constant tenplus
20 tenplus .

Will print ”30”. First we define a ’+CONSTANT’ named ”tenplus”, then we throw ”20” on
the stack, finally we execute ”tenplus” and print the result. It is equivalent to:

10 constant ten
20 ten + .

Yes, you guessed it, a ’+CONSTANT’ is a constant with built-in addition! Cool, huh? And
if you thought it couldn’t get any better, there are also ’*CONSTANT’ and ’/CONSTANT’,
which have built-in multiplication and division.

7.18 Built-in constants

There are several built-in constants. Of course, they are all literals in case you wonder.
Here’s a list. Refer to the glossary for a more detailed description:

/PAD
/TIB
/HOLD
/CELL
/CHAR
MAX-N
MAX-CHAR
CHAR-BITS
(ERROR)
BL
FALSE
LO
APP
PAD
STACK-CELLS
TIB
TRUE
VARS
WIDTH
INPUT
OUTPUT
STDOUT
STDIN
APPEND
PIPE
FILES
4TH#

CHAPTER 7. 4TH FUNDAMENTALS 75

7.19 Using booleans

Booleans are expressions or values that are either true or false. They are used to condition-
ally execute parts of your program. In 4tH a value is false when it is zero and true when it
is non-zero. Most booleans come into existence when you do comparisons. This example
will determine whether the value in variable ’VAR’ is greater than 5. Try to predict whether
it will evaluate to true or false:

variable var
4 var !
var @ 5 > .

No, it wasn’t! But hey, you can print booleans as numbers. Well, they are numbers. But
with a special meaning as we will see in the next section.

7.20 IF-ELSE constructs

Like most other languages you can use IF-ELSE constructs. Let’s enhance our previous
example:

variable var

4 var !
var @ 5 >
if ." Greater" cr
else ." Less or equal" cr
then

So now our program tells you when it’s greater and when not. Note that contrary to other
languages the condition comes before the ’IF’ and ’THEN’ ends the IF-clause. In other
words, whatever path the program takes, it always continues after the ’THEN’. A tip: think
of ’THEN’ as ’ENDIF’..

7.21 FOR-NEXT constructs

4tH has FOR-NEXT constructs as well. The number of iterations is known in this construct.
E.g. let’s print the numbers from 1 to 10:

11 1 do i . cr loop

The first number represents the limit. When the limit is reached or exceeded the loop
terminates. The second number presents the initial value of the index. That’s where it
starts off. So remember, this loop iterates at least once! You can use ’?DO’ instead of
’DO’. That will not enter the loop if the limit and the index are the same to begin with:

0 0 ?do i . cr loop

’i’ represents the index. It is not a variable or a constant, it is a predefined word, which puts
the index on the stack, so ’.’ can get it from the stack and print it.

But what if I want to increase the index by two? Or want to count downwards? Is that
possible. Sure. There is another construct to do just that. Okay, let’s take the first question:

CHAPTER 7. 4TH FUNDAMENTALS 76

11 1 do i . cr 2 +loop

This one will produce exactly what you asked for. An increment by two. This one will
produce all negative numbers from -1 to -10:

-11 -1 do i . cr -1 +loop

Note that the step is not a literal expression. You can change the step if you want to, e.g.:

32767 1 do i . i +loop

This will print: 1, 2, 4, 8, all up to 16384. Pretty flexible, I guess. You can break out of a
loop by using ’LEAVE’. Note that ’LEAVE’ only sets the index to the value of the limit:
it doesn’t branch or anything. Make sure that there is no code left between ’LEAVE’ and
’LOOP’ that you don’t want to execute. So this is okay:

10 0 do i dup 5 = if drop leave else . cr then loop

And this is not:

10 0 do i dup 5 = if drop leave then . cr loop

Since it will still get past the ’.’ before leaving. In this case you will catch the error quickly,
because the stack is empty.

7.22 WHILE-DO constructs

A WHILE-DO construction is a construction that will perform zero or more iterations. First
a condition is checked, then the body is executed. Then it will branch back to the condition.
In 4tH it looks like this:

BEGIN <condition> WHILE <body> REPEAT

The condition will have to evaluate to TRUE in order to execute the body. If it evaluates to
FALSE it branches to just after the REPEAT. This example does a Fibbonaci test.

: fib 0 1
begin
dup >r rot dup r> > \ condition

while
rot rot dup rot + dup . \ body

repeat
drop drop drop ; \ after loop executed

You might not understand all of the commands, but we’ll get to that. If you enter "20 fib"
you will get:

1 2 3 5 8 13 21

This construct is particularly handy if you are not sure that all data will pass the condition.

CHAPTER 7. 4TH FUNDAMENTALS 77

7.23 REPEAT-UNTIL constructs

The counterpart of WHILE-DO constructs is the REPEAT-UNTIL construct. This executes
the body, then checks a condition at ’UNTIL’. If the expression evaluates to FALSE, it
branches back to the top of the body (marked by ’BEGIN’) again. It executes at least once.
This program calculates the largest common divisor.

: lcd
begin
swap over mod \ body
dup 0= \ condition

until drop . ;

If you enter "27 21 lcd" the programs will answer "3".

7.24 Infinite loops

In order to make an infinite loop one could write:

begin ." Diamonds are forever" cr 0 until

But there is a nicer way to do just that:

begin ." Diamonds are forever" cr again

This will execute until the end of times, unless you exit the program another way.

7.25 Including source files

4tH has a vocabulary of over 200 words. If you use them in one of your 4tH programs 4tH
will recognize them instantly. These words are internal.

But if you take a look at the glossary, you’ll find that there are a lot of other words too.
Words that 4tH will not recognize; they have to be included first. These words are external.

These words are defined in an include file. An include file is just an ordinary ASCII file
with 4tH source. You can read them if you want. In order to use these words, you have to
tell 4tH where it can find the include file.

This is done by the ’[NEEDS’ directive, which is equivalent to the COMUS word ’IN-
CLUDE’ (which 4tH also supports). Everything up to the next ”]” is considered to be a
filename, so the path may contain embedded spaces. You can use absolute paths or rela-
tive paths, just make sure that you’re starting 4tH from the proper directory. E.g. this one
includes additional ANS-Forth CORE-words from the directory just above ’lib’1:

[needs lib/anscore.4th]

Or:

include lib/anscore.4th

4tH comes with a rich library of words, which covers a large part of ANS-Forth and CO-
MUS2 standard words and beyond. They are all located in the ’lib’ directory. In the next
level we’re going to need a lot of these words, so you’d better know how to include them.

1If you’re not sure where that is, enter the ’lib’ directory and execute “cd ..”.
2In case you wonder, COMUS stands for COMmon USage.

CHAPTER 7. 4TH FUNDAMENTALS 78

7.26 Getting a number from the keyboard

The word to enter a number from the keyboard can be found in the ’lib’ directory and
is defined in the enter.4th file. To include it you have to tell 4tH. We assume your
working directory is just above the ’lib’ directory3:

[needs lib/enter.4th]

That’s all! Now you can use ’ENTER’ just like any 4tH word. This will allow you to enter
a number and print it:

[needs lib/enter.4th]
enter . cr

By the way, this is the end of the first level. Take our advise and give it a try!

3As a matter of fact, we will always assume that! If you don’t know what we mean, execute ”cd <path to lib
directory>” and then ”cd ..”. Now you’re there for sure! Note none of this is any concern to you if you set the
DIR4TH variable.

Chapter 8

4tH arrays

8.1 Aligning numbers

You may find that printing numbers in columns (I prefer "right-aligned") can be pretty
hard. That is because the standard word to print numbers (’.’) prints the number and then a
trailing space. That is why ’.R’ was added.

The word ’.R’ works just like ’.’ but instead of just printing the number with a trailing
space ’.R’ will print the number right-aligned in a field of N characters wide. Try this and
you will see the difference:

140 . cr
150 5 .r cr

In this example the field is five characters wide, so ’150’ will be printed with two leading
spaces.

8.2 Creating arrays of constants

Making an array of constants is quite easy. First you have to define the name of the array
by using the word ’TABLE’ or ’CREATE’ (which is ANS-Forth). Then you specify all its
elements. Note that every element is a literal expression. All elements (even the last) are
terminated by the word ’,’. An example:

create sizes 18 , 21 , 24 , 27 , 30 , 255 ,

Please note that ’,’ is a word! It has to be separated by spaces on both ends.

8.3 Using arrays of constants

Accessing an array of constants is very much like accessing an array of numbers. In an
array of numbers you access the 0th element like this:

sixteen 0 th @

79

CHAPTER 8. 4TH ARRAYS 80

When you access the first element of an array of constants you use this construction:

sizes 0 th @c

The only difference is the word ’@C’, which is exclusively used to access arrays of con-
stants.

8.4 Using values

A value is a cross-over between a variable and a constant. May be these examples will give
you an idea:

declaration:
variable a (No initial value)
1 constant b (Literal expression assigned at compiletime)
2 b + value c (Expression assigned at runtime)

fetching:
a @ (Variable throws address on stack)
b (Constant throws value on stack)
c (Value throws value on stack)

storing:

2 b + a ! (Expression can be stored at runtime)
(Constant cannot be reassigned)

2 b + to c (Expression can be stored at runtime)

adding:
2 b + a +! (Expression can be added at runtime)

(Constant cannot be reassigned)
2 b + +to c (Expression can be added at runtime)

In many aspects, values behave like variables and can replace variables. The only thing you
cannot do is make arrays of values. A value is not a literal expression either, so you can’t
use them to size arrays. In fact, a value is a variable that behaves in certain aspects like a
constant.

’VALUE’ must be used for declaration and ’TO’ must be used for reassignment - just like
’VARIABLE’ is used for declaration and ’!’ is used for (re)assignment.

If you wonder whether it’s better to use a value or a variable, just don’t. Internally, 4tH
switches between a value representation and a variable representation as it sees fit. A clear
case is when you want to initialize a value just once. In that case you take a value - not a
variable.

CHAPTER 8. 4TH ARRAYS 81

8.5 Creating string variables

In 4tH you have to define the maximum length of the string, like Pascal:

10 string name

You cannot add the ’CHARS’ keyword, since ’STRING’ already implies that you are cre-
ating an array of characters. Note that the string variable includes the terminator. That is a
special character that tells 4tH where the string ends (see section 8.14). You usually don’t
have to add that yourself because 4tH will do that for you. But you will have to reserve
space for it.

That means that the string "name" we just declared can contain up to nine characters AND
the terminator. These kind of strings are usually referred to as ASCIIZ strings.

E.g. when you want to define a string that has to contain "Hello!" (without the quotes) you
have to define a string that is at least 7 characters long:

7 string hello

8.6 What is an address?

An address is a location in memory. Usually, you don’t need to know addresses, because
4tH will take care of that. But if you want it, you can retrieve them as we will show you
later. Think of memory like a city. It has roads and houses and inhabitants. There are three
roads in 4tH city:

1. INTEGER SEGMENT, that is where the cells live;

2. CHARACTER SEGMENT, that is where the strings live;

3. CODE SEGMENT, that is where the instructions that form your program live.

If you want to visit a certain person, you go to the city where he lives, find the right street
and knock on the door. If you want to retrieve a certain string or integer, you do the same.

When you define a string, you actually create a constant with the address of that string.
When you later refer to the string you just defined its address is thrown on the stack. An
address is simply a number that refers to its location. As you will see you can work with
string-addresses without ever knowing what that number is. But because it is a number you
can manipulate it like any other number. E.g. this is perfectly valid:

16 string hello

hello \ address of string on stack
dup \ duplicate it
drop drop \ drop them both

Later, we will tell you how to get "Hello!" into the string.

CHAPTER 8. 4TH ARRAYS 82

8.7 String literals

In 4tH a string literal is created by the word ’S”’. The word ’S"’ is very much like ’."’, but
instead of printing it to the screen you will just be defining a string literal.

s" This is a string"

4tH is a stack oriented language, so what does ’S”’ leave on the stack? In 4tH, a string
is usually represented by on the stack by its address and its count. So in order to get its
length, you only have to get the first value on the stack. In order to get its address you have
to get the second value on the stack, which is demonstrated by this small program:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

And what about string literals with quotes. Easy, there is an equivalent to ’S”’ that does the
same thing:

s| "This is a string with quotes"|
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Instead of a quote, the string is delimited by a bar. And what about string literals that
include them both? Bad luck? Well, almost but not quite. Just take a look at section 13.15.

8.8 String constants

String constants work the same way as numeric constants:

10 constant ten \ define a string constant
ten . cr \ equivalent to: 10 . cr

In fact, you give a name to a literal value. After that, you can refer to that literal throughout
your program by using its name. String constants do the same thing. Take a look at this
little piece of code:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Now we do the same thing, but this time we define a string constant by using ’SCON-
STANT’:

s" This is a string" sconstant mystring
\ define a string constant

mystring \ now we use the string constant
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Why use string constants? Well, first of all, if you use a string constant throughout your
program, it will save you some editing when you have to change your program for one
reason or another. Second, it will make your program a little smaller.

CHAPTER 8. 4TH ARRAYS 83

8.9 Initializing string variables

You can initialize a string with the ’S"’ word. If you want the string to contain your first
name use this construction:

s" Hello!" name place

The word ’PLACE’ copies the contents of a string literal into a string-variable.

If you still don’t understand it yet, don’t worry. As long as you use this construction, you’ll
get what you want. Just remember that assigning a string literal to a string that is too short
will result in an error or even worse, corrupt other strings.

8.10 Initializing a NULL string variable

If you’re not sure what that means, it means we’re initializing a string variable to an empty
string. Well, that’s very easy:

0 name c!
pad 0 name place
0 dup name place

Choose any of these three. And all these constucts are compatible with ANS-Forth.

8.11 Getting the length of a string variable

You get the length of a string variable by using the word ’COUNT’. It will not only return
the length of the string variable, but also the string address. It is illustrated by this short
program:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’Hello!’
greeting count \ get string length
." String length: " . cr \ print the length
drop \ discard the address

Most string handling words return or take an address/count pair. One of the exceptions
is the string variable itself (see section 8.9). To copy the contents of an address/count
pair represented string into a string variable, we use ’PLACE’. In order to convert a string
variable back to an address/count pair represented string, we use ’COUNT’:

32 string my-string \ create a string variable
\ create an address/count

s" This is a string" \ pair represented string
my-string place \ copy it into the variable
my-string count \ convert it into an address/count pair
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Note that the contents of the string variable do not change by a ’COUNT’ conversion!

CHAPTER 8. 4TH ARRAYS 84

8.12 Printing a string variable

Printing a string variable is pretty straight forward. The word that is required to print a
string variable is ’TYPE’. It requires an address/count pair. Yes, that are the values that
are left on the stack by ’COUNT’! So printing a string means issuing both ’COUNT’ and
’TYPE’:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’Hello!’
greeting count type cr \ print the string

If you don’t like this you can always define a word like ’PRINT$’:

: print$ count type ;
32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’Hello!’
greeting print$ cr \ print the string

8.13 Copying a string variable

You might want to copy one string variable to another. Let’s take a look at this example:

32 string one \ define the first string
32 string two \ define the second string

s" Greetings!" one place \ initialize string one
one count \ get the length of string one
two place \ and copy it into string two
two count type cr \ print string two

First we place the string ”Greetings!” into a string variable. ’S”’ will put an address/count
pair on the stack, that is consumed by ’PLACE’. Variable ”ONE” only puts its address
on the stack, that is converted into an address/count pair by ’COUNT’. After it has been
consumed again by ’PLACE’ we need ’COUNT’ again to provide ’TYPE’ with an ad-
dress/count pair.

8.14 The string terminator

In order for ’COUNT’ to work, it has to know where the string stops. So a special character
at the end of the string, the string terminator, is used to indicate the end of an ASCIIZ string.
It has nothing to do with Arnold Schwarzenegger obliterating innocent strings! It is simply
a character, having the ASCII value zero. It may also be referred to as the NULL-character.
Although most strings in 4tH will be terminated automatically it is considered bad style to
rely on that.

If you have doubts, you can always convert an address/count pair to a terminated string
by applying ’>STRING’, although you have to take care that nothing is overwritten and
enough space is available. As a rule of the tumb you might say that ’>STRING’ can safely
be applied to all string variables.

CHAPTER 8. 4TH ARRAYS 85

8.15 Slicing strings

Slicing strings is just like copying strings. We just don’t copy all of it and we don’t always
start copying at the beginning of a string. We’ll show you what we mean:

32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
one count 2dup type cr \ duplicate and print it
1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward
type cr \ print it for the last time

First it will print "Hans Bezemer", then "ans Bezemer", then "ns Bezemer" and finally
"s Bezemer". The word ’/STRING’ adjusts the address/count pair by a given number of
characters, in this case one character. The word ’2DUP’ is much like ’DUP’, but it copies
the top two values on the stack. It is functionally equivalent to:

over over

If we want to discard the first name at all we could even write:

32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
one count 5 /string type cr \ print sliced string

The five characters we want to skip are the first name (which is four characters) and a space
(which adds up to five). There is a special word for slicing strings in the library member
slice.4th. You call it with:

address count position-to-start position-to-end

Both positions start counting at zero. So this will copy the first name to string "two" and
print it:

[needs lib/slice.4th]

32 string one \ declare string one
32 string two \ declare string two
s" Hans Bezemer" one place \ initialize string one
one count 0 3 slice \ slice the first name
two place \ copy it to string two
two count type cr \ print string two

This will slice the last name off and store it in string "two":

[needs lib/slice.4th]

32 string one \ declare string one
32 string two \ declare string two
s" Hans Bezemer" one place \ initialize string one
one count 5 11 slice \ slice the last name
two place \ copy it to string two
two count type cr \ print string two

Since the last name is seven characters long and starts at position five (start counting with
zero!).

CHAPTER 8. 4TH ARRAYS 86

8.16 Appending strings

The word ’+PLACE1’ appends two strings. In this example string "one" holds the first
name. The second string literal is appended to string "one" to form the full name. Finally
string "one" is printed.

32 string one \ define string one

s" Hans " one place \ initialize first string
s" Bezemer" one +place \ append ’Bezemer’ to string
one count type cr \ print first string

8.17 Comparing strings

If you ever sorted strings you know how indispensable comparing strings is. As we men-
tioned before, there are very few words in Forth that act on strings. Here is a word that can
compare two strings. It is located in the library member compare.4th.

[needs lib/compare.4th]
\ compare two chars

32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
32 string two \ define string two
s" HANS BEZEMER" two place \ initialize string two

one count two count compare \ compare two strings
if
." Strings differ" \ message: strings ok

else
." Strings are the same" \ message: strings not ok

then
cr \ send CR

Simply pass two strings (represented by their address/count pairs) to ’COMPARE’ and it
will return a TRUE flag when the strings are different. This might seem a bit odd, but
strcmp() does exactly the same. If you don’t like that you can always add ’0=’ to the
end of ’COMPARE’ to reverse the flag.

You’ll soon find out that ANS-Forth’s ’COMPARE’ is case sensitive. Lucky for you, you
can modify the behaviour of 4tH’s ’COMPARE’. Just define this before the ’[NEEDS’
directive:

[pragma] casesensitive
[needs lib/compare.4th]

\ compare two chars
32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
32 string two \ define string two
s" HANS BEZEMER" two place \ initialize string two

one count two count compare \ compare two strings
if
." Strings differ" \ message: strings ok

else
." Strings are the same" \ message: strings not ok

then
cr \ send CR

1There is a COMUS word called ’APPEND’ which works exactly the same.

CHAPTER 8. 4TH ARRAYS 87

Now ’COMPARE’ will do a case sensitive comparison.

Note that 4tH’s ’COMPARE’ also differs in other ways from an ANS-Forth compliant
’COMPARE’. That one requires ”-1” when the string is smaller, ”0” when it matches and
”1” when it’s larger. True, most of the time it doesn’t matter: you use ’0<’ to sort it and
’0=’ to see if it matches. Which works both ways. Except that the default is a bit shorter
and faster. But if you really require an ANS-compliant implementation you deserve to get
it - just use the ’[PRAGMA]’ ”ANSCOMPARE”.

However, if you want a COMUS-like ”ICOMPARE”, just use the ’[PRAGMA]’ ”USE-
ICOMPARE”. If you need a case sensitive ’COMPARE’ as well, just include icompare.4th.
It’s your choice.

8.18 Finding a substring

Sometimes you need to find a string within a string. ANS-Forth has defined a word for that
too. It is called ’SEARCH’. You need to include search.4th in order to use it. Now lets
find ”the” in this string:

[needs lib/search.4th]

s" How the cow catches the hare"
s" the" search \ search for ’the’
0= if ." not " then ." found: "
type \ print the result

’SEARCH’ always returns a flag and a address/count pair. If it returns true, the substring
was found; if it returns false, the substring was not found. Now that’s pretty straightfor-
ward, isn’t it? That means that the small program above will print:

found:

When the substring was found and:

not found:

When the substring was not found. But what kind of string does it return when the substring
was not found? Well, the entire string you fed it, so this would have been its output if we
had been looking for the substring ”now” instead of ”the”:

not found: How the cow catches the hare

But in this specific example we are looking for ”the”. When found, ’SEARCH’ returns the
string after the first occurrence of the substring we were looking for:

found: the cow catches the hare

Why that? Why not a position? Well, first of all, you can look for the same substring again:

[needs lib/search.4th]

s" How the cow catches the hare"
s" the" search drop \ drop the flag
2dup type \ print the string
s" the" search drop \ now search again
type \ print the string

CHAPTER 8. 4TH ARRAYS 88

This will print:

the cow catches the hare
the hare

But if you still want to see a position instead of a string, you can simply define this:

[needs lib/search.4th]

: position
2>r over swap 2r> search 0= >r drop swap - r> if 1- then

;

s" How the cow catches the hare"
s" the" position . cr

That will take care of your problems. If the substring was found, ”POSITION” will return a
positive number. If it wasn’t found, it will return a negative number. Note that ’SEARCH’
can be persuaded to do a case-sensitive comparison, just like ’COMPARE’:

[pragma] casesensitive
[needs lib/search.4th]

Now ’SEARCH’ will do a case sensitive comparison, just like ’COMPARE’.

8.19 Replacing substrings

Sometimes finding is not enough. You have replace it by something else. You can do that
very easily with 4tH. Just include replace.4th. It contains a word that will do all that.
Take this example:

[needs lib/replace.4th]

s" How the cow catches the hare" s" the" s" a"
replaceall type cr

It will print:

How a cow catches a hare

Yes, this one replaces all occurrences of ”the” by ”a”. Note that like ’COMPARE’ and
’SEARCH’ this one can be made case sensitive too:

[pragma] casesensitive
[needs lib/replace.4th]

8.20 Deleting substrings

Yes, we even got a word for ’search-and-destroy’ missions. You only have to include
replace.4th:

CHAPTER 8. 4TH ARRAYS 89

[needs lib/replace.4th]

s" How the cow catches the hare" s" the"
deleteall type cr

This will print:

How cow catches hare

Yes, it deletes all occurrences of ”the”. Note that like ’COMPARE’, ’SEARCH’ and ’RE-
PLACE’ this one can be made case sensitive too:

[pragma] casesensitive
[needs lib/replace.4th]

8.21 Removing trailing spaces

You probably know the problem. The user of your well-made program types his name and
hits the spacebar before hitting the enter-key. There you go. His name will be stored in
your datafile with a space and nobody will ever find it.

In 4tH there is a special word called ’-TRAILING’ that removes the extra spaces at the end
with very little effort. Just paste it after ’COUNT’. Like we did in this example:

32 string one \ define a string
s" Hans Bezemer " \ string with trailing spaces
one place \ now copy it to string one

one dup \ save the address

." [" \ print a bracket
count type \ old method of printing
."]" cr \ print bracket and newline

." [" \ print a bracket
count -trailing type \ new method of printing
."]" cr \ print a bracket and newline

You will see that the string is printed twice. First with the trailing spaces, second without
trailing spaces.

8.22 Removing leading spaces

And what about leading spaces? Patience, old chap. You’ve got a lot of ground to cover.
There is no built-in word for that, but we can use a library member like we did in this
example:

[needs lib/leading.4th]

32 string one \ define a string
s" Hans Bezemer" \ string with leading spaces
one place \ now copy it to string one

one dup \ save the address

CHAPTER 8. 4TH ARRAYS 90

." [" \ print a bracket
count type \ old method of printing
."]" cr \ print bracket and newline

." [" \ print a bracket
count -leading type \ new method of printing
."]" cr \ print a bracket and newline

You will see that the string is printed twice. First with the leading spaces, second without
leading spaces. Happy?

8.23 Upper and lower case

Sometimes you will have to convert a string to upper or lower case. 4tH has a library
member for that too. Just include:

[needs lib/ulcase.4th]

This will define several easy to use conversion words. E.g. in order to convert a string to
upper case, just enter:

s" Convert this!" s>upper \ convert addr/count string to uppercase
type cr \ type the string

Its lower case counterpart is:

s" Convert this!" s>lower \ convert addr/count string to lowercase
type cr \ type the string

Like most string words it takes and returns an address/count pair. Note that the string in
question is modified, so if you still need the original, copy it first. You can also convert an
individual character:

char A char>lower emit \ convert a character and show it

And consequently, its counterpart is:

char a char>upper emit \ convert a character and show it

These words take an ASCII value from the stack, convert it and put the converted ASCII
value back on the stack. If the value does not represent a alphabetic character, it is left
unchanged.

8.24 String literals and string variables

Most computer languages allow you to mix string literals and string variables. Not in 4tH.
In 4tH they are two distinct datatypes. To print a string literal you use the word ’."’. To
print a string variable you use the ’COUNT TYPE’ construction.

There are only three different actions you can do with a string literal. First, you can define
one using ’S"’. Second, you can print one using ’."’ Finally, you can compile a string into
your program using ’,"’.

This may seem a bit mind-boggling to you now, but we’ll elaborate a bit further on this
subject later.

CHAPTER 8. 4TH ARRAYS 91

8.25 Printing individual characters

"I already know that!"

Sure you do. If you want to print "G" you simply write:

." G"

Don’t you? But what if you want to use a TAB character (ASCII 9)? You can’t type in that
one so easily, huh? You may even find it doesn’t work at all!

Don’t ever use characters outside the ASCII range 32 to 127 decimal. It may or may not
work, but it won’t be portable anyway. the word ’EMIT’ may be of some help. If you want
to use the TAB-character simply write:

9 emit

That works!

8.26 Distinguishing characters

Like in a novel, not all characters are created equal. There are upper case characters, lower
case characters, control characters, whitespace, etc. Sometimes it is necessary to find out
what kind of character we are dealing with. Of course, 4tH can help you there. You need
to include istype.4th in order to use it:

char a is-lower . cr
char a is-upper . cr

4tH will first print a TRUE value (because ’a’ is a lower case character) and then a FALSE
value. This table tells you what words 4tH offers and the ranges of valid characters:

WORD RANGE (ASCII) DESCRIPTION

IS-ASCII 0 - 127 All 7-bit ASCII characters
IS-PRINT 32 - 127 As above, without control characters
IS-WHITE 0 - 32 All control characters plus space
IS-DIGIT ’0’ - ’9’ All digits
IS-LOWER ’a’ - ’z’ All lower case characters
IS-UPPER ’A’ - ’Z’ All upper case characters
IS-ALPHA ’a’-’z’, ’A’ - ’Z’ All alphabetic characters
IS-ALNUM ’0’ - ’9’, ’a’ - ’z’, ’A’ - ’Z’ All alphanumeric characters

Table 8.1: Character typing words

CHAPTER 8. 4TH ARRAYS 92

8.27 Getting ASCII values

Ok, ’EMIT’ is a nice addition, but it has its drawbacks. What if you want to emit the
character "G". Do you have to look up the ASCII value in a table? No. 4tH has another
word that can help you with that. It is called ’CHAR’. This will emit a "G":

char G emit

The word ’CHAR’ looks up the ASCII-value of "G" and leave it on the stack. You can
also use ’[CHAR]’. It does exactly the same thing. It is included for compatibility with
ANS-Forth versions. Note that ’CHAR’ only works with printable characters (ASCII 33 to
127 decimal).

8.28 Printing spaces

If you try to print a space by using this construction:

char emit

You will notice it won’t work. Sure, you can also use:

." "

But that isn’t too elegant. You can use the built-in constant ’BL’ which holds the ASCII-
value of a space:

bl emit

That is much better. But you can achieve the same thing by simply writing:

space

Which means that if you want to write two spaces you have to write:

space space

If you want to write ten spaces you either have to repeat the command ’SPACE’ ten times
or use a DO-LOOP construction, which is a bit cumbersome. Of course, 4tH has a more
elegant solution for that:

10 spaces

Which will output ten spaces. Need I say more?

CHAPTER 8. 4TH ARRAYS 93

8.29 Fetching individual characters

Take a look at this small program:

32 string one \ define string one
s" Hans" one place \ initialize string one

What is the second character of string "one"? Sure, its an "a". But how can you let your
program determine that? You can’t use ’@’ because that word can only access variables.

Sure, you can do that in 4tH, but it requires a new word, called ’C@’. Think of a string as
an array of characters and you will find it much easier to picture the idea. Arrays in 4tH
always start with zero instead of one. So accessing the first character might be done with:

one 0 th c@

We do not recommend using this construction, although it will work perfectly. If you never
want to convert your program to Forth you might even choose to keep it that way. We
recommend the construction:

one 0 chars + c@

Which is slightly more wordy. 4tH will compile both constructions in exactly the same
way. Anyway, accessing the second character is easy now:

one 1 chars + c@

This is the complete program:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 1 chars + c@ \ get the second character
emit cr \ print it

8.30 Storing individual characters

Storing individual characters works just the same. Keep that array of characters in mind.
When we want to fetch a variable we write:

my_var @

When we want to store a value in a variable we write:

5 my_var !

Fetching only requires the address of the variable. Storing requires both the address of the
variable and the value we want to store. On top of the stack is the address of the variable,
below that is value we want to store. Keep that in mind, this is very important.

Let’s say we have this program:

CHAPTER 8. 4TH ARRAYS 94

32 string one \ define string one
s" Hans" one place \ initialize string one

Now we want to change "Hans" to "Hand". If we want to find out what the 4th character of
string "one" is we write:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 3 chars + c@ \ get the fourth character

Remember, we start counting from zero! If we want to store the character "d" in the fourth
character, we have to use a new word, and (yes, you guessed it right!) it is called ’C!’:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 3 chars + \ address of the fourth char
char d \ we want to store ’d’
swap \ get the order right
c! \ now store ’d’

If we throw the character "d" on the stack before we calculate the address, we can even
remove the ’SWAP’:

32 string one \ define string one
char d \ we want to store ’d’
s" Hans" one place \ initialize string one
one 3 chars + \ address of the fourth char
c! \ now store ’d’

We will present the very same programs, but now with stack-effect-diagrams in order to
explain how this works. We will call the index ’i’, the character we want to store ’c’
and the address of the string ’a’. By convention, stack-effect-diagrams are enclosed by
parenthesis.

If you create complex programs this technique can help you to understand more clearly
how your program actually works. It might even save you a lot of debugging. This is the
first version:

32 string one (--)
s" Hans" one place (--)
one 3 chars (a i)
+ (a+i)
char d (a+i c)
swap (c a+i)
c! (--)

Now the second, optimized version:

32 string one (--)
char d (c)
s" Hans" one place (c)
one 3 chars (c a i)
+ (c a+i)
c! (--)

CHAPTER 8. 4TH ARRAYS 95

8.31 Getting a string from the keyboard

Of course, you don’t want to initialize strings all your life. Real applications get their input
from the keyboard. We’ve already shown you how to get a number from the keyboard.
Now we turn to strings.

When programming in BASIC, strings usually have an undefined length. Some BASICs
move strings around in memory, others have to perform some kind of "garbage-collection".
Whatever method they use, it takes up memory and processor-time.

4tH forces you to think about your application. E.g. when you want to store somebodies
name in a string variable, 16 characters will be too few and 512 characters too many. But
64 characters will probably do.

But that poses a problem when you want to get a string from the keyboard. How can you
prevent that somebody types a string that is just too long? And how do you terminate it?

The word ’ACCEPT’ takes two arguments. First, the string variable where you want to
save the input and second, the maximum number of characters it can take. It automatically
terminates the string when reading from the keyboard. But there is a catch. This program
can get you into trouble:

64 constant #name \ length of string
#name string name \ define string ’name’

name #name accept \ input string
name swap type cr \ swap count and print

Since 64 characters plus the terminator add up to 65 characters. The word ’ACCEPT’
always returns the number of characters it received. You will find that you won’t need that
information most of the time.

This is the end of the second level. Now you should be able to understand most of the
example programs and write simple ones. I suggest you do just that. Experience is the best
teacher after all.

Chapter 9

Character Segment

9.1 The Character Segment

Wonder where all these strings are created? I bet you do. Well, when you define a string,
memory is allocated in the Character Segment. When you define another one, space is
allocated after the first string. That means that if you go beyond the boundaries of the first
string, you’ll end up in the space allocated to the second string.

After the second string there is a void. If you end up there your program will end with an
error-message. And what about the space before the first string? Well, take a look at figure
9.1.

User strings

PAD

TIB

Figure 9.1: Character seg-
ment

The lower memory is at the bottom. Yes, before your
strings there are two other areas, the TIB and the PAD.
We’ll elaborate on that in the next section.

The Character Segment is created at run-time. That means
that it isn’t there when you compile a program. The com-
piler just keeps track of how much memory would be
needed to create such a Character Segment and stores that
information in the header.

When you run the program the header is read first. Then
the Character Segment is created, so it is already there
when your program starts executing. When you exit the
program, the Character Segment is destroyed and all in-
formation stored there is lost (unless you save it first).

9.2 What is the TIB?

The TIB stands for "Terminal Input Buffer" and is used by one single, but very important
word called ’REFILL’. In essence, ’REFILL’ does the same thing as ’ACCEPT’, except
that it has a dedicated area to store its data and sets up everything for parsing. Whatever
you type when you call ’REFILL’, it is stored in the TIB.

96

CHAPTER 9. CHARACTER SEGMENT 97

9.3 What is the PAD?

The PAD is short for "scratch-pad". It is a temporary storage area for strings. It is heavily
used by 4tH itself, e.g. when you print a number the string is formed in the PAD. Yes,
that’s right: when you print a number it is first converted to a string. Then that string is
’COUNT’ed and ’TYPE’d. You can even program that subsystem yourself as we will see
when we encounter formatted numbers (see section 9.8).

Furthermore, string constants (compiled by ’S”’ or ’,”’) are temporarily stored in the PAD.
Finally, ’NUMBER’ and ’ARGS’ also use the PAD. The PAD is actually a circular buffer.
That means that strings are stored in the PAD until it runs out of space. Then it starts to
overwrite the oldest strings. Usually, they have turned into garbage that is no longer used,
but sometimes they still have some significance to your program. In that case, you’ll have
to save the string that was overwritten into a variable. Don’t rely on the PAD to keep your
strings alive!

9.4 How do I use TIB and PAD?

In general, you don’t. The TIB is a system-related area and it is considered bad practice
when you manipulate it yourself. The PAD can be used for temporary storage, but beware!
Temporary really means temporary. A few words at the most, provided you don’t use any
string constants.

Think of both these areas as predefined strings. You can refer to them as ’TIB’ and ’PAD’.
You don’t have to declare them in any way. This program is perfectly alright:

s" Hello world" pad place \ store a string in pad
pad count type cr \ print contents of the pad

If you want to know how big TIB and PAD are, you can use the predefined constants ’/TIB’
and ’/PAD’:

." Size of TIB: " /TIB . cr \ print sizeof TIB

." Size of PAD: " /PAD . cr \ print sizeof PAD

Note, this does not print the length of a string stored in the area, but the maximum size
of the string that can be stored there. Some space of the PAD is reserved for number
generation (see section 9.3). You can get the size of this area by the predefined constant
’/HOLD’. This will print the size of this area and the size of PADs circular buffer:

." Size of HOLD : " /HOLD . cr \ print sizeof HOLD

." Size of buffer: " /PAD /HOLD - . cr

If that area did not exist even printing a number could corrupt the circular buffer. In some
unusual circumstances, the PAD can get corrupted. If so, identify the temporary string that
gets corrupted and store it explitly into a string variable.

9.5 Simple parsing

We have already discussed ’REFILL’ a bit. We’ve seen that it is closely related to ’AC-
CEPT’. ’REFILL’ returns a true flag if all is well. When you use the keyboard it usually
is - unless somebody pressed CTRL-D or CTRL-Z - but we will encounter more situations
where this flag comes in handy.

If you want to get a string from the keyboard, you only have to type:

CHAPTER 9. CHARACTER SEGMENT 98

refill 0= if abort then \ get string from keyboard

Which will make it properly exit when somebody closes the ’STDIN’ channel on you.
Every next call to ’REFILL’ will overwrite any previously entered string. So if you want to
do something with that string you’ve got to get it out of there, usually to one of your own
strings.

But if accessing the TIB directly is not the proper way, what is? The use of ’REFILL’ is
closely linked to the word ’PARSE-WORD’, which is a parser. ’PARSE-WORD’ looks for
the delimiter, whose ASCII code is on the stack.

If the string starts with the delimiter, it will skip this and all subsequent occurrences until
it finds a string. Then it will look for the delimiter again and slice the string right there. It
then returns its address and count.

This is extremely handy when you want to obtain filtered input. E.g. when you want to
split somebodies name into first name, initials and lastname:

Hans L. Bezemer

Just use this program:

." Give first name, initials, lastname: "
refill 0= if abort then \ get string from keyboard
bl parse-word \ parse first name
." First name: " \ write message
type cr \ type first name
bl parse-word \ parse initials
." Initials : " \ write message
type cr \ type initials
bl parse-word \ parse last name
." Last name : " \ write message
type cr \ write last name

You don’t have to parse the entire string with the same character. This program will split
up an MS-DOS filename into its components:

." DOS filename: " refill \ input a DOS filename
0= if abort then cr \ check for CTRL-D

char : parse-word \ parse drive
." Drive: " type ." :" cr

\ print drive
begin
char \ parse-word \ parse path
dup 0<> \ if not a NULL string

while \ print path
." Path : " type cr

repeat \ parse again
drop drop \ discard string

If ’PARSE-WORD’ reaches the end of the string and the delimiter is still not found, it
returns the remainder of that string. If you try to parse beyond the end of the string, it
returns a NULL string. That is an empty string or, in other words, a string with length zero.

Therefore, we checked whether the string had zero length. If it had, we had reached the
end of the string and further parsing was deemed useless.

CHAPTER 9. CHARACTER SEGMENT 99

9.6 Converting a string to a number

We now learned how to parse strings and retrieve components from them. But what if these
components are numbers? Well, there is a way in 4tH to convert a string to a number, but
like every number-conversion routine it has to act on invalid strings. That is, strings that
cannot be converted to a valid number.

4tH uses an internal error-value, called ’(ERROR)’. The constant ’(ERROR)’ is a strange
number. You can’t negate it, you can’t subtract any number from it and you can’t print it.
If 4tHs number-conversion word ’NUMBER’ can’t convert a string it returns that constant.
’ERROR?’ checks the return value and leaves an additional true flag if an error occured
(which means: ’(ERROR)’ was returned). Let’s take a look at this program:

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr

else \ print if valid
." The number was: " . cr

then

You first enter a string, then it is parsed and ’PARSE-WORD’ returns the address and count.
’NUMBER’ tries to convert it. If ’NUMBER’ returns ’(ERROR)’ it wasn’t a valid string.
Otherwise, the number is right on the stack, waiting to be printed. That wasn’t so hard, was
it?

9.7 Controlling the radix

If you are a programmer, you know how important this subject is to you. Sometimes, you
want to print numbers in octal, binary or hex. 4tH can do that too. Let’s take the previous
program and alter it a bit:

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr

else \ print if valid
hex
." The number was: " . cr

then

We added the word ’HEX’ just before printing the number. Now the number will be printed
in hexadecimal. 4tH has a number of words that can change the radix, like ’DECIMAL’
and ’OCTAL’. They work in the same way as ’HEX’.

4tH always starts in decimal. After that you are responsible. Note that all radix control
follows the flow of the program. If you call a self-defined word that alters the radix all
subsequent conversion is done too in that radix:

CHAPTER 9. CHARACTER SEGMENT 100

: .hex hex . ; \ print a number in hex

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr

else \ print if valid
." The number was: " .hex cr

then

In this example not only that single number is printed in hex, but also all subsequent num-
bers will be printed in hex! A better version of the ".HEX" definition would be:

: .hex hex . decimal ;

Since that one resets the radix back to decimal. Words like ’HEX’ do not only control the
output of a number, but the input of numbers is also affected:

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
hex \ convert hexadecimal
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr

else \ print if valid
dup
." The number was: " decimal . ." decimal" cr
." The number was: " hex . ." hex" cr

then

’NUMBER’ will now also accept hexadecimal numbers. If the number is not a valid hex-
adecimal number, it will return ’(ERROR)’. You probably know there is more to radix
control than ’OCTAL’, ’HEX’ and ’DECIMAL’. No, we have not forgotten them. In fact,
you can choose any radix between 2 and 36. This slightly modified program will only
accept binary numbers:

: binary 2 base ! ;

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
binary \ convert hexadecimal
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr

else \ print if valid
dup \ both decimal and hex
." The number was: " decimal . ." decimal" cr
." The number was: " hex . ." hex" cr

then

’BASE’ is a predefined variable that enables you to select any radix between 2 and 36. This
makes 4tH very flexible. However, this won’t work:

hex 02B decimal . cr

CHAPTER 9. CHARACTER SEGMENT 101

4tH will try to compile "02B", but since it isn’t a word or a valid decimal number, it will
fail. Words like ’HEX’ and the ’BASE’ variable work only at run-time, not at compile-
time! Isn’t there a way to compile non-decimal numbers?

Sure, there is, although it is not that flexible. There are four words that control the interpre-
tation of numbers at compile-time:

1. [BINARY]

2. [OCTAL]

3. [DECIMAL]

4. [HEX]

They work fundamentally different than their run-time equivalents. First, they only work
at compile-time. Second, they are compiled sequentially1 and do not follow the flow of the
program at run-time. Let’s take a look at these two programs:

[binary] 101 . cr
[octal] 101 . cr
[decimal] 101 . cr
[hex] 101 . cr

This will print the decimal numbers "5", "65", "101" and "257", since each one of them is
compiled with a specific radix.

: binary 2 base ! ;
binary 101 . cr
octal 101 . cr
decimal 101 . cr
hex 101 . cr

Now the decimal number "101" is printed in four different radixes, since at compile-time
the radix was set to decimal (which is the default). Now take a look at this program:

: do_binary [binary] ;
: do_decimal [decimal] ;
do_binary 101 decimal . cr
do_decimal 101 decimal . cr

The program will print "101" two times! Haven’t we selected binary at compile-time? No,
both ’[BINARY]’ and ’[DECIMAL]’ are compiled sequentially!

When ’[BINARY]’ is encountered at the first time, it will set the radix at compile-time
to binary. When ’[DECIMAL]’ is encountered in the second line, it will set the radix to
decimal. When the third line is compiled, the radix is still set to decimal. If you want to
make this program work, try this:

[binary]
101 decimal . cr
[decimal]
101 decimal . cr

1Since 4tH’s one-pass compiler compiles it sequentially, duh.

CHAPTER 9. CHARACTER SEGMENT 102

When the first line is encountered, it sets the radix (at compile-time) to binary. So the num-
ber "101" at line two is compiled as a binary number. ’DECIMAL’ will just be compiled.
It will only influence the radix at run-time. The third line sets the radix at compile-time to
decimal. So the number "101" at line four is compiled as a decimal number.

Since the run-time of 4tH starts up in decimal, both occurrences of ’DECIMAL’ have little
value. We can even eliminate ’DECIMAL’ from the program altogether without affecting
the result:

[binary] 101 . cr
[decimal] 101 . cr

Note that both the compile-time radix control words and the run-time radix control words
stay in effect until they are superseded by others:

[binary] \ compile-time binary
101 \ first binary number
1011 \ second binary number
[decimal] \ compile-time decimal
5 \ decimal 5
do \ set run-time radix
i base ! \ to loop-index
dup . cr \ print number

loop
drop \ clean stack

9.8 Pictured numeric output

You probably have used this before, like when writing Basic. Never heard of "PRINT
USING.."? Well, it is a way to print numbers in a certain format. Like telephone-numbers,
time, dates, etc. Of course 4tH can do this too. In fact, you’ve probably used it before.
Both ’.’ and ’.R’ use the same internal routines. They are called just before a number is
printed.

This numeric string is created in the PAD and overwritten with each new call. But we’ll go
into that a bit later on.

What you have to remember is that you define the format reverse. What is printed first, is
defined last in the format. So if you want to print:

060-5556916

You have to define it this way:

6196555-060

Formatting begins with the word ’<#’ and ends with the word ’#>’. A single number is
printed using ’#’ and the remainder of the number is printed using ’#s’ (which is always at
least one digit). Let’s go a bit further into that:

: print# <# #s #> type cr ;
256 print#

This simply prints a single number (since only ’#S’ is between the ’<#’ and the ’#>’ and
goes to a new line. There is hardly any difference with ’.’. You can try any (positive)
number. Note that the values that ’#>’ leaves on the stack can directly be used by ’TYPE’.

This is a slightly different format:

CHAPTER 9. CHARACTER SEGMENT 103

: print3# <# # # # #> type cr ;
256 print3#
1 print3#
1000 print3#

This one will print "256", "001" and "000". Always the last three positions. The ’#’ simply
stands for ’print a single digit’. So if you want to print a number with at least three digits,
the format would be:

#s # #

That is: print the remainder of the number (at least one digit) and then two more. Now
reverse it:

#s

Enclose it by ’<#’ and ’#>’ and add ’TYPE CR’:

<# # # #s #> type cr

And that’s it! Is it? Not quite. So far we’ve only printed positive numbers. If you try a
negative number, you will find it prints garbage. This behavior can be fixed with the word
’SIGN’.

’SIGN’ simply takes the number from the stack and prints a "-" when it is negative. The
problem is that all other formatting words can only handle positive numbers. So we need
the same number twice. One with the sign and one without. A typical signed number
formatting word looks like:

: signed# dup abs <# #s sign #> type ;

Note the ’DUP ABS’ sequence. First the number is duplicated (for ’SIGN’) and then the
absolute value is taken (for the other formatting words). So we got the number on the stack
twice. First with sign (for ’SIGN’), second without sign (for the other formatting words).
Does that make sense to you?

We can place ’SIGN’ wherever we want. If we want to place the sign after the number (like
some accountants do) we would write:

: account# dup abs <# sign #s #> type ;

But that is still not enough to write "$2000.16" is it? Well, in order to do that there is
another very handy word called ’HOLD’. The word ’HOLD’ just copies any character into
the formatted number. Let’s give it a try:

$2000.16

Let’s reverse that:

61.0002$

So we first want to print two numbers, even when they are zero:

CHAPTER 9. CHARACTER SEGMENT 104

.0002$

Then we want to print a dot. This is where ’HOLD’ comes in. ’HOLD’ takes an ASCII
code and places the equivalent character in the formatting string. We don’t have to look up
the ASCII code for a dot of course. We can use ’CHAR’:

char . hold 0002$

Then we want to print the rest of the number (which is at least one digit):

char . hold #s $

Finally we want to print the character "$". Another job for ’HOLD’:

char . hold #s char $ hold

So this is our formatting word:

: currency <# # # char . hold #s char $ hold #> type cr ;

And we call it like this:

200016 currency

You can do some pretty complex stuff with these formatting words. Try to figure out this
one from the master himself, Leo Brodie:

: sextal 6 base ! ;
: :00 # sextal # decimal 58 hold ;
: time# <# :00 :00 #S #> type cr ;
3615 time#

Yeah, it prints the time! Pretty neat, huh? Now try the telephone-number we discussed in
the beginning. That shouldn’t be too hard. Still, you may think it’s all a bit too complicated
for your taste.

Well, there is a solution to that, but you’ll need to include a library. Let’s say you want to
format that darn telephone number - or that currency thing:

include lib/picture.4th

605556916 s" ###-#######" picture type cr
200016 s" $?.##" picture type cr

That’s much easier, isn’t it? All you have to do is to issue a string and the library handles the
whole thing. The library works very simple: there are five special formatting characters,
the rest is copied verbatim. And yes, it handles the sign for you automatically - unless
you’ve specified the position yourself with a ’+’ character.

You can also use this library to print number in a fixed width field, e.g.:

include lib/picture.4th

605616 s" $_____.__" picture type cr

This will print the number in a field nine characters wide, including the decimal point and
the currency sign. Note you can print any character you want by postfixing it with a ’!’ -
yes, even a ’!’.

CHAPTER 9. CHARACTER SEGMENT 105

CHARACTER MEANING

Prints a single digit
? Prints the remainder of the number
_ Prints a single digit, unless all

digits have been printed. Then a
space is printed

+ Prints a ’-’ if the number is
negative

! Prints the previous character
verbatim, even if it is a formatting
character

Table 9.1: Picture library formatting characters

9.9 printf() like formatting

Some people can just not be pleased, neither by 4tH’s native pictured numeric output, nor
by the libraries we offer to make it all a bit easier. They just want printf(). And that’s
alright with me.

Although printf() is quite bulky, much slower and is known to have a few quirks of its
own, it’s not too hard too implement. 4tH has three printf() like functions:

printf Supports some basic specifiers, width and writes to ’STDOUT’;

sprintf Supports some more specifiers, one flag, width and writes to a string buffer;

fsprintf Supports most specifiers, all flags, width, precison and writes to a string buffer.

But how do you use it? First you have to include the proper file, either printf.4th,
sprintf.4th or fsprintf.4th:

include lib/sprintf.4th

printf() like functions require a format string, optionally with embedded format speci-
fiers. A format specifier has the following layout:

%[flags][width][.precision]specifier

Flags, width and precision are optional. If you want to print a decimal number, you use the
"d" specifier. If you want to print a string, you use the "s" specifier, e.g.:

80 string mybuf
s" World" 100 s" A %d hello’s from the %s!" mybuf sprintf type cr

And this will print(f):

A 100 hello’s from the World!

You may wonder why the number comes before the string, but that is easily explained.
First, this is 4tH - we do everything the other way around. Second, the format string is
evaluated from left to right, so the number is consumed first. Consequently, it is on the top
of the stack.

Now let’s say we want to place the number in a field, five positions wide and pad it with
spaces where needed:

CHAPTER 9. CHARACTER SEGMENT 106

80 string mybuf
s" World" 100 s" A %5d hello’s from the %s!" mybuf sprintf type cr

Now it comes out this way:

A 100 hello’s from the World!

Of course we can do the same thing for the string, but this time we make it ten positions
wide:

80 string mybuf
s" World" 100 s" A %5d hello’s from the %10s!" mybuf sprintf type cr

And this is what comes out of that one:

A 100 hello’s from the World!

Want to specify that width on the stack? You can:

80 string mybuf
s" World" 10 100 s" A %5d hello’s from the %*s!" mybuf sprintf type cr

Again, the width of ”10” on the stack is consumed before the string is printed. Default,
everything is right-aligned, but you can change that with the ”-” flag:

80 string mybuf
s" World" 10 100 s" A %5d hello’s from the %-*s!" mybuf sprintf type cr

Which gives:

A 100 hello’s from the World !

Note that although some people may find it easier to use, these words are quite fragile.
Make an error in the format string, the order or number of arguments and everything goes
haywire. It’s your choice.

It goes far beyond the scope of this manual to discuss all the possibilities of fsprintf.4th.
Even more, because you can only use it in a floating point environment. And that is still to
come2. For the time being you’ll have to do with the following tables.

9.10 Converting a number to a string

Since there is no special word in 4tH which will convert a number to a string, we’ll have to
create it ourselves. In the previous section we have seen how a numeric string is created in
the PAD. We can use this to create a word that converts a number to a string.

Because the PAD is highly volatile, we have to save the string immediately after its creation.
So we’ll create a word that not only creates the string, but places it directly in its proper
location:

(n a --)
: n>string >r dup abs <# #s sign #> r> place ;

It takes a number, the address of a string and returns nothing. Example:

16 string num$
-1024 num$ n>string
num$ count type cr

2In sections 12.27 and 12.28, to be exact.

CHAPTER 9. CHARACTER SEGMENT 107

flags description printf.4th sprintf.4th fsprintf.4th
- Left-justify within the given field width;

Right justification is the default (see width
sub-specifier).

N Y Y

+ Forces to preceed the result with a plus or
minus sign (+ or -) even for positive num-
bers. By default, only negative numbers are
preceded with a - sign.

N N Y

(space) If no sign is going to be written, a blank
space is inserted before the value.

N N Y

Used with o or x specifiers the value is pre-
ceeded with 0 or 0x respectively. Used with
e, f, or g it forces the written output to con-
tain a decimal point even if no more digits
follow. By default, if no digits follow, no
decimal point is written.

N N Y

0 Left-pads the number with zeroes (0) in-
stead of spaces when padding is specified
(see width sub-specifier).

N N Y

Table 9.2: List of supported printf() flags

9.11 Aborting a program

Some conditions are so grave you can consider them to be fatal errors. In such cases the
only thing you can do is abort the program as soon as possible. Of course, there is a way
in 4tH to do just that. You can use either ’ABORT’ or ’QUIT’. Same thing. Both will
terminate your program immediately. This small program prints nothing:

abort
." This will never be printed." cr

But there is more. Let’s say you only want to exit a program when a certain condition is
met, e.g. a word left a non-zero value on the stack. In that case you would have to write
something like this:

if
." We have an error condition!" cr quit

then

You can write that much shorter by using the word ’ABORT"’:

abort" We have an error condition!"

’ABORT"’ will print the message following it and abort, but only when there is a non-zero
value on the stack. So this program does not abort:

false abort" This will not be printed!"
." This will be printed!"

You will find that ’ABORT"’ is a very handy tool when processing error conditions.

CHAPTER 9. CHARACTER SEGMENT 108

width description printf.4th sprintf.4th fsprintf.4th

(number) Minimum number of characters to be
printed. If the value to be printed is shorter
than this number, the result is padded with
blank spaces. The value is not truncated even
if the result is larger.

Y Y Y

* The width is not specified in the format
string, but as an additional integer value ar-
gument following the argument that has to be
formatted.

Y Y Y

.precision

.number For integer specifiers (ld, d, o, u, x): preci-
sion specifies the minimum number of digits
to be written. If the value to be written is
shorter than this number, the result is padded
with leading zeros. The value is not trun-
cated even if the result is longer. For e, g
and f specifiers: this is the number of dig-
its to be printed after the decimal point. For
s: this is the maximum number of characters
to be printed. By default all characters are
printed until the ending null character is en-
countered. If the period is specified without
an explicit value for precision, 0 is assumed.

N N Y

.* The precision is not specified in the format
string, but as an additional integer value ar-
gument following the argument that has to be
formatted.

N N Y

Table 9.3: Width and precision of printf()

9.12 Opening a file

You probably don’t want to write programs that only write to the screen and read from the
keyboard. So 4tH has a few words that allow you to work with files. Since 4tH is a scripting
language, its capabilities are limited. But you will find that you can perform most common
operations.

One of the limitations is that you can have a limited number of open files, but it will do in
most situations.

Opening a output-file is pretty simple. Just throw the address and length of a filename and
a file access mode on the stack and execute the word ’OPEN’. The value ’OPEN’ returns is
a simple number which bears little significance. However, you have to save it to a variable
or value, for you will need it later. We’d like to use values for storing file pointers, so we
created the word ’FILE’. ’FILE’ simply creates a value and initializes it, so if you use it
prematurely 4tH will issue an error message.

file myfile
s" outfile.dat" output open error? (a1 n1 fam -- h f)
abort" File could not be opened" (h)
to myfile (--)

’OUTPUT’ is a file access mode and will open a file for writing. ’OPEN’ leaves a value
on the stack. If it equals ’(ERROR)’, something was not quite right. If not, the file was

CHAPTER 9. CHARACTER SEGMENT 109

specifier output example printf.4th sprintf.4th fsprintf.4th
d Signed decimal number 392 Y Y Y

c Character a Y Y Y

s String of characters sample Y Y Y

% Single % character % Y Y Y

ld Signed decimal double number 7235 N N Y

u Unsigned decimal number 7235 N Y Y

o Unsigned octal number 610 N Y Y

x Unsigned hexadecimal number 7fa N Y Y

f Decimal floating point, lowercase 392.65 N N Y

e Scientific notation
(mantissa/exponent)

3,93E+06 N N Y

g Use the shortest representation: %e
or %f

392.65 N N Y

Table 9.4: List of supported printf() specifiers

successfully opened. ’FILE’ is nothing but an initialized value, so you can assign it with
’TO’. ’ERROR?’ leaves the handle intact, but leaves an additional true flag if an error
occurred, which makes it much easier to evaluate.

The syntax for opening an input file is the same, except for the read-flag ’INPUT’ of course:

file myotherfile
s" infile.dat" input open error?
abort" File could not be opened"
to myotherfile

9.13 Reading and writing from/to a file

There are no special words to read from or write to a file. You can use all the words you
used for keyboard-input and screen-output.

But if you open a file and do some I/O you will notice nothing has changed. Of course
not. You should be able to determine whether you write to a file or to the screen. There are
special words to do just that:

file OutFile \ file variable
s" outfile.dat" output open error?
abort" File could not be opened"
to OutFile \ open the file

OutFile use \ write to file
." This is written to disk" cr
stdout use \ write to screen
." This is written to screen" cr

After you’ve opened the file, the program will still write to the screen. When ’USE’ ex-
ecutes, all output will be redirected to the file. When ’USE’ executes again, but this time
with the ’OUTPUT’ flag, all output will go to the screen again, but the output-file will not
be closed! Both words take the same read/write-flags as ’OPEN’.

You can call ’USE’ again and again, without closing or opening any files. Here is an
example using an input-file:

CHAPTER 9. CHARACTER SEGMENT 110

file OutFile
s" outfile.dat" output open error?
abort" File could not be opened"
to OutFile \ open output file

OutFile use \ write to file
." This is written to disk" cr
stdout use \ write to screen
." This is written to screen" cr
OutFile close \ close file

s" outfile.dat" input open error?
abort" File could not be opened"
to OutFile

OutFile use \ read from disk
pad dup 32 accept \ read 32 characters
type \ write string to screen
stdin use \ read from keyboard
OutFile close \ close file

The output of this program is:

This is written to screen
This is written to disk

Note that files are always opened in binary mode. If you’re a Microsoft user and you worry
about your text files, don’t. 4tH is much smarter than that as you will learn later on.

9.14 Closing a file

There is usually no need to close any files. When you quit the program all files are closed.
It seems like there is no need at all to close files manually, but that is a mistake.

If you want to open a file for reading to which you’ve just written, you will find it doesn’t
work. Of course, you can open a file only once.

No, there is a word which closes either the input- or the output-file, using the same read/write-
flags. You’ve already seen it, it is called ’CLOSE’. When you close an active file, the input
(or output) is redirected to the keyboard (or screen).

9.15 Writing text-files

Writing text to a file is just as easy as writing text to screen. Open the file, redirect the
output, and write like you would write to the screen:

file OutFile \ value for file
s" outfile.dat" \ put the filename on the stack
output \ add the modifier
open error? \ open the file
abort" File could not be opened"
to OutFile

OutFile use \ write to file
." This is written to disk" cr

That’s all! Note that if you execute your program on a Microsoft Operating System, it will
write a Microsoft text file. If you do so on a Unix Operating System, it will write a Unix
text file. If you want to override that you’ll have to issue the end-of-line sequences yourself
using ’EMIT’.

CHAPTER 9. CHARACTER SEGMENT 111

9.16 Reading text-files

Reading text-files is pretty straightforward. You don’t even have to open a file in text-mode
contrary to other languages. Just open the file and call ’REFILL’ until it signals end-of-file
(EOF):

\ Example program. It reads a file line by line
\ and prints it to the screen.

file InFile
s" readln.4th" input open error?
abort" Could not open file" \ open file
to InFile \ save handle
InFile use \ read from file

begin
refill \ read a line

while \ while EOF not found
0 parse-word \ parse the entire line
type \ print it
cr \ terminate line

repeat \ read next line

You will find that if you run this program, it will print itself to the screen.

’REFILL’ will return a non-zero value if EOF was not detected. By using the word ’0=’
you can invert this value. Finally, it will read Unix ASCII-files as well as DOS ASCII-files
- and even classic Mac OS files, no matter on which platform your program is executed.

9.17 Reading long lines

The TIB is only /TIB characters long. If you read a line that is longer than that, only /TIB - 1
characters are read. The rest of the line is read when you invoke ’REFILL’ again. Although
you don’t lose any information that way, it might not be what you want. Fortunately, you
can define your own TIB:

2048 constant /mytib \ length of your TIB
/mytib string mytib \ define your own TIB

mytib /mytib source! \ tell the system about your TIB

The next time you invoke ’REFILL’, it will use your TIB instead of the system TIB, so
it will now read lines up to 2047 characters. ’SOURCE!’ takes an address/count pair and
makes it the current TIB. So if you want to use the system TIB again you issue:

tib /tib source!

And if you have forgotten which TIB you’re using try this:

source . . cr

’SOURCE’ will return the address/count pair of the TIB you’re currently using. In fact,
this definition does absolutely nothing:

: doesnothing source source! ;

For the simple reason that it reassigns the TIB it is already using.

CHAPTER 9. CHARACTER SEGMENT 112

9.18 Reading binary files

If you process binary files, you won’t get far reading it line by line. You want to read
chunks of data. 4tH can do that too by using ’ACCEPT’. You feel there must be a catch,
since ’ACCEPT’ terminates strings automatically. Well, there isn’t. When ’ACCEPT’ does
not read from the keyboard, it won’t add that extra byte.

Reading blocks of data usually means defining buffers. If maintainability is an issue, define
a constant for the sizes of these buffers. You cannot only use this constants when defining
buffers, but also when calling ’ACCEPT’.

Furthermore, ’ACCEPT’ returns the number of characters actually read. If this value
is compared to the number of characters we actually wanted to read, we can determine
whether a reading error or EOF occurred:

1024 constant bufsize \ actual buffersize
bufsize string buffer \ define buffer
file InFile \ value for file

\ open input file
s" infile.dat" input open error?
abort" File could not be opened"

to InFile \ save handle
InFile use \ redirect input

begin \ using bufsize
bufsize (n1)
buffer over (n1 a n1)
accept (n1 n2)
<> (f) \ make EOF flag

until \ until EOF

Note that "BUFFER" is actually not a string, but a chunk of memory. But since a character
in 4tH takes up a single address-unit (=byte), raw chunks of memory are allocated in the
Character Segment. This is not an uncommon practice in both Forth and C.

9.19 Writing binary files

Writing binary files is very easy. Of course you need a buffer, like we discussed in the
previous section. The program is not much different than the previous one:

1024 constant bufsize \ actual buffersize
bufsize string buffer \ define buffer
file OutFile \ value for file

buffer bufsize char H fill \ fill the buffer
\ open output file

s" infile.dat" output open error?
abort" File could not be opened"

to Outfile \ save handle
OutFile use \ redirect input
buffer bufsize type \ write to file

This will write 1024 "H"s to "infile.dat". The actual command that does all writing is
’TYPE’. The word ’TYPE’ does not return anything. You can be assured that everything
was alright, since if it wasn’t, 4tH would have caught the error itself.

CHAPTER 9. CHARACTER SEGMENT 113

9.20 Reading and writing block files

Block files are a special kind of files used by Forth compilers. In the old days Forth con-
trolled the entire computer and directly communicated with all peripherals, including disks.
To Forth, a disk is just a bunch of numbered blocks. Each block is divided into 16 lines of
exactly 64 characters. A block file simply mimics that layout.

Before we can begin, you need to create a block file. Well, that’s easy:

include lib/ansblock.4th
4 s" blocks.scr" create-blockfile

This creates a file with four blocks. Then we have to tell 4tH which file to use:

s" blocks.scr" open-blockfile

Note that apart from creating the file, we haven’t performed any I/O yet. First, we have to
request a block. When a block is requested, its contents are transferred to a memory buffer.
You can manipulate this buffer any way you want with the standard words. If you request
another block its contents are transferred to the buffer too, overwriting whatever is there.
All changes you have made are lost, unless you have flagged the block as dirty, which
means its contents are different from the block on disk. If a block is dirty, it is written to
disk before the next block is read. ’CLEAR’ is a special word, assigning an empty buffer
to a block without reading it first. The buffer is BLANKed. ’UPDATE’ will flag the buffer
as dirty. ’FLUSH’ writes the dirty buffer to disk and unassigns the buffer. So, first we clear
block 0:

0 clear

Then we clear block 1, copy a string to it and flag it as dirty:

1 clear
s" Hello world!" >r 1 buffer r@ cmove update

’BUFFER’ returns the address of the buffer assigned to that block3. If the buffer is dirty, it
is FLUSHed before assigning a buffer to that block. We can also write the dirty buffer to
disk, without unassigning it:

save-buffers

Note that the buffer is not dirty anymore, since it has been synchronized. Let’s write some-
thing to another block:

s" Goodbye cruel world!" 0 block swap cmove update

It is always a nice game to figure out what will happen now. The current block is block 1.
Since we haven’t UPDATEd it since ’SAVE-BUFFERS’, it is clean. That means that 4tH
won’t perform a write. Since block 0 isn’t current, ’BLOCK’ reads it into the buffer. The
’UPDATE’ will flag the buffer as dirty.

3That is particularly handy if your implementation can handle multiple buffers. In this implementation we
have only one buffer, so we always return the same address.

CHAPTER 9. CHARACTER SEGMENT 114

1 block r> type cr

This is fun! The current block is block 0. It is dirty, so it is written to disk. Since block 1
isn’t current, it is read into the buffer. You catch my drift? If you want to print the contents
of a block, you can use ’LIST’. Of course, ’LIST’ uses ’BLOCK’ and applies to the same
rules:

0 list
." This block has been listed: " scr ? cr

’SCR’ is a variable containing the last screen LISTed. Note that is not the same thing as
the current block! Finally, we can discard all our changes:

empty-buffers

’EMPTY-BUFFERS’ does not perform any I/O nor does it change the contents of the buffer.
It just unassigns the buffer and flags it as clean. Note that you don’t have to close a block
file since all I/O is block-oriented. Just don’t forget to ”FLUSH”. You can use different
block files within the same program, but you’ll have to close the current block file - since
it performs ”FLUSH” as well and it’s portable:

close-blockfile

It is also important to know that ANS-Forth doesn’t define any error conditions, so if any-
thing happens all the poor thing can do is throw an exception4.

Note that the standard block file library implements the absolute bare minimum required
by ANS-Forth. The most important restriction is that is has just one single buffer. There
is also a libary that is able to handle thousands of buffers very efficiently. Standard, it
will allocate 16 buffers. If you want a different number of buffers, you’ll have to define a
constant before including it:

32 constant #blocks \ allocate 32 block buffers
include lib/multiblk.4th
400 s" blocks.scr" create-blockfile

It is a drop-in replacement, so you won’t have to change your code too much.

9.21 Parsing textfiles

As we’ve already seen, it is very easy to enter a line using ’REFILL’ and parse it. You can
also use ’REFILL’ to read lines from a text-file. It is quite similar to reading lines from the
keyboard, except that you have to open a file first. This little program prints all the words
of a textfile on a new line:

file InFile \ value for file
s" file.txt" input open error?
abort" File could not be opened"

\ open the file
to InFile \ save handle
InFile use \ redirect input to file

4See section 11.5.

CHAPTER 9. CHARACTER SEGMENT 115

begin
refill \ get a line from file

while \ check if EOF
begin
bl parse-word \ if not, parse line
dup 0<> \ check if zero length

while
type cr \ if not, print word

repeat \ parse next word
drop drop \ drop address/count

repeat \ get next line

That flag left by ’REFILL’ really makes a lot of sense! If it is zero, we have reached the
end of the line. Note that you don’t have to open a file in text-mode and both Microsoft
ASCII and Unix ASCII files are supported.

9.22 Parsing binary files

And what about binary files, like classic Forth blockfiles? Well, you could use ’REFILL’
in that context too, but it would probably break up words since it can’t find an end-of-line
marker and its buffer is smaller than 1024 characters. Does that mean it can’t be done? No!
But ’REFILL’ makes it easier for you, because it handles a few tasks automatically.

First, it has its own buffer (TIB). When you’re not using ’REFILL’ you have to define one
yourself. Second, it terminates the string for you. You don’t want ’PARSE-WORD’ to
wander into new territory, do you? Third, it sets ’>IN’ for you every time its receives new
input. You have to take care of that one too.

Never heard of ’>IN’? Well, the only way for ’PARSE-WORD’ to know on what position
the previous scan ended is to store that information into a variable. This variable is called
’>IN’.

Not all internal 4tH variables are accessible, mostly because we can’t imagine what use
they could have to you. Some variables are just better left alone. But ’>IN’ is available for
some very obvious reason: you can reset it and make ’PARSE-WORD’ work for you. Note
that for ’>IN’ to work, you have to make the buffer the parsing area by using ’SOURCE!’

The following program will read the first screen of a block-file for you and print out all the
words. You will see that all spaces are eliminated and every word is printed on a new line,
just the behavior you would expect from ’PARSE-WORD’.

1025 constant /buffer \ screensize + terminator
/buffer 1- constant c/scr \ size of the block
file InFile \ value for file

/buffer string buffer \ 1: our own buffer

: openfile \ open the block file
s" romans.blk" input open error?
abort" Cannot open file"
to InFile \ save handle
InFile use \ read from file

;

: readfile \ fill the buffer
buffer c/scr 2dup \ address and count
bl fill \ clear the buffer
accept drop \ fill the buffer
InFile close \ close the file

CHAPTER 9. CHARACTER SEGMENT 116

;

: initparse \ configures parsing
0 buffer c/scr chars + c! \ 2: terminate screen
buffer /buffer source! \ 3: make buffer the parse area
0 >in ! \ 4: reset >IN

;

: parseblock
begin
bl parse-word \ get word
dup 0<> \ length zero?

while
type cr \ if so, print it

repeat
2drop \ else drop addr/cnt
." End of block" cr \ signal "End of block"

;

: parsefile \ do it all
openfile \ open the file
readfile \ read it
initparse \ set up parsing
parseblock \ parse it

;

parsefile

Note there is no need to reset ’>IN’ if you use ’REFILL’, since it will be reset automatically.
In this case, if you want to parse another block, you will have to reset ’>IN’ again.

9.23 Parsing comma-delimited files

’PARSE-WORD’ is a powerful and very useful word, but it is less than useful when parsing
comma-delimited files. Why? Well, because ’PARSE-WORD’ skips leading delimiters. So
when you have a file like this it doesn’t work:

FIRSTNAME,NAME,EMAIL,TELEPHONE,HOMEPAGE,FAX
Hans,Bezemer,The.Beez.speaks@gmail.com„http://hansoft.come.to,

Again, ’PARSE-WORD’ skips leading delimiters, so instead of an empty string we get the
homepage when we’re trying to read the (non-existant) telephone number. Fortunately, we
got a word like ’PARSE’. ’PARSE’ also takes a delimiter from the stack, just like ’PARSE-
WORD’, but it acts on leading delimiters. Take a look at this program:

file OutFile \ value for output file
file InFile \ value for input file

: WriteCommaFile (--)
s" address.csv" output open error?
abort" Could not write CSV file"
to OutFile \ save handle
OutFile use \ redirect output to file
." FIRSTNAME,NAME,EMAIL,TELEPHONE,HOMEPAGE,FAX" cr
." Hans,Bezemer„,http://hansoft.come.to," cr
OutFile close \ close file
stdout use \ redirect output to screen

;
\ reads a field

: field> [char] , parse ; (-- a n)

CHAPTER 9. CHARACTER SEGMENT 117

: ProcessLine (--)
refill \ get line
0= abort" Read error" \ check for EOF
field> type cr \ parse first name
field> type cr \ parse name
field> type cr \ parse email
field> type cr \ parse telephone
field> type cr \ parse homepage
field> type cr cr \ parse fax

;

: ReadCommaFile (--)
s" address.csv" input open error?
abort" Could not read CSV file"
to InFile \ save handle
InFile use \ redirect input to file
." _Headerline_" cr \ this is the headerline
ProcessLine \ now process headerline
." _First record_" cr \ this is the first record
ProcessLine \ now process first record
InFile close \ close file

;

WriteCommaFile \ write the CSV file
ReadCommaFile \ read the CSV file

With "WriteCommaFile" we write a simple comma-delimited file to disk. We got to read
something, don’t we? Then we read the file we’ve just written with "ReadCommaFile".
"ProcessLine" does the actual job. Since we have six fields we use ’PARSE’ six times -
that is: each time we call ”FIELD>”. We cannot do this with a loop. Why not?

Well, ’PARSE’ not only returns a NULL-string when we’ve reached the end of a line, but
also when a field is empty. So we’ve got to know how many fields we actually want to read.
Of course, you could parse the headerline with ’PARSE-WORD’ to find that out, but you
already know how to do this.

9.24 Parsing fixed-width text files

A fixed-width text file is a file consisting of records with a fixed-width fields. They are not
as common anymore as they used to be in the mainframe era, but you still find them every
now and then. They look like this:

New Jersey NJTrenton 8958013 22592 12
Texas TXAustin 27469114695660 36
Washington WAOlympia 7170351 184661 10

And yes, you can process them with 4tH. First thing you need to do is to include a small
library:

include lib/fixedfld.4th

Next, you need to create a small array containing all the field lengths, first one first, and
terminate it with a zero:

create states-fields 20 , 2 , 14 , 8 , 7 , 2 , 0 ,

CHAPTER 9. CHARACTER SEGMENT 118

Note there are fixed-width files with line termination. You can read those with ’REFILL’.
If they are not line terminated, don’t dispair5. Let’s say a record is 64 bytes, then you can
read a record at the time like this:

64 constant /record \ length of record
/record buffer: record \ define a buffer

\ use like REFILL
: read-record record /record accept /record = ;

But in this example we will assume our file is line terminated. The next thing to do is to in-
tegrate the library into your reading routine. Since we use a line-terminated file, ’REFILL’
will do:

/layout array states-layout \ this is the layout variable
\ enhance REFILL

: !refill states-fields tib states-layout fields! refill ;

The ”FIELDS!” word takes three parameters. First, the array with the field lengths. Second,
your read buffer. If we would have used ’ACCEPT’ from our previous example, we would
have used the ”RECORD” buffer. Here we use ’REFILL’, so we use the standard buffer,
’TIB’.

Finally the so-called ”layout variable”. This is variable you have to define for each fixed-
width file you want to process with this library, so if you parse two different files at the
same time, you have to define two ”layout variables”.

Now the only thing you have to do is to use ”!REFILL” instead of ’REFILL’ and we’re all
set. ”FIELDS!” will make sure the library is properly set up each time we read a fresh line.

When we construct our ”FIELD>” routine6 we do something similar. ”NEXT-FIELD” will
ensure you get the next field, provided you feed it the proper ”layout variable”, of course.
Note that ”NEXT-FIELD” returns the entire field, which is probably padded. Let’s assume
it’s padded with spaces, which we can easily remove with ’-TRAILING’:

: field> states-layout next-field -trailing ;

Since the stack diagram of this ”FIELD>” is identical to the one in section section 9.23, the
entire thing becomes almost completely transparent:

: ProcessLine (--)
!refill \ get record
0= abort" Read error"
field> type cr
field> type cr
field> type cr
field> type cr
field> type cr
field> type cr cr

;

Yes, it takes some setting up, but in the end reading a fixed-width text file is not much
harder than reading an ordinary .CSV file.

5See also section 9.22.
6See section 9.23.

CHAPTER 9. CHARACTER SEGMENT 119

9.25 Advanced parsing

Let’s think of something difficult to parse, e.g.:

;;;;;;;;;.........Can you parse me.
;;;;„„,And me too, huh?

If we would use ’PARSE’ we would have to know how many semicolons to skip and there
is a different number of them on each line. If we would use ’PARSE-WORD’ we’d lose all
the semicolons, but the parsed string would have all these nasty leading dots.

Even worse, if we were able to skip the semicolons and use ’PARSE-WORD’ with the
leading delimiter we’d get "Can you parse me" and "And me too" instead of "Can you
parse me." and "And me too, huh?". What can we do?

Fortunately, 4tH doesn’t really know about ’PARSE-WORD’ but translates it into a se-
quence of words7. We can also use them directly. ’OMIT’ is very handy. It doesn’t actually
do anything, it just skips leading delimiters and sets ’>IN’ accordingly. It takes an ASCII
value from the stack as its delimiter. This will correctly parse the first line:

char ; omit \ omit the semicolon
char . omit \ omit the dot
0 parse \ parse the remainder of the line

This will correctly parse the second line:

char ; omit \ omit the semicolon
char , omit \ omit the comma
0 parse \ parse the remainder of the string

Please note that this are special 4tH words! Unfortunately you cannot port this to ANS-
Forth, where only a limited version of ’PARSE-WORD’ and ’PARSE’ are available.

9.26 scanf() like parsing

The C function scanf() is known for having many vulnerabilities - so it might not be
that popular with all C programmers. However, it poses a seemingly easy way to parse an
input line. There is an equivalent in 4tH - although it was not designed to be an exact clone
of its C counterpart. Using it is easy. First include it:

include lib/sscanf.4th

Second, define the format you want to use - exactly like you would when you were using
scanf(). Let’s say, you want to parse a character, then an integer and finally a string - all
separated by whitespace. In 4tH that would look like this:

s" %c %d %s"

Now that wasn’t too hard, wasn’t it? Second question: which buffer do you want to parse?
If you want to read from the current terminal input buffer8, you’d have to write:

7If you’re really curious, ’PARSE-WORD’ is equivalent to ’DUP OMIT PARSE’.
8Also known as the ’TIB’.

CHAPTER 9. CHARACTER SEGMENT 120

s" %c %d %s" source drop count sscanf

If you had defined your own buffer, e.g.

512 buffer: mybuffer
s" ! 512 scanf()" mybuffer place

You’d have to write:

s" %c %d %s" mybuffer count sscanf

And now comes the hard part - where do those values end up? Well, they should be assigned
to variables you’ve defined already. Let’s stay with this example and see what’s required:

• A character must end up in a variable. You might assume it should be in one charac-
ter string - but you’d be wrong;

• An integer must end up in a variable as well. No questions there;

• A string must end up - well, in a string variable. Duh!

So let’s do that:

variable mychar
variable myint
64 string mystring

Now - how do we get the values in their respective variables? First, you’ll have to under-
stand how ”SSCANF” actually works. The first value that is parsed, is the character. So
that variable has to be on the top of the stack:

mychar s" %c %d %s" mybuffer count sscanf

The next one up is the integer. But we can’t access that variable until the character has been
assigned already. So stackwise speaking - it has to come below the character variable:

myint mychar s" %c %d %s" mybuffer count sscanf

It may be no suprise that the string comes next. Consequently, it has to become the first
value to be thrown on the stack:

mystring myint mychar s" %c %d %s" mybuffer count sscanf

So the order in which the variables are put on the stack is like a mirror image of the format
string. And it will work as advertised - pinky swear.

So where are those dangers lurking which I warned you about? Well, this ”SSCANF” really
doesn’t like whitespace - neither in the buffer nor in the format string. When it encounters
it, it will vehemently look for the first ”non-white space” character and resume parsing
from there. Which means that these format strings are equivalent:

s" %c %c %c"
s" %c%c%c"

CHAPTER 9. CHARACTER SEGMENT 121

Second, when parsing it takes a real good look at the delimiters you defined in the format
string. If you define:

s" %s"

And your buffer contains ”Hans Bezemer”, it will parse the entire string. However, if you
define:

s" %s "

It will only parse ”Hans” and leave the rest of the buffer unparsed.

Third, you may add anything else into the mix. E.g. this is a completely valid format string:

s" Invoice issued by [%s] on %u-%u-%u"

If your input buffer - minus any whitespace - does not match the text, ”SSCANF” will
refuse to continue. Of course, supplementary characters in the buffer - not specified in the
format, will have the same effect. The upside of all this is, is that strings in the buffer are
not automatically delimited by whitespace. E.g. If we feed ”SSCANF” this buffer, it will
happily read the entire ”Hans Bezemer” - and not just ”Hans”:

s" Invoice issued by [Hans Bezemer] on 2022-04-03"

Note that although non-digit delimiters will work when specifying integers - that is not
because they are regarded as delimiters, but because they are non-digits and will stop the
conversion anyway. Using ”f” as a delimiter when reading a hexadecimal number is a very
bad idea.

And yes, you may overflow an integer when the number you’re parsing exceeds the ’MAX-
N’ limit. Also note that although ”%u”, ”%o” and ”%x” are supported, only ”%d” supports
a sign. All others are (by definition) unsigned.

And if you really need a percent-sign in your format, it’s good to know that ”%%” is also
supported.

SPECIFICA-
TION

DESCRIPTION

%s string

%c character

%d signed decimal integer

%u unsigned decimal integer

%o unsigned octal integer

%x unsigned hexadecimal integer

%% %-character

Table 9.5: Supported scanf() specifications

9.26.1 Specifying the width

You can enhance your specification by providing a width. However, brackets or stars are
not supported. A width specification consists of a single, positive integer - and may be

CHAPTER 9. CHARACTER SEGMENT 122

applied to all type specifications, except ”%%”. It represents the maximum number of
characters that will be parsed for that specification.

This width specification has the most dramatic effect on ”%c”. Even when the width is
specified as one single character, a string variable is expected instead of an integer. This
is because this specification blindly rips the next [width] characters from the input buffer
(whitespace included) and assigns the entire package to an ASCIIZ string. If there are less
than [width] characters left then the entire remaining buffer is assigned to the string.

When parsing integers, the width specification depicts the maximum number of digits in the
input buffer that are converted, e.g. when the input buffer contains:

s" 0001234"

And we’ve specified ”%4u”, the respective variable will contain ”1” - not ”1234”. If the
input buffer is empty, ”SSCANF” will refuse to continue, since you can’t convert an empty
string to a number. Consequently, trying to convert empty strings to integers in an otherwise
non-exhausted input buffer is unacceptable as well and will also result in a premature halt.

You might think that ”%s” would behave exactly like ”%c” when a width modifier is spec-
ified, but this is untrue:

• ”%s” would cease the parse when a delimiter is encountered, while ”%c” would
simply gobble up the next [width] characters, delimiter and all;

• ”%s” accepts an empty string as valid input, while ”%c” won’t - width specification
or not.

9.26.2 Return values

”SSCANF” returns that part of the format string which was not evaluated. E.g. let’s con-
sider this example:

myint mystring s" %s.%d." s" The end." sscanf

This will simply return the string ”.”, since although ”%d” was evaluated - it failed. This
means that whatever caused ”SSCANF” to fail - it is not in the returned string. Therefore,
it would be unwise to consider the return of an empty string a success - since ”SSCANF”
might have failed while evaluating the very last specification.

It is even more important to consider that ”SSCANF” does not do any ”cleanup”. If vari-
ables or strings are not used, they remain on the stack.

There are several ways to handle this. The easiest might be the use of ”#SCANF”, a vari-
able which contains the number of successful assignments the last call to ”SSCANF” per-
formed. By subtracting those from the number of assignments we expected, we can obtain
the number of unused variables on the stack:

myint mystring s" %s.%d." s" The end." sscanf 2drop
2 #scanf @ - 0 ?do drop loop \ discard unused vars

Another way is by probing the stack depth before calling ”SSCANF” and comparing it with
the stack depth afterwards:

CHAPTER 9. CHARACTER SEGMENT 123

depth >r
myint mystring s" %s.%d." s" The end." sscanf 2drop
depth r> - 0 ?do drop loop \ discard unused vars

The advantage of this approach is that you don’t have to adjust it if you make any modifi-
cations. A variant of this will even do the cleanup for you:

: example
depth >r
myint mystring s" %s.%d." s" The end." sscanf 2drop
depth r> - throw \ throw an exception

;

’ example catch drop

But you’ll have to skip forward to section 11.5 to see how and why this works.

Finally, remember that the (partially) returned format string can be a great diagnostic tool
when debugging an ”SSCANF” specification. So don’t discard it too easily and don’t forget
about it.

9.27 Appending to existing files

You can use a so-called modifier to signal 4tH, it shouldn’t overwrite the file it opens, but
append to it:

file OutFile \ value for output file

s" outfile.dat" output open error?
abort" Cannot open file" \ open the file
to OutFile \ save handle
OutFile use \ now write to disk
10 0 do i . loop \ write 0 to 9
OutFile close \ close the file

s" outfile.dat" output append + open error?
abort" Cannot open file" \ reopen in append mode
to OutFile \ save handle
OutFile use \ now write to disk
20 10 do i . loop \ write 10 to 19
OutFile close \ close the file

Take a look at the contents of this file after you’ve run the program and you’ll find it
contains the number 0 to 19.

9.28 Using pipes

If you’re using Windows 95 OSR2 (and up), Windows NT (and up), OS/X, Linux or another
Unix system you’re in for a treat! With Unix you can do neat tricks like this:

ls | mail root

CHAPTER 9. CHARACTER SEGMENT 124

Which means you can redirect the output of ’ls’ to ’mail’, so in effect you send an email to
root with the contents of your current working directory. Yes, 4tH can do this too, but you
can do even more. You can start ’ls’ and read its output line by line as if it were a file. You
can also start ’mail’ and write the output of a 4tH program to it. We do that by opening a
pipe to a program.

If you’ve ever written a program using C, you know this is a bit cumbersome, since you’ve
got to use special functions to use pipes. In 4tH you don’t. Just let 4tH know it’s a pipe that
you’re opening and not a file:

file InFile \ value for input file
file OutFile \ value for output file

s" ls" input pipe + open error?
s" mail hans" output pipe + open error? rot or
abort" Cannot open pipe"
to OutFile to InFile

The only thing you have to do to signal 4tH that you’re using a pipe is add the word ’PIPE’,
just like ’APPEND’. The filename is replaced by the command you want to execute. That’s
all. If one of the pipes in this program fails, the program aborts.

InFile use OutFile use
." These are the contents of my current working directory:"
cr cr

Now we can treat our pipes just as if they are ordinary files. We redirect input and output
and write a nice header to our email. Now we can start to process the output of ’ls’:

begin
refill

while
0 parse-word type cr

repeat

Note that we don’t have to signal that we’re reading the pipe to ’ls’ as a text file. We just
read it line by line until ’REFILL’ returns zero. Then we can parse the line and ’TYPE’ it
to ’mail’.

InFile close OutFile close

Of course you don’t have to close the pipe, but it won’t harm when you don’t. 4tH knows
what to do. After executing this program, Hans will receive this email:

From: Hans Bezemer <The.Beez.speaks@gmail.com>
Message-Id: <200202252017.VAA00712@gmail.com>
To: hans@localhost.org
Status: RO

These are the contents of my current working directory:

4th.c
4thc.c
4thd.c
4thg.c
4thx.c

Well, that wasn’t too hard, was it?

CHAPTER 9. CHARACTER SEGMENT 125

9.29 Opening a file in read/write mode

For special purposes you might want to open a file in read/write mode. That’s quite easy:

file InOutFile \ value for output file

s" outfile.dat" output input + open error?
abort" Cannot open file" \ open the file
to InOutFile \ save handle

Just add both together like you adding a modifier. Note that once you ’USE’ this file, you’re
both reading and writing to this file. Furthermore, the file has to exist otherwise you get an
error. If you want to write to a new file, you first have to open it in write mode:

file InOutFile \ value for output file
\ create a new file

s" outfile.dat" output open close
s" outfile.dat" output input + open error?
abort" Cannot open file" \ open the file
to InOutFile \ save handle

9.30 Using random access files

Upto now we’ve always accessed a file sequentially, but it is also possible to use random
access files. Two words are crucial here, ’SEEK’ and ’TELL’. ’SEEK’ will seek for the
desired file position and ’TELL’ will tell you that you’re there. It is as simple as that..!

Let’s take a look at this example. We’ve got a block-file called "Messages.scr" with the
following contents:

Scr # 0
0 (0) No errors
1 (1) Out of memory
2 (2) Bad object
3 (3) Stack overflow
4 (4) Stack empty
5 (5) Return stack overflow
6 (6) Return stack empty
7 (7) Bad string
8 (8) Bad variable
9 (9) Bad address
10 (A) Divide by zero
11 (B) Bad token
12 (C) Bad radix
13 (D) Undefined name
14 (E) I/O error
15 (F) Assertion failed

First, let’s define a word that reads a message and then displays it:

: next-msg pad dup 64 accept -trailing type cr ;

Since this is a simple program we can safely use the ’PAD’ to store our messages. Every
message has the length of a standard block-file line, which is 64 characters. Trailing spaces
are stripped by ’-TRAILING’. Now we need a word that tells us what our file position is:

: tell-msg cr ." Current position: " dup tell . cr ;

CHAPTER 9. CHARACTER SEGMENT 126

’TELL’ needs a file pointer and leaves the current position of that file pointer on the stack.
This word assumes that the top of the stack contains a valid file pointer. Finally we need a
word that sets the file position:

: seek-msg over seek abort" Seek failed" ;

’SEEK’ needs a file position and a file pointer. If it returns false, it was successful; if it
returns true there was an error. This word assumes that the top of the stack contains a valid
file pointer. We’re ready now, let’s play. First we open the file and use it:

s" Messages.scr" input open dup use

This leaves a file pointer on the top of the stack, assuming everything went OK. Now let’s
read some messages:

next-msg next-msg next-msg tell-msg

You’ll see these messages appear on the screen:

(0) No errors
(1) Out of memory
(2) Bad object

Current position: 192

After reading three messages we’ve obviously reached position 192 in the file. That makes
sense, since 3 lines of 64 characters makes 192 characters in total. Let’s see what ’SEEK’
does:

0 seek-msg tell-msg next-msg

This should take us back to the very beginning of the file, as if we’ve freshly opened it.
And yes, it does:

Current position: 0
(0) No errors

After executing ’SEEK’, ’TELL’ confirms that we’ve actually returned to the very begin-
ning of the file. Reading the next message reconfirms that again. When you feed ’SEEK’
positive values, it always starts seeking from the beginning of the file. When you feed
’SEEK’ negative values, it seeks from the end of the file. So this one takes you to the last
line:

-64 seek-msg tell-msg next-msg

On screen it looks like this:

Current position: 960
(F) Assertion failed

Finally, we clean up the mess we made:

close

This will consume the file pointer we left on the stack and close the file. Note that ’SEEK’
and ’TELL’ come with a few restrictions. Pipes are out of the question and so are the
standard streams ’STDIN’ and ’STDOUT’. Apart from that you can pretty much do with
them what you want.

Another tip: if you use ’(ERROR)’ as an offset for ’SEEK’, it will take you to the very end
of the file, since ’MAX-N’ won’t do the trick.

CHAPTER 9. CHARACTER SEGMENT 127

9.31 The layout of the I/O system

You’re probably quite confident manipulating files now, so I guess it is time to offer you
a view under the hood. 4tH has two channels, an input channel and an output channel.
All words read from the input channel or write to the output channel. At startup, the input
channel is connected a stream that reads from the keyboard (’STDIN’) and the output
channel is connected to a stream that writes to the screen (’STDOUT’).

Figure 9.2: The 4tH I/O system

With ’OPEN’ you can open additional streams, which are connected to a file or a pipe.
The return value of ’OPEN’ points to the stream that was opened. There are few words
that directly handle streams, ’USE’, ’CLOSE’, ’TELL’ and ’SEEK’ being the exceptions.
’USE’ attaches a stream to one or both channels, which results in redirecting all in- and/or
output to that stream. E.g. if a file is opened in read/write mode using ’OPEN’, a stream
is returned. If we ’USE’ that stream, both the input and the output channel are connected
to that stream. If it had only been opened in read mode, only the input channel would have
been connected to the stream.

’CLOSE’ closes a stream, even if it is still attached to a channel. If that is the case, the
appropriate default streams (’STDIN’, ’STDOUT’) are reattached. We can find out which
streams are currently used by ’CIN’ and ’COUT’. ’CIN’ returns the stream that is currently
attached to the input channel, ’COUT’ returns the stream that is currently attached to the
output channel.

9.32 Using a printer

How you access a printer depends on the operating system you’re working on. That is not a
flaw of 4tH, you will encounter this problem with every programming language. If you’re
working with MS-DOS or MS-Windows it is quite basic:

file printer \ value for printer

s" lpt1" output open error?

CHAPTER 9. CHARACTER SEGMENT 128

if
drop

else
to printer
printer use
." This will be printed." cr
stdout use

then

Just open the port as a file and print to it. Unix isn’t that different, but instead of opening a
file, you open a pipe:

file printer \ value for printer

s" lp" output pipe + open error?
if
drop

else
to printer
printer use
." This will be printed." cr
stdout use

then

If you’re using a different Operating System, you may have to check your manual.

9.33 The layout of the Character Segment

The final topic of this chapter again. You already know that 4tH checks whether an oper-
ation is still within the Character Segment. However, sometimes you want to check this
yourself.

You already know how you can obtain the size of TIB and PAD. Yes, you can using ’/TIB’
and ’/PAD’. But TIB and PAD have their addresses too. And when you query them, you
will find that PAD comes after TIB:

." Address of TIB: " tib . cr

." Size of TIB : " /tib . cr

." Address of PAD: " pad . cr

." Size of PAD : " /pad . cr

And beyond PAD, what is there? Well, allocated memory of course. Things you defined
using ’STRING’. There are two words which can give you information about allocated
memory. First, ’LO’. ’LO’ gives you the lowest address of allocated memory. Second,
’HI’. ’HI’ gives you the highest valid address of the Character Segment. That means that:

0 hi c!

Is always valid and:

0 hi char+ c!

Is always invalid. It you try it, 4tH will stop executing the program with an error-message.
’LO’ and ’HI’ are addresses. Addresses are just numbers, so you can print and compare
them. E.g.

CHAPTER 9. CHARACTER SEGMENT 129

hi char+ lo - . cr

Will print how much memory as allocated to your strings. And:

lo hi >

Will indicate whether you allocated any memory at all. If ’LO’ is greater than ’HI’, you
didn’t. If ’HI’ is greater or equal to ’LO’ you did. Experiment a bit with the knowledge
you obtained in this chapter and continue with the next one where we will go much deeper
into the secrets of the Integer Segment and Code Segment.

Chapter 10

Integer Segment and Code
Segment

10.1 The Code Segment

It is known by designers of microprocessors that a processor can run much faster when
every instruction has the same length. In fact, 4tH has his own virtual microprocessor.
The compiler is nothing more than an assembler and the interpreter nothing more than an
emulator on top of the real microprocessor.

In order to speed up 4tH, all instructions have the same length. They consist of a token
(which is the real instruction) and an argument. The argument is a value that gives meaning
to the instruction, e.g. the ’LITERAL’ token means that a number is compiled here. The
argument is the actual number.

Some instructions wouldn’t need an argument, but for speeds sake, they have: it is always
zero. Isn’t that a lot overhead? Not really. Half the instructions in an actual program need
an argument. Decoding a more elaborate scheme would need more processor time and
more programming. So in the end, it would make hardly any difference. Except for the
speed.

A token with its argument is called a word. And the Code Segment is one large array of
words. Each of these words has an address and can be accessed by the word ’@C’. In fact,
’@C’ throws the argument on the stack. Where have we seen ’@C’ before?

Yes, when fetching from an array of constants. These arrays are compiled into the Code
Segment. How come that 4tH isn’t confused by these arrays? Because they have the token
’NOOP’, which does absolutely nothing.

10.2 The address of a colon-definition

You can get the address of a colon definition by using the word ”’ (tick):

: add + ; \ a colon definition
’ add . cr \ display address

Very nice, but what good is it for? Well, first of all the construction "’ ADD" throws the
address of "ADD" on the stack. In fact, it is a literal expression. You can assign it to a
variable, define a constant for it, or compile it into an array of constants:

130

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 131

’ add constant add-address

variable addr
’ add addr !

create addresses ’ add ,

Are you with us so far? If we would simply write "ADD", "ADD" would be executed right
away and no value would be left on the stack. Tick forces 4tH to throw the address of
"ADD" on the stack instead of executing "ADD".

Note this only works for your own colon-definitions. It doesn’t work for 4tHs built-in
words. If you try to, you’ll get an error-message. What you can actually do with it, we will
show you in the next section.

10.3 Vectored execution

This is a thing that can be terribly difficult in other languages, but is extremely easy in
Forth. Maybe you’ve ever seen a BASIC program like this:

10 LET A=40
20 GOSUB A
30 END
40 PRINT "Hello"
50 RETURN
60 PRINT "Goodbye"
70 RETURN

If you execute this program, it will print "Hello". If you change variable "A" to "60", it will
print "Goodbye". In fact, the mere expression "GOSUB A" can do two different things. In
4tH you can do this much more comfortable:

: goodbye ." Goodbye" cr ;
: hello ." Hello" cr ;

variable a

: greet a @ execute ;

’ hello a !
greet

’ goodbye a !
greet

What are we doing here? First, we define a few colon-definitions, called "HELLO" and
"GOODBYE". Second, we define a variable called "A". Third, we define another colon-
definition which fetches the value of "A" and executes it by calling ’EXECUTE’. Then, we
get the address of "HELLO" (by using "’ HELLO") and assign it to "A" (by using "A !").
Finally, we execute "GREET" and it says "Hello".

It seems as if "GREET" is simply an alias for "HELLO", but if it were it would print
"Hello" throughout the program. However, the second time we execute "GREET", it prints
"Goodbye". That is because we assigned the address of "GOODBYE" to "A".

The trick behind this all is ’EXECUTE’. ’EXECUTE’ takes the address of e.g. "HELLO"
from the stack and calls it. In fact, the expression:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 132

hello

Is equivalent to:

’ hello execute

This can be extremely useful as we will see in the next chapter when we build a full-fledged
interpreter. We’ll give you a little hint:

create subs ’ hello , ’ goodbye ,

Does this give you any ideas?

10.4 Execution tokens

The address of a colon definition is called an ”execution token”. It’s much like a token in
a subway: you insert a token into the appropriate slot and the turnstile opens. Here you
pass an execution token to ’EXECUTE’ and the definition is executed. Of course, you can
define an execution token this way:

: hello ." Hello world!" ;
’ hello constant hello-xt

But you can also define it more directly:

:token hello-xt ." Hello world!" ;

It will behave in exactly the same way our previous definition of ”HELLO-XT” did. There
is still another way to define execution tokens. We’ll come around that in section 11.7.

10.5 The Integer Segment

Wonder where all these variables are created? Or where that infamous stack really is? I
bet you do. Well, when you define a variable, memory is allocated in the Integer Segment.
When you define another one, space is allocated after the first variable. That means that if
you go beyond the boundaries of the first variable, you’ll end up in the space allocated to
the second variable.

After the second variable there is a void. If you end up there your program will end with
an error-message. However, if you define an ’ARRAY’, single variable is created with a
number of additional cells. You can only access these additional by referring to the array
itself.

And what about the space before the first variable? There are other variables and they are
not defined by you. Well, take a look at figure 10.1.

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 133

User variables

C variables

4tH variables

Read only variables

System variables

Return stack

Variable Area

System Area

Stack Area

Data stack

Figure 10.1: Integer segment

Lower memory is at the bottom. The
user variables are the variables you defined
yourself. The application variables can dif-
fer from host program to host program. Re-
fer to your documentation on that subject.
You have already seen the 4tH variables,
which are ’BASE’ and ’>IN’. There are
also variables you cannot access. These
variables are hidden and only used by the
system. All these variables are located in
the Variable Area.

There is also a Stack Area, which contain
the datastack and the returnstack. If you
enter a number like "5", it is thrown on the
datastack. Most words in 4tH take or put
numbers on the datastack. It is very heavily
used. We’ll come to the returnstack later
on.

The datastack and the returnstack share the
same memory space. The datastack grows
upward and the returnstack downward. If
they clash the stack is full and 4tH will is-
sue an error-message.

10.6 A portable way to ac-
cess application variables

A host program can add special variables
to the 4tH environment. If 4tH is used as a scripting language in e.g. a printer program, the
programmer can "send" variables to 4tH. These variables are called "application variables".
Do not confuse them with 4tH variables, like ’BASE’ or ’>IN’ which are used internally
by 4tH. 4tH doesn’t do anything with application variables.

If the creator of the host program provided special names for each of these variables, he
will probably have documented them. However, even if he didn’t there is another way to
access these variables.

They are stored in a predefined array called ’APP’ and its values can be fetched like any
other array, e.g.:

app 1 th @

Which fetches the value of the second element in the array. This also enables you to write
programs that can be compiled and run under all "standard" versions of 4tH.

10.7 Returning a result to the host program

The ’APP’ array can feed values from the host program to yours, but it can’t return any.
For that you need ’OUT’, the third 4tH variable. Returning a value is very easy. Just store
it in ’OUT’. Let’s assume the host program has send two values to the ’APP’ array and you
want to return the sum. All you have to do is add them and store the result in ’OUT’:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 134

app 0 th @ app 1 th @ + out !

Nothing to it..

10.8 Using commandline arguments

A host program can also transfer an array of strings to the 4tH environment. Usually,
commandline arguments will be transferred this way, although any string array with the
correct format can be used. If so, you will probably find it in the documentation of the host
program.

If you are familiar with C, the concept is probably quite easy to understand. There are two
words, ’ARGN’ and ’ARGS’. ’ARGN’ will leave the number of commandline arguments
on the stack. The commandline arguments itself are numbered from 0 to (ARGN - 1), e.g.

argn 0> \ test if there are
if \ any arguments
argn 0 do \ loop through them
i args type cr \ print them

loop
then

First, we test if there are any commandline arguments. Second, if that is the case we loop
through them with ’ARGN’ as upper limit. Why? Since "ARGN 1- ARGS" is always the
last valid commandline argument!

Third, when ’ARGS’ executes, it takes a number from the stack as index. Then it leaves
the address of the Character Segment (where it is temporarily stored, usually PAD) and its
count on the stack.

Using the expression "TYPE CR" we can print that string. Because it is already stored in
the Character Segment we can treat it like any other string. Remember, that if you don’t
save it anywhere else it won’t last long!

10.9 The layout of the Variable Area

There are special words that allow you to get information about the layout of the Variable
Area. They are called ’VARS’, ’APP’, ’FIRST’ and ’LAST’.

’VARS’ is the address of the very first variable. Before that is the Stack Area and other
variables you are not allowed to touch. ’APP’ is the address of the first application variable.
All variables before that are 4tHs own built-in variables. ’FIRST’ is the address of the first
user-variable, a variable you defined yourself in your 4tH program. ’LAST’ is the address
of the last accessible variable, so

last ?

will never fail. The first question that will pop in your mind is, what can I do with them.
Well, you can use it to see how many variables there are of a certain kind, so you can
prevent runtime errors:

." number of 4tH variables: " app vars - . cr

." number of application variables: " first app - . cr

." number of user variables: " last first - 1+ . cr

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 135

These tests are possible too:

app vars - 0= if ." No 4tH variables" cr then
first app - 0= if ." No application variables" cr then
last first - 1+ 0= if ." No user variables" cr then

This is a general test to see whether the address of any variable is within range:

dup 0<
dup last >
or
if ." Out of range" cr then

You can use this check on numeric arrays too, of course.

10.10 The stacks

The Stack Area contains two stacks. So far we’ve talked about one stack, which is the Data
Stack. The Data Stack is heavily used, e.g. when you execute this code:

2 3 + .

Only the Data Stack is used. First, "2" is thrown on it. Second, "3" is thrown on it. Third,
’+’ takes both values from the stack and returns the sum. Fourth, this value is taken from
the stack by ’.’ and displayed. So where do we need the other stack for?

Well, we need it when we want to call a colon-definition. Before execution continues at the
colon-definition, it saves the address of the currently executed token in the Code Segment
on the other stack, which is called the Return Stack for obvious reasons.

Then execution continues at the colon-definition. Every colon-definition is terminated by
’;’, which compiles into ’EXIT’. When ’EXIT’ is encountered, the address on top of the
Return Stack is popped. Execution then continues at that address, which in fact is the place
where we came from.

If we would store that address on the Data Stack, things would go wrong, because we can
never be sure how many values were on that stack when we called the colon-definition, nor
would be know how many there are on that stack when we encounter ’EXIT’. A separate
stack takes care of that.

Try and figure out how this algorithm works when we call a colon-definition from a colon-
definition and you will see that it works (4tH is proof of that).

It now becomes clear how ’EXECUTE’ works. When ’EXECUTE’ is called, the address
of the colon-definition is on the Data Stack. All ’EXECUTE’ does is copy its address on
the Return Stack, take the address from the Data Stack and call it. ’EXIT’ never knows the
difference..

But the Return Stack is used by other words too. Like ’DO’ and ’LOOP’. ’DO’ takes the
limit and the counter from the Data Stack and puts them on the Return Stack. ’LOOP’ takes
both of them from the Return Stack and compares them. If they don’t match, it continues
execution after ’DO’. That is one of the reasons that you cannot split a ’DO..’LOOP’.

However, if you call a colon-definition from within a ’DO’..’LOOP’ you will see it works:
the return address is put on top of the limit and the counter. As long as you keep the Return
Stack balanced (which isn’t too hard) you can get away with quite a few things as we will
see in the following section.

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 136

10.11 Saving temporary values

We haven’t shown you how the Return Stack works just for the fun of it. Although it is an
area that is almost exclusively used by the system you can use it too.

We know we can manipulate the Data Stack only three items deep (using ’ROT’). Most of
the time that is more than enough, but sometimes it isn’t.

In 4tH there are special words to manipulate stack items in pairs, e.g. ’2DUP’ (n1 n2 – n1
n2 n1 n2) or ’2DROP’ (n1 n2 –). Although they are already part of 4tH, we could easily
define those two ourselves:

: 2dup over over ;
: 2drop drop drop ;

You will notice that ’2SWAP’ (n1 n2 n3 n4 – n3 n4 n1 n2) becomes a lot harder. How can
we get this deep? You can use the Return Stack for that..

The word ’>R’ takes an item from the Data Stack and puts it on the Return Stack. The
word ’R>’ does it the other way around. It takes the topmost item from the Return Stack
and puts it on the Data Stack. Let’s try it out:

: 2swap (n1 n2 n3 n4) \ four items on the stack
rot (n1 n3 n4 n2) \ rotate the topmost three
>r (n1 n3 n4) \ n2 is now on the Return Stack
rot (n3 n4 n1) \ rotate other items
r> (n3 n4 n1 n2) \ get n2 from the Return Stack

;

And why does it work in this colon-definition? Why doesn’t the program go haywire?
Because the Return Stack is and was perfectly balanced. The only thing we had to do
was to get off "n2" before the semi-colon was encountered. Remember, the semi-colon
compiles into ’EXIT’ and ’EXIT’ pops a return-address from the Return Stack. Okay, let
me show you the Return Stack effects:

: 2swap (r1)
rot (r1)
>r (r1 n2)
rot (r1 n2)
r> (r1)

; (--)

Note, these are the Return Stack effects! "R1" is the return-address. And it is there on top
on the Return Stack when ’EXIT’ is encountered. The general rule is:

"Clean up your mess inside a colon-definition"

If you save two values on the Return Stack, get them off there before you attempt to leave.
If you save three, get three off. And so on. This means you have to be very careful with
looping and branching. Otherwise you have a program that works perfectly in one situation
and not in another:

: this-wont-work (n1 n2 -- n1 n2)
>r (n1)
0= if (--)
r> (n2)
dup (n2 n2)

else
1 2 (1 2)

then
;

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 137

This program will work perfectly if n1 equals zero. Why? Let’s look at the Return Stack
effects:

: this-wont-work (r1)
>r (r1 n2)
0= if (r1 n2)
r> (r1)
dup (r1)

else (r1 n2)
1 2 (r1 n2)

then
;

You see when it enters the ’ELSE’ clause the Return Stack is never cleaned up, so 4tH
attempts to return to the wrong address. Avoid this, since this can be very hard bugs to fix.

10.12 The Return Stack and the DO..LOOP

We’ve already told you that the limit and the counter of a DO..LOOP (or DO..+LOOP) are
stored on the Return Stack. But how does this affect saving values in the middle of a loop?
Well, this example will make that quite clear:

1 (n)
10 0 do (n)
>r (--)
i . (--)
r> (n)

loop (n)
cr (n)
drop (--)

You might expect that it will show you the value of the counter ten times. In fact, it doesn’t.
Let’s take a look at the Return Stack:

1 (--)
10 0 do (l c)
>r (l c n)
i . (l c n)
r> (l c)

loop (--)
cr (--)
drop (--)

You might have noticed that it prints ten times the number "1". Where does it come from?
Usually ’I’ prints the value of the counter, which is on top of the Return Stack.

This time it isn’t: the number "1" is there. So ’I’ thinks that "1" is actually the counter and
displays it. Since that value is removed from the Return Stack when ’LOOP’ is encoun-
tered, it doesn’t do much harm.

We see that we can safely store temporary values on the Return Stack inside a DO..LOOP,
but we have to clean up the mess, before we encounter ’LOOP’. So, this rule applies here
too:

"Clean up your mess inside a DO..LOOP"

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 138

But we still have to be prepared that the word ’I’ will not provide the expected result
(which is the current value of the counter). In fact, ’I’ does simply copy the topmost value
on the Return Stack. Which is usually correct, unless you’ve manipulated the Return Stack
yourself.

Note that there are other words beside ’I’, which do exactly the same thing: copy the top
of the Return Stack. But they are intended to be used outside a DO..LOOP. We’ll see an
example of that in the following section.

10.13 Other Return Stack manipulations

The Return Stack can avoid some complex stack acrobatics. Stack acrobatics? Well, you
know it by now. Sometimes all these values and addresses are just not in proper sequence,
so you have to ’SWAP’ and ’ROT’ a lot until they are.

You can avoid some of these constructions by just moving a single value on the Return
Stack. You can return it to the Data Stack when the time is there. Or you can use the top of
the Return Stack as a kind of local variable.

No, you don’t have to move it around between both stacks all the time and you don’t have
to use ’I’ out of its context. There is a well-established word, which does the same thing:
’R@’. This is an example of the use of ’R@’:

: delete (n)
>r #lag + (a1)
r@ #lag (a1 a2 n2)
r@ negate (a1 a2 n2 n3)
r# +! (a1 a2 n2)
#lead + (a1 a2 n2 a3)
swap cmove (a1)
r> blanks (--)

;

’R@’ copies the top of the Return Stack to the Data Stack. This example is taken from the
4tH-editor. It deletes "n" characters left of the cursor. By putting the number of characters
on the Return Stack right away, its value can be fetched by ’R@’ without using ’DUP’ or
’OVER’. Since it can be fetched at any time, no ’SWAP’ or ’ROT’ has to come in.

But note that the ”number of characters” doesn’t change during the execution of the word.
It’s a constant. So, if you want to use the Return Stack efficiently, you put only constants
there. As a matter of fact, it can hold three of those constants without any adverse effects.
The top of the Return Stack can be retrieved by ’R@’, the value under it by ’R’@’ and the
value under that one by ’R"@’.

Believe me, by cleverly putting the right parameters on the Return Stack at the right time,
you can avoid many stack acrobatics and make your life a whole lot easier.

10.14 Altering the flow with the Return Stack

The mere fact that return addresses are kept on the stack means that you can alter the flow of
a program. This is hardly ever necessary, but if you’re a real hacker you’ll try this anyway,
so we’d better give you some pointers on how it is done. Let’s take a look at this program.
Note that we comment on the Return Stack effects:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 139

: soup ." soup " ; (r1 r2)
: dessert ." dessert " ; (r1 r6)
: chicken ." chicken " ; (r1 r3 r4)
: rice ." rice " ; (r1 r3 r5)
: entree chicken rice ; (r1 r3)
: dinner soup entree dessert ; (r1)
dinner cr (--)

And this is the output:

soup chicken rice dessert

Before we execute "DINNER" the Return Stack is empty. When we enter "DINNER" the
return address to the main program is on the Return Stack (r1).

"DINNER" calls "SOUP". When we enter "SOUP" the return address to "DINNER" is on
the Return Stack (r2). When we are done with "SOUP", its return address disappears from
the Return Stack and execution continues within "DINNER".

Then "ENTREE" is called, putting another return address on the Return Stack (r3). "EN-
TREE" on its turn, calls "CHICKEN". Another return address (r4) is put on the Return
Stack. Let’s take a look on what currently lies on the Return Stack:

- Top Of Return Stack (TORS)

r4 returns to ENTREE

r3 returns to DINNER

r1 returns to main program

As we already know, ’;’ compiles an ’EXIT’, which takes the TORS and jumps to that
address. What if we lose the current TORS? Will the system crash? You can remove the
TORS by issuing ’RDROP’, although ”R> DROP” will do the trick as well, of course.

Apart from other stack effects (e.g. too few or the wrong data are left on the Data Stack)
nothing will go wrong. Unless the colon-definition was called from inside a DO..LOOP, of
course. But what DOES happen? The solution is provided by the table: it will jump back
to "DINNER" and continue execution from there.

: soup ." soup " ; (r1 r2)
: dessert ." dessert " ; (r1 r6)
: chicken ." chicken " rdrop ; (r1 r3 - r4 gets lost!)
: rice ." rice " ; (r1 r3 r5)
: entree chicken rice ; (r1 r3)
: dinner soup entree dessert ; (r1)
dinner cr (--)

Since "CHICKEN" gets rid of the return address to "ENTREE" by issuing ’RDROP’,
"RICE" is never called. Instead, a jump is made to "DINNER" that assumes that "EN-
TREE" is done, so it continues with "DESSERT". This is the output:

soup chicken dessert

Note that this is not common practice and we do not encourage its use1. However, it gives
you a pretty good idea how the Return Stack is used by the system.

1As a matter of fact, it may interfere with 4tH’s peephole optimizer.

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 140

10.15 Leaving a colon-definition

You can sometimes achieve the very same effect by using the word ’EXIT’ on a strategic
place. We’ve already encountered ’EXIT’. It is the actual word that is compiled by ’;’.

What you didn’t know is that you can compile an ’EXIT’ without using a ’;’. And it does
the very same thing: it pops the return address from the Return Stack and jumps to it. Let’s
take a look at our slightly modified previous example:

: soup ." soup " ; (r1 r2)
: dessert ." dessert " ; (r1 r6)
: chicken ." chicken " ; (r1 r3 r4)
: rice ." rice " ; (is never reached)
: entree chicken exit rice ; (r1 r3)
: dinner soup entree dessert ; (r1)
dinner cr (--)

After "CHICKEN" has been executed by "ENTREE", an ’EXIT’ is encountered. ’EXIT’
works just like ’;’, so 4tH thinks the colon-definition has come to an end and jumps back
to "DINNER". It never comes to calling "RICE", so the output is:

soup chicken dessert

’EXIT’ is mostly used in combination with some kind of branching like IF..ELSE..THEN.
Compare it with ’LEAVE’ that leaves a DO..LOOP early.

But now for the big question: what is the difference between ’EXIT’ and ’;’? Both compile
an ’EXIT’, but they are not aliases. 4tH will try to match every ’;’ with a ’:’. If it doesn’t
succeed, it will issue an error message. This matching is not performed by ’EXIT’.

10.16 The layout of the Stack Area

Before we tell you how to obtain information on the Stack Area, we first have to explain
you how it is laid out. We’ve already seen that there are two stacks: the Data Stack and the
Return Stack. We also know what they are used for.

The next question is what part of the Stack Area is used by the Data Stack and what part is
used by the Return Stack. In fact, both stacks share the very same Stack Area.

The Data Stack grows upward from the bottom and the Return Stack grows downward from
the top. When they meet, you’re in trouble. If the Return Stack causes the overflow, 4tH
will report that the Return Stack overflowed. If it was the Data Stack, it will report that the
Data Stack overflowed.

If an overflow happens, you can’t say which stack actually overflowed. If the Data Stack
filled up the Stack Area and a colon-definition tries to put a return address on the Return
Stack, the Return Stack will get the blame.

Now for the good news. Because of this shared stack space, programs with different re-
quirements can run without having to modify stack sizes (you can’t do that; only the pro-
grammer of your application can). It can be a program that heavily uses the Return Stack
(recursive colon-definitions) or a program that needs lots of data on the Data Stack.

What you can check is how big the Stack Area actually is. It is a constant named ’STACK’.
It will report the size in cells. Every value on any stack (address or value) takes up a single
cell.

You can also ask 4tH how many values are on the Data Stack using ’DEPTH’. It will report
the number of values, before you executed ’DEPTH’. Let’s elaborate on that a little more:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 141

." Begin" cr \ no values on the stack
10 \ 1 value on the stack
5 \ 2 values on the stack
9 \ 3 values on the stack
depth \ 4 values on the stack
. cr \ 4tH reports "3"

If you want to know what values the actual stack pointers have, you have to use ’SP@’
and ’RP@’. By subtracting ’SP@’ from ’RP@’ you can see how much space is left in the
Stack Area:

rp@ sp@ -
." Space left: " . ." cells" cr

10.17 Booleans and numbers

You might have expected we had discussed this subject much earlier. But we haven’t and
for one very good reason. We’ve told you a few chapters ago that ’IF’ branches if the top
of the stack is non-zero. Any number will do. So you would expect that this program will
print "I’m here":

1 2 and
if
." I’m here"

then

In fact, it doesn’t! Why? Well, ’AND’ is a BINARY operator, not a LOGICAL operator.
That means it reacts on bit-patterns. Given two numbers, it will evaluate bits at the same
position.

The number "1" is "01" in binary. The number "2" is "10" in binary. ’AND’ will evalu-
ate the first bit (binary digit, now you know where that came from!). The first bit is the
rightmost bit, so "0" for the number "2" and "1" for the number "1".

’AND’ works on a simple rule, if both bits are "1" the result will be "1" on that position.
Otherwise it will be "0". So "1" and "0" are "0". The evaluation of the second bit has the
same result: "0". We’re stuck with a number that is "0". False. So ’IF’ concludes that the
expression is not true:

2 base ! [binary] \ set radix to binary
10 \ binary number "2"
01 AND \ binary number "1"
. cr \ binary result after AND

It will print "0". However, "3" and "2" would work just fine:

2 base ! [binary] \ set radix to binary
10 \ binary number "2"
11 AND \ binary number "3"
. cr \ binary result after AND

It will print "10". The same applies to other binary operators as ’OR’ and ’INVERT’. ’OR’
works just like ’AND’ but works the other way around. If both bits are "0" the result will
be "0" on that position. Otherwise it will be "1":

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 142

2 base ! [binary] \ set radix to binary
10 \ binary number "2"
01 OR \ binary number "1"
. cr \ binary result after OR

It will print "11". We do not encourage the use of ’INVERT’ for logical operations. You
should use ’0=’ instead.

’0=’ takes the top of the stack and leave a true-flag if it is zero. Otherwise it will leave a
false-flag. That means that if a condition is true (non-zero), it will leave a false-flag. Which
is exactly what a logical NOT should do.

Take a look at his brother ’0<>’. ’0<>’ takes the top of the stack and leaves a true-flag if it
is non-zero. Otherwise it will leave a false-flag.

The funny thing is ’AND’ and ’OR’ work perfectly with flags and behave as expected.
’0<>’ will convert a value to a flag for you. So this works:

1 0<>
2 0<>
and if
." I’m here" cr

then

Of course, you don’t have to use ’0<>’ when a word returns a flag. You should check the
glossary for details on that.

10.18 Using ’ with other names

So far we’ve only used ”’ (tick) with colon-definitions, but you can also use it with all con-
stants, variables, values, strings, vectors (see section 11.7) and constant arrays. However,
the information it provides is not always useful. E.g. the expression:

10 constant ten
’ ten

Does not compile differently from:

10 constant ten
ten

The same applies to constant arrays and strings. It will give you possibly information on
the address of variables, vectors, arrays and values, e.g.:

variable ten
’ variable ." Relative address of ten: " . cr

Yes, relative address! What does that mean? When a 4tH program is compiled it has no
idea how many application variables a host program will provide. So it stores a relative
address. This address is relative to the address returned by ’FIRST’. You might call it an
offset if you want to. 4tH provides a word which will convert the relative address of vectors,
variables, values and numeric arrays to an absolute address, called ’>BODY’. So this piece
of code does exactly the same thing:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 143

variable ten
ten \ throw address of ’ten’ on stack
dup \ duplicate address
10 swap ! \ store 10 at address
? cr \ show value stored at address

As this piece of code:

variable ten
’ ten >body \ calculate address
dup \ duplicate address
10 swap ! \ store 10 at address
? cr \ show value stored at address

There are not too many occasions where this is useful, but it let’s take a look at this one:

0 value ten \ define a value
’ ten >body \ calculate address of value
dup \ duplicate address
10 swap ! \ store 10 at address
? cr \ show value stored at address

We already know that values, numeric arrays and vectors are stored in the very same area
of the Integer Segment. This construction makes it possible to access them as variables.

You can access string constants or arrays of string constants with tick, but they will return
a value which only has a meaning to 4tH itself. You won’t be able to do anything useful
with those values.

You should avoid these kind of constructions, but there might be some situations out there
where it might come in handy. Note that you can only tick your own names. All of 4tHs
built-in variables, strings, words, etc. cannot be accessed by tick.

10.19 Deleting files

4tH can also delete files on disk. That’s very easy, just feed it the name or path of the file
in question:

s" delete.me" delete-file .

If the deletion was successful, it prints zero, otherwise non-zero.

10.20 Querying environment variables

You can also retrieve the contents of every environment variable. Just feed 4tH with the
name of your environment variable and it will return the address and count of its contents:

s" DIR4TH" environ@ type cr

This will print the contents of your DIR4TH environment variable. Note that the contents
may be truncated if they would overflow the PAD. In such cases, you may want to use
the libraryfile getenv.4th. This allows you to determine the string variable where the
contents will be written to. However, it doesn’t work on systems that do not support pipes
(see section 9.28) and is a bit slower:

CHAPTER 10. INTEGER SEGMENT AND CODE SEGMENT 144

include lib/getenv.4th
1024 constant /buffer
/buffer string buffer
s" DIR4TH" buffer /buffer getenv type cr

Note that the contents are truncated as well if you don’t make the buffer large enough. Like
’ENVIRON@’ it will return an empty string on error.

10.21 What is not implemented

When writing a product like 4tH that is modelled after an existing programming language
like Forth one has to cut a few corners somewhere.

Forth has a fundamentally different architecture, which allows you to extend the compiler
with ease. 4tH is much more like conventional programming languages and many still
wonder how we got this far.

When you’re learning 4tH to learn Forth you will find there are things you can’t do in 4tH.
This section sums up most of the restrictions 4tH has in comparison to Forth and other
languages.

Datatypes There are no words that allow you to define your own datatypes,
although you can change the behaviour of individual variables. You
can solve many of these limitations by using the preprocessor2;

Interpreter Since 4tH is a conventional compiler, you won’t find a built-in in-
terpreter. There is a library-source, which will enable you to make
an interpreter for specific applications with ease. Next chapter we
will show you how to use it.

If you have more questions concerning the functionality of 4tH, please read the ANS-
Forth document. This describes the compliance of 4tH to the ANS-Forth standard. Further
information can be obtained by studying the glossary.

10.22 Known bugs and limitations

Like every software product, 4tH has bugs. Because a work-around is available, fixing
these bugs has no high priority.

• When you use ’\’ without any actual comment in a Unix ASCII file the complete
next line will be marked as comment. With MS-DOS ASCII files 4tH will correctly
detect a null string and terminate with an error. Add at least a dot or something, just
to be safe.

• There can be only one space between ’INCLUDE’ and the string following it. If you
don’t comply, 4tH will complain about empty string constants.

• You cannot use ’HIDE’ conditionally. If you specify a ’HIDE’ it must always be
executed in 4tH.

2See chapter 19.

Chapter 11

Advanced programming

11.1 Compiletime calculations

When you’ve reached this chapter, you must have quite some experience with 4tH. This
chapter will help you to use 4tH to its full capacity. You’ll be able to use software excep-
tions, conditional compilation, compiletime calculation, enumerations, private declarations
and much, much more.

We’ve already explained that when you define a string, it has to be preceded by a literal
expression1:

64 constant name
16 constant #names

name #names * string name_space

The word ’*’ takes two subsequent literal expressions and multiplies them to a new single
literal expression as if you’d written "1024" yourself! Everything that is evaluated at com-
piletime, must already be known at compiletime, thus a literal expression. Although not
all arithmetic words compile to a literal expression2, you can use the most common ones,
like ’*’, ’/’, ’+’ and ’-’. Another useful word is ’NEGATE’, e.g. when you need to assign
a negative value to a constant:

16 constant +range
+range negate constant -range

In this example the value of ”-RANGE” is -16. You can even mix and chain compiletime
calculations. This will compile to the literal "500":

5 25 75 + * constant myconstant
myconstant .

Just as if you’d just written "500" in the sourcecode yourself. You can also write:

25 75 + 5 * constant myconstant
myconstant .

1See section 7.13.
2This is called ”constant folding”, which is actually a form of optimization. But not all operators can be

optimized, see section 11.20 for more details.

145

CHAPTER 11. ADVANCED PROGRAMMING 146

Because it’s just simple postfix notation. Note that there must be two consecutive literal
expressions available at any time, so this doesn’t work:

5 5 * dup * constant myconstant
myconstant .

Since ’DUP’ isn’t a literal expression, but a word which is simply compiled. But don’t
worry: 4tH will notify you when you make an error like this. The final word, we’d like
to present you is ’[NOT]’, which logically inverts a flag at compiletime, just like ’0=’ at
runtime. This expression will compile to a true flag:

false [not]

You might wonder why we included this one, but that will become clear when you read the
next section.

11.2 Conditional compilation

This is something which can be very handy when you’re designing a 4tH program for
different environments or even different Forth compilers. Let’s say you’ve written a general
ledger program in 4tH that is so good, you can sell it. Your customers want a demo, of
course. You’re willing to give one to them, but you’re afraid they’re going to use the demo
without ever paying for it.

One thing you can do is limit the number of entries they can make. So, you copy the source
and make a special demo version. But you have to do that for every new release. Wouldn’t
it just be easier to have one version of the program and just change one single constant?
You can with conditional compilation:

true constant DEMO

DEMO [if]
256 constant #Entries
[else]
4096 constant #Entries
[then]

variable CurrentEntry
#Entries array Entries

We defined a constant, called "DEMO", which is true. So, when the compiler reaches the
"DEMO [IF]" line, it knows that it has to compile "256 constant Entries", since "DEMO"
is true. When it comes to ’[ELSE]’, it knows it has to skip everything up to next ’[THEN]’.
So, in this case the compiler behaves like you’ve written:

256 constant #Entries
variable CurrentEntry
#Entries array Entries

Would you change "DEMO" to false, the compiler would behave as if you wrote:

4096 constant #Entries
variable CurrentEntry
#Entries array Entries

CHAPTER 11. ADVANCED PROGRAMMING 147

The word ’[IF]’ only works at compile time and is never compiled into the object. ’[IF]’
takes a literal expression. If this expression is true, the code following the ’[IF]’ is com-
piled, just as ’[IF]’ wasn’t there. Is this expression false, everything up to ’[ELSE]’ or
’[THEN]’ is discarded as if it wasn’t there.

That also means you can discard any code that is superfluous in the program. E.g. when
you’re making a colon-definition to check whether you can make any more entries. If you
didn’t use conditional compilation, you might have written it like this:

: CheckIfFull (n -- n)
dup #Entries = (n f)
if (n)
drop (--)

DEMO (f)
if (--)
." Buy the full version"

else \ give message and exit program
." No more entries"

then (--)

cr quit
then (n)

;

But his one is nicer and will take up less code:

: CheckIfFull (n -- n)
dup #Entries = (n f)
if (n)
drop (--)

DEMO [if] (n f)
." Buy the full version"

[else]
." No more entries"

[then]

cr quit
then (n)

;

You can also use conditional compilation to discard large chunks of code. This is a much
better way than to comment all the lines out, e.g. this won’t work anyway:

(
: room? \ is it a valid variable?
dup (n n)
size 1- invert and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit

then
;
)

This is pretty cumbersome and prone to error:

\ : room? \ is it a valid variable?
\ dup (n n)
\ size 1- invert and (n f)
\ if \ exit program
\ drop ." Not an element of ROOM" cr quit
\ then
\ ;

CHAPTER 11. ADVANCED PROGRAMMING 148

But this is something that can easily be handled:

false [if]
: room? \ is it a valid variable?
dup (n n)
size 1- invert and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit

then
;
[then]

Just change "false" to "true" and the colon-definition is part of the program again. Note
that ’[IF]..[ELSE]..[THEN]’ can be nested! Conditional compilation is very powerful and
one of the easiest features a language can have. And it’s ANS-Forth compatible!

11.3 Checking the environment at compiletime

Let’s say you’ve written something which works perfectly on your own machine and you
want to use it on the mainframe at work. It turns out to be it doesn’t work. Why? Because
your program assumed that a cell was four address units wide. And it didn’t turn out to be
that way.

You could have prevented that if you had used a check at compiletime. You can do that this
way:

/cell 4 [=] [NOT] [IF]
(do something)
[THEN]

’/CELL’ is a constant which holds the number of address units in a cell. ’/CELL’ has got
a little brother called ’/CHAR’, which will tell you how many address units there are in a
character. ’[=]’ will check whether a cell has four address units and ’[NOT]’ will reverse
that flag. Neat huh?

But then again, what do we do if it doesn’t turn out to be that way. Any action will first
be executed at runtime so a message or ’ABORT’ won’t do. Further compilation will be
useless, so we actually want to stop. You’re in luck, since we have a special word that will
stop the compiler regardless. It’s called ’[ABORT]’. So this is our complete snippet:

/cell 4 [=] [NOT] [IF]
[ABORT]
[THEN]

But suppose you want to check whether a cell is at least 4 address units. ’[=]’ won’t
do in that case. Of course, you can check every imaginable cellsize, but that is not very
pretty. That is where ’[SIGN]’ comes in. ’[SIGN]’ will take a previously compiled literal
expression and compile -1 if the number was negative, zero if the number was zero and 1
if the number was positive. You may wonder how that does help. Well, consider this one:

/cell 4 - [SIGN] -1 [=] [IF]
[ABORT]
[THEN]

What have we been doing here? First, we substract the minimal cellsize from the actual
cellsize. If the sign of the sum is -1, compilation is aborted. The sum can only be negative
when ’/CELL’ is three or smaller. Get it? By using ’[SIGN]’ you can make all kinds of
compiletime comparisons, which makes it a real asset.

CHAPTER 11. ADVANCED PROGRAMMING 149

11.4 Checking a definition at compiletime

We’ve already encountered ’COMPARE’ in section 8.17. ’COMPARE’ is word that com-
pares two strings. It can do that both case sensitive and case insensitive. If you define a
constant called casesensitive before the ’[NEEDS’ directive, it will perform a case
sensitive comparison. If you don’t, it will do a case insensitive comparison by default.

Most approaches would require the definition of casesensitive, regardless which
mode you select. This one doesn’t:

: compare (a1 n1 a2 n2 -- f)
rot over over swap - >r (a1 a2 n2 n1)
min 0 tuck (a1 a2 0 n 0)
?do (a1 a2 f)
drop (a1 a2)
over i + c@ (a1 a2 c1)

[UNDEFINED] casesensitive [IF]
dup [char] A - max-n and 26 < if bl or then

[THEN]
over i + c@ (a1 a2 c1 c2)

[UNDEFINED] casesensitive [IF]
dup [char] A - max-n and 26 < if bl or then

[THEN]
- dup (a1 a2 f f)
if leave then (a1 a2 f)

loop
>r drop drop r> r> swap dup (f1 f2 f2)
if swap then drop (f)

;

’[UNDEFINED]’ checks whether the word following it has been defined and leaves a
TRUE flag if it wasn’t. It doesn’t matter whether the word is built-in, included or defined
in your program. It can be a variable, a word, a constant, anything you like.

In this case it checks whether casesensitive has been defined. If it isn’t, a line of code
is compiled. If an ’IF’ had been used, the code would always be compiled with the added
overhead of testing a constant at runtime. This construction allows for tighter and faster
code.

Note that ’[UNDEFINED]’ has also a counterpart called ’[DEFINED]’. It leaves a true flag
when the word following it has been defined.

11.5 Exceptions

You know when you violate the integrity of 4tH, it will exit and report the cause and loca-
tion of the error. Wouldn’t it be nice if you could catch these errors within the program?
It would save a lot of error-checking anyway. It is quite possible to check every value
within 4tH, but it takes code and performance, which makes your program less compact
and slower.

Well, you can do that too in 4tH. And not even that, you can trigger your own errors as
well. This simple program triggers an error and exits 4tH when you enter a "0":

[needs lib/enter.4th] \ get a number
\ if non-zero, return it
\ if zero, throw exception

: could-fail (-- n)
enter dup 0=

CHAPTER 11. ADVANCED PROGRAMMING 150

if 1 throw then
;

\ drop numbers and
\ call COULD-FAIL

: do-it (--)
drop drop could-fail

;
\ put 2 nums on stack and
\ execute DO-IT

: try-it (--)
1 2 [’] do-it execute
." The number was" . cr

;
\ call TRY-IT

try-it

"TRY-IT" puts two numbers on the stack, gets the execution token of "DO-IT" and exe-
cutes it. "DO-IT" drops both numbers and calls "COULD-FAIL". "COULD-FAIL" gets
a number and compares it against "0". If zero, it calls an exception. If not, it returns the
number.

The expression "1 THROW" has the same effect as calling ’QUIT’. The program exits,
but with the error message "Unhandled exception". You can use any positive number for
’THROW’, but "0 THROW" has no effect. This is called a "user exception", which means
you defined and triggered the error.

There are also system exceptions. These are triggered by the system, e.g. when you want to
access an undefined variable or print a number when the stack is empty. These exceptions
have a negative number, so:

throw -4

Will trigger the "Stack empty" error. You can use these if you want but we don’t recommend
it, since it will confuse the users of your program.

You’re probably not interested in an alternative for ’QUIT’. Well, ’THROW’ isn’t. It just
enables you to "throw" an exception and exceptions can be caught by your program. That
means that 4tH won’t exit, but transfers control back to some routine. Let’s do just that:

[needs lib/enter.4th]

: could-fail (-- n)
enter dup 0=
if 1 throw then

;

: do-it (--)
drop drop could-fail

;

: try-it (--)
1 2 [’] do-it catch
if drop drop ." There was an exception" cr
else ." The number was" . cr
then

;

try-it

The only things we changed is a somewhat more elaborate "TRY-IT" definition and we
replaced ’EXECUTE’ by ’CATCH’.

CHAPTER 11. ADVANCED PROGRAMMING 151

’CATCH’ works just like ’EXECUTE’, except it returns a result-code. If the result-code is
zero, everything is okay. If it isn’t, it returns the value of ’THROW’. In this case it would
be "1", since we execute "1 THROW". That is why "0 THROW" doesn’t have any effect.

If you enter a nonzero value at the prompt, you won’t see any difference with the previous
version. However, if we enter "0", we’ll get the message "There was an exception", before
the program exits.

But hey, if we got that message, that means 4tH was still in control! In fact, it was. When
"1 THROW" was executed, the stack-pointers were restored and we were directly returned
to "TRY-IT". As if "1 THROW" performed an ’EXIT’ to the token following ’CATCH’.

Since the stack-pointers were returned to their original state, the two values we discarded in
"DO-IT" are still on the stack. But the possibility exists they have been altered by previous
definitions. The best thing we can do is discard them.

So, the first version exited when you didn’t enter a nonzero value. The second version did
too, but not after giving us a message. Can’t we make a version in which we can have
another try? Yes we can:

[needs lib/enter.4th]

: could-fail (-- n)
enter dup 0=
if 1 throw then

;

: do-it (--)
drop drop could-fail

;

: retry-it (--)
begin
1 2 [’] do-it catch

while
drop drop ." Exception, keep trying" cr

repeat
." The number was " . cr

;

retry-it

This version will not only catch the error, but it allows us to have another go! We can keep
on entering "0", until we enter a nonzero value. Isn’t that great? But it gets even better! We
can exhaust the stack, trigger a system exception and still keep on going. But let’s take it
one step at the time. First we change "COULD-FAIL" into:

: could-fail (-- n)
enter dup 0=
if drop ." Stack: " depth . cr 1 throw then

;

This will tell us that the stack is exhausted at his point. Let’s exhaust is a little further by
redefining "COULD-FAIL" again:

: could-fail (-- n)
enter dup 0=
if drop drop then

;

CHAPTER 11. ADVANCED PROGRAMMING 152

Another ’DROP’? But wouldn’t that trigger an "Stack empty" error? Yeah, it does. But
instead of exiting, the program will react as if we wrote "-4 THROW" instead of "DROP
DROP". The program will correctly report an exception when we enter "0" and act accord-
ingly.

This will work with virtually every runtime error. Which means we won’t have to protect
our program against every possible user-error, but let 4tH do the checking.

We won’t even have to set flags in every possible colon-definition, since 4tH will automat-
ically skip every level between ’THROW’ and ’CATCH’. Even better, the stacks will be
restored to the same depth as they were before ’CATCH’ was called.

You can handle the error in any way you want. You can display an error message, call some
kind of error-handler, or just ignore the error. Is that enough flexibility for you?

Note that ’THROW’ has a little brother, called ’THROW"’. It’s modelled after ’ABORT"’3

and prints a message before throwing an exception. The only difference is that you cannot
take the exception value from the stack. It has to be predefined. It’s a good practice to use
the values defined in throw.4th. To give you an example, this will work:

include lib/throw.4th
: ithrewthis E.USER throw" User exception thrown" ;

true ithrewthis

And this won’t:

include lib/throw.4th
: ithrewthis throw" User exception thrown" ;

true E.USER ithrewthis

The idea behind this is that since you display a very specific message, a very specific
exception should be associated with it. Note almost all 4tH libraries throw exceptions, so
you can always catch those errors - and gracefully handle them.

11.6 Enumerations

Sometimes you need a lot of constants:

0 constant Monday
1 constant Tuesday
2 constant Wednesday
3 constant Thursday
4 constant Friday
5 constant Saturday
6 constant Sunday

A little error here may ruin your program. This does the very same thing, except it is easier
to maintain:

0 enum Monday enum Tuesday enum Wednesday
enum Thursday enum Friday enum Saturday
enum Sunday drop

3See section 9.11.

CHAPTER 11. ADVANCED PROGRAMMING 153

’ENUM’ is much like a ’CONSTANT’, but increments and leaves a value after the constant
has been created. That is why we need to add ’DROP’ after the final enumeration. To show
you that ’ENUM’ and ’CONSTANT’ are much alike, you could also write the declaration
above as:

0 enum Monday enum Tuesday enum Wednesday
enum Thursday enum Friday enum Saturday
constant Sunday

Since ’CONSTANT’ just consumes the value, you don’t need the final ’DROP’.

11.7 Forward declarations

It doesn’t happen very often, but sometimes you have a program where two colon-definitions
call each other. When you look at 4tHs source you find several examples. The throw() func-
tion calls the rpop() function, because ’THROW’ takes items from the Return Stack. On
the other hand, when the Return Stack underflows, it has to call ’THROW’. In 4tH there
are two ways to achieve that.

11.7.1 Deferred words

There is a special instruction in 4tH to do this, called ’DEFER’. ’DEFER’ doesn’t create
an executable word, but a vector containing an execution token4, which is executed when
called. You might want to consult section 10.3 first to see how this works. But for all
purposes you might consider it to be an executable word, because it behaves the same way.

defer Step2

Now we can create "STEP1" without a problem:

: Step1 1+ dup . cr Step2 ;

But "STEP2" does not have a body yet. Of course, you could create a new colon-definition,
tick it and assign the execution token to "STEP2" manually, but it is much neater to use
’:NONAME’. ’:NONAME’ can be used like a normal ’:’, but it doesn’t require a name.
Instead, it pushes the execution token of the colon-definition it created on the stack. No,
’:NONAME’ does not create a literal expression, but it is just what we need:

:noname 1+ dup . cr Step1 ; is Step2

Now we are ready! We can simply execute the program by calling "STEP1":

1 Step1

Note that if you run this program, you’ll get stack errors! Sorry, but the example has been
taken from a Turbo Pascal manual ;-). If you have forgotten what a deferred word actually
executes, you can retrieve the execution token by using ’DEFER@’:

4See section 10.4.

CHAPTER 11. ADVANCED PROGRAMMING 154

defer thisword \ create a vector

: plus + ; \ define a word

’ plus is thisword \ assign the word to the vector
’ thisword defer@ \ retrieve the execution token
2 3 rot execute \ execute the deferred word
. cr \ display the result

As a matter of fact, this expression:

’ thisword defer@ execute

Is equivalent to this one:

thisword

You can also reassign a vector without using ’IS’. ’IS’ is a parsing version. That means the
actual vector to which a certain behaviour is assigned is determined at compiletime. ’DE-
FER!’ can be used to assign a certain behaviour at runtime. ’DEFER!’ takes two execution
tokens:

defer thisword \ create a vector

: plus + ; \ define a word

’ plus ’ thisword defer! \ assign it to a vector

This is equivalent to this:

defer thisword \ create a vector

: plus + ; \ define a word

’ plus is thisword \ assign it to a vector

I guess you’ll agree with me that this creates countless possibilities.

11.7.2 Trampoline

The second way to do this, is by creating a ”trampoline” using ’PROTO:’:

proto: Step2

A ”trampoline” is merely a jump instruction. When it is created it jumps to oblivion, since
at that time it is unknown where it is supposed to jump. However, it makes this a valid
definition:

: Step1 1+ dup . cr Step2 ;

Of course, later in the program we have to resolve ”Step2”. You have to do that using a
’:PROTO’ definition:

:proto Step2 1+ dup . cr Step1 ;

Now the compiler knows where to jump - and the jump address of the ”trampoline” can be
resolved. Note ’PROTO:’ and ’:PROTO’ come in pairs. You cannot resolve a ”trampoline”
by using an ordinary definition - nor override that definition using a second ’:PROTO’
definition. Making a ’:PROTO’ definition without a preceding ’PROTO:’ declaration will
get you in trouble as well.

CHAPTER 11. ADVANCED PROGRAMMING 155

11.7.3 Which one should you use?

• From a performance point of view, there is hardly any difference between the two;

• If you want to write ANS-Forth compatible programs, use ’DEFER’;

• If you want to reassign a word to a different execution token, use ’DEFER’;

• ’DEFER’ requires additional storage and compiles to slightly larger code;

• The ”trampoline” is disabled after the ’:PROTO’ definition - and 4tH will compile
any call to it as if it was defined normally, since its definitive address is known now.

11.8 Recursion

Yes, but can she do recursion? Of course she can! It is even very natural and easy. Every-
body knows how to calculate a factorial. In 4tH you can do this by:

: factorial (n1 -- n2)
dup 2 >
if
dup 1-
factorial *

then
;

10 factorial . cr

Which is exactly as one would expect. Unfortunately, this is not the way it is done in ANS-
Forth. In order to let a colon-definition call itself, you have to use the word ’RECURSE’.
4tH supports this word too:

: factorial (n1 -- n2)
dup 2 >
if
dup 1-
recurse *

then
;

10 factorial . cr

It will even compile to the same code. If you use the word ’RECURSE’ outside a colon-
definition, the results are undefined. Note that recursion lays a heavy burden on the return
stack. Sometimes it is wiser to implement such a routine differently:

: factorial
dup
begin
dup 2 >

while
1- swap over * swap

repeat

drop
;

10 factorial . cr

So if you ever run into stack errors when you use recursion, keep this in mind.

CHAPTER 11. ADVANCED PROGRAMMING 156

11.9 Private declarations

Sometimes you want to hide some definitions from other programmers. This is especially
true when you’re writing libraries or templates. The Application Programmers Interface
must be public of course, but you don’t want anyone else to tinker with the internals of
your library. And there is the problem of cluttering your name space.

Relax, 4tH has a way to get rid of these internal words. It’s easy, just tell 4tH to hide them:

VARIABLE #emits \ private

: SHOW emit 1 #emits +! ; \ public
: NL CR 0 #emits ! ; \ public

hide #emits

After that the name "#EMITS" is no longer recognized and can be reused if you want to,
e.g. this is completely valid:

: dummy ;
hide dummy
: dummy ." I am no longer a dummy!" cr ;

As a matter of fact, the previous declaration of "DUMMY" has been turned into a ’:NON-
AME’ declaration by the use of ’HIDE’. Note that ’HIDE’ is meant to make definitions
private; not to optionally override previously defined definitions in order to achieve a Forth-
like behavior:

[DEFINED] myoption [IF]
hide myoption
[THEN]

true CONSTANT myoption

If you want to achieve that, use the ”first come, first served” rule:

[UNDEFINED] myoption [IF]
true CONSTANT myoption
[THEN]

The constant "MYOPTION" is only defined if it hasn’t been defined before. You may have
to change a few things here and there to make it work, but there are obvious advantages to
this construction.: it saves memory and is much easier to understand and maintain. And
you won’t scratch your head why your perfectly valid 4tH program doesn’t compile5.

11.10 Aliases

Sometimes you want to make an alias for a word. Of course you can embed the word you
want to alias in a new definition:

: noop ;
: nop noop ;

5The tokenizer evaluates ’HIDE’ in order to estimate the size of the symboltable while conditional compilation
is first evaluated by the parser.

CHAPTER 11. ADVANCED PROGRAMMING 157

Although this approach works perfectly under all circumstances it has its disadvantages,
because calling a word is relatively slow. Unless you’re trying to make an alias for an
internal word, you’d better use an ’ALIAS ’:

: noop ;
’ noop alias nop

This is completely equivalent to:

defer nop
: noop ;
’ noop is nop

Although the vector takes up a little space, it will save you from most of the calling over-
head. Since you can only alias self-defined executable words, ’ALIAS’ is quite limited.
’AKA’ does not have that disadvantage:

: noop ;
aka noop nop

Both words are now completely equivalent and compile to exactly the same code. Even
better, you can use ’AKA’ with every self-defined word, including variables, vectors, files,
values, fields and constants. ’AKA’ even works with most built-in 4tH words, e.g. con-
stants:

aka + plus

’AKA’ will not work with defining, preprocessor, flow control words or inline macros6. If
you’re unsure, just try! If 4tH bombs out with an error message, you’ll know. ’AKA’ is
also known as ”also known as”.

11.11 Changing behavior of data

One of the most ingenious things Forth can do, is change the behavior of data at runtime.
With 4tH, you cannot do this for an entire datatype, but you can do it for individual ’VARI-
ABLE’s, ’CREATE’s, ’STRING’s, ’ARRAY’s and ’CONSTANT’s. Just use:

:REDO <name> <definition> ;

Where <name> is a previously defined ’VARIABLE’, ’STRING’, etc. The definition will
behave as if the ’VARIABLE’, etc. has just been thrown on the stack, e.g. to make a
’VARIABLE’ behave as a ’CONSTANT ’you define:

variable me

10 me !
:redo me @ ;

The body of the definition will behave as if it said:

6Rule of the thumb: any word that compiles to a single token. See the glossary for details.

CHAPTER 11. ADVANCED PROGRAMMING 158

me @

Which boils down to a (rather slow) constant. You cannot change the contents of the
variable anymore if you haven’t taken precautions, because there is no way to address it.
Here is another, more elaborate example:

create life \ create an array of string constants
," This is my life!"
," This is your life!"

0 constant my \ create two constants
1 constant your \ to address the elements

\ now change the behaviour of LIFE
:redo life swap th @c count type cr ;

my life \ use it!
your life

At runtime, this will print:

This is my life!
This is your life!

There is even a shorter way to do this by using ’DOES>’, e.g. we could also write the
example above as:

create life \ create an array of string constants
," This is my life!"
," This is your life!"

does> swap th @c count type cr ;

0 constant my \ create two constants
1 constant your \ to address the elements

\ now change the behaviour of LIFE
my life \ use it!
your life

’DOES>’ always applies to the last defined ’VARIABLE’, ’CREATE’, ’STRING’, ’AR-
RAY’ or ’CONSTANT’, so you don’t have to repeat the name. So why ’:REDO’, you
might ask. Well, sometimes you have to define some other words before you encapsulate
the data. ’:REDO’ allows you to do just that.

If you just want to initialize the data, you can do so with ’LATEST’. ’LATEST’ will com-
pile to the last word you have defined, so if you want to change the name of your definition,
that’s the only thing you have to do. E.g. this is the 4tH translation of a double number7

constant:

include lib/anscore.4th \ for 2@, 2!
include lib/ansdbl.4th \ for U>D

2 array mydouble \ define a double number
max-n u>d latest 2! \ initialize it
does> 2@ ; \ now make it a constant

Wording has always been very important to Forth. Using this technique, you can make
your programs even more readable.

7See section 12.26.

CHAPTER 11. ADVANCED PROGRAMMING 159

11.12 Multidimensional arrays

We’ve seen two dimensional arrays with ’ARRAY’ and ’STRING’, but what about multi-
dimensional arrays. Well, it’s the same thing all over again. C doesn’t actually have multi-
dimensional arrays either. When you define one, just a chunk of memory is allocated.

In 4tH you can do the same thing, but now you have to do it yourself. E.g. when you want
to define a matrix of cells of 4 rows by 5 elements, you have to multiply those and allocate
an array of that size:

4 5 * array my_array

But what if you want to reference the fourth element of the third row? You cannot write
something like:

2 3 my_array @

That’s right. But you can change the behaviour of ”MY_ARRAY” accordingly:

:redo my_array (n1 n2 -- a)
rot 5 * \ calculate row offset
rot + \ calculate element offset
cells \ calculate number of cells
+ \ add to address of my_array

;

Or even better:

4 5 * array my_array does> rot 5 * rot + cells + ;

This word calculates the correct offset for you. Note that the third row is row number two
(since we start counting from 0) and the fourth element is element number three:

2 3 my_array @

You can also use "MY_ARRAY" to initialize an array, since it simply calculates the correct
address for you:

5 2 3 my_array ! \ sets 3rd row 4th element to 5

You can add more dimensions if you want. This works basically the same way: create an
array of a size that equals the products of its dimensions and design a word that calculates
the correct address.

11.13 Binary string constants

A binary string constant is an unterminated string that doesn’t necessarily contain charac-
ters. Creating binary string constants is easy. Just compile them by their ASCII value into
the String Segment with ’C,’:

char H c, char i c, char ! c, 0 c,

CHAPTER 11. ADVANCED PROGRAMMING 160

The fun of it all is that 4tH doesn’t allow you to access the String Segment directly, so
you can never retrieve them. You need ’OFFSET’ to define a word which does all the hard
work for you. At runtime it takes an index and leaves the ASCII value of the character in
question on the stack. ’OFFSET’ is used just before you compile the ASCII values:

offset greet char H c, char i c, char ! c, 0 c,

Note that you have to terminate a binary string constant manually if you need to, although
it is perfectly legal to create binary string constants with no termination at all. Retrieving
characters is easy. This will print ”Hi!”:

0 greet emit
1 greet emit
2 greet emit cr

And so will this:

0 begin \ setup index
dup greet dup \ retrieve character

while \ if not terminated
emit 1+ \ emit and increase index

repeat drop drop \ clear stack

You can use binary string constants for compact tables, bitstrings or any other raw data as
long as each element doesn’t exceed the size of a single character. Although useful in itself,
you’ll get into trouble when you try to pack several binary strings in a single datastructure.
Sure, you can give each binary string its own ’OFFSET’ but binding their addresses into
some form of array structure? No, because an ’OFFSET’ is not a literal expression and
hence cannot be compiled that way.

A solution is to ”tag” individual strings. Tags are literal expressions and compilable, so
you can do this:

OFFSET names
TAG names Hans
char H c, char a c, char n c, char s c, 0 c,

TAG names Wil
char W c, char i c, char l c, 0 c,

TAG names Phil
char P c, char h c, char i c, char l c, 0 c,

Or this, if you want to make it a little less ”wordy”:

OFFSET names
TAG names Hans c" Hans" 0 c,
TAG names Wil c" Wil" 0 c,
TAG names Phil c" Phil" 0 c,

Both expressions are completely equivalent. ’C"’ simply offers you a much easier way to
enter a printable string. Note that ’C|’ is available too, if you happen to use embedded
quotes. And yes, you can mix ’C,’ and ’C"’ as much as you like.

You can feed the ’TAG’ as an index to an ’OFFSET’, so this will return ”W” (from ”Wil”):

Wil names emit

CHAPTER 11. ADVANCED PROGRAMMING 161

And as promised, this will work as well:

CREATE developers
Hans , Phil , Wil , NULL ,

Contrary to popular belief, this construct is as memory efficient as:

CREATE developers
," Hans" ," Phil" ," Wil" NULL ,

It is just a bit more cumbersome to set up. You can even wrap up your binary string array
into a ’:REDO’ definition, giving:

:redo developers
swap cells + @c
begin dup names dup while emit 1+ repeat
drop drop cr

;

Which means you can write:

1 developers

Which will display ”Phil”. This way, embedding e.g. UTF-8 code not only becomes possi-
ble, but also very easy to set up.

11.14 Binary string variables

You can define raw chunks of memory with ’BUFFER:’. This will allocate a raw chunk of
data of 1024 bytes:

1024 buffer: a

Finally, if you want to move raw chunks of data around, there is ’MOVE’:

1024 buffer: a
1024 buffer: b

a b 512 move

This will define two raw buffers of 1024 bytes and ’MOVE’ will copy the first 512 bytes of
buffer ”a” to buffer ”b”.

11.15 Records and structures

The easiest way is to allocate a structure in the Character Segment. Just define the structure
like this:

CHAPTER 11. ADVANCED PROGRAMMING 162

struct
32 +field Name
64 +field Address
32 +field City
4 +field Age

end-struct /Person

This might be a familiar example to you. We’ll store information on a single person in
this structure. Now we got the fields, the length of the fields and the length of the entire
structure, stored in ”/Person”. Both the fields and the entire structure are nothing more than
a set of constants, e.g. the offset of the field ”Name” is stored in a CONSTANT named
”Name”. However, we still haven’t allocated any memory. We can allocate room for the
structure we’ve just defined by just using the word ’STRING’. Note that you can also create
a cell-based structure. Then you need the word ’ARRAY’ to allocate the memory required.

/Person string Person

Now we can define a word which initializes the fields:

: InitRecord \ initialize fields
s" Hans Bezemer" Person -> Name place
s" Lagendijk 79" Person -> Address place
s" Den Helder" Person -> City place
s" 44" Person -> Age place

;

Of course, you can also use ’ACCEPT’ to enter the contents of the fields. Fields act like
ordinary strings. Note that numbers are stored as strings as well. This is not too much of a
problem since ’NUMBER’ can convert them back to numbers anyway.

This is a very simple use of structures. You can also use structures within structures:

struct
64 +field Address
32 +field City

end-struct /Location

struct
32 +field Name
/Location field Location

end-struct /Person

/Person string Person

s" Delft" Person -> Location -> City place

If you want to make an array of structures, that can be done as well:

struct \ create structure
32 +field Name
64 +field Address
32 +field City
4 +field Age

end-struct /Person

32 constant #Person \ size of array of structs
\ now allocate the room

#Person /Person * string Persons
\ make it behave properly

:redo Persons swap /Person * + ;

CHAPTER 11. ADVANCED PROGRAMMING 163

\ initialize the first record
s" Hans Bezemer" 0 Persons -> Name place
s" Lagendijk 79" 0 Persons -> Address place
s" Den Helder" 0 Persons -> City place
s" 44" 0 Persons -> Age place

You can also extend an already existing structure:

struct \ create structure
32 +field Name
64 +field Address
32 +field City
12 +field Age

end-struct /Person
\ now extend the structure

/Person
32 +field Job
16 +field Emp-number

end-struct /Employee

You now got two different structures, ”/Person” and ”/Employee”, that share the first four
fields. Defining a structure within a structure is possible too:

struct \ create structure
32 +field Firstname
64 +field Lastname
struct \ structure within a structure
64 +field Address
8 +field Zip
32 +field City

+field Location \ let’s give it a name
4 +field Age

end-struct /Person

Let’s use it:

/Person string Person \ allocate some space
\ initialize it

s" Hans" Person -> Firstname place
s" Bezemer" Person -> Lastname place
s" Lagendijk 79" Person -> Location -> Address place
s" Den Helder" Person -> Location -> City place
s" 44" Person -> Age place

And finally, if you want to define a structure and allocate the memory it occupies at the
same time, you can do that one too. After all, ’+FIELD’ is literal expression8:

struct \ define the structure
32 +field Firstname
64 +field Lastname
8 +field Initials

string Person \ allocate the structure

s" Hans" Person -> Firstname place
s" JL" Person -> Initials place

Well, if that isn’t a complete implementation, I don’t know what is..

8See section 7.13.

CHAPTER 11. ADVANCED PROGRAMMING 164

11.16 Unions

A union is a bunch of variables that share the same memory. Defining it in 4tH is quite
easy:

include lib/ncoding.4th \ include NCODING library

struct \ start defining the union
32 /field \ first field
nell /field \ second field

end-struct /union \ end union definition

/union string myunion \ allocate some space
\ now use it

s" Hans Bezemer" myunion place
1960 myunion n!

The union has the size of its largest field. You may wonder why the individual fields
don’t have their own names, but there is a reason for that. In other languages the field
determines the type, so the compiler can figure out if you’re using it properly. Since 4tH
has no typechecking names are pretty useless, consequently there aren’t any. You can use
a union within another union or structure:

include lib/fp1.4th \ include the FP library

struct \ define a union
1 cells /field \ sharing an integer
float /field \ and a floating point

end-struct /number \ number

struct \ define a structure
field: type_tag \ with some fields
/number +field x \ and the union concerned

array z \ allocate some space

23 z -> x ! \ use it as a number
23 s>f z -> x f! \ use it as an FP number

You can also embed the union in the structure if you like:

include lib/fp1.4th \ include the FP library

struct \ define a structure
field: type_tag \ with some fields
struct \ define a union
1 cells /field \ sharing an integer
float /field \ and an FP number

+field x \ embed the union
array z \ allocate some space

23 z -> x ! \ use it as a number
23 s>f z -> x f! \ use it as an FP number

If you really want to differentiate beween the floating point number and the integer, you
can make an alias for field ”X”:

aka x y

And use it accordingly:

CHAPTER 11. ADVANCED PROGRAMMING 165

23 z -> x ! \ use it as a number
23 s>f z -> y f! \ use it as an FP number

It is only cosmetic though, since it will compile to the same code and 4tH won’t issue an
error if you don’t use it properly.

11.17 Complex control structures

Sometimes, the normal control structures of 4tH are not enough. Take this implementation
of ’-TRAILING’:

: -trailing (a n1 -- a n2)
begin
dup \ quit if length is zero

while
2dup 1- chars + c@ bl <> \ is it still a space?
if exit else 1- then \ if not, quit

repeat \ if so, decrement length
;

No one will tell you that this is elegant. You have to perform a test and quit the word. And
this is still palatable. Imagine you have to test several conditions like this! It will become
horrible pretty soon! Therefore, 4tH supports extended control structures. We’ve seen the
basic control structures in sections 7.22, 7.23 and 7.24. Now we’re expanding those into:

BEGIN .. WHILE .. WHILE .. AGAIN | REPEAT
BEGIN .. WHILE .. WHILE .. UNTIL

Yes, that’s right: ’REPEAT’ and ’AGAIN’ are actually aliases. But what can we do with
them? Well, take a look at our modified ’-TRAILING’ word:

: -trailing (a n1 -- a n2)
begin
dup

while \ quit if length is zero
2dup 1- chars + c@ bl =

while \ quit if it is not a space
1- \ decrement length

repeat
;

You have to admit that the latter version is much more elegant and readable. Although very
elegant and usuable, in some circumstances you want to know which ’WHILE’ terminated
the loop and take additional action. This means you either have to set an additional flag
or repeat the test, which is neither elegant nor efficient. For that purpose 4tH offers the
DONE..DONE construct. In this example ”-TRAILING” tells you why it terminated:

: -trailing (a n1 -- a n2)
begin
dup

while \ quit if length is zero
done ." All spaces or NULL string" cr done
2dup 1- chars + c@ bl =

while \ quit if it is not a space
1- \ decrement length
done ." String trimmed" cr done

repeat
;

CHAPTER 11. ADVANCED PROGRAMMING 166

A DONE..DONE clause always belongs to the last defined ’WHILE’, so it doesn’t really
matter where you put it. What ’DONE’ actually does is resolve the last defined ’WHILE’ or
’DONE’. The last ’DONE’ always jumps to ’REPEAT’, so a single ’DONE’ is a ’NOOP’.
You can actually define something like this:

begin
(condition)
while
(true)
done (false) done
(true)
done (false) done
(true)
done
(true)

repeat

But you’ll have to agree it’s not very useful9.

11.18 Alternative branch- and loop constructs

I don’t know about you, but I always hated constructs like this:

: myword 0= if 1+ else 2* then ;

Why? Because it always brings my mind to a full stop when I encounter a ’0=’ right before
a conditional. In this case, you can easily rewrite it - and the ’0=’ disappears:

: myword if 2* else 1+ then ;

But there’s even a better way to write this:

: myword if 2* ;then 1+ ;

’;THEN’ is equivalent to ’THEN’ - with one exception: once encountered, it exits the word
immediately. It’s like you have written ”EXIT THEN”10. So, it never reaches the ”1+”
code, which makes it act exactly like an ’ELSE’ clause. Since your words should be short
and simple, you may need to use ’;THEN’ more often than you think. Especially since it’s
much faster11.

However, you may find yourself in a situation where you cannot escape the ’0=’, like this
one:

: myword 0= if 1+ then ;

Or can you? Yes, you can. ’UNLESS’ is not only equivalent to ”0= IF”, but compiles
to the very same code. So, if you find this more expressive, you may write the previous
expression like this:

: myword unless 1+ then ;

9You can actually define ”if else else else then” too, which is not very helpful neither.
10Actually, that’s exactly what it compiles to.
11See section 11.20 for the reason behind it.

CHAPTER 11. ADVANCED PROGRAMMING 167

Please note that the use of ’;THEN’ adds nothing here - it’s gonna exit anyway. Of course,
you don’t have to use ’UNLESS’ - it’s just an option we’re giving you. There are a few
situations when you should refrain from using ’UNLESS’:

• When you’re using expressions with ’AND’ or ’OR’. These tend to be harder to
interpret when using ’UNLESS’;

• When using ’ELSE’. You can turn that expression around so it won’t need ’UN-
LESS’.

The same goes for ”0= WHILE”. In that case you can replace it with ’EXCEPT’ - like here:

: write-file (--)
begin
0 parse s" <![CDATA[" >cut \ search for <![CDATA[tag

except \ if not, get the next line
2drop refill 0= E.USER throw" Page doesn’t contain any data"

repeat write-note \ return false if no more file
;

In some circumstances you may find yourself in a situation where you have to conditionally
exit a word. It’s usually expressed like this:

if exit then

In order to prevent you from writing horrors like this:

if ;then

We’ve created a word that does exactly that: ’?EXIT’. So please. Use that one instead.
Gee, the things you have to do as a developer to keep your children in line..

11.19 CASE-OF constructs

You may wonder why we consider this an advanced programming technique. Well, we’d
rather see you use lookup tables12 instead, since they’re vastly easier to use and maintain.
However, there is one good reason to use CASE-OF constructs instead: speed. If you
have less than a hundred non-contiguous integer values to evaluate, CASE-OF is the fastest
option available. There is only one ”but” to consider. You will see very little performance
improvement if it is not a critical part of your program.

If your values are contiguous - even if they require an ”offset”, you’re better off with an
indexed table, e.g.

create Get-Month (n1 -- a n2)
," January "
," February "
," March "
," April "
," May "
," June "
," July "
," August "
," September"
," October "
," November "
," December "

does> swap 1 max 12 min 1- cells + @c count ;

12See section 12.19.

CHAPTER 11. ADVANCED PROGRAMMING 168

So, there are only a few very specific situations in which the use of CASE-OF constructs
is actually appropriate. That’s why we reluctantly included it. That having said, it is part
of ANS-Forth and this implementation is fully compliant. It’s pretty easy to use, e.g. if we
wanted to convert the table above, it would look like this:

: Get-Month (n1 -- a n2)
12 min case

1 of s" January " endof
2 of s" February " endof
3 of s" March " endof
4 of s" April " endof
5 of s" May " endof
6 of s" June " endof
7 of s" July " endof
8 of s" August " endof
9 of s" September" endof
10 of s" October " endof
11 of s" November " endof
12 of s" December " endof

endcase
;

However, it would be six times as slow as the table solution above. You could speed up
that a little by using the keyword ’;ENDOF’ instead of ’ENDOF’ since that one would exit
the word ”Get-Month” straight way. Of course, this is not a good solution if your program
continues after ’ENDCASE’.

But in the end of the day, this construct is nothing more than a glorified ”IF..THEN” state-
ment, e.g. this snippet generates exactly the same code:

: Get-Month (n1 -- a n2)
12 min
1 over = if s" January " else
2 over = if s" February " else
3 over = if s" March " else
4 over = if s" April " else
5 over = if s" May " else
6 over = if s" June " else
7 over = if s" July " else
8 over = if s" August " else
9 over = if s" September" else
10 over = if s" October " else
11 over = if s" November " else
12 over = if s" December " else
drop then then then then then then
then then then then then then

;

It just doesn’t look as smart and you’re left with the arduous task to match all those pesky
’IF’ at the end of the statement. And remember, if there are more than a hundred integer
values to evaluate, you’re better off with a binary search (section 12.23).

11.20 Optimization

The best way to optimize a program is to look out for certain patterns and obliterate them
where possible, e.g.:

swap 2drop

CHAPTER 11. ADVANCED PROGRAMMING 169

Is a useless sequence of words that could easily be replaced by a single ”2DROP”. You
don’t need an optimizer to see that one. That’s dead code elimination. 4tH does some of
that, but not this kind of blatant errors. It’s more subtle.

One thing 4tH does for you too is tail call optimization. That means that if the last instruc-
tion before the semicolon is a call to another word, it will change the ’CALL’ instruction
to a ’BRANCH’ instruction. The advantage is twofold:

1. It will save you an expensive ’CALL’ - ’EXIT’ sequence;

2. It will save you Return Stack space.

Consequently, your programs will run a little bit faster13. If you want any further improve-
ment, you will have to do that yourself. E.g. this will optimize a tail call optimization even
more. Simply change:

: myfirstword ;
: mysecondword ;
: mythirdword if myfirstword else mysecondword then ;

Into this:

: myfirstword ;
: mysecondword ;
: mythirdword if myfirstword ;then mysecondword ;

If we decompile these programs we see the difference right away. The first compiles to:

Addr| Opcode Operand Argument
0| branch 1 myfirstword
1| exit 0
2| branch 3 mysecondword
3| exit 0
4| branch 9 mythirdword
5| 0branch 7
6| call 0 myfirstword
7| branch 8
8| branch 2 mysecondword
9| exit 0

You can clearly see the tail call optimization at word 8. However, there is a ’BRANCH’ at
word 7 and an ’EXIT’ at word 9 we can do without. The second version fixes this:

Addr| Opcode Operand Argument
0| branch 1 myfirstword
1| exit 0
2| branch 3 mysecondword
3| exit 0
4| branch 7 mythirdword
5| 0branch 6
6| branch 0 myfirstword
7| branch 2 mysecondword

13Special threading benchmarks show a speed increase of 40%, although real life programs will never see that
much improvement.

CHAPTER 11. ADVANCED PROGRAMMING 170

After the call at word 6 we immediately branch, which is correct because there is no code
to execute after that. Note the tail optimizer was able to kick in twice here. Note that
the ’;THEN’ instruction provides the required ”expressiveness” of this subroutine, so its
completely clear why this construction was chosen.

In some rare circumstances, e.g. when you’re calling user-defined words which manipulate
the return stack14, you don’t want the tail optimizer to kick in. Suppressing it is very simple,
just add the ’[FORCE]’ directive to the ’EXIT’15 or change the order of words slightly so
that a reserved word is compiled at the end:

: return r> drop ;
: test dup if 1+ else return then [force] ;
0 test . cr

Another area of optimization is constant folding. If we do it at compile time, we do not have
to do it at runtime. Especially when it is in the middle of a loop or a word we frequently
use.

4tH features a small peephole optimizer that tries to make the best of all these situations.
The rules are simple:

1. If you compile the word ’+’ or ’-’ and the previously compiled word was a LITERAL,
a +LITERAL will be compiled unless rule 6 can be applied;

2. If you compile the word ’*’ and the previously compiled word was a LITERAL, a
*LITERAL will be compiled unless rule 7 can be applied;

3. If you compile the word ’/’ and the previously compiled word was a LITERAL, a
/LITERAL will be compiled unless rule 8 can be applied;

4. If you compile the word ’NEGATE’ and the previously compiled word was a LIT-
ERAL, *LITERAL or /LITERAL, it will be negated;

5. If you compile the word ’@’ or ’!’ and the previously compiled word was a VARI-
ABLE, a VALUE or TO will be compiled;

6. If you compile a +LITERAL and the previously compiled word was a LITERAL,
+LITERAL or VARIABLE, the +LITERAL will added to it;

7. If you compile a *LITERAL and the previously compiled word was a LITERAL or
*LITERAL, it will be multiplied;

8. If you compile a /LITERAL and the previously compiled word was a LITERAL it
will be divided. If it was a /LITERAL, it will be multiplied;

9. If you compile a +LITERAL with the value 0 or a /LITERAL or *LITERAL with
value 1, nothing is compiled at all;

10. If you compile a *LITERAL and the previously compiled word was a NEGATE, it
will be replaced by a *LITERAL with a negative argument;

11. If you compile a /LITERAL and the previously compiled word was a NEGATE, it
will be replaced by a /LITERAL with a negative argument;

12. If you compile a +LOOP with the value 1, LOOP is compiled;

14E.g. ”NR>” and ”N>R” or ”LOCAL{” and ”}GLOBAL”.
15’;’ compiles ’EXIT’.

CHAPTER 11. ADVANCED PROGRAMMING 171

13. If you compile a >R, followed by R> both instructions are optimized away. The same
goes for the sequence R> >R;

14. If you compile a R>, followed by DROP an RDROP will be compiled;

15. If you compile a >R, followed by RDROP a DROP will be compiled;

16. If a ’THEN’ or ’BEGIN’ is compiled, the peephole optimizer is disabled16 and pre-
viously compiled code will not be further optimized.

Let’s see how that works in practice and examine this simple program:

-10 +constant 10-
100 begin 10- dup while 5 + dup . repeat

First we create a ’+CONSTANT’, which subtracts 10 from any number on the stack. Sec-
ond, we set up a loop which starts at 100 and is subsequently decremented until it hits zero.
4tH will compile this code for you:

Addr| Opcode Operand
0| literal 100
1| +literal -10
2| dup 0
3| 0branch 7
4| +literal 5
5| dup 0
6| . 0
7| branch 0

Note that although rule 6 seems to apply to the first two instructions, it is overruled by rule
16. With reason, because otherwise the LITERAL ”90” would have been compiled which
is certainly not what we meant. You can clearly see that the expression ”5 +” has been
condensed to a single +LITERAL, which saves an instruction. Now let’s change it slightly
and see what the peephole optimizer does:

-10 +constant 10-
100 begin 10- dup while 5 + 10- dup . repeat

We’ve added the ’+CONSTANT’ to the already optimized expression. This is what 4tH
compiles:

Addr| Opcode Operand
0| literal 100
1| +literal -10
2| dup 0
3| 0branch 7
4| +literal -5
5| dup 0
6| . 0
7| branch 0

At first it seems like it’s identical, but it’s not. The ’+CONSTANT’ has simply been sub-
tracted from the expression! 4tH’s peephole optimizer is not there to clean up your messy
code, but to give you a helping hand where you really need it, e.g. consider this code:

16Although tail optimization will still partly work.

CHAPTER 11. ADVANCED PROGRAMMING 172

struct
1 +field operator
2 +field operand

end-struct /instruction \ define a simple structure
\ allocate some space

/instruction string instruction
\ now initialize it

1 instruction -> operator c!
5 instruction -> operand c!

Which 4tH compiles to:

Addr| Opcode Operand
0| literal 1
1| literal 1024
2| c! 0
3| literal 5
4| literal 1025
5| c! 0

Without the peephole optimizer the addresses of the members of the structure would not
have been calculated at compile time. Even more, optimizing this code by hand would not
have been easy without writing some pretty murky source code. It is in these situations that
the peephole optimizer excels. But the optimizer knows even more tricks:

Dead code elimination It removes sequences like ”R> >R”. You might not write those
yourself, but they may be introduced by inline macros;

Algebraic simplification Operations like ”adding zero” or ”multiplying by one” are re-
moved;

Strength reduction Replacing more ”expensive” operations like ”R> DROP” with
”cheaper” ones like ’RDROP’.

Note that all these optimizations are considered harmless - with the possible exception of
tail call optimization - so the need to override the optimizer should be negligible.

You can also use the preprocessor to perform another trick: inlining - which means that
small functions can be inserted into the code, instead of being called. Preventing function
call overhead can really add up in a tight loop.

But always remember: the one who’s most responsible to write good and fast code is always
you. The optimizer is just a little helper - and not snake oil to polish up bad code.

11.21 Static variable pointers

The peephole optimizer is an integral part of 4tH and quickly and efficiently optimizes a
whole range of expressions that can be resolved at runtime, including strings and variables.
E.g. if you want to set a static pointer to a classic counted string, you could define it like
this:

16 string str-len
str-len char+ constant str-string

That is because a ’STRING’ expression can be optimized to a single literal. However, this
is not the case with a variable and consequently this pig won’t fly:

CHAPTER 11. ADVANCED PROGRAMMING 173

16 array array-len \ won’t compile!
array-len cell+ constant array-payload

It is for this kind of situation that we have ’EQUATES’. It takes a variable and an optional
literal expression and create a static pointer that behaves like any other variable, yes, even
including a ’:REDO’ or ’DOES>’ definition17:

variable <literal expression> EQUATES name

In its most basic form an ’EQUATES’ expression is equal to ’AKA’18:

variable A
A equates B

Is equivalent to:

variable A
aka A B

Now we can rewrite our expression so it can be compiled properly:

16 array array-len \ this will compile!
array-len cell+ equates array-payload

An ’EQUATES’ expression will save you from writing this kind of code:

16 array array-len
: array-payload array-len cell+ ;

Which not only requires extra code, but will definitely run much slower.

11.22 Assertions

You have probably seen this before: you’ve made a program, compiled it and it doesn’t
work. Then you start putting code at strategic places, trying to pinpoint the error. And
when you’re finally done, you’ve got to revisit all of these places to remove that code. And
you probably forget a few..

4tH has a built-in facility which allows to put that code there, debug your program and
remove the debugging code from your program by changing a single line.

It is called "assertion" and those of you who have ever worked with C probably know what
we’re talking about.

An assertion is a line of code that will evaluate an expression. If the expression evaluates
to false, it will exit the program with an error message. Let’s take a look at this simple
colon-definition:

: add \ expects two numbers on the stack
+

;

17See section 11.11.
18See section 11.10.

CHAPTER 11. ADVANCED PROGRAMMING 174

If we call add by writing:

1 add

it will fail. Now we add this assertion:

assert(depth 2 >=)

It will evaluate to false when there are less than two items on the stack. The program will
be terminated and the appropriate error message will be issued. You may think that this is
nice, but you still have to remove all assertion manually.

Not true! If you tried this out already you will see that you won’t find an assertion any-
where. It’s gone! True, if you want to use assertions you have to enable them. You do that
with the word ’[ASSERT]’:

[assert]
: add
assert(depth 2 >=)
+

;

1 add

Now assertions will compile and work. If you remove the word ’[ASSERT]’ all asser-
tions will disappear like they were comment. ’[ASSERT]’ works just like ’[DECIMAL]’,
’[HEX]’, etc. They work linear and do not follow the program flow. If you put ’[ASSERT]’
halfway your source-file you will notice that assertions work from that point:

: add
assert(depth 2 >=) \ assertions disabled
+

;

[assert] \ enable assertions

: print-hex
base @ >r hex
assert(depth 1 >=) \ assertions enabled
. cr r> base !

;

Assertions are only enabled in "PRINT-HEX". The assertion inside "ADD" will be re-
moved and thus be disabled. But there is more to ’[ASSERT]’ than the eye meets. It
doesn’t enable assertions, it toggles them. When the 4tH compiler starts, assertions are
disabled. The first ’[ASSERT]’ enables them. A second ’[ASSERT]’ will disable them
again:

[assert] \ enable assertions

: add
assert(depth 2 >=) \ assertions enabled
+

;

[assert] \ disable assertions

: print-hex
base @ >r hex
assert(depth 1 >=) \ assertions disabled
. cr r> base !

;

CHAPTER 11. ADVANCED PROGRAMMING 175

There are many possibilities:

• You can start testing low level colon-definitions and move your way up to the high
level definitions by moving ’[ASSERT]’ down.

• You can enable assertions on certain parts of your code by enclosing them with an
’[ASSERT]’ pair.

• You can switch the entire context of ’[ASSERT]’s by adding a single ’[ASSERT]’ to
the top of your source.

You are not limited to range-checking when using ’ASSERT(’. Any expression that evalu-
ates to TRUE is allowed:

[assert]
: add
assert(." ADD starts at " here . cr true)
assert(depth 2 >=)
assert(." Values: " over over . . cr true)
+

;

We’re sure you can come up with more useful ideas. We did too.

11.23 Breakpoints

4tH also offers you the possibility to set breakpoints. It’s quite easy to enable this facility.
Just add this to the very beginning of your source:

[needs lib/debug.4th]

Setting a breakpoint is quite easy too, e.g. this piece of code malfunctions:

32 string argument
1 args argument place

Change it to:

32 string argument
1 args argument ~~ place

Now the breakpoint is enabled. It will enter a Forth-like shell just before ’PLACE’ is
executed. Now a host of words are at your disposal. You can examine any region of the
Character Segment with ”DUMP” or print any string variable with ”TYPE”. 4tHs internal
variables and regions are known by name, like ”PAD”, ”TIB”, ”>IN”, ”BASE” and ”OUT”.
You can examine them or any other variable by using ”?”, ”@” and ”.”.

You have a small calculator, that you can use to multiply, substract, add. You can change
’BASE’ by executing ”OCTAL”, ”HEX”, ”BINARY” or ”DECIMAL”. It also has a host
of binary operators like ”OR”, ”AND”, ”XOR”, ”INVERT”, ”LSHIFT” and ”RSHIFT”. It
also has stack operators like ”DUP”, ”DROP”, ”OVER” and ”SWAP”. ”CLEAR” will clear
the stack for you.

You can examine both stacks. ”.S” will show you the data stack (including any rubbish you
put there yourself during the debugging session) and ”R.S” will show you the return stack.

CHAPTER 11. ADVANCED PROGRAMMING 176

”DEPTH” and ”RDEPTH” will tell you how many items there are on the stack. When
you’re done, you may leave the debugger by typing ”BYE”. Your program will continue as
usual.

A word of caution: since the debugger is a 4tH program itself, it doesn’t actually freeze
the virtual machine. It just seems like it is frozen. The contents of PAD may be slightly
different than you expected. If you really need to examine the PAD as it was, don’t examine
it directly, but use ”SPAD” to examine the ”shadow PAD”. ”SPAD” leaves the address for
the ”shadow PAD” on the stack. The same goes for ”>IN”, ”BASE” and ”OUT”: never
examine these by address, but always by name. Although every effort has been made to
catch any errors, some extreme stress tests might fail. It is not recommended to use the
debugger when stack space is very tight.

11.24 Debugging

We’ve all been there. You’ve written a non-trivial program and when you try to run it,
it bombs out with an error message. Then the question arises: ”Where did I go wrong?”
This proces is called ”debugging”. Debugging is very hard without any dedicated tools.
Modern development systems include a debugger, featuring breakpoints, single stepping
and variable tracking.

4tH features the following tools:

• Stack examination

• Assertions19

• Breakpoints20

• Decompilation

• Preprocessor21

• Compiler directives

First of all, you need to understand how the 4tH compiler works. Initially the tokenizer
collects all 4tH sources and breaks them down to tokens. A token is a word or a string.
This makes it much easier for the compiler to parse the source22. 4tH has a single pass
compiler, so after the tokenizer has finished successfully, it will start compiling right away.
Even if the compiler encounters an error, it has actually compiled something. The point
where the compiler stops gives you clues on where it went wrong. 4tH doesn’t discard this
partial compilant, but keeps it in memory so you can examine it. It won’t allow any other
action.

If you managed to successfully compile the source, it will pass the compilant to the virtual
machine to execute it. Again, the point where the virtual machine stops is retained. Having
one external editor window open with the 4tH source and another with 4tH itself is one of
the most comfortable ways to debug 4tH code.

If you get the dreaded I/O error 4tH is probably unable to locate an include file. You
can use the preprocessor option ”-i” to find out where you went wrong. The preprocessor

19See section 11.22.
20See section 11.23.
21See chapter 19.
22The tokenizer ignores the source layout, which means 4tH is able to read almost any ASCII file, regardless

format. The downside of it all is that 4tH can’t tell you on which line an error occurred - simply because it doesn’t
tokenize or compile on a line-by-line basis.

CHAPTER 11. ADVANCED PROGRAMMING 177

mimics the include sequence and also leaves a 4tH file you can examine. You can force
this behavior with the ”-k” option. You can also place an ’[ABORT]’ directive after the
inclusion of each file to see when the I/O error pops up.

Tokenizer errors can also be produced by improperly formatted strings, like empty strings
or missing delimiters. Highlighting editors like SciTE23 allow you to find most of these
pretty quickly. If not, you have to resort to the ’[ABORT]’ directive again because 4tH
leaves no indication where you went wrong. The easiest way to track compilation errors is
by decompiling the partial compilant. If you want even more information, simply add the
directive ’[NAMES]’ to your code. That will give you a symbolic decompile, e.g.

[names]
: one dup ." This is the address of TWO: " . cr drop ;
: two here one ;
: three 10 0 do [char] * emit loop cr ;
: four tree two tree ;
four

Doesn’t compile. This will tell you where it went wrong:

Addr| Opcode Operand Argument

11| literal 10
12| literal 0
13| do 16
14| literal 42
15| emit 0
16| loop 13
17| cr 0
18| exit 0
19| branch 0 four

It may be a bit hard to read, but you can clearly see it went wrong at the beginning
of ”FOUR”. Yes, ”TREE” is misspelled. If you are unable to locate the error, again
’[ABORT]’ can help you out - but most of the time these drastic measures are not required.

If you suspect that runtime errors may occur in a certain piece of code, you can use as-
sertions24 to detect them. Although a well placed breakpoint25 may help you out, it is
annoying to stop and restart the program with each interation. For that reason a simple
stack dump using ”.S” may be more efficient:

37 37 (TOS) This is the address of TWO: 37
(TOS) **********

”.S” can be found in anstools.4th. Of course, you can always fallback to the ancient
printf() practice. Note that you are still required to keep the stack balanced. If you
don’t you’re even worse off.

11.25 Running 4tH programs from the Unix shell

If you’re using Unix (which we highly recommend), you can run 4tH programs right from
the Unix shell. All you have to do is to add one single line at the top:

23http://www.scintilla.org/SciTE.html
24See section 11.22.
25See section 11.23.

CHAPTER 11. ADVANCED PROGRAMMING 178

#! /usr/lbin/4th cxq
." Hello world!" cr

It indicates the way you normally compile and run a 4tH program, but without the filename,
e.g.:

/usr/lbin/4th cxq hello.4th

In this case, you’re using the classic 4tH compiler, which is located in the /usr/lbin directory.
Note that you can add options if you want. The ’cxq’ options tell the compiler to silently
compile and execute a program.

Note this trick only works with 4tH sources, not compiled programs. You also have to flag
the 4tH source as ’executable’. You can do that by issuing this command:

chmod 555 hello.4th

Now you can simply enter:

hello.4th

at the Unix prompt and your program will be compiled and executed. Don’t worry about
compromising the portability of your program. It will still compile and run happily under
other Operating Systems, since ’#!’ is an alias for ’\’. It only has a special meaning to the
Unix shell.

11.26 Embedding 4tH programs in a batch file

If you’re running a Microsoft Operating System like Windows or DOS26, you can embed
4tH source code in an ordinary batch file27. All you have to do is to make the shell ignore
the 4tH code, e.g.:

@goto exec
." Hello world!" cr
(
:exec
@4th cxq %0.bat %1 %2 %3 %4 %5 %6 %7 %8 %9
@rem)

Now save your file as ”EXAMPLE.BAT” in the current working directory28 and run it:

example

Don’t add the ”.BAT” extension when issuing the command or the whole thing won’t work.
4tH will now automatically pick up the batch file and execute it. Well, how does it work?

It’s simple: the shell silently jumps to the ”EXEC” label and executes 4tH. 4tH will compile
the batch file. It ignores the line that starts with ’@GOTO’, since ’@GOTO’ is an alias
for ’\’. It compiles anything up to the opening parenthesis, since that is the start of a
multiline comment. The shell on its turn ignores the closing parenthesis, since that has
been commented out by ”@REM”.

26DOS version 3.3 or higher.
27This method was taken from CSL, the ”C Scripting Language”. You can learn more about CSL at

”http://csl.sourceforge.net”.
28If you want to store it permanently in another directory, you may have to add additional path information.

Chapter 12

Standard libraries

We’ve included hundreds of libraries in 4tH. We can’t discuss all of them in detail - there’s
just too many. So picked the ones we think are the most useful to you. However, if you run
into a problem, it is wise to browse chapter 25 before you start to design one yourself.

However, if you find yourself writing an additional library consider donating it to this
project. We would be most obliged - and you would be helping fellow 4tH users. If it’s
outside our expertise we’d appreciate a short tutorial on how to use it, of course. We’re not
omniscient - although at times we’d like to believe otherwise ;-)

12.1 Adding your own library

This is a lot easier than you might think! As a matter of fact, almost any program can be
turned into a specialized library. A well-written program contains a lot of definitions and
only one executable word. Take that word away and you’ve got a library!

A library may contain word definitions, variables, constants, almost anything you like. And
a program that includes that library will have all these definitions at its disposal. As a matter
of fact, the resulting program will behave like you entered the contents of the entire library
file at the position of the ’[NEEDS’ directive, e.g. this is an excerpt of constant.4th:

(error) constant NULL

When it is included in this file:

\ This is a sample table using NULL

[needs lib/constant.4th]

create sample
," First entry"
," Second entry"
," Third entry"
NULL ,

It will compile to the same code as this:

\ This is a sample table using NULL

179

CHAPTER 12. STANDARD LIBRARIES 180

(error) constant NULL

create sample
," First entry"
," Second entry"
," Third entry"
NULL ,

So it is not a good idea to make your library files too big, since there will be a lot of
superfluous code included in the compilant which 4tH will not dispose of automatically.

You can nest ’[NEEDS’ directives, so one library file may include other library files. This
helps to prevent duplicate code, which can be a serious maintenance problem. You can nest
them as deep as you want, available memory being the only restriction.

However, when nesting inclusions you always have the problem of multiple inclusions.
Don’t think that all 4tH users know by heart which library files calls which. Multiple
inclusions will lead to errors, unless you take precautions. We have ’[DEFINED]’ and
’[UNDEFINED]’ to prevent that:

[UNDEFINED] 2drop [IF]
: 2drop drop drop ;
: 2dup over over ;
: 2swap rot >r rot r> ;
[THEN]

If you have included this file before, ’2DROP’ is already defined, so in fact all definitions
are skipped when the file is included for the second time. Of course, it will take up some
extra memory, but at least it won’t generate any errors.

You should not automatically resolve library dependencies when the file included:

• Is fairly large1;

• Is required by many other include files2;

• Has lots of (nested) dependencies itself.

In that case you should add a check whether a certain file has been loaded and if not, abort
compilation, e.g.:

[UNDEFINED] F+ [IF] [ABORT] [THEN]

If you want to port your library file, it might be a good idea to hide specific 4tH construc-
tions, e.g.:

[DEFINED] 4TH# [IF] (a n --)
: string! chars + 0 swap c! ;

[ELSE] \ make an ASCIIZ string
: string! swap 1- c! ; (a n --)

[THEN] \ make a counted string

Since ’4TH#’ is a 4tH specific constant, it will not be defined in other Forth compilers. This
way the compiler will automatically select the correct definition. Finally, you may want to
hide all words which you don’t want exposed to the outside program:

1See sections 12.28 and 13.17.
2See sections 12.27 and 12.28.

CHAPTER 12. STANDARD LIBRARIES 181

[DEFINED] 4TH# [IF]
hide buffer
hide /buffer

[THEN]

The reason for that is twofold. First, you don’t want the user of your library to meddle
with the internal code or variables of your library. Second, if you leave all these words in,
you’re cluttering the symboltable, which may lead to compilation errors if the user happens
to choose a name you already used inside your library.

Finally, you sometimes find yourself in a situation where you’re faced with the choice to
either make two library files with slightly different code or resort to conditonal compila-
tion. If you choose the latter the question remains how the user of your library can switch
between both versions. For those situations 4tH offers ’[PRAGMA]’. ’[PRAGMA]’ simply
compiles a constant with a TRUE value. E.g. compare.4th can be compiled in a case
sensitive mode by issuing the casesensitive pragma:

[pragma] casesensitive
[needs lib/compare.4th]

In the library file itself you can treat the pragma just like any other constant:

[UNDEFINED] casesensitive [IF]
dup [char] A - max-n and 26 < if bl or then

[THEN]

Where you place your library files is up to you. You can add them to the library files that
come with 4tH, you can put them in another directory, whatever pleases you.

12.2 Adding templates

When you include a library file you add some words to your program. When you include a
template you add some words to an existing program. That is the major difference between
a library file and a template file. We’ve included a template with 4tH which allows you
to create a conversion program pretty quickly. The template is called "convert.4th” and it
allows you to create a conversion program by defining just three words.

A standard conversion program takes an input file and creates an output file in a different
format. When it can’t open a file it will issue an error message, e.g.

Cant open input.txt

When you don’t supply an input file and an output file, it will issue an error message e.g.:

Usage: myconversion input output

And of course, it will read and process the input file. And that’s all you have to tell 4tH:

• The usage message

• How to read the file

• How to process the file

CHAPTER 12. STANDARD LIBRARIES 182

So, let’s create a program that will convert a block file to a regular text file. How do we do
that? First of all we’ve got to issue a usage message, like:

Usage: blk2txt blockfile textfile

Well, that is easy. If it comes to that we’ve got to abort the program, so this will do:

: Usage abort" Usage: blk2txt blockfile textfile" ;

Then we’ve got to read the file. A block file contains lines of 64 characters, always. So,
we’ve got to create a buffer and read 64 characters. This will do:

64 string buffer
: Read-file buffer 64 accept ;

Finally, we’ve got to write the output file. Adding a ’CR’ after typing the line will do, but
we don’t want any trailing spaces, so we need to strip those trailing spaces:

: Process buffer 64 -trailing type cr ;

Now we need to include the template and we’re done:

[needs lib/convert.4th]

Wow! Do you know how much coding we need to do when we try to do this in C? This
source code takes less than 256 bytes! Compile it and we’re done! So how does it work?
Well, the template expects us to define ”Usage” and ”Process”. If you don’t it will abort
compilation:

\ Has Usage been defined? If not, abort!
[UNDEFINED] Usage [IF]
[ABORT] [THEN]

\ Has Process been defined?
[UNDEFINED] Process [IF]
[ABORT] [THEN]

If you don’t define ”Read-file” the template assumes that ”Process” is completely self-
contained, which means it will only open the files. Finally, you can optionally define
”PreProcess” and ”PostProcess” if you need any special actions at the beginning or the
end:

: ProcessFile \ process the input file line by line
[DEFINED] PreProcess [IF]
PreProcess \ do any preprocessing

[THEN]
[DEFINED] Read-file [IF]
begin Read-file while Process repeat \ read file and process line or buffer

[ELSE]
Process \ self contained processing

[THEN]
[DEFINED] PostProcess [IF]
PostProcess \ do any postprocessing

[THEN]
;

CHAPTER 12. STANDARD LIBRARIES 183

If you don’t define it, it won’t include it. You can use such templates for many different
programs, e.g. this will convert a Unix text file to an MS-DOS text file:

: Usage abort" Usage: udc infile outfile " ;
: Read-file refill ;
: Process 0 parse-word type 13 emit 10 emit ;

You can make them as sophisticated or as simple as you like. You can create other words
as well, as long as those three words have been defined. Templates can be handled like any
other library file. You can place them where you want, they can hold anything you want.
Amaze your colleagues by writing programs in a fraction of the time they should need!

12.3 Parsing the command line

The first thing that comes to mind is, of course, getopts(). 4tH offers a perfect equiv-
alent of this C-function without copying it. The first thing you have to do is to include
it:

include lib/getopts.4th

After that, you have to create a decision table containing the option characters and the
actions that should be executed:

create myoptions
char p , ’ _print , \ associate ’o’ with _print
char q , ’ _quiet , \ associate ’q’ with _quiet
char v , ’ _verbose , \ associate ’v’ with _verbose
char f , ’ _file , \ associate ’f’ with _file
NULL ,

The stack diagram for an ”option word” is very simple: assume nothing is on the data stack
and leave nothing behind. If an option requires an argument, you can retrieve it by issuing
”GET-ARGUMENT”. Note these words have to be defined before the decision table:

256 string myfile \ allocate space for filename

false value (print) \ ’print’ is off
false value (quiet) \ ’quiet’ is off
false value (verbose) \ ’verbose’ is off

: _print true to (print) ; \ enable ’print’
: _quiet true to (quiet); \ enable ’quiet’
: _verbose true to (verbose) ; \ enable ’verbose’
: _file get-argument myfile place ; \ set the filename

”GET-ARGUMENT” leaves an address/count string on the stack, which has to be con-
sumed before returning. Finally, the decision table has to be passed to ”GET-OPTIONS”:

myoptions get-options

When ”GET-OPTIONS” returns, it has also set a value called ”OPTION-INDEX”. This
value is an index to the first non-option command line argument. Note that the 4tH program
itself has an index of 0, so the first ”real” command line argument has index 1. If ”OPTION-
INDEX” equals ’ARGN’, there are no non-option command line arguments.

You can pass ”OPTION-INDEX” to ”ARG-OPEN”, provided you’ve included it, e.g.:

CHAPTER 12. STANDARD LIBRARIES 184

include lib/getopts.4th
include lib/argopen.4th
(options table and option words)

myoptions get-options
option-index dup 2 + argn >
abort" Missing filename"

input over arg-open
output swap 1+ arg-open

You can also use convert.4th to handle all the details for you, but you have to name
your decision table ”OPTIONS” in order to make it work.

12.4 Mixing character and number data

Sometimes you have to mix character and number data, e.g. when you’re porting a Forth
program or when the need complex datastructures arises. Since 4tH gives each datatype its
own segment this is not easy. However, there is a library that can help you. Let’s have a
look at this program:

16 constant /my \ size of array
/my array my \ define array
0 \ set up counter
begin
dup dup \ duplicate counter
cells my + ! \ store counter in array
1+ \ increment counter
dup /my = \ limit reached?

until drop \ drop the counter

my \ set up index
begin
dup @ . cr \ print the value
cell+ \ next element
dup my /my cells + = \ limit reached

until drop \ drop the index

This simple program defines a small array, fills and displays it. Now, this little thing does
the same thing, but is located in the Character Segment:

include lib/ncoding.4th
\ load the library

16 constant /my \ size of array
/my nells string my \ define array
0 \ set up counter
begin
dup dup \ duplicate counter
nells my + n! \ store counter in array
1+ \ increment counter
dup /my = \ limit reached?

until drop \ drop the counter

my \ set up index
begin
dup n@ . cr \ print the value
nell+ \ next element
dup my /my nells + = \ limit reached

until drop \ drop the index

CHAPTER 12. STANDARD LIBRARIES 185

You see that the code is very similar. The ’STRING’ declaration clearly indicates that the
array is allocated in the Character Segment. But as you can see it is not an array of cells,
but an array of nells. ’NELL’ holds the size of a single nell, so we multiply it by the number
of nells we want to get the proper size of the array. After that, it is just replacing the Integer
Segment words with nell equivalents:

NELL CELL
/nell /cell
nells cells
n@ @
n! !

nell+ cell+
nell- cell-

Table 12.1: NELL equivalents

Note that although you can replace every cell with a nell, you do pay a penalty in execution
speed, so use with caution.

12.5 Dynamic memory allocation

If you don’t know what this is, you probably shouldn’t bother. Sometimes you don’t know
how much memory you will actually need, sometimes you know how much you need,
but you won’t need it during the entire execution of the program. In these cases, you can
temporarily allocate a chunk of memory and release it when you no longer need it.

4tH has similar facilities. E.g. if you want to allocate 600 bytes, you simply include
memchar.4th and allocate it:

[needs lib/memchar.4th]
600 allocate

’ALLOCATE’ leaves two items on the stack. The first one is a flag. If it is true, memory
allocation has failed, so we can easily add some error checking to our little program:

[needs lib/memchar.4th]
600 allocate abort" Out of memory"

It it returns false, memory has been allocated. Its address is the second item on the stack.
You can pretty much do what you want with it, but remember that this memory is allocated
in the Character Segment, so if you want to store numbers as well over there, read section
12.4 again. Another solution is to use two heaps, as explained in section 12.6. Anyway,
this is completely valid:

[needs lib/memchar.4th]
600 allocate abort" Out of memory"
s" Hello temporary world!" rot place

Let’s change that one a little bit to prove we’ve actually stored anything:

CHAPTER 12. STANDARD LIBRARIES 186

[needs lib/memchar.4th]
600 allocate abort" Out of memory"
>r s" Hello temporary world!" \ Let’s save the address
r@ place \ Now store the string
r> count type cr \ Let’s print the string

Let’s allocate another 100 bytes and free all memory afterwards:

[needs lib/memchar.4th]
600 allocate
abort" Out of memory" >r \ First allocation
s" Hello temporary world!"
r@ place \ Now store the string
r@ count type cr \ Let’s print the string

100 allocate
abort" Out of memory" >r \ Second allocation
s" I’m a little crammed!"
r@ place \ Store another string
r@ count type cr \ Let’s print the string

r> free
abort" Cannot free memory" \ Now free the first block
r> free
abort" Cannot free memory" \ Now free the second block

Yes, that’s right: you feed ’FREE’ the address that ’ALLOCATE’ returned and it returns a
flag. If it is a true flag, an error occurred; if not, everything is hunky dory. Let’s try to free
it twice:

[needs lib/memchar.4th]
600 allocate
abort" Out of memory" >r \ First allocation
s" Hello temporary world!"
r@ place \ Now store the string
r@ count type cr \ Let’s print the string

r@ free
abort" First attempt" \ Now let’s free the block
r> free
abort" Second attempt" \ And try to free it again..

Yes, now 4tH terminated with the error message ”Second attempt”. You can not free a block
twice..! But you can reallocate it if you happen to change your mind. You can increase or
decrease its size, without losing any data. When the new block is too small to hold all the
data, the data is truncated. Let’s see it in action:

[needs lib/memchar.4th]
50 allocate
abort" Out of memory" >r \ First allocation
s" Hello temporary world!"
r@ place \ Now store the string
r@ count type cr \ Let’s print the string

r> 100 resize
abort" Out of memory" >r \ Now resize the block
r@ count type cr \ Here is your string again

r> free
abort" Cannot free memory" \ Now free it

You’ll see that your precious string is still alright. Apart from a flag, ’RESIZE’ also returns
the address of the reallocated block. If ’RESIZE’ fails, your original data is still alright,
so in some circumstances you might want to save the old address.

CHAPTER 12. STANDARD LIBRARIES 187

12.6 Using two heaps

Due to 4tH’s Harvard architecture3, you cannot mix cells and characters. Of course, you
can use a library to store numeric information4, but sometimes that is not sufficient. For-
tunately, 4tH offers another library that allows you to have two heaps, one for your cells
and one for your strings. Well, your first question probably is: how can I differentiate be-
tween the two? It’s easy: if you combine the two you allocate cells with ”ALLOCATE”,
”FREE”, ”RESIZE”, just as usual. If you want to allocate strings, you use ”CALLOCATE”,
”CFREE” and ”CRESIZE”.

In order to achieve that you have to include the cell library before the string library:

include lib/memcell.4th
include lib/memchar.4th

If you don’t, memchar.4th will default to your usual ”ALLOCATE”, ”FREE” and ”RE-
SIZE” words - so these words are no longer available to memcell.4th. You can also
determine the size of both heaps by setting a constant before including them. The size is in
address units:

2048 constant /heap \ a 2K cell heap
include lib/memcell.4th
8192 constant /heap \ an 8K string heap
include lib/memchar.4th

Note a pragma called forcecellheap is automatically set when you include memcell.4th,
so you can use that one in your programs if you need to.

12.7 Tweaking dynamic memory

4tH provides another dynamic memory library as well, called ansmem.4th. So why two
different implementations? It largely depends on what your program needs. If you require:

• A small implementation;

• Fairly robust;

• A few large allocations or a limited number of allocations of a similar size.

You’ll be well off with ansmem.4th. However, if you require:

• An unknown number of allocations of different sizes;

• A combination of a cell heap and a string heap.

You’ll be better off with memcell.4th and memchar.4th. The latter is a much more
versatile dynamic memory implementation and it should be your first choice when you
decide which implementation to use. However, ansmem.4th provides several means to
tweak it according to your needs.

You might find that it doesn’t reserve much memory for dynamic allocation. Dynamic
memory is allocated on the heap, which is 16 kB. You can increase it, but first you have
to know how this implementation works. You can determine how much memory has been
allocated by using the word ”ALLOCATED”:

3http://en.wikipedia.org/wiki/Harvard_architecture
4See section 12.4.

CHAPTER 12. STANDARD LIBRARIES 188

[needs lib/ansmem.4th]
50 allocate
abort" Out of memory" >r \ First allocation

r@ . ." allocates "
r@ allocated . ." bytes." cr

r> free
abort" Cannot free memory" \ Now free it

And it will print something like:

768 allocates 64 bytes.

64 bytes? I thought we allocated 50 bytes! Let’s try another one:

[needs lib/ansmem.4th]
500 allocate
abort" Out of memory" >r \ First allocation

r@ . ." allocates "
r@ allocated . ." bytes." cr

r> free
abort" Cannot free memory" \ Now free it

This time it prints something like:

768 allocates 512 bytes.

As a matter of fact, ”ALLOCATED” will always return multiples of 32 bytes. That is a
consequence of how ansmem.4th handles dynamic memory. It divides dynamic memory
into paragraphs. When you allocate memory, it allocates as much paragraphs as it needs to
provide you with the memory you requested. Then these paragraphs are marked as ’taken’.
This marking is done in the Heap Allocation Table, which is located in the Integer Segment.
Every paragraph is represented by a cell in the HAT.

You can fine-tune this mechanism by defining some constants before including ansmem.4th.
This will create a heap with 512 paragraphs of 256 bytes, which is 128 kB:

512 constant #paragraph \ 512 paragraphs
256 constant /paragraph \ each paragraph is 256 bytes
[needs lib/ansmem.4th]
500 allocate
abort" Out of memory" >r \ First allocation

r@ . ." allocates "
r@ allocated . ." bytes." cr

r> free
abort" Cannot free memory" \ Now free it

Try to keep the number of paragraphs low. 1024 seems like a nice upper limit. If you need
that much memory, it is much better to handle it in larger chunks. This avoids fragmentation
and keeps the time to search the HAT within acceptable limits.

If you’re using dynamic memory to manage e.g. linked lists, you can force ansmem.4th
to create a heap of cells by defining the pragma forcecellheap - which we encountered
briefly in the previous section - before you include ansmem.4th. You can use the node
structure definition to make it match a single paragraph, e.g.:

CHAPTER 12. STANDARD LIBRARIES 189

[pragma] forcecellheap \ force a CELL heap

struct \ define the node
field: kind
field: o1
field: o2
field: o3
field: val

end-struct /paragraph \ name it "/paragraph"

include lib/ansmem.4th \ leave the library to it

You can now be assured that the size of a paragraph equals a single node. Neat, huh?

12.8 Garbage collection

4tH features a simple form of garbage collection. The only thing between ”real” garbage
collection and this implementation is that you remain in control at all times. First you have
to decide what kind of datatype you want to put under control of the garbage collector by
defining a pragma. This will enable cell garbage collection:

[pragma] forcecellgc
include lib/gc.4th

If you don’t define this pragma, garbage collection will default to characters. Since the
garbage collector uses the same libraries we discussed in section 12.6, you can size them
with ”/HEAP”. Next, you have to start garbage collection:

start-gc

It’s time to start a ”scope”:

start-scope >r

This will return a single cell scope token which is used to keep track of when to do garbage
collection. Now the fun starts: allocate and resize away all you like, but instead of using
the usual allocation words, you use these:

50 gc-alloc >r
s" Hello temporary world!"
r@ place \ Now store the string
r@ count type cr \ Let’s print the string

r> 100 gc-resize
count type cr \ Here is your string again

Wow, did you see that?! We lost a pointer in the last line! Well, that isn’t too bad in this
case - we’re using a garbage collector after all. Note you may open up new scopes if you
like, but you have to close them in the right order, so you may want to use the data stack to
keep track of your scope tokens, like we did.

Closing a scope is easy. Just pass the scope token to ”END-SCOPE” and all memory you
allocated since the last ”START-SCOPE” will be automatically freed:

r> end-scope

CHAPTER 12. STANDARD LIBRARIES 190

When you’ve ended a scope, the garbage collection will automatically revert to the previous
scope, so any allocation you do after closing a scope will be handled by the previous scope.
Finally, when you’re done you can shutdown the entire garbage collector by issuing:

end-gc

This will free up all garbage collection support structures, which are also dynamically
allocated. Famous last words: do not free or resize memory allocated with ”GC- ALLOC”
or ”GC-RESIZE” with the standard words ”FREE” or ”RESIZE”. Ignore this warning at
your own peril.

12.9 Dynamic strings

Dynamic strings are a special form of dynamic memory management. Sometimes it’s hard
to estimate how long a string has to be for a particular situation, so you have to statically
size it in order to prevent clobbering - and pray it doesn’t overflow. That probably means
you’ll either oversize it (and waste a lot of space) or accidentally undersize it, causing some
hard to trace bugs.

Dynamic strings will resize automatically, provided of course that you use the proper meth-
ods to manipulate them. There is often some form of garbage collection associated with
dynamic strings.

This one works differently. Once created it will grow or shrink automatically. At their
creation a dummy string is associated with ’em. If you reassign a dynamic string (or append
to it) some new space is created and the contents are transparently transferred to them. The
previously associated memory is not freed until the reassignment is complete, so you can
even use the original string stored there for building a new one.

There are three main ”methods”:

1. DS.COUNT is the equivalent of COUNT;

2. DS.PLACE is the equivalent of PLACE;

3. DS+PLACE is the equivalent of +PLACE.

A dynamic string is simply a variable which acts as a pointer to the allocated memory, but
for these methods you can treat it as if it were an string address, e.g.

variable my$ latest ds.init \ create a dstring
\ and use it as if

s" Hello world" my$ ds.place \ it were a string
my$ ds.count my$ ds+place
my$ ds.count 6 /string my$ ds.place

At the end of your program you can free a dynamic string by issuing:

my$ ds.free

Note you can make as many dynamic strings as you like. Of course, if you have a lot of
dynamic strings this manual allocation and deallocation gets tiresome. In that case you can
also allocate a block of contiguous memory, e.g.

CHAPTER 12. STANDARD LIBRARIES 191

struct
field: a
field: b
field: c
field: d

end-struct /$ \ define a structure
\ strings are fields

/$ array $ latest /$ ds.build \ define an array
\ and initialize it

s" Hello world" $ a ds.place \ use the array name
s" This is the end" $ b ds.place
$ a ds.count $ b ds+place \ as a "prefix"

The difference is that you can free all these dynamic strings in one go:

ds.destroy

There are two different libraries which offer this functionality, dstring.4th and dstringt.4th,
but I advise you to use the latter one - it is faster and uses less memory.

12.10 Dynamic arrays

I remember that when Java was launched people gasped that arrays were automatically
sized. If you accessed the 100th element it would simply ”appear” out of a clear blue sky.
Well, in 4tH we have the same thing. Even better - we have several flavors, so you can
select which one fits your needs best.

12.10.1 Random access

First, we include the header:

include lib/varray.4th

Next, define a variable - and turn it into a dynamic array:

variable myarray
myarray 1024 +varray

You may wonder what the number ”1024” is doing there, but in order to prevent you from
allocating gigabytes of memory by accident, you have to declare the maximum number of
elements you want to allocate. You can enter a ridiculous large number if you really want
to. If you exceed this number later on, an exception will be raised.

And that’s it. Try storing and fetching a few values:

123 0 myarray v!
456 64 myarray v!

0 myarray v@ .
64 myarray v@ . cr

So we’re storing ”123” in the 0th element and ”456” in the 64th element - and then retrieve
the values. Big deal. So what’s the catch? Well, you got the 0th element for free when you
created the array. The 64th element was created when you stored a value there. BTW, it

CHAPTER 12. STANDARD LIBRARIES 192

did also automatically create all elements between the 0th and the 64th one. Try storing a
value at the 65th element - and it will be resized again.

Also, the bounds of the array are checked every time to try to access an element. Issue an
invalid subscript and it will throw an exception. It’s like programming with training wheels!
Of course, all this luxury has a price. If you’re looking for raw speed, you obviously don’t
want to be looking here.

And before you leave: don’t forget to free up all that memory:

myarray -varray

Now that’s much better!

12.10.2 Sequential access

First, we include the header:

include lib/darray.4th

Next, define a variable - and turn it into a dynamic array:

variable myarray
myarray +darray

Contrary to the ”varrays”, you can’t store anything yet. Trying to do so will simply throw
an error. In order to access the dynamic array, you have to expand it by issuing:

myarray d.cell+

And yes, now you can access that 0th element:

125 0 myarray d.!

And if you want that 1st element - sorry, you will have to repeat that procedure:

myarray d.cell+ \ allocate next element
15 1 myarray d.! \ store a value there
1 myarray d.@ \ retrieve that value

However, at a certain point, you will have exhausted all variables. In that case, the size of
your dynamic array will automatically and transparently be doubled. You won’t notice a
thing - I promise you.

You can also reverse that operation by issuing:

myarray d.cell- \ free last element

In that case, the very last element will be discarded and - if possible - the size of your array
will be halved. You can reclaim that element again if you want, but most probably the
value of that element will be gone. You can get the current size of the array (in number of
elements allocated) by issuing:

CHAPTER 12. STANDARD LIBRARIES 193

myarray d.len . cr

Finally, don’t forget to free up all that memory:

myarray -darray

Needless to say - if you have to fill up an array sequentially, but don’t know what its final
size will be, this library is for you. But you cannot just randomly add a bunch of elements
like the ”varray”. On the other hand ”varray” doesn’t allow you to shrink the dynamic
array, while this one does.

12.11 Application stacks

Did you ever feel like a second return stack would be nice? Well, you can. As a matter of
fact you can have several dedicated stacks. It’s quite easy to use:

[needs lib/stack.4th]

16 array mystack \ allocate some space
mystack stack \ convert it into a stack

234 mystack >a \ push 234 on the stack
456 mystack >a \ push 456 on the stack
mystack a@ . cr \ examine top of stack
mystack a> \ pop 456 from the stack
mystack a> \ pop 234 from the stack
. . cr \ show the values

Note there is a floating point5 version as well, called fstack.4th. It works in a similar
way. Wouldn’t it be nice to have a string stack too? Yes, 4tH provides that one too! It
works the same way:

[needs lib/stsstack.4th]

1024 constant /mystack
string mystack \ allocate some space
mystack /mystack string-stack \ convert it to a string stack

s" Hello" mystack >s \ push string ’Hello’ on stack
s" World" mystack >s \ push string ’World’ on stack
mystack s@ type cr \ examine top of stack
mystack s> \ pop ’World’ from the stack
mystack s> \ pop ’Hello’ from the stack
type cr type cr \ show the values

But if you only need a single stack - but one you can monitor - there is another library
member:

2048 constant /cstack
[needs lib/stmstack.4th]

s.clear \ clear the string stack

s" Hello" >s \ push string ’Hello’ on stack
s" World" >s \ push string ’World’ on stack

5See sections 12.28 and 12.27.

CHAPTER 12. STANDARD LIBRARIES 194

s@ type cr \ examine top of stack
s> \ pop ’World’ from the stack
s> \ pop ’Hello’ from the stack
type cr type cr \ show the values
s.error CSE.NOERRS = . cr \ show the exit status

You can set the size of the string stack by defining ”/CSTACK” before including it. ”S.CLEAR”
clears the stack and resets ”S.ERROR”. ”S.ERROR” is simply a value you can query or set
according to your needs. If you cause an underflow or an overflow, the integrity of the stack
is maintained.

Note there is a catch: when you’ve popped a string from the string stack, the string itself is
untouched, so the address-count pair is still valid. However, if you push another string onto
the same stack, the popped string is clobbered - so a kind of ’SWAP’ is out of the question.
There is another way to create one (or more) string stack without these disadvantages,
called strstack.4th, but it is larger and slower. It works the same way as the first
library member we presented.

12.12 Local variables

I have to admit something: I really don’t like local variables. They offer a kind of ”random
access” that goes totally against everything the stack-based Forth language stands for. And
they don’t come for free - you pay a performance penalty for setting them up and setting
them free. That’s why 4tH doesn’t offer any native support.

However, sometimes you just don’t want to rewrite a routine, but just use it. And then
it’s handy when some support is there. So here we are. Let’s start with an example from
gForth:

: my.max { n1 n2 -- n3 }
n1 n2 > if
n1

else
n2

endif ;

So, what’s happening here? First you see something that resembles a stack diagram - which
it isn’t: it’s executable code. Note it uses accolades, not parentheses. Now, what does it do?
It assigns the top of the stack to ”n2” and the second on stack to ”n1”. That’s pretty neat,
because if it wouldn’t you’d have to read the whole thing backwards - this really follows
the stack diagram. Everything after ”–” is comment, though.

When the first accolade is executed it builds a frame of local variables, so yes, it also works
with recursion. The rest you can read as if this were executed:

0 value n1 \ define a value n1
0 value n2 \ define a value n2

: my.max (n1 n2 -- n3) \ no accolades here
to n2 to n1 \ assign TOS to n2
n1 n2 > if \ assign 2OS to n1
n1 \ compare them

else \ and then select
n2 \ either n1 or n2

then ;

CHAPTER 12. STANDARD LIBRARIES 195

We already told you that a local frame has to be released - and it doesn’t. So what’s
happening here? Well, gForth modified the execution semantics of ’;’, so it secretly checks
whether locals were used and released them if they did. Every locals scheme I’ve seen
does it. In 4tH, you can’t do that, because the compiler won’t let you. The consequence is,
you’ll have to do it yourself. Now let’s make a 4tH version out of this:

include lib/locals.4th

: my.max (n1:A n2:B -- n)
2 locals
:A @ :B @ > if
:A

else
:B

then @
end-locals ;

This does the very same thing. First, there are no accolades. Second, you only define there
are two locals - and that’s it. 4tH locals always bear the same name. You can’t choose
them. Third, they are variables, not values. Fourth, you are the master of the frame - not
the compiler.

When you issue ”LOCALS”, it takes a value from the stack and allocates a locals frame
of that size (in this case a frame of 2 local variables). Then it takes that same number of
values from the stack and places them into the frame. So let’s call it:

1 10 my.max . cr

It works just like the gForth version, so ”1” ends up in ”:A” and ”10” ends up in ”:B”
(hint: that’s also what the stack diagram tells you). The rest is pretty much like the gForth
version - except that ”:A” and ”:B” are variables of course. And what if you need more
local variables? Well, you can go up to eight, from ”:A” to ”:H”.

Finally, we reach the end of our word and there it is, the word that releases the frame,
”END-LOCALS”. If you fail to use it, the local variables stay in scope, so they remain valid
in the caller - and believe me: that’s not what you want. If you leave a word prematurely
by using ’EXIT’, you’ll have to terminate the scope manually as well, so instead of e.g.:

if exit then

You’ll have to write:

if end-locals exit then

Don’t forget! This way you can do almost anything other local variable schemes can do,
e.g. take this one, also from gForth:

: strcmp { addr1 u1 addr2 u2 -- n }
addr1 addr2
u1 u2 min 0
?do { s1 s2 }
s1 c@ s2 c@ -
?dup-if
unloop exit

then
s1 char+ s2 char+

loop
2drop
u1 u2 - ;

CHAPTER 12. STANDARD LIBRARIES 196

This one introduces a new scope within a ?DO..LOOP. So how do we tackle this one?
Well, like this:

: strcmp (a1:A n1:B a2:C n2:D -- n)
4 locals
:A @ :C @
:B @ :D @ min 0
?do
2 locals
:A @ c@ :B @ c@ - dup
if \ we don’t have ?DUP
end-locals \ discard LOOP locals
unloop \ discard LOOP parameters
end-locals \ discard strcmp locals
exit \ exit the routine

else \ we don’t have ?DUP
drop \ so we have to drop it

then
:A @ char+ :B @ char+

end-locals \ free LOOP locals
loop
2drop
:B @ :D @ -

end-locals ;

True, it’s much more ”wordy”, but it does the same thing word for word. It’s just not that
sneaky. First both strings (in ANS Forth fashion) are assigned to locals variables. Since
both strings need two values on the stack, we need 4 local variables. The top of the stack
(the count of the second string) is put into ”:A”, the address of the second string ends up in
”:B”, the count of the first string ends up in ”:C” and finally the address of the first string
ends up in ”:D”. No surprises here.

You may also follow how they are used. The length of the smallest string is the loop
parameter of the ?DO..LOOP. After that follow the addresses of both strings. When the
?DO..LOOP is entered, a new stack frame is created for these addresses. Consequently,
when the loop is terminated, the scope has to be terminated as well. That’s why you find
an ”END-LOCALS” just before ’LOOP’. Of course, gForth does this automatically.

And here is the catch: in the middle of the loop we leave the word entirely and return to the
caller. At that moment we not only have to deal with the scope of the word, but the scope
of the loop as well. So first we release the locals frame of the loop (just before ’UNLOOP’)
and then the locals frame of the word (just before ’EXIT’). Like I said, gForth does this as
well - you just don’t see it.

There is just one more catch: locals are not taken into consideration when you use ’CATCH’6.
The fix is easy, though. There is a word called ”LFRAME”, which is a pointer to the current
locals frame. So if you want to preserve the sanity of your locals subsystem, you simply
do this:

lframe >r catch r> over \ duplicate CATCH value
if to lframe else drop then \ CATCH value still on stack

What this does is save the address of your locals frame on the return stack (where it is
supposed to be save) and restore it after an exception has been caught. If there was no
exception at all we can simply discard it. You can even wrap the whole thing in a definition
if you want - and be done with it.

It is the most ”userfriendly” locals scheme? Probably not, but it is just as versatile and a real
life saver if you need it. And - believe it or not - completely portable to gForth and other

6See section 11.5.

CHAPTER 12. STANDARD LIBRARIES 197

Forth compilers. Note that there is a floating point7 version as well, called flocals.4th.
It works in a similar way.

Another way of handling locals is temporarily converting global variables to local vari-
ables. The advantage is that you can turn these rather anonymous names into something
meaningful. It also requires very little memory, since it uses the return stack. Disadvantage
is that variables are not automatically initialized nor are they initialized in the ”proper”
order. E.g. we could define our ’MAX’ example like this:

include lib/glocal.4th

variable a
variable b

: my.max (n1:A n2:B -- n)
b local{ b !
a local{ a !
a @ b @ > if a else b then @

}global
}global

[force] ;

At the end you’ll notice another disadvantage: because it messes with the return stack, it
cannot be optimized, so we have to force the final ’;’. That’s not too bad if you’re aware of
this, but if you don’t - you’ll be doing a lot of fruitless debugging.

To turn a named variable into a local, you’ll have to issue ”LOCAL{”, preceded by the
variable itself. After that, you can assign any value you want to it. It doesn’t interfere with
the stack, so what was there is still there (in this case TOS). If you don’t assign a value
yourself, it retains whatever value was stored there.

To restore the original value, you have to terminate its use by issuing ”}GLOBAL”. This
works just like a stack. The first ”}GLOBAL” restores the innermost variable - which is
”A”. The second ”}GLOBAL” restores the outermost variable, which is ”B”. It’s also safe
to use the return stack between ”LOCAL{” and ”}GLOBAL” - as long as you do your
cleanup. So, let’s see how this works:

20 a ! 30 b !

This initializes the global value of both variables - just like any other variable.

15 25 my.max . cr

We pass some values to ”MY.MAX” - that’s when ”A” and ”B” serve as local variables -
and hence their global values will be overwritten. However, if we retrieve their values after
execution, we’ll see nothing has happened:

a ? b ? cr

As ”A” still holds ”20” and ”B” still holds ”30”. Despite the drawbacks, it’s a viable
option if you’re willing to do the work, since the library is just a dozen words or so - and
consequently pretty quick.

On the other hand, it’s also not a very good choice for algorithms that depend heavily on
recursion. The locals.4th library comes with its own stack - which can be expanded
by defining ”/LOCAL”, e.g.

1024 constant /local
include lib/locals.4th

While glocal.4th is bound by the size of the native stack.
7See sections 12.28 and 12.27.

CHAPTER 12. STANDARD LIBRARIES 198

12.13 Random numbers

If you want to program a game or a simulation, you’ll probably need random number
generation. Of course, you can do that too with 4tH. Just include the proper file:

include lib/random.4th

And initialize it:

randomize

It generates a number between 0 and ”MAX-RAND”, but we’ll teach you how to generate
a number for virtually any range below that.

There are two things important when you want to do that: the range limit and the lower
limit. Say, we want to simulate a dice with numbers in a range from 1 to 6. The lower limit
is 1. We subtract that from the upper limit to get the range limit.

So: upper limit minus lower limit gives a range limit of five (6 - 1 = 5). The general formula
looks like this:

<range-limit> 1+ random * max-rand 1+ / <lower limit> +

When we apply this to the dice-example, the complete formula is:

5 1+ random * max-rand 1+ / 1 +

This will give you a dice-simulation, that produces random numbers between 1 and 6. If
you don’t like to write this code yourself, you can always include choose.4th. After
including that you can simply get a predetermined range of number by simply writing:

include lib/choose.4th
6 choose 1+

Which is in fact your perfect dice simulation, because it returns a number between 1 and 6.
”CHOOSE” in itself provides a number between 0 and 5 in this example.

Sometimes you want the randomizer to provide a preset range of numbers. There is an
variable called ”SEED” which determines what range of numbers is provided. ”RAN-
DOMIZE” initializes it with the setting of the internal clock, which is the same value that
’TIME’ returns. Yes, that means that if you call ”RANDOMIZE” twice within a second,
the randomizer will return the same range of numbers. Presetting the randomizer is pretty
trivial:

1234567890 seed !

Finally, under the hood it is not a single randomizer, but two! Default a modified8 BSD
algorithm is used, but you can also default to the standard Microsoft algorithm by defining
the appropriate pragma:

[pragma] MS-random
include choose.4th

8The standard BSD algorithm is notoriously flawed, especially the lower bytes of the returned random number.

CHAPTER 12. STANDARD LIBRARIES 199

You can also select the required version by calling it by name:

MSRandom . BSDRandom . cr

Are these randomizers very good? No, as a matter of fact, they are not. They are sufficient
to power your occasional game, but for more serious applications they simply fall short.
That’s why 4tH also provides some very heavy duty randomizers, designed by randomizing
expert George Marsaglia9. The first is gmkiss.4th10. Note that although it provides
a similar interface as random.4th, it is not a drop-in replacement, most significantly
because it can return the full range of a cell value, including negative numbers. Another
difference is that it takes four cell size values to initialize:

1234567890 987654321 12893467 1029384756 seed4!

As a matter of fact, it is built out of three different randomizers, which feed a fourth one.
You can call each and every one of these randomizers and set their registers individually
(see table 12.2).

RANDOMIZER REGISTERS TYPE

CONG x congruential
SHR3 y 3-shift shift register
MWC z, w multiply with carry

Table 12.2: gmkiss randomizers and their registers

All those randomizers combined results in the KISS random number generator, which is
the randomizer that ”RANDOM” calls11.

If that still isn’t enough we got even a better one, gmskiss.4th, which is arguably one
of the best randomizers in the world. This one uses a large amount of memory, so don’t use
it for trivial tasks. It can return the full range of a cell value (including negative numbers)
and takes three cell size values to initialize:

include lib/gmskiss.4th
987654321 12893467 1029384756 seed3!
." Random number: " kiss . cr

If you don’t want to set the seed yourself, you can always call ”RANDOMIZE” instead.
This ”super KISS” implementation differs from the previous one because the ”multiply
with carry” generator has now superlong periods (54767∗21337279).

But hold, that is not everything. There are a ton of different randomizers in 4tH. Table 12.3
gives you an overview. Some of them comply by the standard API12, some of them are so
specialized that they don’t. So whatever your needs are, there is always a randomizer that
fits them.

9http://en.wikipedia.org/wiki/George_Marsaglia
10This one is available in a full 64-bit version.
11Unless you’ve included random.4th as well.
12They provide random, randomize and MAX-RAND.

CHAPTER 12. STANDARD LIBRARIES 200

12.14 Sorting

Yes, 4tH can do that too. You just have to include qsort.4th (a ”quick sort” implemen-
tation) to make it all possible. It works pretty much like the sort routines you’ve seen in
C, which means you have to devise a word to compare two values. Note that qsort.4th
can only sort cell arrays. Setting it up is pretty simple. First you have to include it:

include lib/qsort.4th
include lib/random.4th

Then you have to create a word that returns a true flag when the second value on the stack
is smaller than the top of the stack. In this example we will just compare two integers, so
that is pretty easy:

: MyPrecedes < ;

qsort.4th creates a deferred word13 called ”PRECEDES”. Now we have to assign our
word to ”PRECEDES”, so that it is executed when ”PRECEDES” is called:

’ MyPrecedes is Precedes

That’s it! We’re ready to rock ’n roll now. Let’s set up a simple testing environment:

10 constant #elements
#elements array elements

randomize

: InitElements #elements 0 do random elements i th ! loop ;
: ShowElements #elements 0 do elements i th @ . loop cr ;

This creates an array of ten elements, which is filled with random values by ”InitElements”.
”ShowElements” will show on screen what is stored there. The actual sort is straightfor-
ward: tell ”SORT” which array and how many elements there are to sort and you’re done:

: SortElements elements #elements sort ;

Now let’s put it all together:

InitElements
ShowElements
SortElements
ShowElements

It will initialize the array, show its contents, sort it and show it again. It will output some-
thing like this:

12717 6028 1389 31870 14234 15884 31062 14788 18186 149
149 1389 6028 12717 14234 14788 15884 18186 31062 31870

And what if these were string addresses? Well, ”SORT” would have sorted them too, from
the lowest addresses up to the highest addresses, but that’s probably not what you meant.
You wanted to sort the actual strings, not just their addresses. Can 4tH do that too? Sure,
you just got to create another ”PRECEDES” word. Something like this:

13See section 11.7.

CHAPTER 12. STANDARD LIBRARIES 201

: SPrecedes >R COUNT R> COUNT COMPARE 0< ;

This will take the two values and treat them as strings. Now the strings are sorted, not just
the addresses. Note that the strings themselves will not move in memory. The pointers
move, the strings themselves don’t. This is a so-called ”address based sort”.

The 4tH library contains several sorting algorithms. There are two families: ”index based”
and ”address based”. The first family can sort any array14, the second one only cell arrays,
because fetching and exchanging is done within the library member itself.

Another difference is that the ”index based” family allows you to combine several differ-
ent sorting algorithms within the same program, but also requires you to define your own
element exchange word. You can also combine one member of the ”address based” fam-
ily with the ”index based” family, as long as you handle your ”PRECEDES” definitions
properly since they are not compatible.

Apart from their ”family” characteristics each and every algorithm has its own strengths
and weaknesses. E.g. ”odd-even mergesort” can only sort ”power-of-two” sized arrays,
”cycle sort” writes every element only once, ”radixsort” can only sort unsigned numbers -
and under some circumstances ”quick sort” can have a horrible performance.

Tables 12.4 and 12.5 provide an overview of the sorting routines available. The factor
”Speed” gives you an indication of how fast they are. 1.0 is the reference speed, higher
numbers are (approximately) proportionally slower15. The same for the ”Size” factor -
higher numbers are proportionally bigger. All these algorithms sort ”in place” - which
means they don’t need any additional space16.

Which one is optimal for your specific problem depends on a lot of things, e.g. the state and
condition of the data (like partially sorted sequences, duplicates, stability17) are important
factors in choosing the right sorting algorithm. There more than adequate resources for you
on the web to find out, but here are a few ”rules of the thumb”:

• If you have only a few records to sort, take Simple sort (improved) or Selection sort;

• If you have a significant number of records, need a reasonable, consistent perfor-
mance and a compact routine, take Circle sort;

• If you have a significant number of records and need a good performance, take Shell
sort or Comb sort;

• If you have a large number of records and absolutely need the fastest performance,
take Quick sort or Intro sort;

• If you have a large number of records and need a very consistent, good performance,
take Intro sort or Heap sort.

If you’re still unsure and neither size nor speed is a major issue, you can’t go wrong with
Heap sort. It’s a very reliable performer.

14Since it works with indexes, not addresses. Consequently, it is a bit slower in general.
15For a 100,000 element cell array
16Although some do use additional stack space. But in general, that is of no concern.
17Which means they respect the original order of the elements. It doesn’t mean they aren’t reliable.

CHAPTER 12. STANDARD LIBRARIES 202

12.15 Bitfields

Bitfields are always a bit of a controversial subject, since many complain that they are not
portable or simply not worth the effort. Anyway, there is a library included if you should
ever need them. In its most basic form they are quite simple: you provide the number and
a certain number of bits are extracted from a certain position:

include lib/bitfield.4th \ include the library

[binary] 00011000 [decimal] \ put a number on the stack
3 2 bn@ . \ start at bit 3, 2 bits long

This will return ”3” - or ”11” binary, if you prefer. Counting starts at the rightmost bit
(which is bit 0) so this expression returns bits 3 and 4. Saving it is very easy as well, just
add a new value:

include lib/bitfield.4th \ include the library
\ store ”2” into bit 3 and 4

2 [binary] 00011000 [decimal] 3 2 bn!

Of course, you can also store a pattern into a string or cell variable:

include lib/bitfield.4th \ include the library

variable myvar \ define a variable

0 myvar ! \ initialize it
3 myvar 3 2 b! \ store ”3” into bit 3 and 4
myvar 3 2 b@ . cr \ print the bitfield

Its character counterparts are named ”BC@” and ”BC!”, which may not be all that surpris-
ing.

Some may argue that these are not true bitfields, because you always have to provide the
starting bit and the number of bits. With a bit of effort though we can make these bitfields
behave like the real thing. First, include constant.4th in addition to the bitfield library:

include lib/bitfield.4th \ include the library
include lib/constant.4th \ include "cell-bits"

Let’s define the fields in the usual ”starting bit, length in bits” form and add the expression
”CELL-BITS * +”. After that, turn the whole thing into a constant. Just make sure the
bitfields don’t overlap:

0 3 cell-bits * + constant ink does> cell-bits /mod ;
3 3 cell-bits * + constant paper does> cell-bits /mod ;
6 1 cell-bits * + constant bright does> cell-bits /mod ;
7 1 cell-bits * + constant flash does> cell-bits /mod ;

This will scale the bitfield ”length” parameter in such a way, that it stays arithmetically sep-
arated from the ”starting bit” parameter. Finally, wrap it into a simple ’DOES>’ definition.
This will split the constant into the two components again when it’s used. Now let’s use it
in a real world example:

CHAPTER 12. STANDARD LIBRARIES 203

0 enum black enum blue \ enumerate all colors
enum red enum magenta
enum green enum cyan
enum yellow constant white

24 constant /lines \ length of the display
32 constant /rows \ width of the display

\ allocate display buffer
/lines /rows * buffer: attributes
does> swap rot /rows * + chars + ;

\ make it a two dim. array
white 5 6 attributes -> ink bc!
red 5 6 attributes -> paper bc!
true 5 6 attributes -> bright bc!
false 5 6 attributes -> flash bc!

\ set colors at line 5, row 6

This program will set the colors in the display buffer of a Sinclair ZX Spectrum. As you
can see for yourself, the bitfields behave as you would expect. Only defining them is a little
clumsier - nothing a preprocessor can’t fix.

12.16 Bit arrays

A bit array (also known as a bitmap, a bitset, or a bitstring) is an array data structure that
compactly stores individual bits (boolean values). Setting it up is a bit awkward, but using
it is very simple. First we have to include the libary:

include lib/bitarray.4th

Then we have to set up the bit array itself. The minimal size of a bit array is one cell. The
total size of a bit array has to be a multiple of cells. Although you can use cells to size the
array, the most portable way is to use bits (128 in this example, to be exact):

128 cell-bits / array mybits

Then we have to declare the execution semantics. Note from that moment on, the array is
no longer accessable as a cell array. So if you want to initialize the array, the easiest way is
to do it before that, otherwise you’ll have to do it bit by bit:

:redo mybits bit-array ;

Or even shorter:

128 cell-bits / array mybits does> bit-array ;

Believe it or not, but that was the hardest part! Manipulating a bit array is dead easy. Bits
are numbered zero and up. To set a bit simply issue:

0 mybits bit-on

Resetting or toggling a bit is no rocket science either:

34 mybits bit-off
63 mybits bit-toggle

CHAPTER 12. STANDARD LIBRARIES 204

Of course, you can query the status of a bit. If the bit is set it returns true, otherwise false:

34 mybits bit?

Because of their compactness, bit arrays have a number of applications in areas where
space or efficiency is at a premium. Most commonly, they are used to represent a simple
group of boolean flags or an ordered sequence of boolean values. However, bit arrays can
also be used for the allocation of memory pages, inodes, disk sectors, etc. In such cases,
the term ”bitmap” may be used18.

12.17 Associative arrays (using hash tables)

Associative arrays have been made popular by languages such as Python and PHP. In gen-
eral they are not very efficient, but make it easy to associate keys with their respective
values. 4tH does not have native support for them, but if you want them, they are there.

The first one is small, but limited. First you need to include hash.4th, because this
implementation uses hash tables:

include lib/hash.4th

Second, you allocate an integer array in which you want to store the keys and initialize it:

16 constant /myhash
/myhash array myhash
myhash /myhash hashtable

Third, you need to select the hashing algorithm you want to use. ”SDBM” is a decent one,
but you can use another one if you want or even write your own:

’ sdbm is hash

Now we’re ready to rock ’n roll! Before we save a value, it is wise to see if its key is free:

s" beta" myhash get?

”GET?” returns two values. First a flag. If it is non-zero, the key is free. The second one
is the value associated with the key. When you’re testing (like now) it is useless, so we can
drop it:

0= abort" Key taken!" drop

Now we can do some business:

512 s" beta" myhash put

And if we want to retrieve the value we simply write:

s" beta" myhash get . cr

18Not to be confused with raster images, which is something entirely different.

CHAPTER 12. STANDARD LIBRARIES 205

Well, it’s small, simple and painless, but there is one little catch. What will you do when
a collision19 occurs? Well, frankly that’s up to you. The program does not define any
alternative action. You could try to increase the size of the hash table - but not while the
program is still running of course. You could also define an alternative hash table, but does
that really make life easier?

At least you’ve learned two lessons:

1. Hash tables are not very memory efficient;

2. Hash tables need to take alternative action when a collision occurs.

Of course, there is a version which addresses the latter problem - and uses even more
memory. In order to resolve a collision, memory is divided into buckets. A ”bucket” is
a certain number of associated memory locations where the values of keys with the same
hashes are stored. E.g. of you make buckets of eight, you can survive seven collisions
before the program gives up. Buckets are four entries deep by default, but you can override
that:

3 constant /bucket
include lib/hashbuck.4th

Now we have to allocate the hash table. The best strategy is to provide space for many keys
with small buckets. In this example we provide space for fifteen keys:

include lib/hash.4th
15 /bucket 2 * * 1+ constant /myhash
/myhash array myhash

Note that every entry in a bucket takes two cells and one extra cell is needed for the hash
table itself. In this example, we have room for fifteen keys, each having buckets of three
entries, each entry taking two cells - and one cell overhead. The rest looks familiar:

myhash /myhash hashtable
’ sdbm is hash
512 s" beta" myhash put
s" beta" myhash get . cr

Note we don’t have to test the key ourselves, the program itself transparently handles any
collisions. And what when we are out of buckets? Well, the program will issue an error
message and quit. If you want to see for yourself if a bucket was full, you need to use
”PUT? which returns a non-zero flag if a bucket was full:

512 s" beta" myhash put? abort" I want to issue my own!"

Finally, there is a version that has none of these drawbacks. It is more memory efficient and
you don’t have to worry about collisions or buckets. But as always, there is a price to pay:
it is slower, since it looks up the keys with a binary search. The overhead is negligible, just
two cells. So this:

include lib/hashkey.4th
include lib/hash.4th

32 constant /myhash
/myhash array myhash

19A ”collision” means a key is already taken.

CHAPTER 12. STANDARD LIBRARIES 206

Will get you 15 solid key and associated value pairs. Again, the rest looks familiar:

myhash /myhash hashtable
’ sdbm is hash
512 s" beta" myhash put
s" beta" myhash get . cr

You want to store strings instead of numbers? You can do that too if you use userpad.4th.
This library member stores strings in a circular buffer, much like the internal PAD20. After
that, storing strings is easy. You only need to define these words:

: sput >r 2>r >pad drop 2r> r> put ;
: sget get error? abort" Bad bucket" count ;

And this is where it all comes together:

s" This is the end" s" beta" myhash sput
s" beta" myhash sget type cr

But is it worth all the trouble? In some circumstances where quick access to large tables is
required, may be, but you be the judge of that.

12.18 Associative arrays (using binary trees)

Sure, it takes much more code and requires dynamic memory, but it has none of the draw-
backs associated with hashtable based implementations. Just include the library, define a
variable and initialize it:

include lib/bintrkv.4th
variable kv
NULL kv !

And off you go!

15 5 kv put
100 6 kv put
5 kv get .
6 kv get . cr

Of course you can define additional arrays or reassign a value:

variable mykv
NULL mykv !

15 5 mykv put
16 5 kv put

You can also use strings as key values:

25 s" alpha" kv put$
35 s" beta" kv put$

s" alpha" kv get$.
s" beta" kv get$. cr

20Which means they will get overwritten at some point.

CHAPTER 12. STANDARD LIBRARIES 207

Don’t worry about cleaning up dynamic memory:

kv @ destroy-tree

That will take care of all that, but of course you have to do it for each and every associative
array you created.

12.19 Lookup tables with integer keys

Don’t use a CASE construct? Now how are we supposed to make those complex decisions?
Well, do it the proper way. Leo Brodie wrote: "I consider the case statement an elegant
solution to a misguided problem: attempting an algorithmic expression of what is more
aptly described in a decision table". And that is exactly what we are going to teach you.

Let’s say we want a routine that takes a number and then prints the appropriate month. You
could do that this way:

: Get-Month
case

1 of ." January " endof
2 of ." February " endof
3 of ." March " endof
4 of ." April " endof
5 of ." May " endof
6 of ." June " endof
7 of ." July " endof
8 of ." August " endof
9 of ." September" endof
10 of ." October " endof
11 of ." November " endof
12 of ." December " endof

endcase
cr

;

This takes a lot of code and a lot of comparing. In this case (little wordplay) you would be
better of with an indexed table, like this:

create MonthTable
," January "
," February "
," March "
," April "
," May "
," June "
," July "
," August "
," September"
," October "
," November "
," December "

: Get-Month (n --)
1 max 12 min 1- cells MonthTable + @c count type cr

;

Which does the very same thing and will certainly work faster. True, you can’t do that this
easily in ANS-Forth, but in 4tH you can, so use it! The word ’,"’ compiles a string, whose

CHAPTER 12. STANDARD LIBRARIES 208

address can be retrieved by ’@C’ as if it were a numeric constant. Note that ’@C’ just
returns the address of the string, so you have to use ’COUNT’ to obtain an address/count
pair. Of course, there is also an equivalent to ’,"’ called ’,|’. The latter is delimited by a bar
instead of a quote, but essentially works the same way.

Note this is the fastest way to retrieve a value. It’s over five times faster than an equivalent
’CASE..ENDCASE’ construct. So yes, if you have a set of (almost) sequential values,
every reason to go for an indexed table.

But can you use the same method when you’re working with a random set of values like
"2, 1, 3, 12, 5, 6, 4, 7, 11, 8, 10, 9". Yes, you can. But you need a special routine to access
such a table. Of course we designed one for you. It is called ”ROW” and you can use it by
adding this directive:

[needs lib/row.4th]

This routine takes four values. The first one is the value you want to search. The second is
the address of the table you want to search. The third is the number of fields this table has.
And on top of the stack you’ll find the excecution token of the word that searches the table.
Two have been predefined, ”NUM-KEY” searches numeric values and ”STRING-KEY”
searches string values.

This routine can search zero-terminated tables. That means the last value in the index field
must be zero. Finally, it can only lookup positive values. It returns the value you searched,
the address of the row where it was found and a flag. If the flag is false, the value was not
found.

Now, how do we apply this to our month table? First, we have to redefine it:

create MonthTable
1 , ," January "
2 , ," February "
3 , ," March "
4 , ," April "
5 , ," May "
6 , ," June "
7 , ," July "
8 , ," August "
9 , ," September"
10 , ," October "
11 , ," November "
12 , ," December "
NULL ,

The first field must be the "index" field. It contains the values which have to be compared.
That field has number zero. Note that this table is sorted, but that doesn’t matter. It would
work just as well when it was unsorted. Let’s get our stuff together: the address of the table
is "MonthTable", it has two fields and we want to return the address of the string, which is
located in field 1. Field 0 contains the values we want to compare. We can now define a
routine which searches our table:

: Search-Month (n1 -- n2 f)
MonthTable 2 num-key row \ search the table
dup >r \ save flag
if nip cell+ @c else drop then
r> \ if found get value

; \ if not drop address

CHAPTER 12. STANDARD LIBRARIES 209

Because ”ROW” is able to search integer tables and string tables, you have to define which
one it is by using either num-key or string-key. Now, we define a new "Get-Month"
routine:

: Get-Month (n --)
Search-Month \ search table
if \ if month is found
count type \ print its name

else \ if month is not found
drop ." Not found" \ drop value

then \ and show message
cr

;

Is this flexible? Oh, you bet! We can extend the table with ease:

3 Constant #MonthFields

create MonthTable
1 , ," January " 31 ,
2 , ," February " 28 ,
3 , ," March " 31 ,
4 , ," April " 30 ,
5 , ," May " 31 ,
6 , ," June " 30 ,
7 , ," July " 31 ,
8 , ," August " 31 ,
9 , ," September" 30 ,
10 , ," October " 31 ,
11 , ," November " 30 ,
12 , ," December " 31 ,
NULL ,

Now we make a slight modification to "Search-Month":

: Search-Month (n1 -- n2 f)
MonthTable #MonthFields num-key row
dup >r \ search table, save flag
if nip cell+ @c else drop then
r> \ if found get value

; \ if not drop address

This enables us to add more fields without ever having to modify "SearchMonth" again.
If we add another field, we just have to modify "#MonthFields". We can now even add
another routine, which enables us to retrieve the number of days in a month:

: Search-#Days (n1 -- n2 f)
MonthTable #MonthFields num-key row
dup >r \ search table, save flag
if nip cell+ cell+ @c else drop then
r> \ if found get value

; \ if not drop address

Of course, there is room for even more optimization, but for now we leave it at that.

Are there any drawbacks? Yes, this is up to three times slower than the equivalent ’CASE..ENDCASE’
construct. So if you have a lot of non-contiguous values and need every last bit of perfor-
mance, you’d better use a ’CASE..ENDCASE’ construct. However, if you exceed the one
hundred integer values there is another construct you can use, as we will see later on.

CHAPTER 12. STANDARD LIBRARIES 210

12.20 Lookup tables with string keys

But what if the table we’re using looks like this:

create MonthTable
," January" 31 ,
," February" 28 ,
," March" 31 ,
," April" 30 ,
," May" 31 ,
," June" 30 ,
," July" 31 ,
," August" 31 ,
," September" 30 ,
," October" 31 ,
," November" 30 ,
," December" 31 ,
NULL ,

Sure, 4tH compiled some kind of integer value there, but an address to a string is less than
helpful. We have to compare strings in order to find the correct entry, not addresses. So,
we need a word that searches the table and returns the contents of the field that follows the
appropriate string. Well, of course there is such a word. It is ”ROW” again. You can use it
by entering:

[needs lib/row.4th]

At the beginning of your program. ”ROW” takes an address/count pair of the string that
has to be found, the address of the table it has to search for that string and the number of
fields the table has. It returns the original address/count pair of the string, the address of
the row where the search stopped and a flag. That makes it quite a useful word, e.g. how
many days has June:

: GetDays (a n --)
MonthTable 2 string-key row \ search the table
if
cell+ @c . drop drop \ if found, display the number of days

else \ else an error message
drop type ." is not a month!"

then
cr

;

s" June" GetDays

If ”ROW” returns true, the value was found. If it returns false, it wasn’t. Note you have to
indicate which datatype ”ROW” has to deal with. ”ROW” is quite versatile, but that is not
the only merit of ”ROW” as we will see in the next sections.

12.21 Lookup tables with multiple keys

Some tables have multiple keys to search them, e.g. by name or by number. So far all
tables we’ve seen dealt with a single key in the first column. It would be a shame if you
had to split a table into two tables, simply because you had two different ways to access
it. Fortunately, ”ROW” can handle this kind of tables as well as long as you put the key
columns up front and add a NULL at the end of the table for every key, e.g.

CHAPTER 12. STANDARD LIBRARIES 211

create mytable
," Monday" 1 ,
," Tuesday" 2 ,
," Wednesday" 3 ,
," Thursday" 4 ,
," Friday" 5 ,
," Saturday" 6 ,
," Sunday" 7 ,
NULL , NULL ,

This table consists only of key fields. You can search for the name and get a number or
search for the number and get the equivalent name. The trick is to keep in mind what the
key field is and the relative position of the datafield. In this case we want to search on
number, so the corresponding name is the field before the key field. When you start the
search the pointer you pass to ”ROW” has to point to the key field you want to search. In
this case that is equivalent to:

mytable cell+

Let’s assume we want to search this table both ways:

: day>num (a1 n1 -- a1 n1 -f | n2 f)
mytable 2 string-key row dup >r
if nip nip cell+ @c else drop then r>

;

: num>day (n1 -- n1 -f | a1 n2 f)
mytable cell+ 2 num-key row dup >r
if nip cell- @c count else drop then r>

;

The first word doesn’t hold any surprises. It is a vanilla search word. The second one
passes a slightly modified pointer to ”ROW” and decrements the address it returns, so it
now points to the name field. We can use both words quite easily and transparently:

s" Friday" day>num if . else type ." not found" then cr
s" New yearsday" day>num if . else type ." not found" then cr

5 num>day if type else . ." not found" then cr
8 num>day if type else . ." not found" then cr

You will see they work as expected.

12.22 Lookup tables with duplicate keys

Although most tables come with unique keys you may find yourself in a situation where
you have to resume a search. ”ROW” can handle that situation as well. Let’s examine this
table:

create people
," Ritchie" ," Lionel"
," Dijkstra" ," Edsger"
," Moore" ," Henri"
," Ritchie" ," Dennis"
," Wirth" ," Nick"
," Hopper" ," Grace"
," Moore" ," Chuck"
," Hopper" ," Dennis"
NULL ,

CHAPTER 12. STANDARD LIBRARIES 212

There is one key field, since the table is terminated with only one NULL. We also find
multiple Hoppers and Moores, so we can’t be sure we’ve found the right one right away.
In order to get that one we might have to continue our search. That is exactly what this
program does:

: >surname 2 string-key row ; (a n x1 -- a n x2 f)
: first? rot cell+ @c count compare 0= ;
: >next cell+ cell+ >surname ;
: .name type space type ; (a1 n1 a2 n2 --)

: >first (a1 n1 x a2 n2 --)
2>r (a n x)
if (a n x)
dup 2r@ first? (a n x f)
if (a n x)
drop ." Found " 2r> .name cr

else (a n x)
>next 2r> recurse (a n x a n)

then (--)
else (a n x)
drop 2r> .name ." not found" cr

then (--)
;

: >name -rot 2>r >surname 2r> >first ;

: demo
s" Ritchie" s" Dennis" people >name
s" Moore" s" Chuck" people >name
s" Lovelace" s" Ada" people >name

;

demo \ run the demo

”>NAME” is a wrapper around this programs most important words ”>SURNAME” and
”>FIRST”. ”>SURNAME” simply searches for a given surname in the table and returns its
address. ”>FIRST” takes over and compares the first name. If it checks out we’re done, if
not it calls ”>NEXT”. ”>NEXT” increments the pointer, so it now points to the next row.
Then it calls ”>SURNAME” again, effectively continuing the search. Finally ”>FIRST”
calls itself to check the first name again. Depending on the contents of the table, this
process can be repeated several times.

12.23 Binary search tables

First of all, if you have a series of consecutive values, the direct approach is always the
best:

create MonthName (n --)
," January "
," February "
," March "
," April "
," May "
," June "
," July "
," August "
," September"
," October "
," November "
," December "

does> swap 1 max 12 min 1- cells + @c count ;

CHAPTER 12. STANDARD LIBRARIES 213

If you’re not able to create a structure like that, because the values are just too far apart,
you may have to resort to a different technique - as this table will show you:

CASE-ENDCASE row.4th brow.4th

Integer 1−100 - 100−∞

String - 1−25 25−∞

The figures denote the number of elements in your table. Note these statistics are just a
guideline. Results may differ on your platform - and more importantly: how often a table
is accessed during execution. E.g. if your table is consulted only once, you may not see
any noticeable performance improvements. However, if your table is part of a tight loop,
you may see dramatic leaps in performance.

For those familiar with the ”big O notation21”, both CASE..ENDCASE and row.4th
have a worst case of O(n), while brow.4th has a worst case of O(logn).

We’ve already examined row.4th in detail (section 12.19) and also CASE..ENDCASE
(section 11.19). Here we will show you how to make a binary search table. First thing
you’ll have to remember: a binary search table is always sorted. Forget that and you’ll be
hunting that bug for a long, long time. Second, when your table requires maintenance, be
aware that you’ll have to insert that new row at exactly the right place.

If you’re using a table with string keys, note that the sort-order depends on the ’COMPARE’
settings. Default it is lower-case, but if you changed it, it will affect your table. So beware.

This also means you can’t have a table with multiple keys - since you most probably can’t
have both of them sorted at the same time. You also have to know how many rows your
tables has - although you can let 4tH figure that out for you, e.g.

create mystable
," Aloha" 4 ,
," Bye" 3 ,
," Doei" 5 ,
," Hello" 1 ,

here mystable - 2 / constant /mystable

In this case, if we subtract ”MYSTABLE” from ’HERE’ we get the number of elements in
”MYSTABLE”. Since there are two elements per row, we divide the number of elements
by that number, giving the constant ”/MYSTABLE”. Note all keys are properly sorted.

Consequently, the call to brow.4th is slightly different from row.4th. First of all,
you can’t attach the execution semantics to ”MYSTABLE” using ’DOES>’. You need to
use ’:REDO’ instead, because we’ve defined a constant in the meanwhile, which tends to
interfere. Second, it takes different arguments. Let’s search for ”Bye”:

s" Bye" mystable /mystable 2 bstring-key brow

Well, what did we get back?

1. A flag, which is set when the item was found;

2. The row where the key was found, starting at count zero;

3. The address of the lookup table.

Unlike row.4th, you don’t get back the original value, so you might want to save that one
before you call ”BROW” if you need it later. Now we have the task to retrieve the value,
corresponding to ”Bye”. We have the address of the table, the number of the row and the
knowledge that a single row contains two elements:

21https://en.wikipedia.org/wiki/Big_O_notation

CHAPTER 12. STANDARD LIBRARIES 214

if 2* 1+ cells + @c else drop drop then

The ’1+’ comes in, because we’re not interested in ”Bye” itself, but the value that is asso-
ciated with it - which is one cell further. For integers it is not much different:

create myntable
0 , 1 ,
1 , 3 ,
2 , 5 ,
3 , 7 ,
4 , 9 ,

here myntable - 2 / constant /myntable

Let’s go for ”2”:

2 myntable /myntable 2 bnum-key brow

You issue the value you search for, the table and its length, the number of elements per row,
the appropriate word (”BNUM-KEY” for numbers and ”BSTRING-KEY” for strings) and
you’re off.

There’s just one thing you’ll have to remember when you’ve got a string-key: the value
you issue may not exceed 63 characters. If you intend to use longer keys, you must adjust
a value. It’s not hard, just issue this before you include brow.4th:

128 constant (/key)
include lib/brow.4th

Conclusion, although binary search offers lots of performance, it’s a bit trickier to set up
and maintain, since there are many opportunities to introduce hard to trace bugs. However,
once it works you can enjoy a very good, flat performance, that is hardly affected by new
additions.

12.24 Dynamic binary search tables

Of course, this is all very nice, but may be you want to manage a binary search table
yourself while executing your program. That means adding and removing entries as you
see fit. If you just want to use strings, you may be better off with an associative array (see
section 12.17), which does all the heavy lifting for you. If not, you’ve found the section
you’re looking for.

Creating a dynamic binary search table couldn’t be easier:

include lib/bstable.4th

10 constant /bstable
/bstable array bstable

bstable /bstable bs.init

You simply define an array (with an even number of elements) and initialize it. Make sure
you size it properly, because full is full - and remember there is a little overhead involved.
After that, you can start to add entries:

5 bstable bs.insert

CHAPTER 12. STANDARD LIBRARIES 215

”BS.INSERT” will return a flag, an index and an address. If the flag is non-zero, the value
already exists - but the index is valid. If the flag is zero, you’re not home-free yet. You have
to check the index. If it equals ’(ERROR)’ there were no free entries left. If you passed that
hurdle, you can enter the value associated with this key - but not before you’ve converted it
to a valid address. You can do that with ”BS.ENTRY”. Now you got an address that points
to the key. To get to the value, you need to issue ”BS.VALUE”, so:

if
drop drop

else
error? abort" Table full!"
bs.entry bs.value 25 swap !

then

In this example we examine the flag, if that’s OK, we examine the index and if that’s fine,
we convert the values returned by ”BS.INSERT” into the address of the corresponding
value - and poke ”25” into it.

Of course you want to be able to retrieve it. For that we got ”BS.FIND”. The stack diagram
is exactly the same as ”BS.INSERT” - it takes a value and the table address and returns a
flag, an index and an address. If the flag is non-zero, the value has been found:

5 bstable bs.find

Now all that’s left is to convert that into an address and you can examine the value you
poked in:

if bs.entry bs.value ? else drop drop then

Finally, you may want to delete it. It’s getting boring - that’s almost the same thing all over
again:

5 bstable bs.delete

In that case, you only get a flag. If it’s non-zero, everything is hunky-dory, if not the key
wasn’t found. The reason that all these stack-diagrams are so similar is that all of them use
”BS.FIND” in some form.

Note you can’t discard a dynamic binary search table, unless you place allocate it in dy-
namic memory (see section 12.5). And yes, you can use strings as keys - if you hash them
first (see section 12.17), e.g.

s" my string" fnv1a bstable bs.insert

Of course, don’t forget to include hash.4th first - and of course, you’ll have to hash the
string again when you call ”BS.FIND” or ”BS.DELETE”. Of course, you can also insert
string addresses into the value - but if you store them in some kind of temporary memory,
don’t forget to free them before you call ”BS.DELETE”.

12.25 Fixed point calculation

We already learned that if we can’t calculate it in dollars, we can calculate it in cents. And
still present the result in dollars using pictured numeric output:

CHAPTER 12. STANDARD LIBRARIES 216

: currency <# # # [char] . hold #s [char] $ hold #> type cr ;

In this case, this:

200012 currency

Will print this:

$2000.12

Well, that may be a relief for the bookkeepers, but what about us scientists? You can do the
very same trick. We have converted some Forth code for you that gives you very accurate
results. You can use routines like SIN, COS and SQRT. A small example:

[needs lib/math.4th]

45 sin . cr

You will get "7071", because the result is multiplied by 10000. You can correct this the
same way you did with the dollars: just print the number in the right format.

12.25.1 Fractions

You can also use a delightful little library created by Leo Brodie called ”fraction.4th”.
If you’re using a 32-bit system, this library allows you to do arithmetic in the range of -
13.1072 and 13.1071 with a precision of 0.0001 - which is rather limited of course.

On a 64-bit system, this range is much wider: between -56,294,995,342 and 56,294,995,342.

In order to convert a fixed point number to a fraction, you have to multiply it by ”10K”,
which is 10,000 and call ”S>V”, e.g. in order to convert ’0.7071’ to a fraction you need to
do this:

[needs lib/fraction.4th]

7070 s>v

You can also define a fraction yourself, e.g. this converts two-thirds to a fraction:

2 3 v/

You can add or subtract fractions, e.g. if you want to calculate ”0.7070 - 0.6666”, this will
do:

7071 s>v 2 3 v/ v- v. cr

You can print a fraction using the word ’V.’ Since a fraction is still a single-cell number,
you can manipulate the stack in the usual way using ’DUP, ’ROT’, etc. In some cases you
can even mix cells and fractions, as the following table will show you:

CHAPTER 12. STANDARD LIBRARIES 217

It even offers a limited range of mathematical functions if you care to load the extensions:

[needs lib/fractext.4th]

vpi 4 10K * s>v vsin v. cr

Which is the equivalent of the sine of a quarter π . Of course, ”VCOS” and ”VTAN” are
defined as well. And these will do fine too - although you should note that the range of
usable numbers may be more limited:

include lib/fractext.4th

123456789 10K * s>v vsqrt v. cr
2 3 v/ vln v. cr
3 4 v/ vexp v. cr

Which are equivalent to
√

123456789, ln(2
3) and exp(3

4). With the word ’V>S’ you can
convert a fraction back to a ”10K” scaled fixed point number. To get back to the integer
equivalent, you’ll have to divide it by ”10K” - but of course you’ll lose the fractional part
entirely.

This library may not give you the most accurate results, but its performance is absolutely
stellar compared to other methods, e.g. floating point - and much, much smaller in size.
So if you don’t need umpteen digits of precision, this one might be exactly what the doctor
ordered.

12.26 Double numbers

C’mon, indulge me, run this program:

max-n . cr

You will probably see some fairly large number displayed on your screen. What is it? Well,
it is the largest number that can fit in a cell. Larger numbers and 4tH will start to behave
erratically:

max-n 1+ . cr

Still, it is large enough to do the accounting for a reasonably sized enterprise. But it
hasn’t been always like that. Early Forths could barely handle the accounting of an average
schoolboy. In order to get some real work done they had to expand the range somehow.
And if one cell isn’t enough you simply take two cells. That is what double numbers are
all about: they are numbers that are composed of two cells.

The problem is that Forths operators aren’t overloaded. If you try to add up two double
numbers with ’+’ you will end up with one double number and the addition of the two
parts of the first double number. So in order to add up two double numbers, a separate
word had to be defined. If you need a special word for addition, you will also need one for
multiplication, subtraction, division and negation.

It is no secret that Charles Moore, the inventor of Forth, thought that double numbers had
become superfluous after the introduction of modern processors and modern Forth compil-
ers. That is one of the reasons that 4tH doesn’t have a native double word implementation.
But should you need this vastly expanded range for one reason or another 4tH allows you
to enter the murky world of double, unsigned and mixed numbers.

So, how does it work. First of all, if you need a full implementation you have to include
these two libraries:

CHAPTER 12. STANDARD LIBRARIES 218

include lib/todbl.4th \ double number input
include lib/dbldot.4th \ double number output

Then you probably need some variables. But hey, if double numbers take up two cells, you
can’t use ordinary variables. That’s true. You will need small arrays:

2 array dVar1 \ double variable one
2 array dVar2 \ double variable two

And here comes the next problem. How do you enter double numbers? Depending on the
size of the number, you can use two approaches. The easiest one is to convert a single
number to a double number with ”U>D”. The only catch is this only works for positive
numbers. If you want to enter a negative number, you have to negate it afterwards:

500 u>d 60000 u>d d+ \ add 500 and 60000
2dup d. cr \ print the double number
dVar1 2! \ store it in variable one

Yes, every single operation has a double counterpart:

SINGLE DOUBLE

+ d+
negate dnegate

. d.
2/ d2/

max dmax
min dmin
dup 2dup
@ 2@
! 2!

Table 12.7: Examples of single and double number counterparts

But what if you want to enter a very large number right away? In that case you will have
to convert a string to a double number with ”S>DOUBLE22”.

s" 5000000000" s>double \ convert a string to double
2drop 2dup d. cr \ print the double number
dVar1 2@ dmax dVar2 2! \ save the largest in variable two

Finally, when you have done all you needed to do and you’re left with a number that is
small enough you can convert it back to a single number with ”D>U”. Note this will only
work for positive numbers:

dVar2 2@ dVar1 2@ d- \ subtract both double variables
2dup d. cr \ print the double number
d2/ d2/ d>u . cr \ divide by 4 and convert to unsigned

Rule of the thumb is: stay away from double numbers if you can. It is slow, cumbersome
and error-prone. If you can’t, goodnight and good luck!

22Note it will bomb out when the string isn’t a double number. If you want to play safe, use ”>DOUBLE”.
There is also a single number ”>NUMBER” word. In that case you can select the double number version by using
its alias ”>DNUMBER”.

CHAPTER 12. STANDARD LIBRARIES 219

12.27 Floating point numbers (unified stack)

Warning!
This is really complex stuff, I cannot guaran-
tee that it functions flawlessly. You may lose
accuracy or get the wrong result. Don’t use
any of this for any real life applications.

Ok, if you really, really, really want it, 4tH also provides floating point number support. If
you only need the basic operations and are willing to settle for limited accuracy and error
checking, you should try zenfloat.4th. It is small and very easy to use. Just include
it23 and go right ahead:

include lib/zenfloat.4th
include lib/zenfpio.4th
314159265 -8 f. cr

That will print the first eight decimals of ”pi”. Just read it like ”314159265e-8” or in
laymans terms ”314159265” with eight places after the decimal point. Of course you can
use positive exponents as well. Because ZEN floating point numbers are stored as two
numbers24 on the datastack25, you can use ’2DUP’, ’2DROP’ and ’2SWAP’ to manipulate
them. This is the way to calculate the surface of a circle with a radius of 10.55:

include lib/zenfloat.4th
include lib/zenfpio.4th
314159265 -8 1055 -2
2dup f* f* f. cr

Which will happily print:

349.667115

You can also convert a number to a float and back:

1960 s>f 2dup f. f>s . cr

If you try to convert a floating point number that is bigger than ’MAX-N’ to a single number
it doesn’t work of course. You can store a floating point number in a variable if you want:

include lib/zenfloat.4th
include lib/zenfpio.4th

2 array pi

314159265 -8 pi 2!

If you want to write ANS Forth compatible code, you can. Just include zenans.4th just
after zenfloat.4th. It will allow you to write code like this:

23You always have to include zenfloat.4th manually before you include any other floating point library
member.

24The exponent on the TOS, the mantissa on the 20S.
25Consequently, this implementation uses what ANS Forth calls a ”shared floating point stack”. Since 2008,

ZEN float is considered a non-standard implementation (see: http://www.forth200x.org/fp-stack.html).

CHAPTER 12. STANDARD LIBRARIES 220

[DEFINED] 4TH# [IF] \ if this is 4tH
include lib/zenfloat.4th \ include the ZEN fp library
include lib/zenfpio.4th \ include the ZEN fp I/O library
include lib/zenans.4th \ make Zen ANS compatible
include lib/zenfsin.4th \ include the SIN library
[ELSE] \ if this is ANS Forth
s" easy.4th" included \ load the compatibility layer
[THEN]

FLOAT array fVar \ a floating point variable
FLOAT array Pi \ a FP variable holding PI

\ store PI in the variable
cr s" 314159265e-8" s>float Pi f!
Pi f@ 4 s>f f/ \ get PI and calculate sine
fsin fdup f. cr fVar f! \ print the result and save it
fVar f@ f. cr \ print the variable

And this is the way it is run:

habe@linux-471m:~/Forth> gforth
Gforth 0.6.2, Copyright (C) 1995-2003 Free Software Foundation, Inc.
Gforth comes with ABSOLUTELY NO WARRANTY; for details type ‘license’
Type ‘bye’ to exit
s" fpdemo.4th" included
(Lots of messages you can ignore)
0.707106780551956
0.707106780551956
ok
bye
habe@linux-471m:~/Forth> 4th cxq fpdemo.4th
0.707106778
0.707106778
habe@linux-471m:~/Forth>

Apart from some rounding errors they are identical. Note that this ”S>FLOAT” imple-
mentation is quite basic26, but you can feed it most floating point numbers without any
problems. If you use zenans.4th, most of the constructions in section 12.28 will work
with zenfloat.4th as well.

The error handling of zenfloat.4th is very basic. If you try to get the square root of
a negative number, it will just stop with an appropriate message. There are lots of floating
point routines included27, just check the glossary for more details.

12.28 Floating point numbers (separate stack)

Warning!
This is really complex stuff, I cannot guaran-
tee that it functions flawlessly. You may lose
accuracy or get the wrong result. Don’t use
any of this for any real life applications.

If you want something more sophisticated than zenfloat.4th you should try ans-
float.4th. This library is a full ANS-Forth implementation. In ansfloat.4th man-
tissas are double-cell unsigned. Single-cell exponents contain the mantissa’s sign and a

26There is also a full ANS Forth implementation available: fpin.4th and fpout.4th. If you want to use
these instead, remove zenfpio.4th and include them after you’ve included zenans.4th.

27All compatible library members are prefixed with ’zen*’. See also chapter 25.3.

CHAPTER 12. STANDARD LIBRARIES 221

signed exponent. The format used is non-standard for simplicity. Exponents are almost a
whole cell wide, leading to a wider dynamic range than most IEEE formats. Range and
digits of precision versus cell width are listed below.

CELL WIDTH DIGITS OF PRECISION RANGE = 10−x to 10x

32 18 x = 323196289
64 37 x = 1.3881175∗1018

n INT ((n−1)∗0.602) x = 0.301∗ (2n−2)

Table 12.8: Range and digits of precision

Floating point arithmetic is easy to use, but be careful to watch where your inaccuracies
are coming from. Floating point numbers are approximations. You can lose up to half
a bit of precision in each operation. Differences between large numbers can be trouble
spots. If you need transcendental functions, they can often be done in integer arithmetic
since you don’t need floating point’s run-time auto-scaling. Floating point arithmetic uses
a dedicated, shallow stack28. There is no depth checking, so underflows and overflows may
occur unless error checking is added. Since floating point support is implemented in high
level 4tH it is also rather slow and big.

So, how does it work. First of all, if you want to use floating point, you always need to
include this library before any other floating point library:

include lib/ansfloat.4th \ floating point words

This will also create the floating point stack. If you want a larger stack, just create this
constant accordingly before including the library:

32 CONSTANT FLOATING-STACK \ size of float stack
include lib/ansfloat.4th \ floating point words

This will create a stack of 32 floating point items. You probably want to do some I/O, so
let’s take care of that one too:

32 CONSTANT FLOATING-STACK \ size of float stack
include lib/ansfloat.4th \ floating point words
include lib/ansfpio.4th \ floating point I/O words

Then you probably need some variables. But hey, if floating point numbers take up more
than a cell, you can’t use ordinary variables. That’s true. You will need small arrays:

FLOAT array fVar1 \ double variable one
FLOAT array fVar2 \ double variable two

Finally, you have to initialize the library and specify the precision29:

fclear \ initialize library
8 set-precision \ set precision to eight

And here comes the next problem. How do you enter floating point numbers? Depending
on the size of the number, you can use two approaches. The easiest one is to convert a
single number to a floating point number with ”S>F”.

28ANS Forth defines a six item stack. A larger FP stack is an environmental dependency.
29The number of significant digits used by F.

CHAPTER 12. STANDARD LIBRARIES 222

500 s>f 60000 s>f f+ \ add 500 and 60000
fdup f. cr \ print the floating point number
fVar1 f! \ store it in variable one

Note the double numbers library is loaded by default as well, so ”D>F” is available too.
Every single operation has a floating point counterpart:

SINGLE FLOAT

+ f+
/ f/
* f*

negate fnegate
. f.

max fmax
min fmin
dup fdup
@ f@
! f!

Table 12.9: Examples of single and floating point number counterparts

But what if you want to enter a floating point number right away? In that case you will
have to convert a string to a double number with ”>FLOAT”.

s" 5000.575" >float \ convert a string to a float
drop fdup f. cr \ drop the flag and print the number
fVar1 f@ fmax fVar2 f! \ save the largest in variable two

A drawback of defining floating point constants that way is that ”>FLOAT” is notoriously
slow. A much faster library - called tofloat.4th - is available, but is not ANS-Forth
compliant30:

include lib/ansfloat.4th \ include the fp library
include lib/tofloat.4th \ include fast >FLOAT library
include lib/fpout.4th \ include FP output library

FLOAT array fVar1 \ double variable one
FLOAT array fVar2 \ double variable two

fclear 60500 s>f fVar1 f! \ initialize variable one
s" 5000.575" >float \ convert a string to a float
drop fdup f. cr \ drop the flag and print the number
fVar1 f@ fmax fVar2 f! \ save the largest in variable two

Defining constants this way is about four-five times faster. This is especially useful when
you need a constant in a tight loop. There is another library which enables you to enter
floating point numbers the ”mantissa + exponent” way, if you prefer31:

include lib/ansfloat.4th \ include the fp library
include lib/ansfpio.4th \ include the fp i/o library
include lib/fpow10.th \ include the F10** library

5000572 -3 me>f f. cr
314159265 -8 me>f f. cr

30But neither is ansfpio.4th as we will see.
31See section 12.27.

CHAPTER 12. STANDARD LIBRARIES 223

Note that the mantissa must fit in a single cell number and the exponent must be in the
range of -24 to 24, otherwise you won’t get the correct result. But it is pretty fast as well
and in some cases a good alternative for tofloat.4th.

Most ANS-Forth floating point words are available, although these words usually have their
own library file. For technical reasons they will not automatically include the floating point
number library for you, but abort instead if it is not loaded. So if you want to calculate the
sine of 45 degrees, you have to do this:

include lib/ansfloat.4th \ include the fp library
include lib/ansfpio.4th \ include the fp i/o library
include lib/fsinfcos.4th \ include the library

fclear \ clear the fp stack
8 set-precision \ set precision to eight

pi 4 s>f f/ fsin f. cr \ calculate the sine

Since a full circle (360 degrees) requires 2 times PI, we have to divide it by 4 to get the
equivalent in radians32. But what if you make an error? What if a conversion overflows,
you divide by zero or try to get the square root of a negative number? There is where
”FERROR” comes in. It is a variable that holds the last floating point error that occurred.
Here you got an example:

include lib/ansfloat.4th \ include the library
include lib/ansfpio.4th \ include the fp i/o library

fclear \ clear the fp stack
8 set-precision \ set precision to eight
1 s>f 0 s>f f/ \ divide by zero
ferror ? cr \ examine FERROR

In this case, ”FERROR” returns two. But what does that mean? Well, here you got a handy
table of all IEEE 754 exceptions. In 4tH, these are predefined constants.

CODE MEANING

FE.NOERRORS No error
FE.OVERFLOW FP overflow

FE.UNDERFLOW FP underflow
FE.DIVBYZERO Division by zero

FE.INEXACT Inexact result
FE.INVALID Invalid operation

Table 12.10: IEEE 754 FP math errors

You can simply clear any errors by invoking ”FCLEAR” again. Note that this clears
your floating point stack too, so you have to start all over again. And no, ’THROW’ and
’CATCH’ do not restore your floating point stack. No easy recovery here!

12.29 Floating point functions

ANS-Forth floating point comes with a large number of libraries, sometimes two or more
for the same mathematical function. Table 12.11 may help you to select the proper one for
your specific problem.

32”FSIN” takes its parameter in radians.

CHAPTER 12. STANDARD LIBRARIES 224

Note several ANS-Forth floating point libraries are used within other libraries. If a library is
marked ”default”, it is the default that will be selected for inclusion if you haven’t included
another library already. Most of the time you can override the default selection by simply
explicitly including it, e.g. instead of:

include lib/ansfloat.4th
include lib/ansfpio.4th
include lib/fexpint.4th

You could set up the program like this:

include lib/ansfloat.4th
include lib/ansfpio.4th
include lib/fexpt.4th
include lib/flnflogb.4th
include lib/fexpint.4th

In some cases a library member may assume a certain dependency is already resolved and
bomb out. In that case, you’ll have to figure out yourself which dependency that is and
resolve it manually. If that happens, you may find chapter 25.3 quite useful.

Note that Zen float comes with lots of floating point functions as well (sometimes two or
more for the same mathematical function), but it lacks the more specialized functions like
numerical integration, Bessel, Riemann Zeta, elliptic integrals, etc.

12.30 Floating point configurations

In order to simplify setting up floating point support, there are five predefined configura-
tions. The only thing you have to do is to include a single file. All configurations support
basic floating point operations and floating point I/O. You can see in table 12.12 which
configuration meets your particular needs.

For your information: precision is definitely not the same thing as accuracy. If you’re still
not sure what to choose configuration 2 (fp2.4th) is a safe bet. Note that ”FLOAT”
is always defined when having included any of the configurations, which enables you to
check whether floating point support has been loaded, e.g.:

[UNDEFINED] float [IF] [ABORT] [THEN]

If you need to differentiate between Zen floating point or ANS floating point, you just have
to check whether the constant ”ZENFP” has been defined, e.g.:

[DEFINED] ZenFP [IF] .(Zen float is loaded) cr [THEN]
[UNDEFINED] ZenFP [IF] .(ANS float is loaded) cr [THEN]

If you enter the realm of full fledged floating point numbers, you may find it very hard
to resolve all dependencies. Well, it is not so hard as you think as long as you apply the
following rule of the tumb. Before including any other floating point library file include
this one:

include lib/fp3.4th
\ now you may include other library files

CHAPTER 12. STANDARD LIBRARIES 225

If you don’t mind the size or the speed but do require full ANS Forth compliance, begin
your program like this:

include lib/fp4.4th
\ now you may include other library files

You will see that this resolves most of your dependency problems33. Note configuration 5
is a special one, offering a high speed ”>FLOAT” routine, which is not completely ANS
Forth compliant.

Bottom line: if you don’t need floating point numbers, avoid them and apply other tech-
niques. But sometimes it cannot be avoided and I guess you’ll agree with me that it’s good
it’s there.

12.31 Forth Scientific Library

4tH includes serveral library members of the Forth Scientific Library. The FSL contains
several very complex and highly specialized mathematical words. Some of these words
have been adapted to work with 4tH. All you have to do is to include fsl-util.4th after
you’ve included ansfloat.4th, ansfpio.4th and preferably also fpconst.4th.
It doesn’t work with zenfloat.4th.

include lib/ansfloat.4th
include lib/ansfpio.4th
include lib/fsl-util.4th

Note that like ansfloat.4th, fsl-util.4th isn’t included automatically by other
library members, so you have to include it explicitly. If not, the compiler will simply abort.
Since the FSL uses special datatypes, you have to do some work in order to get them to
work with 4tH. If you want to declare an fsl-array of e.g. ten floats:

10 FLOAT MARRAY MyFSL

You have to declare it like this:

10 FLOATS 1+ ARRAY MyFSL (allocation)
FLOAT LATEST FSL-ARRAY (initialization)
DOES> (FSL-ARRAY) ; (runtime behavior)

If you want to declare an fsl-matrix of e.g. 16 by 8 floats:

16 8 FLOAT MMATRIX MyFSL

You have to declare it like this:

16 8 * FLOATS 2 + ARRAY MyFSL (allocation)
16 8 FLOAT LATEST FSL-MATRIX (initialization)
DOES> (FSL-MATRIX) ; (runtime behavior)

Surely, this is a bit awkward, but it is required to be as compatible as possible with sources
that use the FSL. Note that all restrictions and reservations concerning floating point sup-
port also apply to the FSL words.

33If not, take a look at chapter 25.3.

CHAPTER 12. STANDARD LIBRARIES 226

12.32 Statistical functions

4tH features a small array of statistical functions that can be used in conjunction with both
the ANS and the Zen floating point libraries. First you have to declare the floating point
stack of your choice:

false constant shared-fp \ select ANS- or ZEN float
\ include the ZEN float library

shared-fp
[IF] include lib/fp2.4th
[ELSE] include lib/fp4.4th
[THEN] \ include the ANS float library

After you’ve included the statistical library itself you have to allocate the statistical struc-
ture required:

include lib/statist.4th \ include the statistical library

/st_var array stats \ allocate a statistics structure

That was the hardest part. Now, initialize the floating point library and clear the structure
so it is ready for use:

fclear 100 set-precision \ initialize FP library
stats st.clear \ clear the structure

You can now add your floating point numbers to the structure by issuing:

2 s>f stats st.add
4 s>f stats st.add
4 s>f stats st.add
4 s>f stats st.add
5 s>f stats st.add
5 s>f stats st.add
7 s>f stats st.add
9 s>f stats st.add

If you have forgotten how many numbers you added, simply query the structure as if it
were a normal variable:

stats @

A number of statistical functions are now at your disposal, e.g. variance, standard deviation,
and several means. You can call them at any time by issuing, e.g.:

stats st.stddev f. cr

Note you can have several statistical structures at the same time and manipulate or query
them independently. You can also clear them individually at any time without any side
effects.

CHAPTER 12. STANDARD LIBRARIES 227

12.33 Numerical integration

Although 4tH comes with lots of functions, you may encounter a situation where you need
a function and it isn’t there. If you’re willing to make a full implementation, please do -
and send the result to me for inclusion. However, if you need it fast, you may want to resort
to numerical integration. A well-known method for numerical integration is ”Simpson’s
rule34”. We offer three versions of it:

1. Standard method;

2. Composite method;

3. The ”3/8” rule.

None of these methods is ”the best”. You simply have to try which one works best for you
in a given situation. So how do you go about it? First you have to find the derivative of
the function you want to approximate. If you are not very good at math, you may have to
find one. In this example we want to approximate ln(x). The integral of the derivative 1

x is∫ x
1

1
t dt. Now we have to turn the derivative into a function:

: f() 1 s>f fswap f/ ;

That wasn’t too hard, was it? Finally, we have to put the entire Simpson construction into
place:

include lib/fp3.4th
include lib/simpson.4th

: f() 1 s>f fswap f/ ;
: (ln) 1 s>f fswap [’] f() 1000 simpson ;

Of course that’s all very nice, but where do all these parameters come from? Well, look
at the integral. The parameters of the integral state that it goes from ”1 to x”, where x is
the parameter of the ln(x). That’s why we do a ”FSWAP” in the ”(LN)” function. We also
pass the execution token of the ”F()” function. That has always one parameter, which is
the parameter that ”SIMPSON” feeds it. The dt simply indicates what the name of this
parameter is: t.

Basically, an integral calculates the surface of a function. ”SIMPSON” simply chops that
curve up in little, tiny segments and t represents the number of chops35. The more chops,
the more accurate the result will be - but also the more time it will take. The number of
chops must be even for the composite rule and divisible by three for the ”3/8” rule. So, let’s
put the thing to work now:

fclear 100 s>f (ln) f.

That results in 4.60517038495714201, which is not half bad when you think of it, since
4tH’s own ”FLN” returns 4.60517018598809136.

So let’s do another one, the er f (x) function. It’s defined as 2√
π

∫ x
o e−t2

dt. Since 2√
π

is about
1.1283791671, we already got that one and since it is not part of the integral we can leave
that one out of the equation. So we’re left with

∫ x
o e−t2

dt:

34https://en.wikipedia.org/wiki/Simpson%27s_rule
35It’s a bit more complex than that, but it gives you an idea.

CHAPTER 12. STANDARD LIBRARIES 228

: g() fdup f* fnegate e fswap f** ;

Now let’s assemble the whole thing:

include lib/fp3.4th
include lib/falog.4th
include lib/simpson.4th

: g() fdup f* fnegate e fswap f** ;

: (erf)
0 s>f fswap [’] g() 100 simpson
s" 1.1283791671" s>float f*

;

Why only a hundred slices? Because it is enough. It returns 0.71115563366031653 for
0.75, where our native ”FERF” function returns 0.71115563365344696 and the actual
value is 0.71115563365351513. That ain’t half bad!

Sometimes you got a really difficult one, like the gamma function. That one is defined
as
∫

∞

0 tx−1e−tdt. There are several problems with this one. First it calculates the entire
thing from here to eternity. The only way out of this is to find a sane way to define our
own eternity. I won’t go into the details, but 10,000 works. The second thing is, that the
parameter is now part of our integral. The only way out of this is to save it in a variable and
subsequently use it in the formula. Finally, we end up with something like this:

include lib/fp3.4th
include lib/falog.4th
include lib/simpson.4th

float array (x)

: h() fdup fnegate fexp fswap (x) f@ 1 s>f f- f** f* ;
: (gamma) (x) f! 0 s>f 10000 s>f [’] h() 10000 simpson ;

Ten thousand slices? Yup, that’s what’s needed here - this one takes a long time. No
results? No. We’re not out of the woods yet, but the fix has nothing to do with numerical
integration, so we’ll leave that one be. Note the other Simpson variants work exactly the
same and you can combine the lot if you want it. But we have another way to do numerical
integration - and it’s a lot faster. If it works.

The only thing you have to do is initialize it - and then you can relax, because you won’t
be bothered with the question how many slices you want. The method is Gauss-Legendre.
And this is how it works.

include lib/fp3.4th
include lib/falog.4th
include lib/gauslege.4th

: g() fdup f* fnegate e fswap f** ;

: (erf)
0 s>f fswap [’] g() lege_inte
s" 1.1283791671" s>float f*

;

lege_coef lege_roots
3 s>f 4 s>f f/ (erf)

CHAPTER 12. STANDARD LIBRARIES 229

You only have to initialize these roots and coefficients once before the first use of ”LEGE_INTE”.
After that you’re home free and you can do all the calculation you want. The result isn’t
half bad: 0.71115563365634331. So why wouldn’t use it and leave Simpson be? Because
it doesn’t always work. Our ln(x) function is a lot worse: 4.52401046228249623. And
when functions got singularities36, this method does not work at all.

36In mathematics, a singularity is in general a point at which a given mathematical object is not defined, or a
point of an exceptional set where it fails to be well-behaved in some particular way. E.g. f (x)= 1

x has a singularity
at zero.

CHAPTER 12. STANDARD LIBRARIES 230

Algorithm Library Returns Standard API
KISS gmkiss.4th single Yes
super KISS gmskiss.4th single No
Mersenne twister mersenne.4th single|float No
Knuth Subtractive RNG knuthrng.4th single No
MINSTD minstd.4th single Yes
Mifare Crypto-1 mif-prng.4th single No
MRG32k3a mrg32k3a.4th single Yes
ACM V31N06 plecuyer.4th float No
GGUBS prng.4th float No
RAN4 ran4.4th double No
Frank Buss randbin.4th single No
Lehmer randlcg.4th single Yes
SimScript randlcg.4th single Yes
EPM2 randlcg.4th single Yes
RANDU randlcg2.4th single Yes
CUPL randlcg2.4th single Yes
SuperDuper randlcg2.4th single Yes
Derive randlcg2.4th single Yes
BCPL randlcg2.4th single Yes
Turbo C++ randlcg2.4th single Yes
Turbo Pascal randlcg2.4th single Yes
ANSI-C randlcg2.4th single Yes
Simula BS2000 randlcg2.4th single Yes
Atari ST randlcg2.4th single Yes
C-RAND randlcg2.4th single Yes
APL randlcg2.4th single Yes
Tektronix randlcg2.4th single Yes
BSPR randlcg2.4h single Yes
EPM randlcg2.4th single Yes
Starting Forth randlcg2.4th single Yes
MWC v/d Horst randmwcp.4th single Yes
BSD random.4th single Yes
Microsoft random.4th single Yes
Doom randoom.4th single Yes
ACM V12N04 runiform.4th float No
TT800 tt800.4th float No
WELL512 well512.4th single No
Wichman Hill wichill.4th float No
ZX Spectrum zxrandom.4th float No

Table 12.3: 4tH randomizers

CHAPTER 12. STANDARD LIBRARIES 231

ALGORITHM LIBRARY COMBINE? SIZE SPEED

Slow sort slowsort.4th No 2.3 ∞

Stooge sort stoosort.4th No 2.7 >500,000
Cycle sort cyclsort.4th No 2.7 4100
Pancake sort pancsort.4th No 2.4 3600
Radix sort LSB radxsort.4th No 2.3 3200
Bubble sort bublsort.4th No 1.4 2500
Cocktail sort cocksort.4th No 2.6 2800
Cocktail sort
(improved)

coc2sort.4th No 2.0 1800

Simple sort simpsort.4th No 1.0 1800
Simple sort
(improved)

ismpsort.4th No 1.1 1300

Selection sort selcsort.4th No 1.2 1200
Insertion sort instsort.4th No 1.5 1500
Insertion sort
(improved)

ins2sort.4th No 1.7 1000

Binary Insertion
sort

binssort.4th No 3.2 10.5

Oyelami sort
(MDIS)

oyelsort.4th No 4.4 7.7

Circle sort circsort.4th No 2.0 10.5
Circle sort
(improved)

cir2sort.4th No 7.1 6.1

Bitonic sort bitosort.4th No 3.6 7.6
Merge sort mergsort.4th No 2.6 10
Odd-even merge
sort

odevsort.4th No 3.0 8.4

Tim sort (simple) timsort.4th No 5.1 9.8
Shell sort shelsort.4th No 2.6 4.3
Shell sort
(A033622)

shelsort.4th No 3.9 3.0

Shell sort
(A108870)

shelsort.4th No 4.1 2.6

Comb sort com2sort.4th No 3.2 1.4
Heap sort hea2sort.4th No 3.9 2.4
Binary Quick
sort

binquick.4th No 3.8 2.0

Intro sort intrsort.4th No 11.1 1.2
Quick sort qsort.4th No 3.9 1.2
Quick sort
(unsafe)

qsort.4th No 3.0 1.0

Table 12.4: 4tH sorting algorithms (address based)

CHAPTER 12. STANDARD LIBRARIES 232

ALGORITHM LIBRARY COMBINE? SIZE SPEED

Heap sort heapsort.4th Yes 3.0 3.0
Comb sort combsort.4th Yes 3.2 2.5
Selection sort sel2sort.4th Yes 1.3 3900
Bubble sort bub2sort.4th Yes 1.4 6000
Gnome sort gnomsort.4th Yes 1.3 6000
Gnome sort
(improved)

gno2sort.4th Yes 1.8 4200

Table 12.5: 4tH sorting algorithms (index based)

2OS TOS Word Result
fraction fraction V* fraction
fraction cell V* cell

cell fraction V* cell
fraction fraction V/ fraction

cell cell V/ fraction
cell fraction V/ cell

fraction fraction V+ fraction
fraction fraction V- fraction

Table 12.6: Fraction words

FAMILY FILE DE-
FAULT

SPEED ACCU-
RACY

SIZE ALGORITHM

FSIN fsinfcos.4th Y + + + Remez
fsincost.4th N + o + Taylor

FEXP fexp.4th Y + + o Remez
fexpt.4th N o o + Taylor
fexpflni.4th N ++ – – o Fixed point

FLN flnflog.4th Y + + o Remez
flnflogb.4th N - ++ + Brute force
fexpflni.4th N ++ – – o Fixed point

FERF ferf.4th N/A + o + Taylor, approx.
erf1.4th N/A o – o Approximation
erf.4th N/A – + – Chebyshev

GAMMA gamma.4th N/A + o o Fourier series
gammaln.4th N/A o + + Lanczos
fgamma.4th N/A o ++ + Spouge

Table 12.11: ANS-Forth functions

CHAPTER 12. STANDARD LIBRARIES 233

FILE Family FP stack ANS-FORTH

COMPLIANCE

SIZE PRECISION PORTING

TO

ANS-
FORTH

PORTING

ANS-
FORTH

fp0.4th Zen Unified None Small Low No No

fp1.4th Zen Unified ANS 1994
compatible

Small Low Yes Limited

fp2.4th Zen Unified ANS 1994
compilant

Medium Low Yes Yes

fp3.4th ANS Separate ANS 200x
compatible

Medium High Yes Limited

fp4.4th ANS Separate ANS 200x
compliant

Large High Yes Yes

fp5.4th ANS Separate ANS 200x
compatible

Large High Yes Limited

Table 12.12: Floating point configurations

FUNCTION WORD

Standard deviation st.stddev
Variance st.variance
Arithmetic mean st.amean
Geometric mean st.gmean
Harmonic mean st.hmean
Root mean square st.rms

Table 12.13: Statistical functions

Chapter 13

Special libraries

13.1 Infix formula translation1

Part of the elegance and simplicity of Forth comes from the use of Reverse Polish or postfix
notation. As such, there are no requirements for precedence rules, parentheses, or compli-
cated parsers. However, complicated mathematical and scientific equations that are often
written in infix notation can be tedious to convert to Forth code.

To simplify such a conversion, Julian V. Noble (one of the founders of the Forth Scientific
Library, see section 12.31) wrote a FORmula TRANslator2 to convert infix code to Forth
code. Later Wil Baden, using Noble’s concepts implemented a different version. For an
implementation in 4tH, Wil Baden’s version was chosen as it seemed simpler. The 4tH
version of this (opgftran.4th) consists of four main words:

FTRAN (a1 n1 – a2 n2) converts a text string from infix to postfix notation

FLOAT-MATH (–) sets FTRAN to produce floating point code as the output text

DOUBLE-MATH (–) sets FTRAN to produce double precision integer code as the
output text

SINGLE-MATH (–) sets FTRAN to produce single precision integer code for the
output text

To see how these work, consider the following code segment:

include lib/opgftran.4th

s" (12 - 2)*(6 - 3)" 2dup
float-math ftran type cr cr
double-math ftran type cr cr
single-math ftran type cr

Which results in the following output:

s" 12e" s>float
s" 2e" s>float F-
s" 6e" s>float

1Article written and contributed by David Johnson.
2Also known as ”Operator Precedence Grammar”.

234

CHAPTER 13. SPECIAL LIBRARIES 235

s" 3e" s>float F- F*
s" 12" s>double
s" 2" s>double D-
s" 6" s>double
s" 3" s>double D- D*
12 2 - 6 3 - *

As you can see, the floating point version of the output produces the appropriate floating
point code needed to do the calculation, while the single word version just produces the
vanilla 4tH output. Much more complicated expressions can be evaluated in which func-
tions and variables are also handled. Variables begin with a letter and are not followed by
a left parenthesis mark; whereas, function-calls are followed by parentheses, e.g.

h = max (h,0)

Expands to:

h @ 0 max h !

Note that the comma also serves as a comma operator. It allows you to separate two distinct
expressions, e.g.

f,|0>|

Expands to:

f @ 0>

Constants can also be handled by using embedded 4tH code. Line brackets (e.g., |embedded
4tH code|) are used for this, and all the text between the ’|’ brackets is taken as pure 4tH
code - and is not expanded.

For example, consider that PI has been defined as a floating point constant (or similar).
Then |PI| can be used in the expression to be evaluated as a constant.

include lib/opgftran.4th

81 string Eq$
s" Stress=G/(2*|PI|*(1-v)*r)*b*sin(theta)" Eq$ place

Eq$ count float-math ftran type cr cr
Eq$ count single-math ftran type cr

In the equation for Stress, the variables are G, v, r, b, theta and Stress, while PI
is a constant and sin is a function. These are expressed in the resulting output as:

G F@ s" 2e" s>float PI F*
s" 1e" s>float v F@ F- F* r F@ F* F/
b F@ F* theta F@ Fsin F* Stress F!

G @ 2 PI * 1 v @ - * r @ * /
b @ * theta @ sin * Stress !

The floating point version of the output uses “F!” and “F@” for the variables and assumes
that all functions should start with the letter ’F’. If this is not the case, the function is
renamed (e.g. sin vs. fsin). Likewise for ”double-math”.

However, the “single-math” version does not make such an assumption. Of course, PI is
treated the same in all cases - it’s embedded 4tH code.

CHAPTER 13. SPECIAL LIBRARIES 236

13.2 Evaluating infix formulas at runtime3

In the case in which the end-user my not wish to use RPN notation, the use of opgftran.4th
allows for the conversion to postfix notation. A simple example is a calculator where the
user can use either postfix or infix notation. The 4tH library already supplies an interpretive
format; as a minimal example (from dc.4th), consider:

include lib/zenfloat.4th
include lib/zenans.4th
include lib/fpin.4th
include lib/fpout.4th
include lib/evaluate.4th
include lib/opgftran.4th

: _+ f+ ;
: _- f- ;
: _* f* ;
: _/ f/ ;

: _. f. space ;
: let [char] ; parse ftran evaluate ;
: _quit quit ;

create wordlist
," +" ’ _+ ,
," -" ’ _- ,
," *" ’ _* ,
," /" ’ _/ ,
," ." ’ _. ,
," quit" ’ _quit ,
," let" ’ let ,
NULL ,

wordlist to dictionary \ assign wordlist to dictionary
\ The interpreter itself

: mycalc
single-math
begin \ show the prompt and get a command
." OK" cr refill \ interpret and issue oops when needed

while \ check for CTRL-D (or CTRL-Z)
[’] interpret catch if ." Oops " then

repeat \ repeat command loop
;

mycalc

Thus, the calculator could be used with infix notation such as:

let (2-1)/3; .

or with postfix notation such as:

2 1 - 3 / .

A more complete implementation is given by the fdc.4th example.

3Article written and contributed by David Johnson.

CHAPTER 13. SPECIAL LIBRARIES 237

13.3 Converting infix formulas4

Using the 4tH library and convert.4th, infix equations can be added to your source
code and converted before compiling. An example program to do this is pp4th.4th.

In Wil Baden’s original program, the single end-user word was “LET” based on same
word in BASIC. This idea is implemented in the preprocessor where a formula to is found
by parsing the text between a “LET” and “;” pair. For example, consider the following
program:

include lib/zenfloat.4th
include lib/zenans.4th
include lib/fpin.4th
include lib/fpout.4th
include lib/zenfsqrt.4th
[FLOAT] \ enable FP support

FLOAT array a FLOAT array b FLOAT array c
FLOAT array disc \ Used for discriminant

\ Example from
: FQUADRATICROOT (F: a b c -- r1 r2) \ Wil Baden’s OPG.TXT

c F! b F! a F! \ Pickup coefficients
LET disc = SQRT(b*b-4*a*c); \ Set discriminant
LET (-b+disc)/(2*a), (-b-disc)/(2*a); \ Put values on f-stack

;

(Solve x*x-3*x+2) LET FQUADRATICROOT (1,-3, 2) : F. F. cr

This program can be executed by using the preprocessor. For example (assuming that it is
named mytest.4pp) one could use:

pp4th -x mytest.4pp

Some more complicated examples are also given in the test1opg.4pp and test2opg.4pp
files.

13.4 Interpreters

Those of you who know Forth will be very surprised to see that 4tH doesn’t have a Forth
prompt. Some will be even more surprised to see that 4tH does have an interpreter. It is a
library routine, written in 4tH, that can easily be adapted and expanded. If you can write
4tH and maintain a table, you can use it. The next question you have to ask yourself, is
do you want your interpreter to be case sensitive or not? If it is, "id" will work, but "Id"
or "ID" will not. If you want it to be case sensitive, add the pragma casesensitive.
Example:

[pragma] casesensitive \ don’t ignore case
[needs lib/interprt.4th]

: _+ + ;
: _. . ;
: id ." This is 4tH" cr ;

Well, that isn’t very hard, is it. Now we add a table to all that:
4Article written and contributed by David Johnson.

CHAPTER 13. SPECIAL LIBRARIES 238

create wordlist
," +" ’ _+ ,
," ." ’ _. ,
," id" ’ id ,
NULL ,

Remember to terminate your table with "NULL"! Every entry consists of a string and
an address to your routine. What will happen is that your user enters the string and the
appropriate routine will be called. In this case, your interpreter has three commands: "+",
"." and "id". We’re a hair away from a real interpreter. We just have to assign our table to
the dictionary. These lines do the job:

wordlist to dictionary
refill 0= if abort then interpret

Now you can compile your application and run it. Enter:

45 12 + .

And it will print:

57

Yes, it’s just as easy as that! If you enter something the interpreter doesn’t recognize it will
try to convert it to a number and throw it on the stack. But you will also see that it exits
after you’ve entered that single line. That is because the interpreter is called just once. If
you change that to:

begin refill 0= if abort then interpret again

It will return with an new prompt. In that case it is wise to add a routine like:

: _quit quit ;

And add it to your interpreter, because otherwise your user will not be able to leave the
application. Note that you have to do all the error-checking. E.g., if your user calls "_+"
without putting sufficient items on the stack, 4tH will exit with an error. Of course, you can
catch any exceptions. ”INTERPRET” has a builtin word, ”NotFound”, that deals with any
unrecognized strings. You can define your own if you want to. The only thing you have to
do is to write a word which takes an address/count string and returns nothing, e.g.:

:noname 2drop ." I don’t understand this!" cr ; is NotFound

Or more elaborate:

:noname ." I don’t what ’" type ." ’ means!" cr ; is NotFound

You could even integrate it with the exception trapping, if you defined one:

1 constant #UndefName

:noname #UndefName throw ; is NotFound

CHAPTER 13. SPECIAL LIBRARIES 239

When a word is not found, a user exception is thrown. This example is taken from dc.4th:

: dc
begin \ main interpretation loop
." OK" cr \ print prompt
refill \ get input from use

while \ check for CTRL-D
[’] interpret \ interpret it
catch dup \ catch any errors
if \ if one occurred
ShowMessage \ show a message

else \ otherwise
drop \ drop the throw code

then
repeat \ loop back

;

You can still see the basic structure, but this one is much more advanced. You can also
remove the code from the interpreter that decodes numbers. In that case, if a word is not
found in the "dictionary" table it will exit immediately and report an error. Simply define
this pragma before including the library:

[pragma] ignorenumbers
include lib/interprt.4th

Note that only the use of integers is supported in these interpreters. If you want floating
point support you have to include ZEN floating point support5 before including interprt.4th,
either:

include lib/zenfloat.4th
include lib/zenfpio.4th
include lib/interprt.4th

Or:

include lib/zenfloat.4th
include lib/zenans.4th
include lib/fpin.4th
include lib/fpout.4th
include lib/interprt.4th

The difference between both form is that the former only supports floating point entry in
the scientific form. Consequently, the latter is more suited for humans like you and me.

Don’t let anybody ever tell you you can’t make interactive applications with 4tH. As you
have seen, you can with very little effort.

13.5 Menus

The menu is a well-known user interface on the console. Typically, it displays a list of
options from which the user can choose. 4tH allows you to create such menus with very
little effort. First, include the appropriate library file:

include lib/menu.4th

5See section 12.27

CHAPTER 13. SPECIAL LIBRARIES 240

Each option needs his own word. Note that an option - any option - can’t take nor leave
any items on the stack:

: helloworld ." Hello world!" cr ;
: calculate ." 1 + 1 = " 1 1 + . cr ;
: bye ." Goodbye!" quit cr ;

Now we have to define our menu. The first item is the title of the menu:

create MyMenu
," My beautiful program"

All subsequent entries are options. Each option consists of a description and an execution
token. The menu is terminated by ”NULL”:

create MyMenu
," My first little programs"
," Hello world" ’ helloworld ,
," 1 + 1" ’ calculate ,
," Exit" ’ bye ,
NULL ,

Now all we have to do is to bind it to the main menu and run it:

MyMenu MainMenu
RunMenu

That’s it! But what if we want to nest menus? Well, a nested menu is simply an option
which opens up a new menu. For each additional menu we need to do two things. First,
define a variable:

variable NextMenu

The variable will hold the address of the menu table you will declare later on. Second,
define a word that allows us to enter the menu:

: >NextMenu NextMenu >Menu ;

That particular word is needed when we add an extra option to the main menu, which gives
the user access to the sub menu we’re about to define:

create MyMenu
," My first little programs"
," Hello world" ’ helloworld ,
," 1 + 1" ’ calculate ,
," More programs" ’ >NextMenu ,
," Exit" ’ bye ,
NULL ,

Next, we have to define the sub menu itself:

create MyNextMenu
," More little programs"
," Bottles of beer" ’ bottlebeer ,
," FooBar" ’ foobar ,
," Return to main" ’ >MainMenu ,
NULL ,

CHAPTER 13. SPECIAL LIBRARIES 241

Hey, where did ”>MainMenu” come from? Well, it’s part of the library, so it’s always at
your disposal. And it’s included in this menu, because otherwise the user would be stuck
in this menu and wouldn’t be able to return to the main menu. Finally, you have to add the
menu by feeding the table and the variable you declared to ”AddMenu”:

MyNextMenu NextMenu AddMenu

Done! Next time you execute ”RunMenu”, you’ll see have an extra option giving you
access to the sub menu you just created. BTW, You can have as many menus as you like
and can nest them as deep as you want.

Another nice feature is that when an error occurs during execution, the menu will display
the appropriate message and simply return. In other words, it won’t bomb out, no matter
how bad a programmer you are.

13.6 Finite state machines6

Some tasks are easy to specify, but hard to program procedurally. Consider the task of
accepting numbers from the keyboard. An unfriendly program lets the user re-enter the
entire number because he made a small error. A friendly program, by contrast, filters the
input so small errors are automatically corrected. For example, a number input routine that
only allows signed decimal numbers. Decimal points, numerals and leading signs are all
legal, but no other ASCII characters (including spaces) will be recognized.

If you try writing a single routine to ’EMIT’ or ’DROP’ a key according to these rules
and you will find that there are just too many conditions for comfort. A test for each of
the three classes of acceptable input, and tests for whether a sign or a decimal point have
already been received.

The first state tests for all three possibilities, the second for two, and the last for only one
(0-9). Is there a simple way to program that clearly? Yes, instead of nesting words within
each other we can pass control as states on the data stack. In this context a state is simply an
execution token, which when executed leaves another state on the stack for each possible
exit condition. The program is simply a loop which continuously executes states.

Several states are identical in the tests made and actions taken, differing only in the state to
be executed next. We need to be able to define the action to be taken and the transition to
be made separately. The number returned can be used as an index into a two-dimensional
array holding the action to be taken and the index of the state to be executed next. Well,
this is what we call a Finite State Machine (FSM). It is very easy to define an FSM in 4tH.

First, the include file. In order to make this pig fly, we also have to include another file,
since we will be using its definitions later on:

include lib/fsm.4th
include lib/row.4th

Second, you have to declare an array large enough to hold the FSM and its header infor-
mation. We have three states and four possible inputs. Each entry requires two cells and
finally we have to take the overhead into account:

3 4 * 2 * fsm.head + array fixed.pt

6Part of this section is based on an article in Forthwrite UK by Jenny Brien.

CHAPTER 13. SPECIAL LIBRARIES 242

Ok, But before we can define our FSM, we have to create the execution tokens. These tiny
definitions do all the hard work:

:token (drop) drop ;
:token (emit) emit ;

And these take care of the transitions to another state:

:token >0 0 ;
:token >1 1 ;
:token >2 2 ;

Now we can setup the FSM itself by declaring the number of classes (its width) and the
array that holds it. Note the use of the word ”WIDE” is mandatory:

4 wide fixed.pt fsm
\ input other || digit || - sign || decimal point
\ state ---
(0) (DROP) >0 || (EMIT) >1 || (EMIT) >1 || (EMIT) >2 ||
(1) (DROP) >1 || (EMIT) >1 || (DROP) >1 || (EMIT) >2 ||
(2) (DROP) >2 || (EMIT) >2 || (DROP) >2 || (DROP) >2 ||

That’s all! Before you can use an FSM, you first have to activate it and set the initial state.
Note that upon definition the FSM already is activated with state zero, but is a good habit
to explicitly initialize it:

fixed.pt to fsm.current
0 fsm.state !

We only have to transform the character to the appropriate class in order to make this baby
fly:

0 enum ’other’ enum ’digit’ enum ’sign’ constant ’point’

create categorize
char 0 , ’digit’ ,
char 1 , ’digit’ ,
char 2 , ’digit’ ,
char 3 , ’digit’ ,
char 4 , ’digit’ ,
char 5 , ’digit’ ,
char 6 , ’digit’ ,
char 7 , ’digit’ ,
char 8 , ’digit’ ,
char 9 , ’digit’ ,
char + , ’sign’ ,
char - , ’sign’ ,
char . , ’point’ ,
char , , ’point’ ,
NULL ,

does>
2 num-key row if cell+ @c else drop ’other’ then nip

;

Time to execute, which is hardly rocket science either:

CHAPTER 13. SPECIAL LIBRARIES 243

s" bad-345.rubbish4467invalid"
begin
dup

while
over c@ dup categorize
fsm.run
chop

repeat 2drop cr

Mission accomplished. Note you can define as many FSMs as you need. If you want to
switch between them just activate them before use. Since the state is part of the FSM, it
will remain unchanged between calls.

13.7 Virtual memory

Although computers have lots of memory nowadays, you may find yourself in a situation
where you don’t have enough memory to cater for your needs. In that case you may resort
to using 4tH’s virtual memory library.

4tH’s virtual memory library uses block files, so you may need to create one before you
can use it. Since block files are character-oriented you need to include another library if
you need numerical data:

include lib/vmem.4th
include lib/ncoding.4th

That’s all so let’s define some variables and open the block file we created previously:

variable n1 nell vallot latest ! does> paging ;
variable s1 32 vallot latest ! does> paging ;
variable s2 128 vallot latest ! does> paging ;
variable s3 512 vallot latest ! does> paging ;
variable s4 512 vallot latest ! does> paging ;
s" vmemtest.scr" open-blockfile

When setting this up, you have to take three things in consideration:

1. Although it isn’t required, you’d better define virtual memory variables in order, from
the smallest to the largest;

2. The size of a virtual memory variable may not exceed "B/BUF" address units;

3. You have to make sure that all data fits in the block file. Take into consideration that
no variable can span two blocks, so there’ll be some overhead. The easiest solution
is not to take any risks and simply oversize it - disk space is relatively cheap.

Now you can access them like any other variable:

2960 n1 n! &
s" This is a virtual memory string" s1 place &

It looks (almost) completely normal, doesn’t it? Except for that ampersand, of course. This
ampersand has to be added every time you write to a virtual memory variable. It signals to
the underlying block management system that the block is now "dirty". If you think that’s
too cumbersome for your taste, you may adopt another solution - it’s not that complicated.

Reading a variable is no problem at all: do as you’ve always done:

CHAPTER 13. SPECIAL LIBRARIES 244

n1 n@ . s1 count type cr

And what about arrays? Well, first of all they have to be character based. And they’re
restricted to "B/BUF" address units. Or are they? As a matter of fact, they don’t - but they
do need some special treatment.

First of all, you have to think of the element size, which must be a power of two and may
not exceed "B/BUF" address units. Second, you need to know how many rows you require.
Now we can define it:

64 constant /row
80 constant #row
variable a1 20 nells vallot latest !
does> swap nells +paging ;

variable a2 /row #row * vallot latest !
does> swap /row * +paging ;

So "a1" is an integer arrays and "a2" is a string array. So far, so good. But what have we
defined at the ’DOES>’ part? Well, to address an array we’re going to write:

5 a1 10 a2

Which will return the addresses of the sixth element of "a1" and the eleventh element
of "a2" - we’re counting from zero. Consequently, we pass the element number and the
address of the array to the ’DOES>’ part of the definition.

That’s were the ’SWAP’ comes in, since that one puts the element number on top, which
we multiply with the element size to get the offset of that specific element in the array.
Then we pass the whole bunch to "+PAGING". That’s where the magic begins! If you e.g.
prefer a more FSL-like array, now you know what to do..

The same rules apply here, if you want to write to a variable don’t forget the ampersand:

2960 5 a1 n! &
s" This is a virtual memory string" 10 a2 place &

And you can just as easily retrieve it:

5 a1 n@ . 10 a2 count type cr

That’s all! When you’re done, you’ll have to close your blockfile, of course. But that ain’t
too tricky:

close-blockfile

Will do just fine. Tip of the day: there is also a preprocessor library7 which supports this
virtual memory. Not only is it far more efficient, it also allows for much cleaner code.

7See section 15.1.

CHAPTER 13. SPECIAL LIBRARIES 245

13.8 Triple numbers

Sometimes you need to handle integers so big, they won’t even begin to fit in a double
number. Well, not all is lost - 4tH offers triple numbers as a last resort. But don’t expect a
nice and clean wordset, it is more like a toolbox. We’ll tell you here how to use it.

First you have to include the appropriate library:

include lib/triple.4th

This gives you access to triple word arithmetic and comparison words. If you want to enter
triple length words, you need this one:

include lib/totriple.4th

And if you want to print a full triple word number, this one comes in handy:

include lib/trisharp.4th

Both I/O libraries will automatically load triple.4th.

BTW, you get what the name implies: facilities to construct your own triple word numeric
output words. You won’t find things like "T." or "UT.R" - you want anything like that,
you’ll have make them yourself.

Finally, you might want to include 3dup3rot.4th, because that one provides three item
stack operators like "3SWAP", "3DUP", etc. But if you already loaded trisharp.4th,
you got that one automatically anyway.

Now we’re loaded and ready. First, let’s enter a triple number:

s" -295147905179352825855" s>triple

Now that’s easy isn’t it? If you want to convert a double number to a triple, you’ll have to
do some work, e.g.

0 constant ud>t
s" 4294967295" s>double ud>t

Adding or subtracting them is easy enough, just use "T+" or "T-". However, when you
want to divide or multiply them, you will be confronted with a myriad of words like "UT*",
"MT*" and "TU*" and nothing as simple as "T*".

The point is, that calculating the triple result of these operations becomes harder and harder
each time a cell is added in order to increase the range of an integer. The best advice I can
give you is to study them carefully and pick the most appropriate word for your particular
situation.

If you want to print a triple word, you will have to put some work into it. Yes, the complex-
ity here increases as well - e.g. setting a triple number up for signed output is so complex,
we defined a special word for it, "(TSIGNED)". So if you want the triple word equivalent
of "D.", this is it:

: t. (tsigned) <t# t#s tsign t#> type space ;

The reason we’re not holding your hand here all the time is, that you will rarely need triple
word precision - and if you do, you need to know 4tH inside out already in order to avoid
errors and bugs. Most likely, you won’t need all of the functionality of the triple word
libraries - that’s why we kept it lean.

CHAPTER 13. SPECIAL LIBRARIES 246

13.9 Timers

There is a very low level word in 4tH that keeps track of time. It has several uses. Like
a timer that measures how long certain operation takes, like the execution of a colon-
definition ("DO-SOME-WORD" in this case):

time do-some-word time
swap -
." Do-Some-Word took " . ." seconds." cr

There is a somewhat more elaborate library member that does it all for you:

[needs lib/timer.4th]

timer-reset
do-some-word
.elapsed

This always prints the number of seconds that have elapsed. If you want to create your own
display, you can define one easily:

[needs lib/timer.4th]

:noname <# # 6 base ! # decimal 58 hold # #> type ." mins" ;
is timer-stop

You define ”TIMER-STOP” after inclusion of ”time.4th”, but before the first usage of
”.ELAPSED”.

13.10 Time & date

There is also an internal word in 4tH that will tell you what time and what date it is. With
a little trouble ;). That word is called ’TIME’ and it will tell you how many seconds have
gone since January 1st, 1970. That is the POSIX time format, which probably is of little
use to you. However, combined with the appropriate library you can find out how late it is
right now:

[needs lib/time.4th]

now ." hours:" . ." minutes:" . ." seconds:" . cr

Note that it doesn’t know about daylight-saving! It does know about timezones, which may
be neccesary on some systems. You can determine your timezone by looking at an email
message from a local friend. It will probably say somewhere:

Date: Mon, 25 Feb 2002 22:28:59 +0100 (CET)

The ’+0100’ means that you’re in timezone CET, which is one hour later than GMT. If it
said:

Date: Sun, 16 Dec 2001 02:19:40 -0800 (PST)

CHAPTER 13. SPECIAL LIBRARIES 247

This indicates that you’re in timezone PST, which is eight hours earlier than GMT. In that
case ’tz’ would be:

-8 3600 * +constant tz \ Pacific Standard Time

If you need it, define it accordingly before the inclusion of time.4th. There are also
several words that will allow you to convert any POSIX time:

time posix>time . . . cr

Which will return the number of seconds (TOS), the number of minutes and the number of
hours. ”POSIX>JDAY” will convert any POSIX time to a Julian day. The day of the week
is another thing you can easily calculate:

[needs lib/time.4th]

: Weekdays
dup 0 = if drop s" Monday" exit then
dup 1 = if drop s" Tuesday" exit then
dup 2 = if drop s" Wednesday" exit then
dup 3 = if drop s" Thursday" exit then
dup 4 = if drop s" Friday" exit then
dup 5 = if drop s" Saturday" exit then
dup 6 = if drop s" Sunday" exit then

;

today weekday Weekdays type cr

By the way, didn’t you hate the way we had to define "Weekdays"? Ugly, isn’t it? Well,
there is a better way to do it. You’ll learn that in the next chapter (see section 12.19)! You
can also print the full date:

[needs lib/time.4th]

today ." year:" . ." month:" . ." day:" . cr

Just don’t ask me how this thing works, Everett F. Carter figured this one out. ”TODAY”
does the easy work. ”JDATE” converts the Julian day to the Gregorian date. There is also
a way to convert a Gregorian date to a Julian day, called ”JDAY”:

[needs lib/time.4th]

26 02 2002 jday 64 - jdate
today ." year:" . ." month:" . ." day:" . cr

This can be quite handy if you want to calculate which date it was 64 days ago. ANS-Forth
also defines a word that does it all called ”TIME&DATE”. This word throws seconds,
minutes, hours, day, month and year (TOS) on the stack, but always returns GMT:

[needs lib/ansfacil.4th]

time&date cr

And finally, we even got a word that returns the date of easter:

[needs lib/easter.4th]

2005 easterSunday ." year:" . ." month:" . ." day:" . cr

Well, tell me, isn’t that kind of neat?

CHAPTER 13. SPECIAL LIBRARIES 248

13.11 Tokenizing strings

Sometimes you want to split up a string in several different parts. This is called ”tokeniz-
ing”. Doing it with 4tH is (as usual ;-) quite easy. Just include tokenize.4th. Now
you got several words to get what you want. tokenize.4th creates a deferred word8

called ”IS-TYPE”. It decides whether a character is of a certain type. In this example, we
just want to know whether it is a lowercase ’a’:

include lib/tokenize.4th
:noname [char] a = ; is is-type

Now it’s time to play ball:

s" 01234aBcDe01234" scan> type cr

”SCAN>” will now skip all characters unless it is an ’a’. When it is found, it stops and
returns the remainder of the string:

aBcDe01234

Yes, ”SCAN>” starts at the beginning of the string. But there is also a word that starts at
the end of the string:

s" 01234aBcDe01234" scan< type cr

It returns a different result too:

01234a

And what about the rest of the string? Well, that is discarded. But if you need it, there is
also a word that just splits up the string:

s" 01234aBcDe01234" split> type cr type cr

So, ”SPLIT>” returns two strings:

01234
aBcDe01234

And of course, he’s got a little brother that works the other way around:

s" 01234aBcDe01234" split< type cr type cr

”SPLIT<” returns two strings too:

01234a
BcDe01234

8See section 11.7.

CHAPTER 13. SPECIAL LIBRARIES 249

That was quite easy. But what if you want to find the first non-digit? That’s what we
got ”SKIP>” for! ”SKIP>” skips all characters of a certain kind. We’ve already seen
how we can distinguish characters in section 8.26. So in this case we just got to include
istype.4th and assign ”IS-DIGIT” to ”IS-TYPE”:

include lib/tokenize.4th
include lib/istype.4th

’ is-digit is is-type

s" 01234aBcDe01234" skip> type cr

”SKIP>” returns a single string:

aBcDe01234

And he has a counterpart too:

include lib/tokenize.4th
include lib/istype.4th

’ is-digit is is-type

s" 01234aBcDe01234" skip< type cr

May be this result will surprise you, although it is completely correct:

01234aBcDe

What exactly did we ask for? We wanted the first non-digit, starting from the end. ’e’ is
the first non-digit, so ”SKIP<” is completely correct.

13.12 Regular expressions9

Regular expressions (also called ”regex”) represent a way to identify patterns in a text.
They can be used to search for patterns. You can define simple ones in 4tH. They don’t
even have to take up too much code. The library tre.4th for instance, only supports the
metacharacters ”*” and ”.”.

In regular expression syntax, a dot means “any single character.” So the regular expression
”b.b” will match “bib”, “bob”, “brb”, or “bub". It will also match two b’s with a space or
a tab between them; the dot matches these “whitespace” characters also. The star means
“zero or more of the previous character.” So the regex ”Bb*” will match “B”, “Bb”, “Bbb”,
“Bbbb”, and so on. (Note that you must have the capital B, or the match will fail; the B
must match before b* can try to). So, with library tre.4th you can define these queries:

s" aa" s" a*" match-reg . cr
s" ab" s" .*" match-reg . cr
s" aab" s" c*a*b" match-reg . cr

You can do some pretty sophisticated matching with these two already. If that isn’t enough,
you may require kpre.4th. That one was originally written by Brian W. Kernighan and
Rob Pike. It supports all the metacharacters listed in table 13.1.

9Part of this text is derived from http://http://misc.yarinareth.net/regex.html by Dorothea Salo under the ”Cre-
ative Commons Attribution 3.0 United States License”.

CHAPTER 13. SPECIAL LIBRARIES 250

META CHARACTER MEANING

. Matches any single character.
^ Matches the starting position

within the string.
$ Matches the ending position of the

string or the position just before a
string-ending newline.

* Matches the preceding element
zero or more times.

? Matches the preceding element
zero or one time.

+ Matches the preceding element one
or more times.

Table 13.1: KPRE supported metacharacters

The question mark means “zero or one of the previous character.” So the regex ”Bb?” will
match “B” (one capital B, zero lowercase b) or “Bb” (one capital B, one lowercase b). The
plus means “one or more of the previous character.” So the regex ”Bb+” will match “Bb”,
“Bbb”, “Bbbb”, and so on, but will not match “B” by itself. A few other characters have
special meanings in a regex:

• The ^ character, if it appears at the start of a regex, means “at the beginning of a
document.”

• The $ character, if it appears at the end of a regex, means “at the end of a document.”

These are a few of the expressions you can define with kpre.4th:

s" 0,9" s" ^0,?9$" match-reg . cr
s" 0:9" s" ^0,?9$" match-reg . cr
s" aaaaaabac" s" ab*a$" match-reg . cr
s" abbd" s" ab*d$" match-reg . cr

You might exclaim ”but where are my bracket expressions”. Rightly so, but we don’t have
’em. Instead we have predefined (non-standard) character classes. Regex engines allow
you to use “character classes” that narrow a search to specific collections of characters.
Think of it as a dot, but more specific.

In 4tH, character classes are prefixed with a percent sign. E.g. ”%_” is about equivalent to
”\s” and ”%&” approximates ”\w”. But there is more, as you can see in table 13.2.

CHARACTER CLASS EQUIVALENT VIM

%9 [0-9] \d
%a [a-z] \l
%A [A-Z] \u
%# [A-Za-z] \a
%& [A-Za-z0-9] \w
%_ [\x00-\x20] _s

Table 13.2: KPRE character classes

With character classes, it is very easy to e.g. recognize a floating point number:

CHAPTER 13. SPECIAL LIBRARIES 251

s" -1234.56" s" -?%9+\.?%9*$" match-reg . cr
s" -1234" s" -?%9+\.?%9*$" match-reg . cr
s" 1234.56" s" -?%9+\.?%9*$" match-reg . cr
s" 1234" s" -?%9+\.?%9*$" match-reg . cr

But what if you want to find an actual period (or an actual plus, or an actual question mark,
or an actual star) in a regular expression? The backslash signals to a regular expression that
the following character, if it has a special regular expression meaning, should be interpreted
literally, not in its special regex sense. So ”.” by itself means “any single character,” while
”\.” with the backslash means an actual period. This works for any character that has
a special meaning in a regular expression: ”*” means an actual star, and ”\+” means an
actual plus. Of course, the backslash works on itself, too; to search for a literal backslash,
a regex pattern must contain ”\\” .

The disadvantage of regular expression is that you have to drag along the entire pattern
matching engine, which is written in high level code. Advantage is that you may change
the expression you want to evaluate at runtime - you can even enter it at the prompt if you
like.

13.13 String pattern matching

If that isn’t enough for you, 4tH also offers a small library for string pattern matching. Most
regular expressions are static, that means they’re not entered at runtime, but hard-coded into
the program. That means you’re dragging along the entire engine just to parse a string. 4tH
offers almost the same possibilities, but you have to do a little more effort. Let’s say I want
to see if a string contains my first name:

include lib/chmatch.4th

: myname?
s" Hh" char-match >r
s" Aa" char-match r> and >r
s" Nn" char-match r> and >r
s" Ss" char-match r> and

;

s" Hans is the creator of 4tH" myname? . type cr

Of course, there are easier ways to do this, but you’ll see it works. ”CHAR-MATCH” will
return a ”true” value if one of the characters specified matches and a ”false” value if it
doesn’t. E.g.:

s" Hans" s" Hh" char-match

Will return a ”true” value and ”ans”. On the other hand:

s" Hans" s" Aa" char-match

Will return a ”false” value and ”Hans”. Now you understand how it works: ”MYNAME?”
chops off character by character until it is done. But what it I want to check whether ”Hans”
appears in the middle of a string? Easy:

CHAPTER 13. SPECIAL LIBRARIES 252

include lib/chmatch.4th

: myname?
s" Hh" skip-until
s" Hh" char-match >r
s" Aa" char-match r> and >r
s" Nn" char-match r> and >r
s" Ss" char-match r> and

;

s" In October 1994 Hans created 4tH" myname? . type cr

This will wind the string upto the first ”H” and then start scanning. But what if there’s
another ”H” in the string? Again, you can handle that:

include lib/chmatch.4th

: myname?
begin
s" Hh" skip-until
s" Hh" char-match >r
s" Aa" char-match r> and >r
s" Nn" char-match r> and >r
s" Ss" char-match r> and >r
dup 0<> r@ 0= and

while
r> drop

repeat r>
;

s" The 4tH compiler was created by Hans in 1994" myname? . type cr

You want to know whether it was at the very end of the line? Yes, you can:

include lib/chmatch.4th

: myname?
begin
s" Hh" skip-until
s" Hh" char-match >r
s" Aa" char-match r> and >r
s" Nn" char-match r> and >r
s" Ss" char-match r> and >r
dup 0<> r@ 0= and

while
r> drop

repeat r> over 0= and
;

s" The 4tH compiler was created by Hans" myname? . type cr

Let’s try something more difficult now, let’s see if we can parse a number. The first part is
very easy:

include lib/chmatch.4th

s" 0123456789" sconstant ’digits’
s" 0endshere" ’digits’ char-match . type cr

That works, the correct flag is returned and the string ”endshere” is returned. But a number
may be of arbitrary size, how do we do that? Simple, after the first number we can simply
discard any trailing digits:

CHAPTER 13. SPECIAL LIBRARIES 253

include lib/chmatch.4th

s" 0123456789" sconstant ’digits’

s" 0123456789endshere"
’digits’ char-match >r
’digits’ skip-while
r> . type cr

Still, it returns the correct flag and the correct string. But a number may also come with an
optional sign. Now that complicates life, does it? No it doesn’t:

include lib/chmatch.4th

s" 0123456789" sconstant ’digits’
s" +-" sconstant ’sign’

s" -123456789endshere"
’sign’ char-match drop
’digits’ char-match >r
’digits’ skip-while
r> . type cr

What? Aren’t we evaluating the flag? No, why should we. The sign is optional, isn’t it?
Note that ”CHAR-MATCH’ not only sets a flag, but also discards the character matched.
So it it isn’t a sign, it will simply remain there and be caught by the digit test. But we’ll take
it a step further. What about a decimal point? A number may come with one or without
one. And it may appear anywhere in the number. Now how we do that?

include lib/chmatch.4th

s" 0123456789" sconstant ’digits’
s" +-" sconstant ’sign’
char . constant ’point’

s" -123456.789endshere"
’sign’ char-match drop
’digits’ char-match >r
’digits’ skip-while
’point’ char-equal drop
’digits’ skip-while
r> . type cr

When parsing stops, because the program reached the point where there are no more digits,
we simply check for an optional decimal point. If it is there, we continue checking for
digits. If it isn’t there, parsing stops. Note that the check for trailing digits fails too, but
you may make it optional if you want, it won’t change the result:

include lib/chmatch.4th

s" 0123456789" sconstant ’digits’
s" +-" sconstant ’sign’
char . constant ’point’

s" -123456.789endshere"
’sign’ char-match drop
’digits’ char-match >r
’digits’ skip-while
’point’ char-equal if ’digits’ skip-while then
r> . type cr

CHAPTER 13. SPECIAL LIBRARIES 254

Note that ”CHAR-EQUAL” performs the same function as ”CHAR-MATCH”, it’s only
more efficient if there is only one character to compare10. Our program still doesn’t allow
for ”-.45”. Yes, you can add an optional test for that, but we don’t want ”-.45.67” to
succeed. That one can be handled too:

include lib/chmatch.4th

s" 0123456789" sconstant ’digits’
s" +-" sconstant ’sign’
char . constant ’point’

s" -.789.000endshere000."
’sign’ char-match drop
’point’ char-equal >r
’digits’ char-match r> swap >r >r
’digits’ skip-while
r> 0= if ’point’ char-equal if ’digits’ skip-while then then
r> . type cr

Now the test will only be performed if the previous test failed, which is exactly what we
want. Try it. Where ever you place the dot, it won’t make any difference: it will always
return ”.000endshere000.”. Unfortunately, that also applies to:

s" -0..000endshere000."

If you require that a decimal point is always followed by a digit, simply enforce it:

include lib/chmatch.4th

s" 0123456789" sconstant ’digits’
s" +-" sconstant ’sign’
char . constant ’point’

s" -0..000endshere000."
’sign’ char-match drop
’point’ char-equal >r
’digits’ char-match r> swap >r >r
’digits’ skip-while r> 0=

if
’point’ char-equal
if
’digits’ char-match r> and >r
’digits’ skip-while

then
then

r> . type cr

Note this doesn’t change the string returned (up to the trailing point it was still a valid
number), but it does change the flag: this is not a valid number!

I hope you see that 4tH can do some pretty sophisticated pattern matching with very little
effort without dragging along an entire regular expression engine, either in code or in the
compiler itself.

10If you want to speed up a single character search, scanskip.4th offers the words you’re looking for.

CHAPTER 13. SPECIAL LIBRARIES 255

13.14 Wildcard pattern matching

If you feel that regular expressions are a bit too complex for your taste, you can also use
wildcards for basic pattern matching. First you have to include it:

include lib/wildcard.4th

Or:

include lib/wildcrdr.4th

For the recursive version, which is a bit shorter. You’ve probably used wildcards before.
It is very easy. A ”*” stands for zero or more characters and a ”?” stands for a single
character. E.g. if you’re looking for a line that begins with a date in the 21st century, then
the word ”INVOICE” and finally ends with a name, you could try this:

mystring count s" 20??-??-?? == INVOICE == *" match-wild

”MATCH-WILD” returns true if the string matches and false if the string doesn’t match,
which is different from ”COMPARE”. Both strings are consumed, so save their address/count
pair if you need them later on. Note that ”MATCH-WILD” is case sensitive, so if you need
a case insensitive comparison you will have to convert them first.

Finally, ”MATCH-WILD” is faster than regular expressions, but also less precise. E.g.
”gr?y” will not only return ”grey” and ”gray”, but also ”groy”; ”reg*exp*” will not only
return ”regular expressions”, but also ”registered express mail”.

13.15 Escape characters

Sometimes you need a string with embedded control characters. You could try to patch
them into your sourcecode, but that is usually not a good idea. You could also patch them
into a variable, but that is cumbersome. 4tH offers a word that will allow you to use the
control characters listed in table 13.3.

ESCAPE CHARACTER MEANING

\a Bell
\b Backspace
\e Escape
\f Formfeed
\l Linefeed
\n Linefeed
\q Quote (”)
\r Carriage return
\t Tab
\v Vertical tab
\z Null character

Table 13.3: Supported control characters

Using this facility is quite simple:

CHAPTER 13. SPECIAL LIBRARIES 256

include lib/escape.4th
s" \tThis is the \qC:\\4tH\q directory” s>escape type cr

Which will print:

This is the "C:\4tH" directory

Note that other escaped characters are printed ”as is”, like the backslash in this example.
If you need even more flexibility, we have another card up our sleeve. The only catch is
you’ll have to know the ASCII code of the characters you want to insert, either in binary,
octal, decimal or hex:

include lib/embed.4th
s" %1001This is the&42C:\4tH#34$20directory" s>embed type cr

Which will also print:

This is the "C:\4tH" directory

• Every number prefixed with a ’%’ character is interpreted as a binary ASCII code;

• Every number prefixed with ’&’ character is interpreted as an octal ASCII code;

• Every number prefixed with a ’#’ character is interpreted as a decimal ASCII code;

• Every number prefixed with a ’$’ character is interpreted as a hexadecimal ASCII
code.

How much flexibility do you need? Of course, all this flexibility comes at a price. The
strings are not expanded at compile-time but at run-time, so it will cost you a little more
space and a little more time compared to other string literals.

13.16 Internationalization

It’s a small world after all - but with a lot of languages. Less than 200 of them have
been assigned a unique code in the ISO 639-1 standard, last time I looked. You may think
that everybody speaks English, but that’s not the case. In the EU alone, less than half the
population is able to communicate in that language11.

You may not rejoice in the knowledge that you may have to make - and maintain - three
or more different versions of the same program. And if you decide to use conditional
compilation to solve that problem, it won’t turn out to be one of the prettiest programs on
earth. But there is a solution. Use the i18n library:

include lib/i18n.4th

The next thing you’ll have to do is define what languages you will be supporting. Just
follow the two-letter ISO 639-1 standard - and be sure to be using lower case:

create languages ," en" ," nl" ," de" ," fr"

11https://en.wikipedia.org/wiki/Languages_of_the_European_Union

CHAPTER 13. SPECIAL LIBRARIES 257

You don’t have to name it ”LANGUAGES” - any name will do. But don’t forget its name,
you will need it later on, along with with the number of languages you support. Let’s make
4tH take care of that right after its definition:

here languages - constant #languages

So, now we have to let 4tH know about ’em:

languages #languages i18n.languages

But which language will we actually be using? Unix-like operating systems, such as Linux,
have an environment variable named $LANG or $LANGUAGE. You may feed that content
to the library. Or maybe you want to allow the user to select his language by issuing the
appropriate option at the command prompt like ”-l nl:fr” or something. As long as
it’s a colon delimited list, it’s fine. You decide.

Here we query the environment variable $LANGUAGE:

s" LANGUAGE" environ@ i18n.select drop to i18n.lang

”I18N.SELECT” will take a colon delimited list and return an index and a flag. If the flag
is zero, it has selected the default language, since there was no matching language. If the
flag is non-zero, it returned the matching language as an index.

Note you have to assign your choice to the predefined variable ”I18N.LANG”. There is
also ”I18N.SUPPORT” which takes a single two-letter ISO 639-1 and returns a flag and an
index - only if that language is supported. If not, you get that same zero flag and default
language index.

That ”default language” is known to the system as ”I18N.DEFAULT” - and always points
to the first entry, e.g. in this case:

create MSG.HACK
," User %USER% attempted to enter ’%HOST%’"
," Gebruiker %USER% probeerde ’%HOST%’ binnen te dringen"
," Angriffsversuch auf ’%HOST%’ von Benutzer %USER%"
," L’utilisateur %USER% a tenté d’entrer ’%HOST%’"

The default language is English. ”MSG.HACK” is what you would call ”the message
id” - and obviously every valid 4tH name will do here, so if you want to call it ”hack-
ing_attempt_by”, that’s fine.

Note the order of the messages matches exactly the order in which you defined the lan-
guages previously, i.e. the ”LANGUAGES” array. You may have noticed the placeholders
”%HOST%” and ”%USER%”. This allows you to switch the order of these placeholders
in the message, without any ill effects.

Of course, you will have to define them before use, using ”I18N.SET”:

s" root" s" USER" i18n.set \ set string parameter %USER%
s" 192.168.60.5" s" HOST" i18n.set \ set string parameter %HOST%

If you want to assign an integer number, you’ll have to use ”I18N.LET”:

15 s" ERR" i18n.let \ set numeric parameter %ERR%

CHAPTER 13. SPECIAL LIBRARIES 258

If you want to use a floating point number - or any other unlisted type - you’ll have to
convert it to a string first. A good thing about placeholders is that they retain their values
between calls, e.g. if you want to issue a warning on another system this user attacked, you
only have to change ”%HOST%”:

s" 192.168.60.8" s" HOST" i18n.set \ give parameter %HOST% another value

Ok, now we’re ready to generate the appropriate message:

MSG.HACK i18n.msg type cr \ expand the message and type it

Just feed the message-id to ”I18N.MSG” and it’ll return an address/count pair. The library
uses a fixed buffer to expand the message and when you generate another message, it’s
gone. The default size of the buffer will accommodate most messages, but if not - redefining
”I18N.MSGLEN” before you include the library will fix this:

256 constant i18n.msglen \ length of internal buffer

Although the solution is pretty robust - if I may say so myself - you might want to examine
”I18N.STATUS”. It will contain a negative value on error and a positive one if everything
is hunky dory. The positive value represents the number of substitutions that were made.

If you want to discard all placeholders and reset the entire system, simply issue ”I18N.RESET”.
If you want to exit the program, be sure to reset the system before leaving - even if it’s the
last thing you do:

i18n.reset \ shut the i18n subsystem down

Finally, a little piece of advise if you want to use placeholders that need translations them-
selves , e.g. months or weekdays: order them by language. The advantage is twofold. First,
it’s quite easy to add another language. Second, calculating the correct offset is a lot easier:

create day.name (day -- a n)
," Monday" ," Tuesday" ," Wednesday" ," Thursday" ," Friday"
," Saturday" ," Sunday"
," maandag" ," dinsdag" ," woensdag" ," donderdag" ," vrijdag"
," zaterdag" ," zondag"
," Montag" ," Dienstag" ," Mittwoch" ," Donnerstag" ," Freitag"
," Sonnabend" ," Sonntag"
," lundi" ," mardi" ," mercredi" ," jeudi" ," vendredi"
," samedi" ," dimanche"

does> i18n.lang 7 * th swap 0 max 6 min th @c count ;

Ok, let’s break this down. We know our current language - it’s in ”I18N.LANG”. We know
the number of weekdays - that’s seven. So we can easily calculate our primary offset by
calculating ”I18N.LANG” times seven. We got the correct language now. Then it’s time to
determine the correct position in this offset for the correct day, given we call it like:

5 day.name

First, we clip that value to size by moving the value within the zero to six range. Then we
add it to the offset we calculated before and get the address/count pair. We can feed that
result straight into ”I18N.SET”:

5 day.name s" DAY" i18n.set

Done! Oh yeah, before I forget: what if your message contains a ”%” sign? You simply
double it. Like this ”%%”. Big deal.

CHAPTER 13. SPECIAL LIBRARIES 259

13.17 Chinese characters

There are several encodings for Chinese characters, e.g. Unicode, GBK and Big5. As long
as the ASCII-7 range of characters is respected, 4tH is able to handle them. 4tH can even
convert between some of these encodings. The unicdgbk.4th file forms the centerpiece
of this functionality. Basically, it offers conversion between Unicode and GBK/2. Since it
is very large, it isn’t included automatically.

4tH offers conversion between UTF-8 and GBK/2 - and vice versa. GBK/2 offers about
7,500 characters. UTF-8 is more prevalent under Linux, while a GBK/2 derivate is more
prevalent under Windows. Using the UTF-8 to GBK/2 conversion couldn’t be easier:

include lib/unicdgbk.4th
include lib/utf8gbk2.4th

s" Some UTF-8 encoded Chinese characters"
utf8>gbk2 type cr

Note this is a destructive conversion. After this, your original string is gone. If you want
to preserve it, you have to save it first to another string variable. The string it returns is not
terminated, so if you’re converting a string variable this might be a good idea:

include lib/unicdgbk.4th
include lib/utf8gbk2.4th
64 string mystring

s" Some UTF-8 encoded Chinese characters"
mystring place

mystring count utf8>gbk2 >string

This ”in place” conversion is possible, because a GBK/2 encoding never requires more
space than an UTF-8 encoding. However, the opposite isn’t true, so depending to the size
of your original GBK/2 source string, you’ll need a larger UTF-8 buffer, e.g.:

include lib/unicdgbk.4th
include lib/gbk2utf8.4th
64 string myfirststring
128 string mysecondstring

s" Some UTF-8 encoded Chinese characters"
myfirststring place

myfirststring count mysecondstring 128 gbk2>utf8
>string mysecondstring count type cr

Note you don’t need any external libraries or programs to accomplish this. 4tH is all you
need.

13.18 Sequences

A sequence is a set of integers, strings or other sequences, which are packed into a dynamic
array. Creating sequences is quite easy, e.g.

CHAPTER 13. SPECIAL LIBRARIES 260

include lib/sequence.4th

{ 1 2 4 8 16 32 64 128 256 }
{ s" Hello" s" world" s” !" }s

Note that sequences are created in dynamic memory - so you will have to free them at one
time or another. It also means, that the previous example left two pointers on the stack: one
for the string sequence and one for the integer sequence.

You can free integer sequences with ”FREE”, but you’ll have to free a string sequence with
”SFREE”. Remember that, because I don’t want you to leak memory all over the place!
There is another way to create a sequence:

5 iota

Which will create a sequence with the numbers 0 up to 4. If you choose another number it
will create a sequence from 0 unto that number. Don’t forget that before these numbers are
turned into a sequence, they are stored on the stack. If you make your sequences too large
you will most likely exceed the stack capacity.

Now we got that all out of the way, what can you do with a sequence? Well, you can
perform actions on them. This one will print out all the numbers of the sequence:

{ 9 8 7 6 5 4 3 2 1 0 } dup [: . ;] each cr
free abort" Cannot free sequence"

It is as if every value in this sequence is input to the quotation, which issued to ”EACH”.
Hence, that value is printed. We can step up our game and use ”MAP!” - which not only
accesses the value, but writes back the result which is left after executing the quotation:

5 iota dup [: dup * ;] map!
dup [: . ;] each cr
free abort" Cannot free sequence"

Ok, this gets complex, let’s break it down:

• ”IOTA” produces a sequence with the numbers 0, 1, 2, 3 and 4;

• Each of this values is offered to the ”DUP *” quotation, which produces the results
0, 1, 4, 9 and 16;

• These values are written back to the sequence, replacing the original numbers;

• Now the sequence is offered to ”EACH” - which prints these numbers;

• And finally, the sequence is freed.

And finally, there is ”REDUCE!”. This word required a value on the stack and applies
the quotation to each value and the value on the stack. Hence, this quotation requires two
values. This one returns the sum of all the values in the sequence:

5 iota dup 0 [: + ;] reduce!
dup [: . ;] each cr
free abort" Cannot free sequence"

CHAPTER 13. SPECIAL LIBRARIES 261

So, the first time the quotation is encountered, there is a zero on the stack and a zero value
- which is added and amounts to zero. The second time there is a zero on the stack and a
value ”1” - which is added and amounts to ”1”. The third time there is a ”1” on the stack
and a value ”2” - which is added and amounts to ”3”. You catch my drift..

If you want to access a specific value, you can. It’s not much different from accessing an
array, as a matter of fact:

5 iota dup 3 nth ? cr
free abort" Cannot free sequence"

Note ”NTH” doesn’t return a value, but an address - if not it would be quite difficult to
store a value there. Like ”TH” indexes, ”NTH” indexes start at zero. So in this case the
value ”3” would be displayed.

You can also search sequences. If you’re looking for exact matches, ”INDEX” is your man:

5 iota 3 over index
stow nth ? cr
free abort" Cannot free sequence"

This one will - of course - return ”3”. If the index returned is bigger of equal to the length
of a sequence, the value was not found. If you need something more sophisticated, you
might try ”FIND”. This word simply applies a quotation to each value - and the first one
that renders true is the winner:

{ 9 8 7 6 5 4 3 2 1 0 } dup [: 5 < ;] find
stow nth ? cr
free abort" Cannot free sequence"

So, this one returns ”4” - which is the first number smaller than ”5”. Now, I know there is
one question left to answer: how do I get the length of a sequence? That ’s easy:

5 iota dup length . cr
free abort" Cannot free sequence"

That’s how you get the length of a sequence. If you’re not happy with the length, you can
set it according to your wishes. If you increase the length, additional elements are added
at the end, if you decrease the length, elements are removed from the end:

{ 9 8 7 6 5 4 3 2 1 0 } 4 set-length
dup length . cr
free abort" Cannot free sequence"

This poor sequence now consists of the elements ”9”, ”8”, ”7” and ”6”. Note that ”SET-
LENGTH” actually destroys your sequence and creates a new one - so it returns the address
of your new sequence, while the address of your old sequence is invalidated.

13.19 Managing INI files

An INI file is a plain ASCII file that is used to configure software. It was designed by Mi-
crosoft and dates back to the times of MS-DOS. However, you will find it as well nowadays
on Linux and Unix systems, because INI files are human-readable and simple to parse.

CHAPTER 13. SPECIAL LIBRARIES 262

It’s for that reason we chose to support them in 4tH. As a matter of fact, we created two
distinct libraries. The first and the most simple one just offers an interface to evaluate an
INI file.

It is quite simple. Let’s say you just want to store the values in the INI file in your program.
First you create a few words to achieve that goal. Note that values are presented to you as
strings and your word must consume them entirely:

include lib/inifile.4th

variable num1
16 string str1

: getnum1 number num1 ! ;
: getstr1 str1 place ;

Then you create a table with the following layout: first the section, then the key and finally
the execution token of the word that must process the value:

create myini
," config" ," number1" ’ getnum1 ,
," init" ," string1" ’ getstr1 ,
NULL ,

And finally you just send the name of this table and the filename (with path if required) to
"INIFILE". It will leave a true flag if an error occurred. That’s all!

myini s" myini.ini" inifile

However, if you want to create or modify an INI file, you need something more sophis-
ticated. It’s time for the INI file management library. Note that this piece of software is
highly dependent on dynamic memory, so if your program is already using the heap or if
you want to manage a really big INI file, you may want to increase the size of the heap(s).

But first, let’s define a new INI file. Of course, you do have to include the library:

include lib/inimanag.4th

Then you have to signal you want to define an INI file from scratch:

begin.inifile

Next, define a new section. Yes, you can do without, but I don’t think it is really neat:

s" Compiler" section.inifile

And now you can define your keys and values. Note, first the value then the key. Let’s not
forget we’re using Forth ;-)

s" 4tH" s" Name" keypair.inifile
s" 3.62.5" s" Version" keypair.inifile
s" Forth" s" Language" keypair.inifile

Of course, you can start a new section and add some more keys:

CHAPTER 13. SPECIAL LIBRARIES 263

s" Platform" section.inifile
s" Linux" s" Name" keypair.inifile
s" 4.1" s" Version" keypair.inifile

And when you’re finally done, you can save it to disk with a single line:

s" myfile.ini" put.inifile abort" Cannot write .INI file"
destroy.inifile

These are two distinct actions. The first line saves the file to disk. The second line removes
the INI file from memory. So yes, you can save your file preliminary and continue working
with it - as long as you don’t issue "DESTROY.INIFILE", of course.

Reading it back is just as simple:

inifile get.inifile abort" Cannot read .INI file"

Just don’t forget that both "PUT.INIFILE" and "GET.INIFILE" return a non-zero flag when
there’s any trouble. Ok, we got this thing in memory now, let’s make some changes:

s" Version" s" Platform" delkeypair.inifile
abort" Cannot delete key from named section"

That one deleted a key. It also returns a non-zero flag on error, e.g. because the key or the
section could not be found.

s" J.L. Bezemer" s" Author" s" Compiler" addkeypair.inifile
abort" Cannot add key to section"

This one adds a key to a certain section. You can also use it when defining an INI file, of
course, but you can save yourself a lot of typing by using "KEYPAIR.INIFILE" instead.

s" Hans Bezemer" s" Author" s" Compiler" set.inifile
abort" Cannot modify key in named section"

And of course, you can modify a value as well - initials are so formal. Finally, you can
write it to disk - we’ve seen that one before. Yes, you can also retrieve a value with this
library:

s" Author" s" Compiler" value.inifile

But you have to write your own handling of the string it returns (address and length). And if
that’s the only reason you’re using this library, you’re creating a lot of overhead and you’d
be better off with inifile.4th.

13.20 Extract, transform and load

"Extract, transform and load" is the name of one of the most used conversion methods.
First you rip the data from the source, then you manipulate it and finally you move it to
its destination. Well, although what we do is more appropriately called "Extract, load and
transform" you can apply the same principles when reading a .CSV file with 4tH. It is very
handy if you don’t know the exact layout of the file, but do have a header line with the
correct field names12. Of course, first thing you have to do is to include the library:

12See RFC 4180, section 2.3

CHAPTER 13. SPECIAL LIBRARIES 264

include lib/etl.4th

The data has to end up somewhere, so next thing to do is to define the layout and allocate
enough space for a record:

struct
16 +field Population
32 +field State
16 +field Capital

buffer: States

You know I prefer to define a word to parse a field13, so let’s do that now:

: field> [char] ; parse-csv csv> ;

Now the real fun starts. We have to make a table that maps the column header of the .CSV
file to the fieldname of the structure. On top of that, we have to determine if we want to
manipulate that field and how:

create Mapper
," Population" ’ Population , ’ >comma ,
," State" ’ State , ’ none ,
," Capital" ’ Capital , ’ >upper ,
NULL ,

Note our field is manipulated after it has been placed in the structure - not before. The
reason is simple. We don’t want to clobber our source record - which could easily happen
when a field expands.

You probably wonder where ">COMMA", "NONE" and ">UPPER" come from. Well,
these words manipulate our fields. They all take the address and length from their respective
fields and return nothing. E.g. "NONE" could easily be defined as:

: none 2drop ;

Next, 4tH needs to know how much lines there are in "MAPPER". Of course, you could
define:

3 constant #etl

But you could also let 4tH figure it out for you:

here Mapper 1+ - /fieldmap / constant #etl

Finally, we need to define the "transformation array" this library requires:

#etl /etl * array Transpose

Now we’re ready to rock ’n roll. Let’s read the header:

refill 0= abort" Cannot read header"
Transpose Mapper [’] field> read-header

13See section 9.23.

CHAPTER 13. SPECIAL LIBRARIES 265

Yes, we feed it the "transformation array", the mapping and an execution token to read a
field. That’s all. After it has executed, the address of the "transformation array" and its
actual length are on the stack and 4tH truly knows how to read your file. All you have to
do is call "READ-TUPLE" for each following line:

2dup States [’] field> read-tuple

"READ-TUPLE" takes four parameters: the address of the "transformation array", its
length, the address of the target structure and an execution token to read a field. That’s
all to need to read an entrire record. Note the first two stack items are provided by "READ-
HEADER".

You may be asking yourself why you should use this. Well, this library doesn’t care in what
order the fields are presented and simply ignores any superfluous ones. With this you are
immune to slight changes in the layout of your .CSV files. That’s why!

13.21 Writing spreadsheet files

4tH is able to write to a variety of spreadsheet formats, both proprietary and FOSS (see
table 13.4). All these formats are known to work with OpenOffice 3.x, Libreoffice 4.x and
MS-Excel 20xx. KOffice 1.x can read .ksp files. The interface is almost identical and
very straight forward:

• Open a spreadsheet file;

• Start writing at cell A1;

• If you’re finished, go to the next row;

• Write some more cells;

• All done, close the file.

Type Extension 4tH library Worksheets? Integers only?
XLS 2.1 Binary .xls msxls2-w.4th No Yes
FODS XML .fods oofods-w.4th Yes No
MS-XML XML .xml, .xlsx msxlms-w.4th Yes No
KSP XML .ksp koksp-w.4th Yes No
CSV CSV .csv csv-w.4th No No
HTML HTML .html html-w.4th No No

Table 13.4: Spreadsheet formats supported by 4tH

Let’s assume you want to write a flat Open Document Sheet. First you have to open the
file:

include lib/oofods-w.4th
s" mysheet.fods" FODSopen

It will return a flag, which is true when an error has occured. No, you don’t have to specify
it’s an output file - you can’t read it anyway. It won’t return a handle either, the library will
take care of that. Note that the moment you’ve successfully opened the file, it is active.
If you want to use another output file, you have to ’USE’ it first. And every time you’ve
written to your spreadsheet you have to repeat that procedure. Now, let’s handle any errors:

CHAPTER 13. SPECIAL LIBRARIES 266

abort" Cannot open spreadsheet"

Since flat Open Document Sheet supports different sheets, we have to open a worksheet
first:

s" Sheet1" FODSsheet

We’re ready to do business now. Let’s punch out a few labels. We’re starting in cell A1 and
continue with cell B1 and C1:

s" Label1" FODStype
s" Label2" FODStype
s" Label3" FODStype

Let’s continue with row 2 and write some data:

FODScr
1 FODS.
2 FODS.
3 FODS.

We move to row 3 and repeat the same procedure:

FODScr
100 FODS.
450 FODS.
325 FODS.

Finally, we finish the worksheet and close the file:

FODSend
FODSclose

A B C
1 Label1 Label2 Label3
2 1 2 3
3 100 450 325

Table 13.5: Example spreadsheet

That’s all! You got a spreadsheet like the one in table 13.5. Writing other formats is just as
easy. Take a look at table 13.6 which words are available for which format.

13.22 Writing other tabular formats

There are a few more tabular formats 4tH can write although they cannot be considered
”spreadsheets”, since there is no major spreadsheet program that actually supports them.
However, the API of the library members that support them follows the conventions of
those listed in section 13.21.

The first format is a new kid in town, called JSON. The second one is able to write a
complete 4tH table, the kind you find in section 12.19, which is great for making e.g.
program generators.

CHAPTER 13. SPECIAL LIBRARIES 267

msxls2-w.4th oofods-w.4th msxlms-w.4th koksp-w.4th csv-w.4th html-w.4th
OPEN XLSopen FODSopen XMLSopen KSPopen CSVopen HTMLopen
sheet - FODSsheet XMLSsheet KSPsheet - -
. XLS. FODS. XMLS. KSP. CSV. HTML.
- FODS# XMLS# KSP# CSV# HTML#
TYPE XLStype FODStype XMLStype KSPtype CSVtype HTMLtype
CR XLScr FODScr XMLScr KSPcr CSVcr HTMLcr
atxy XLSatxy - - KSPatxy - -
end - FODSend XMLSend KSPend - -
CLOSE XLSclose FODSclose XMLSclose KSPclose CSVclose HTMLclose

Table 13.6: Spreadsheet words

json-w.4th create-w.4th
OPEN JSONopen CREATopen
. JSON. CREAT.
JSON# CREAT#
TYPE JSONtype CREATtype
CR JSONcr CREATcr
CLOSE JSONclose CREATclose

Table 13.7: Other tabular formats

13.23 Writing LATEX files

You can write LATEX files with 4tH very easily. The files it produces can be processed by
most popular LATEX typesetting programs. Although 4tH only supports a tiny LATEX subset,
one could typeset most of this manual with it. If you don’t know any LATEX, don’t worry:
you don’t need to. As a matter of fact, it is very much like HTML.

So let’s start by including the library:

include lib/latex.4th

Next we have to decide what kind of document we want to write. Let’s say we want to
write an entire book:

%texBook

If you are a little less ambitious, try writing an article:

%texArticle

Now you have to give the document a title and claim your rightful place as the author. The
flag decides whether you get a ”table of contents”. If you want one, supply a TRUE flag:

%beginTex
s" Hans Bezemer" s" My life with 4tH" true %texTitle

Define your first section and you’re off:

CHAPTER 13. SPECIAL LIBRARIES 268

s" Foreword" %subSection
s" First, I want to thank my parents, my teachers," %print
s" my girlfriend, my hairdresser and most of all" %print
s" my dog Snoopy, who never lost faith in me." %print

Ok, that was good enough for a Pulitzer Prize. Let’s go on with the next section:

%endSection

s" The beginning" %subSection
s" It was late at night, I couldn’t catch sleep." %print
s" So I decided to create a compiler in order to" %print
s" archieve world peace and love and harmony for" %print
s" all mankind." %print

That’s enough babble, now let’s make a subsection. The difference between making a
section and a subsection is that if you want to make a new section you close it with ”%end-
Section”. If you want to make a subsection, you don’t:

s" Basic philosophy" %subSection
s" To make the best product on the market, give the" %print
s" best possible service to our paying customers and" %print
s" squeeze each and every penny out of their pockets." %print

Note you have have to balance the ”%subSection” and ”%endSection” as if they were loop
control words. Now let’s make a numbered list:

%endSection
%endSection

s" Pedigree" %subSection
%enumerate begins
s" Artic Forth" %item
s" SpecForth" %item
s" gForth" %item

%enumerate ends

You can also make descriptions:

%description begins
s" Word" s" A function in Forth." %describe
s" Flag" s" A boolean in Forth." %describe
s" Cell" s" A native integer number in 4tH." %describe

%description ends

You can even insert source code:

%listing begins
." : rot >r swap r> swap ; \ define ROT" cr
." 2 3 4 rot \ application of ROT" cr

%listing ends

Even tables are not much of a problem:

%table begins

CHAPTER 13. SPECIAL LIBRARIES 269

CHARACTER MEANING

l left justified column
c centered column
r right justified column
| vertical line
|| double vertical line

Table 13.8: LATEX table format

Now you have to decide on a layout. For that you have to compose a string, using a
combination of the characters in table 13.8.

Let’s make this table two left justified columns and one centered column, separated by
single vertical lines:

s" | l | l | c |" %layout %line

The ”%line” word draws a single horizontal line. Now we’re ready to insert the cells:

s" Artic Forth" s" Spectrum" s" 1983" 3 %cells %line
s" FPC" s" MS-DOS" s" 1991" 3 %cells %line
s" 4tH" s" Linux" s" 1994" 3 %cells %line

The ”%cells” word needs to know how many cells you’re going to insert. Since three
strings were supplied, three strings need to be declared. They will be printed in the order
you specified, not the stack order. Finishing a table is just as uneventful:

%table ends

If you need links, that’s supported too, but it needs the ”hyperref” package. If you don’t
know if that one is installed, enter:

kpsewhich hyperref.sty

If it is, you may write something like:

s" Ok, guys. If you want to know more just" %print
s" google" s" http://www.google.com" %link
s" it! I don’t have the time for this." %print

You have to enable it, though. All it needs is a ’[PRAGMA]’ at the beginning of your
program:

[pragma] UseURLs

Ok, that’s enough writing for tonight, let’s end this:

%endSection
%endTex

CHAPTER 13. SPECIAL LIBRARIES 270

When you run this program you will find it writes to the screen. That’s because you have to
take care of all the filehandling yourself; 4tH only takes care of the proper LATEX generation.
That may not seem like much, but note you’ve just combined a typesetting language with a
powerful programming language, which enables you to handle the most complex document
generation tasks with ease.

If you have installed pdfTEX14 you can make beautiful PDF files out of the box. For those
who need to generate office documents, keep an eye on the LATEX2RTF15 converter. Both
are fully compatible with the LATEX 4tH generates and easily integrate with 4tH16.

13.24 Writing RTF files

If you find generating LATEX is dead easy, you’re in for a treat because writing RTF is not
much different. There is a catch, though. You can write either RTF or LATEX files, both
libraries are incompatible - but don’t worry, 4tH will catch that error for you. Like LATEX,
you start with including the library and the kind of document you want to write.

include lib/rtf.4th

%RTFbook
%beginRTF
s" Hans Bezemer" s" My life with 4tH" false %rtfTitle

Note the flag is only there for LATEX compatibility - it doesn’t do anything. After that you’re
in business and if you know how to do a LATEX file, this should come as no surprise:

s" Foreword" %subSection
s" First, I want to thank my parents, my teachers," %print
s" my girlfriend, my hairdresser and most of all" %print
s" my dog Snoopy, who never lost faith in me." %println

Note RTF is a bit quirky where linebreaks are involved, so it’s good practice to terminate
the last line of a paragraph with ”%println” instead of ”%print”. If you ever need additional
linebreaks, you can add them with ”%cr”. Now let’s make a numbered list:

%enumerate begins
s" Artic Forth" %enumeration
s" SpecForth" %enumeration
s" gForth" %enumeration

%enumerate ends

Note that the items of a numbered list are terminated by ”%enumeration” instead of ”%item”.
You can also make descriptions:

%description begins
s" Word" s" A function in Forth." %describe
s" Flag" s" A boolean in Forth." %describe
s" Cell" s" A native integer number in 4tH." %describe

%description ends

14http://www.tug.org/applications/pdftex/
15http://latex2rtf.sourceforge.net/
16Provided your 4tH implementation supports pipes. MS-DOS is not supported.

CHAPTER 13. SPECIAL LIBRARIES 271

Yep, completely identical. Links, listings, sections, quotes, lines, linebreaks, you name it:
it’s all the same. Tables are only slightly different17:

%table begins
s" Artic Forth" s" Spectrum" s" 1983" 3 %cells
s" FPC" s" MS-DOS" s" 1991" 3 %cells
s" 4tH" s" Linux" s" 1994" 3 %cells

%table ends

Ok, that’s enough writing for tonight, let’s end this:

%endSection
%endRTF

Big surprise.. If you use this library properly it will generate fully RTF Specification 1.6
compliant files. Like LATEX, when you run this program you will find it writes to the screen.
That’s because you have to take care of all the filehandling yourself; 4tH only takes care of
the proper RTF generation.

13.25 Writing HTML files

If you find generating LATEX and RTF is dead easy, you’re in for a treat because writing
HTML is not much different. There is a catch, though. You can write either RTF or HTML
or LATEX files, all three libraries are incompatible - but don’t worry, 4tH will catch that error
for you. Like LATEX and RTF, you start with including the library. After that you go straight
to the title, after you’ve defined one (and only one) optional stylesheet:

include lib/html.4th
%beginHTML
s" mystyle.css" %styleSheet
s" Hans Bezemer" s" My life with 4tH" false %htmlTitle

Note the flag is only there for LATEX compatibility - it doesn’t do anything. Because if you
want to do fancy stuff, you will need to do it with CSS - that’s the only way. For arguments
sake, let’s say you want a very plain-looking table - then define a CSS file mystyle.css
like this:

div.plain table { width: 50%; }
div.plain td { padding: 5px 5px 5px 0; vertical-align: top; }
div.plain th { padding-right: 10px; text-align: left; }

Keep that in mind, we’ll come back to it later. After that you’re in business and if you know
how to do a LATEX file, this should come as no surprise:

s" Foreword" %subSection
s" First, I want to thank my parents, my teachers," %print
s" my girlfriend, my hairdresser and most of all" %print
s" my dog Snoopy, who never lost faith in me." %print

Now let’s make a numbered list:
17Although you can get away with a lot of LATEX specific stuff, since it’s simply ignored. Only %line is

problematic.

CHAPTER 13. SPECIAL LIBRARIES 272

%enumerate begins
s" Artic Forth" %item
s" SpecForth" %item
s" gForth" %item

%enumerate ends

Yep. Completely identical. You can also make descriptions:

%description begins
s" Word" s" A function in Forth." %describe
s" Flag" s" A boolean in Forth." %describe
s" Cell" s" A native integer number in 4tH." %describe

%description ends

Again, no different. Links, listings, sections, quotes, lines, linebreaks, you name it: it’s all
the same. Tables are only slightly different18:

%table begins
s" Artic Forth" s" Spectrum" s" 1983" 3 %heads
s" FPC" s" MS-DOS" s" 1991" 3 %cells
s" 4tH" s" Linux" s" 1994" 3 %cells

%table ends

Remember the stylesheet we made? What we actually did was defining a DIV class, which
is a blocktag as a matter of fact. Within that class you can format whatever tag you like.
You’re not limited to tables, it can be anything. Now let’s apply this class to the table we
just defined:

s" plain" %setStyle
%table begins
s" Artic Forth" s" Spectrum" s" 1983" 3 %heads
s" FPC" s" MS-DOS" s" 1991" 3 %cells
s" 4tH" s" Linux" s" 1994" 3 %cells

%table ends
%endStyle

You’ll see that the format we defined is applied to the table, but after ”%endStyle” it returns
to the default format. This way you can apply all sorts of styles to different sections of your
document. If you defined default styles in your stylesheet they’re automatically applied
to your document and you don’t have to do anything. Needless to say, if you don’t use a
stylesheet19 it will be a pretty plain looking document altogether.

Ok, that’s enough writing for tonight, let’s end this:

%endSection
%endHTML

Big surprise.. If you use this library properly it will generate fully HTML 4.01 Transitional
compliant files. Like LATEX, when you run this program you will find it writes to the screen.
That’s because you have to take care of all the filehandling yourself; 4tH only takes care of
the proper HTML generation.

18Although you can get away with a lot of LATEX specific stuff, since it’s simply ignored. Only %line is
problematic.

19You will find a stylesheet html4th.css in the standard distribution.

CHAPTER 13. SPECIAL LIBRARIES 273

13.26 Converting to XML and HTML

You can’t ignore XML and HTML nowadays and 4tH also supports these formats. Let’s
say you want to write XML. The problem with XML is that there are several characters
which aren’t allowed in XML files, like apostrophes, quotes and ampersands. How do you
know you’re dealing with a special character? Well, that’s easy:

include lib/istype.4th \ for XML detection
include lib/asciixml.4th \ we’ll need this later

\ string with XML characters
s" Here’s Johnny! >>> (Johnny)"
bounds ?do \ let’s scan it for XML
i c@ dup emit is-xml \ check for XML
if ." Yes, it’s XML" else ." Nope" then cr

loop \ all done

Ok, now we know which characters are XML. But how do we convert them to XML char-
acter entities? That is where the second library comes in:

include lib/istype.4th \ for XML detection
include lib/asciixml.4th \ we’ll need this later

\ string with XML characters
s" Here’s Johnny! >>> (Johnny)"
bounds ?do \ let’s scan it for XML
i c@ dup is-xml \ check for XML
if ASCII>XML type else emit then

loop cr \ all done

Note that ”ASCII>XML” will always convert a character to an XML character entity, that’s
why you need ”IS-XML” to determine whether it needs conversion or not.

If you’re converting an ISO-8859-1 or a CP437 encoded document to HTML, things get
even more complicated since you’ll have to take even more special characters into consid-
eration. Fortunately, 4tH has all the tools you need to get the job done. First, we’ll have to
determine whether we’re dealing with a special character or not. Second, if we did find a
special character we’ll have to convert it.

include lib/istype.4th \ for XML detection
include lib/westhtml.4th \ the conversion table
include lib/cp437htm.4th \ the conversion word

\ string with HTML characters
: convert-line (a n --)
bounds ?do \ let’s scan it for XML
i c@ dup is-html \ check for XML
if CP437>HTML type else emit then

loop cr \ all done

;
\ read and convert a file

: convert-file (--)
begin
refill \ read a line

while \ while not end-of-file
0 parse convert-line \ parse line and convert it

repeat
;
(Opening files and writing headers, don’t bother..)

The library westhtml.4th contains the ISO-8859-1 and CP437 conversion tables. Be-
cause of its size, you’ll have to include it manually before you include the cp437htm.4th

CHAPTER 13. SPECIAL LIBRARIES 274

or i8859htm.4th libraries. ”IS-HTML” works just like ”IS-XML”, but also reports a
HTML character entity when it’s not printable or simply outside the ASCII-7 range.

Like ”ASCII>XML” the ”CP437>HTML” word always returns a HTML character en-
tity, even when there is no real equivalent to HTML. E.g. the first CP437 block charac-
ter renders to ”°”. If you don’t want that you’ll either have to maintain an addi-
tional table or examine the character entity ”CP437>HTML” returns. Needless to say that
”ISO8859>HTML” works the same way. The only exception is the NULL character, which
is not allowed at all. In that case an empty string is returned.

13.27 Databases

4tH also has a small database package which perfectly blends in with the language. First
define a structure. That will be your database buffer:

include lib/dbm.4th

struct
16 +field Firstname
32 +field Lastname

end-struct /Person

/Person buffer: (Person)
0 value Person

Second, create a database file. You have to do this only once. If you do it again, it will
create another empty database file, so take care!

s" Persons.dbm" db.create

Now add it to the data dictionary. All you have to do is to declare the buffer, its size and
the database file. It will return a database handle.

(Person) /Person s" Persons.dbm" db.declare to Person

After that, you have to tell the datadictionary that you want to use it - or make it current, if
you prefer:

Person db.use

Now we’re ready to add records. Simply clear the buffer, fill in the fields and insert the
record. When you’re done, repeat the operation:

db.clear
s" Hans" db.buffer -> Firstname place
s" Bezemer" db.buffer -> Lastname place
db.insert

db.clear
s" Chuck" db.buffer -> Firstname place
s" Moore" db.buffer -> Lastname place
db.insert

Finally, when you’re done simply shut it down:

CHAPTER 13. SPECIAL LIBRARIES 275

db.close

That’s all! If you want to use it again, simply define the buffer and declare it to the datadic-
tionary:

include lib/dbm.4th

struct
16 +field Firstname
32 +field Lastname

end-struct /Person

/Person buffer: (Person)
0 value Person

(Person) /Person s" Persons.dbm" db.declare to Person

Of course you can add additional structures and files, the procedure remains the same. If
you want to use a table, simply use it:

Person db.use

Since this is the first time you are accessing the table it is automatically positioned at the
first (sequential) record. Just fetch the values:

db.buffer -> Firstname count type space
db.buffer -> Lastname count type cr

db.buffer always points to the current table. Of course, you can also address the buffer
directly - that is up to you:

(Person) -> Firstname count type space
(Person) -> Lastname count type cr

If you explicitly want to go to and fetch the first sequential record, you can also issue:

db.first

The next (undeleted) sequential record is reached by issuing:

db.next

If you want to know which record you’re at, you can consult db.rowid:

db.rowid . cr

This number is important, because it never changes and uniquely identifies a record. If you
want to return to a specific record, you can by using this number:

1 db.goto

Note that whether you access the record random or sequentially, the buffer is always up-
dated accordingly. You can also search for a specific string:

CHAPTER 13. SPECIAL LIBRARIES 276

db.first
db.key Firstname s" Hans" db.find

This will return you the first record containing ”Hans”. In order to find the next record
simply issue:

db.key Firstname s" Hans" db.find

If there isn’t a second ”Hans”, the database will return an End of file error. You can query
the database by using db.error:

db.error EDB.EOF =

You’ll find a full list of error codes in the source. You can print the error message by using
db.message:

db.error db.message

If you want to delete the current record, simply issue:

db.delete

Note the record is invalidated at that moment and you will have to navigate away from it.
If you want to change the current record, simply make the changes to the buffer and issue
db.update:

s" Chuck" db.buffer -> Firstname place
db.update

Finally, you can switch between tables at all times. E.g. you can make changes to a
”Profession” table and return to the ”Person” table at any time. The ”Person” table will be
untouched:

Profession db.use
(Here we consult or change the ”Profession” table)
Person db.use
(As if we never left it..)

Note that db.close closes the entire database system, not just the current table. However,
if we want to revive it all you have to do is to db.use it. You will start at the first record
though.

13.28 Indexing a database

Sometimes neither random nor sequential access is sufficient: you want to retrieve the
records in order. 4tH supports simple indexes, but don’t try to maintain millions of records
with it, because they are maintained in dynamic memory. If the default allocation is not
enough, you can tweak it20 before including the library file.

Having said that, it is not very difficult. Let’s say you already have a database and you want
to index it. First you have to decide how many records have to be indexed. Second, which
sorting routine do you want to use. You can also use any address based sorting algorithm21

if you want to, the compiler will figure it out:
20See section 12.6
21See section 12.14.

CHAPTER 13. SPECIAL LIBRARIES 277

include lib/shelsort.4th
include lib/dbmidx.4th

0 value Person
0 value Pers.First

Now open your database as usual:

(Person) /Person s" Persons.dbm" db.declare to Person
Person db.use

Then you have to index your database. You have to do this only once:

8192 {char} db.key Firstname idx.create
abort" Can’t make index"
to Pers.First

What actually happened is that 4tH stored all the rowids in dynamic memory and sorted
them on the field ”Firstname”. In this case you can index a database table with up to
8192 records. The ”{CHAR}” word tells the index to treat it as a string when sorting or
searching. The word ”{CELL}” is available for numeric fields, but you can add your own
”field type” if you need to. Access it like this:

Pers.First idx.first

And it fills the buffer with the very first record. The subsequent record can be reached by
issuing:

Pers.First idx.next

And so on. But how do you know you’ve reached the last record? Easy, the word ”IDX.ERROR”
will be set to non-zero. So printing a records in the proper order is as easy as:

Pers.First dup idx.first begin
dup idx.error 0= while
db.buffer -> Firstname count type cr
dup idx.next

repeat idx.clear

Note you can clear any errors by invoking ”IDX.CLEAR”. The word ”IDX.KEY” will
return the address of the key field in the current database buffer. E.g. this is perfectly valid:

Pers.First idx.key count type cr

In this example it would print the ”Firstname”. Of course, you will rarely create an index
on an already filled table. Normally, you will define your table, define your indexes and off
you go. Sure, you can do that too:

0 value Person
0 value Pers.First
0 value Pers.last
s" Persons.dbm" db.create
(Person) /Person s" Persons.dbm" db.declare to Person
Person db.use

8192 {cell} db.key Firstname idx.init
abort" Cannot create ’First’ index" to Pers.First
8192 {char} db.key Lastname idx.init
abort" Cannot create ’Last’ index" to Pers.Last

CHAPTER 13. SPECIAL LIBRARIES 278

Note you have to declare indexes when the table is actually ”used” at the time, otherwise
it will not be properly initialized. The snippet above will create two empty indexes along
with an empty database. If creating an index fails, it will return a ”true” flag. In any case
it will return a reference to the index created, which you will need to pass to almost any
word in the index library. Finally, you don’t need to include a sorting routine, because there
won’t be any sorting.

13.29 Binding the indexes

Ok, we got two indexes now. How do we update ’em? Well, like this:

db.clear
s" Hans" db.buffer -> Firstname place
s" Bezemer" db.buffer -> Lastname place
db.insert

Pers.First idx.insert drop
Pers.Last idx.insert drop

It works the same for ”DB.DELETE” and ”DB.UPDATE”: first you commit changes to
the database buffer, then you update all indexes. This is very important. If you don’t,
some system variables may not be updated properly and you may corrupt your indexes.
”IDX.DELETE” does not return a flag. The flag ”IDX.INSERT” and ”IDX.UPDATE”
return indicates that the index now contains duplicate keys. If you’re not interested, you
can discard it just like we did.

You can also use a dictionary extension. It begins by including a different file:

include lib/dbms.4th

The second step is to bind the indexes after we’ve issued the usual red tape. Note the table
to bind has to be current:

0 value Person
0 value Pers.First
0 value Pers.last

s" Persons.dbm" db.create
(Person) /Person s" Persons.dbm" db.declare to Person
Person db.use

8192 {cell} db.key Firstname idx.init
abort" Cannot create ’First’ index" to Pers.First
8192 {char} db.key Lastname idx.init
abort" Cannot create ’Last’ index" to Pers.Last

Pers.First Pers.Last 2 dbs.bind
abort" Cannot bind indexes"

After that you can insert, update and delete records using ”DBS.INSERT”, ”DBS.UPDATE”
and ”DBS.DELETE” without worrying about updating the indexes. But it comes at a cost.
If you’re shutting down, you must unbind all the indexes. You can do that one by one:

db.clear
s" Hans" db.buffer -> Firstname place
s" Bezemer" db.buffer -> Lastname place
dbs.insert

Person dbs.unbind abort" Cannot unbind Person indexes"

CHAPTER 13. SPECIAL LIBRARIES 279

And repeat that for all tables you’ve whose indexes you’ve bound. That’s a lot of work, but
this way you can mix bound and unbound tables in the same program. You can close them
all with one single word, but in that case you have to bind all your tables to their indexes -
even if they have no indexes at all, e.g.:

0 dbs.bind abort" Cannot bind table"

Now you can use ”DBS.RELEASE” to release all indexes of all tables at once:

dbs.release abort" Cannot release indexes"

Finding a value in an index is a breeze as well. Again, you have to make sure that the
corresponding table is used:

s" Hans" Pers.First idx.find 0= abort" Not found"

If ”IDX.FIND” returns a true flag, your database buffer will contain the first record con-
taining that value. You can use the ”IDX.PREVIOUS” word to get any records that are
smaller than that value or ”IDX.NEXT” to get any records that equal or are greater than
that value. If ”IDX.FIND” returns false, your value was not found and the contents of the
database buffer are undetermined.

If you’re not sure about the first value, you can use ”IDX.SEARCH”. E.g. if you want the
first surname beginning with ”H”, you can issue:

s" H" Pers.Last idx.search 0> abort" End of index"

If ”IDX.SEARCH” returns a positive value, it is simply not found. If it returns a zero value,
the exact value was found in the database and you can use the associated buffer. If it returns
a negative value, a value bigger than requested was put in the database buffer. If a buffer is
valid, you can navigate from there using ”IDX.NEXT” or ”IDX.PREVIOUS”.

Finally, you can search any field using ”DBS.FIND” - whether it is indexed or not. It
takes the same parameters as ”DB.FIND” and returns a non-zero value when the record
was found. It also returns the index it used or a negative value (”N/A”) when none was
available:

(find a record by key, abort if not found)
db.key Firstname s" Hans" dbs.find 0= abort" Not found"

(if an index was used, get previous record)
dup N/A = if drop else idx.previous then

Of course, it is a shame when you have to rebuild all your indexes when you restart a
program. That’s why you can save and reload them. Saving them just takes a single line:

Pers.First s" persfrst.idx" idx.save

No, it won’t return a flag, but you can examine ”IDX.ERROR” if you want to. Loading
takes little code as well:

{char} s" persfrst.idx" idx.load abort" Can’t load index"
to Pers.First

CHAPTER 13. SPECIAL LIBRARIES 280

It returns the same stuff as ”IDX.CREATE” and ”IDX.INIT”, you’re already familiar with
that. You don’t have to supply any more information than the type, because the rest of the
required information was saved with the index itself. Finally, you will have to close the
index. I suggest you close it when you’re closing the table or database itself:

dbs.close abort" Cannot release indexes"
Pers.First idx.close abort" Cannot close index"
Pers.Last idx.close abort" Cannot close index"

If it returns a true flag, it failed - which means your dynamic memory is corrupted somehow.
Finally, do not forget you can retrieve lots of information on the current status of an index
by using the following words:

idx.error Returns the last error encountered;

idx.size Returns the total capacity of an index;

idx.used Returns the number of entries used.

That’s all folks!

13.30 Connecting to the WWW

There is no standard C library to access files on the world wide web. However, most
Operating Systems already come with - or can be augmented by - tools like cURL22 or
Wget23. Since most versions of 4tH24 are able to open pipes, we can indirectly open files
on the world wide web as well by simply calling these tools in a transparent way. First we
have to include the proper file:

include lib/wwwopen.4th

And then we have to open the file in question by using the ”WWWOPEN” word:

s" https://thebeez.home.xs4all.nl/4tH/index.html" wwwopen

If all goes well, this will return an unchecked handle - just as if you’d used ’OPEN’. Since
it is ”unchecked” we have to test the handle it returned to see if we’ve succeeded - just as
if you’d opened an ordinary file:

error? abort" Cannot open file"

Now let’s assume this didn’t bomb out. We can now use it:

dup use

Nothing out of the ordinary here. Note that this file is read only. So writing to it is out of
the question. Since this is an ordinary HTML file, it makes sense to treat it as a text file.
This simple line will display its contents on stdout (or the screen, if you prefer):

22https://en.wikipedia.org/wiki/CURL
23https://en.wikipedia.org/wiki/Wget
24Except MS-DOS.

CHAPTER 13. SPECIAL LIBRARIES 281

begin refill while 0 parse type cr repeat

If we’re done, we need to close it. Like any other file:

close

Since most Linux distributions (including Raspberry Pi) come with Wget preinstalled, we
defaulted to that one. However, cURL is supported as well. If you prefer cURL, use
”CURLGET” instead of ”WWWOPEN”. ”WGET” is simply an alias to ”WWWOPEN” -
but the latter is a bit more ”abstract”. A bit of syntactic sugar, so to say. Sue me. You can
redirect it to cURL by issuing:

’ curlget is wwwopen

By default, these tools are called silently - which may not be the best option if you’re
experiencing errors. You can put them in more verbose mode by issuing this pragma before
you’re including the library:

[PRAGMA] wgetverbose
include lib/wwwopen.4th

Despite its name, it will also work with cURL. Of course, composing the actual command
lines requires a buffer. If you want to access files on the web with extremely long URLs,
you might want to expand this buffer:

1024 constant /websiz
include lib/wwwopen.4th

And that’s all there is to it! 4tH does WWW.

13.31 Speech synthesis

4tH can talk! All you need is the ”Festival” speech synthesis package25 and a small 4tH
interface. If you want to imitate old Arnold, this will do:

include lib/say.4th
s" I’ll be back!" say abort" Festival not available"

Well, that’s cool, isn’t it? You can also use the ”eSpeak” package26, which offers even
more possiblities. E.g. this will be spoken in a Scottish female voice:

include lib/speak.4th
s" I’ll be back!" s" en-sc+f1" speak abort" eSpeak not available"

Not only English is available, other languages are supported as well. An added advantage
is that the package is also available for Windows.

13.32 GUI applications

You can create GUIs with 4tH. Not because 4tH has extensive language bindings, but be-
cause it has an interface with GTK-server27. After you’ve successfully installed GTK-
server and made sure it’s in your path, simply write28:

25Homepage: http://www.cstr.ed.ac.uk/projects/festival/.
26Homepage: http://espeak.sourceforge.net/
27Homepage: http://www.gtk-server.org/
28The following interface only works with Unix-like platforms, except OS/X. This is due to limitations of

GTK-server.

CHAPTER 13. SPECIAL LIBRARIES 282

include lib/gtkserv.4th
gtk-srv-start

GTK-server is now initialized and awaits your commands. There are two simple words to
do that, ”GTK{” and ”}GTK”. Everything between it is sent to GTK-server. Creating a
window is as simple as:

gtk{ ." gtk_window_new 0" }gtk

Now this command returns a result, the number of the window. Now how can you get it?
Very simple: any responses from GTK-server are stored in TIB, which you can process as
usual:

0 parse number error? abort" Invalid response"

Ok, we got the window number now on the stack. Let’s give the thing a title:

s" My title" gtk{ ." gtk_window_set_title " dup . -rot "type" }gtk

”"TYPE"” is a word of the interface, which works just like ’TYPE’, but places the string
within double quotes. Note that after this the window number is still on the stack. You’re
probably gonna need it..

Figure 13.1: GTK demo

Since this is not a tutorial on GTK-server,
we simply show you how to shut GTK-
server down:

gtk-srv-stop

This implementation works with named
pipes and is pretty fast. However, if it
doesn’t work for you, you may try an al-
ternative interface which uses an unnamed
pipe. Starting it is very similar:

include lib/gtkipc.4th
gtk-srv-start
gtk{ s" gtk_window_new 0" s>msg }gtk
0 parse number error? abort" Invalid response"

The difference is that the GTK command
has to be assembled in memory in its en-
tirety before it is sent to GTK-server. For that, three words have been defined: ”S>MSG”,
”’S’>MSG” and ”N>MSG”. Each one adds a leading blank before the actual payload is
appended, so you don’t have to worry about that. The first one, ”S>MSG” appends a
string. Its little brother, ”’S’>MSG” adds a quoted string, much like ”"TYPE"”. Finally,
”N>MSG” adds an integer. And yes, any responses are stored in TIB.

So, now let’s see how we can give this window a title:

s" My title" gtk{ s" gtk_window_set_title" s>msg dup n>msg -rot ’s’>msg }gtk

CHAPTER 13. SPECIAL LIBRARIES 283

Well, that isn’t shocking, isn’t it? Finally, when you’re done shut GTK-server down29:

gtk-srv-stop

Note this interface is slower, uses more CPU and is slightly more difficult to handle than
the default one, so if both interfaces work: use the default.

13.33 Card games

One of the least useful, but funniest libraries may be the playing card library, cards.4th,
which is dedicated to making card games. It’s very easy. After including the library, you
take a new deck:

include lib/cards.4th
new-deck

Like any deck of cards, you have to shuffle it first. You need another library for that, called
shuffle.4th. It contains two shuffle words, one for a range of cells, the other for a
range of characters. The deck is made up of characters. You have to feed it the address of
the character array and its length:

include lib/cards.4th
include lib/shuffle.4th
new-deck
deck /deck cshuffle

Ok, now we got a deck of shuffled cards. Now, let’s deal:

deal

This will return an integer, representing the card. If you take modula 13, you will have the
value of the card, numbered from 0 to 12 or Ace to King. If you divide it by 4 you will have
the suit of the card, numbered from 0 to 3 or Diamonds, Hearts, Clubs and Spades:

dup 13 mod . cr
dup 4 / . cr

If you want a string representation, simply use ”CARD”. This will return a string (ad-
dress/count) containing the card. Simply type it:

card type cr

Of coure, a deck of cards is limited. If you want to know if it’s time for a new deck of
cards, call ”CARDS-LEFT”. This will tell you how many cards are left in the current deck:

cards-left . cr

29This might trigger an error due to 4tHs implementation of popen(), but the interface handles it transparently
for the programmer.

CHAPTER 13. SPECIAL LIBRARIES 284

Note it’s your responsibility to track how many cards are left in the deck. If you don’t
the program will abort with an error! And what when you run out of cards? Well, you
simply take a new deck and start all over again. It’s simple! This tiny program implements
a blackjack game:

include lib/shuffle.4th
include lib/cards.4th
include lib/yesorno.4th

: score 13 mod dup if 1+ 10 min else 11 + then ;
: next-card deal dup card space type cr score + ;
: player ." Player: " cr 0 begin next-card s" Hit" yes/no? 0= until cr ;
: dealer ." Dealer: " cr 0 begin next-card dup 16 > until cr ;
: won? dup 21 > if drop ." is bust!" else ." has " 0 .r ." ." then cr ;
: shuffle-deck new-deck deck /deck cshuffle ;
: minijack shuffle-deck player dealer ." Dealer " won? ." Player " won? ;

minijack

The beauty is that it is very easy to read and understand. All the technical stuff is handled
by the cards.4th library. So next time you want to make a nice cards game, don’t forget
about this one!

Chapter 14

Graphics libraries

The majority of 4tH’s graphics subsystem’s code and documentation has been contributed
by David Johnson. The initials at the end of an article indicate its author.

14.1 Portable bitmap graphics

You can make simple graphical drawings in 4tH using a virtual screen or bitmap. For
example, consider the following:

include lib/graphics.4th
10 20 100 200 line
s" test.ppm" save_image

This short program will create a portable Netpbm file which can be converted to other
graphical formats using the Netpbm libraries or viewed in numerous imaging programs.
The image test.ppm is 800*600 pixels in size and simply consists of a white line plotted
on a black background. However, one is not limited to such simple images. The PPM-
format allows for true color resolution with each pixel consisting of 3 bytes for red, green,
and blue. Each byte can have a maximum value or intensity of 255. The geometry of a 4tH
graphic image is as follows:

• The point 0,0 is located at the very top left;

• The x-axis is vertical, the y-axis is horizontal.

The ppm-format is a simple way to describe a "raw" image file in a widely recognized
format. The format of the file header consists of a magic word, the size of the image, and
the maximum intensity of the pixels. Following this is then the raw data. This format was
created by Jeff Poskanzer as part of his Pbmplus graphical utilities (now called Netpbm).
The PPM/PGM formats are used in the 4tH library routines, and since the PGM format is
the simpler of the two, it will be presented first.

Here is a simple 8*8 PGM image of a diagonal line (white) on black background. The
header consists of the magic number "P2" which indicates that the file is PGM image with
the data stored as text. The next line is a comment (marked with a ’#’), followed by the
image size (8x8) and the maximum value of the data (or pixel). If the data after the file
header is stored as binary, the the magic number is given by P5.

285

CHAPTER 14. GRAPHICS LIBRARIES 286

P2
Simple test of 8x8 PGM grayscale
8 8
255
255 0 0 0 0 0 0 0
0 255 0 0 0 0 0 0
0 0 255 0 0 0 0 0
0 0 0 255 0 0 0 0
0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

Color PPM images are stored with a similar format except 3 bytes are required to specify
each pixel (e.g. red, green, blue). Thus PPM images are 3 times larger than the PGM
grayscale images. The magic numbers for PPM files are ”P3” for text and ”P6” for binary.
Both text and binary PPM/PGM files can be loaded using the 4tH library. However, images
are always saved using the binary (P3, P6) format.

As an example for the P3, P6 color format, try loading and saving apps/data/icon_p3.ppm.

include lib/graphics.4th
s" apps/data/icon_p3.ppm" get_image
cr image_comment$ count type
s" 4th_icon.ppm" save_image

Now compare the contents and size of the two files. Better yet, see if you can view the file1.

When a PPM/PGM image is loaded in 4tH (via ”GET_IMAGE”), the data from the im-
age file header is is stored in the 4tH variables: ”PIC_HEIGHT”, ”PIC_WIDTH”, and
”PIC_INTENSITY”. Additionally, both color PPM files (P3, P5) and grayscale PGM (P2,
P5) files are supported. The main difference is that there is only one byte per pixel for
grayscale image. As another example, consider the following:

\ Define, draw and save an image
include lib/graphics.4th

: bar (--) 10 0 do 50 i + 50 50 i + 200 line loop ;

300 pic_width ! \ Define the current image size
300 pic_height !

color_image \ Define and draw our image
blue background
yellow bar

s" testimage.ppm" save_image \ saved to file

Try using ”GRAYSCALE_IMAGE” instead and view the results. Note, that grayscale
Netpbm files often have a file extension of *.pgm instead of *.ppm, but most viewing/graphical
programs do not care.

After defining the picture type and size, a couple of basic commands can be used to cre-
ate and manipulate the image. These commands work with both color and grayscale im-
ages. However, there is one difference. For color images, each pixel requires three bytes
which we’ll abbreviate as rgb; whereas, grayscale images have only one byte per pixel.
Therefore, the stack pictures corresponding to the pixel count will depend upon the type
of image in use. For example, if you were to specify a ”GRAYSCALE_IMAGE” instead
of ”COLOR_IMAGE” in the following program , then ”COLOR@” would leave just one
value on the parameter stack.

1Gimp, OpenOffice, xnview and many more should work fine

CHAPTER 14. GRAPHICS LIBRARIES 287

include lib/graphics.4th

300 pic_width !
300 pic_height !
color_image

0 0 255 color! \ sets the "current" color to blue (e.g., rgb: 0 0 255)
cr ." current color is " color@ . . .

white \ now set the "current color" to white (255 255 255)
background \ set every pixel in the image to white

blue \ current color is blue
100 100 set_pixel \ will color the pixel at (100,100) to blue
cr ." Pixel at (100,100) is "
100 100 pixel@ . . . \ check to see if it’s blue
255 0 0 100 100 pixel! \ change it to red (e.g. rgb: 255 0 0)

10 10 98 98 line \ draw line from (10,10) to (98,98)
s" dotline.ppm" save_image \ save the image to view it

You may notice that the word ”BACKGROUND” is rather slow. If you just wanted to set
the background to white or to some level of gray, you can use the word ”WHITEOUT”
which is much faster. That is:

255 whiteout \ set the image to white;
190 whiteout \ set image to some gray level;
0 whiteout \ set image to black.

To summarize, the basic graphical commands with stack pictures are2:

WORD STACK EFFECT COMMENT

pic_width – y address contains image width
pic_height – x address contains image height
pic_intensity – n address contains maximum byte

value for pixels
save_image a n – save portable bitmap to file
get_image a n – load file containing portable bitmap
color_image – work with color (rgb) pixels
grayscale_image – work with grayscale (single byte

pixels)
color! rgb | n – define current color
color@ – rgb | n get current color
pixel@ rx cy – rgb | n get pixel values at specified point
pixel! rgb | n rx cy – set pixel values at specified point
set_pixel rx, cy – set pixel at specified point using

the "current color"
line rx1 cy1 rx2 cy2 – draw line using the "current color"
background – set image background to current

color (slow)
whiteout n – set image background to white

(n=255) or gray (fast)
red – set the "current" color in use for

color or grayscale images to red
blue – set the "current" color in use for

color or grayscale images to blue
2rx = row or x; cy = column of y; rgb = red green blue.

CHAPTER 14. GRAPHICS LIBRARIES 288

WORD STACK EFFECT COMMENT

green – set the "current" color in use for
color or grayscale images to green

white – set the "current" color in use for
color or grayscale images to white

black – set the "current" color in use for
color or grayscale images to black

yellow – set the "current" color in use for
color or grayscale images to yellow

magenta – set the "current" color in use for
color or grayscale images to
magenta

cyan – set the "current" color in use for
color or grayscale images to cyan

There are some graphical words used in converting between image types (color vs. grayscale
and so on) and these will be discussed later (also check the example 4tH files).

Note that when you provide coordinates outside the bitmap, they will be reassigned to
coordinates inside the bitmap - at the edge, to be precise - no matter whether you’re reading
or writing a pixel. If you’re pretty sure of yourself, you can defeat this feature by using
the ’[PRAGMA]’ ”UNSAFEBITMAPACCESS”, which will make your program a little bit
faster as well.

Lastly, should you wish to work with images that contain more than 800*600 pixels, then
simply change the maximum defaults in the graphics.4th file. Note that this may have
effects on the default dimensions of other routines - which may cause them to behave errat-
ically. (dj)

14.2 More lines

First, a simple library that may give you stunning results. Ever seen a group of lines that
emanate from a single focal point? That’s what the ”burst” library does for you. You simply
supply the number of lines you want to see, the coordinates of the focal point, the length
of the number and the line generating execution token and you’re home free. E.g. this will
give you 22 red lines with a length of 150 pixels, emanating from point 300, 300:

include lib/graphics.4th
include lib/gburst.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
red 300 300 150 22 [: line ;] burst
s" example.ppm" save_image

But that will becoming quite boring pretty quickly if there is only one kind of line you can
use. In order to fix that, we have another library:

include lib/graphics.4th
include lib/gburst.4th
include lib/glines.4th

600 pic_width ! 600 pic_height ! color_image 0 whiteout
red 300 300 150 22 [: rainbow ;] burst
s" example.ppm" save_image

CHAPTER 14. GRAPHICS LIBRARIES 289

This one uses lines with all the colors of the rainbow. You can use ”RAINBOW” exactly
the same way you would use ”LINE”, but no matter its length, it will always render a multi-
colored line. There is a multitude of different lines in this library - although some require
additional parameters.

• dotted will render dotted lines. The length of your dot (or dash) depends on its
additional parameter, e.g. ”5 dotted” will have 5 pixel long dots and 5 pixel long
intervals;

• ray will only render the last portion of the line. The percentage of the line to be
rendered is its additional parameter, e.g. ”20 ray” will only render the last 20% of
its length, so drawing a ”classic” sun won’t take you all day to figure out;

• behind will draw a line until it ”hits” another color - and then stop rendering. Sub-
sequential ”other” colors won’t change that. If it hits the same color, it still won’t
start rendering. That will only happen if it has passed another area of ”other colors”
and encounters the same color again. This is great for drawing e.g. horizons since
”objects” that are placed in front of it won’t be affected as long as they’re constituted
of two edges.

You want to invent your own lines? That’s easy. This library uses a digital differential
analyzer. One of the words you can use is ”HYPOTENUSE”. This will take a set of coor-
dinates and return the length of the line. E.g. ”RAY” uses this to figure out when it should
start rendering:

100 swap - >r hypotenuse r> * 100 / (start) !

It stores that value in one of the predefined variables of the library - but if you want to
define your own routine, you’ll have to provide that one yourself, of course. Now it’s time
to prepare to execute the line drawing routine:

0 (count) ! [’] (ray) is dda_hook dda

It resets another predefined variable, ”(COUNT)” and supplies the actual line drawing ex-
ecution token to the digital differential analyzer. So, what does this actual line drawing
routine do?

: (ray) (count) @ (start) @ < if 2drop else set_pixel then 1 (count) +! ;

The line drawing routine, no matter which one, always expects a coordinate, which is
supplied by the digital differential analyzer. In this case, as long as the actual number of
pixels rendered is less than the limit stored in ”(START)”, no pixel is set and the coordinate
is discarded. Finally, the count is incremented. That’s all. As you can see, you can design
plenty of lines yourself with very little effort. (hb)

14.3 Circles, ellipses and arcs

Let’s start with the easy part: a circle. It’s just as simple as you think it is. A coordinate, a
radius - and there you are:

CHAPTER 14. GRAPHICS LIBRARIES 290

include lib/graphics.4th
include lib/gcircle.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
blue 300 300 150 circle
s" example.ppm" save_image

This will render a circle with a radius of 150 pixels at coordinate 300, 300. Now we’ve
mastered that one, let’s turn to ellipses. An ellipse has two radii - one horizontal (y-axis)
and one vertical (x-axis):

include lib/graphics.4th
include lib/gellipse.4th

800 pic_width ! 600 pic_height ! color_image 255 whiteout
blue 300 400 150 250 ellipse
s" example.ppm" save_image

This one will render an ellipse with a horizontal radius of 250 pixels and a vertical radius
of 150 pixels at coordinate 300, 400. And yes, if the vertical radius equals the horizontal
radius you’ll end up with a circle anyway.

But may be you don’t need an entire circle. May be you only need an arc of a circle. For
that, we have a library as well. It takes the same parameters as ”CIRCLE” - but also two
additional ones. ”ARCCIRCLE” starts rendering at the ”three o’clock” position and then
continues clockwise. The first parameter determines how much this starting point is shifted.
You have to issue it in radians, scaled by 10,000. Since a full circle is 2π radians, issuing
π here will make it start rendering at the ”nine o’clock” position. The second parameter is
also in 10K radians. This determines how much of the circle is rendered. Again, issuing π

here will make it render half a circle:

include lib/graphics.4th
include lib/garccirc.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
blue 300 300 150 PI*10K PI*10K arccircle
s" example.ppm" save_image

In short, if you execute this program you will end up with half a circle, rendered clockwise
from the ”nine o’clock” position. Note that ”PI*10K” is a constant, which is provided by
the (math) library. If you’re curious where the end-points are, you can use ”>ARCCIR-
CLE<”. Provide it exactly the same parameters as ”ARCCIRCLE” and it will return the
required set of coordinates.

However, if you want to render an arc from a known set of coordinates, you can do so as
well. It’s even more versatile. For that we provide quadratic Bézier curves. A Bézier curve
is delimited by two end points and a so-called ”control” point. Note that the ”control” point
is usually not part of the curve and may even lie outside the canvas - so yes, you may end
up with negative coordinates for the ”control” point in order to get the curve you want.

Agreed, it may take some time and some experimenting before you’re completely familiar
with the concept, but it’s well worth the effort. You issue the points as shown in figure 14.1:
P1, P2 and P3:

include lib/graphics.4th
include lib/gbezier.4th

800 pic_width ! 600 pic_height !
color_image 255 whiteout black
10 0 0 1000 500 0 bezier
s" example.ppm" save_image

CHAPTER 14. GRAPHICS LIBRARIES 291

Figure 14.1: Bézier curve with end points P0 and P2 and control point P1

It’s clear that 0,1000 are the coordinates of the control point, since it is way off canvas.
And, as I mentioned before, it’s also perfectly acceptable to use negative coordinates, like:

599 100 -200 -200 599 500 bezier

Note that Bézier curves are polynomials, so you will have a hard time if you want to pro-
duce a circle with it.

Finally, you may ask yourself why there are three libraries that can potentially draw a cir-
cle. Well, that’s easy. Both gcircle.4th and gellipse.4th use fast, very accurate
algorithms to render their respective shapes. Others are slower and less accurate in that
respect - although you may never notice the difference with the naked eye. (hb)

14.4 Filling shapes

Ok, now you got all those nice circles, ellipses and arcs and all you got is a coloring page.
Wouldn’t it be nice if you could add a little color. Well, hold on to your center points, there
is a way to do just that. Let’s revisit our circle:

include lib/graphics.4th
include lib/gcircle.4th
include lib/gflood.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
black 300 300 150 circle
red 300 300 flood
s" example.ppm" save_image

You simply set the color, issue the coordinates of the point where you want coloring to start
and off you go. Yes, it takes uses a bit of memory, but if you got lots of stackspace left or
the area that needs to be flooded is not too large, you can use this routine without using any
additional memory. Just add the appropriate pragma:

[PRAGMA] usestackflood

include lib/graphics.4th

CHAPTER 14. GRAPHICS LIBRARIES 292

include lib/gcircle.4th
include lib/gflood.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
black 300 300 150 circle
red 300 300 flood
s" example.ppm" save_image

If you got it wrong, it will simply bomb out - that’s it. In very rare circumstances though,
”FLOOD” will not provide the required result. In that case, you can use gfill.4th. It
will takes the same parameters and does the very same thing, but it uses a large amount of
memory3 and is a bit slower. The upside is that it uses a bulletproof algorithm:

include lib/graphics.4th
include lib/gcircle.4th
include lib/gellipse.4th
include lib/gfill.4th
include lib/gflood.4th

600 pic_width ! 600 pic_height ! color_image 255 whiteout
black 150 150 150 circle
blue 440 300 150 250 ellipse
red 150 150 flood
green 440 300 gfill
s" example.ppm" save_image

Yes, you can even use them in the same program if you like. In short, use gflood.4th
by default and gfill.4th if you really need to. (hb)

14.5 Turtle graphics

Turtle graphics provide a simple set of words for drawing simple and complex shapes.
There are three basic words: ”XHOME”, ”XROTATE”, and ”XMOVE”. The ’x’ here rep-
resents the turtle. A simple program to draw a box can be defined as:

include lib/graphics.4th
include lib/gturtle.4th

200 pic_width !
200 pic_height !
color_image

: box (n --) 4 0 do dup xmove 90 xrotate loop drop ;

255 whiteout
xhome
50 blue box
30 green box
s" box.ppm" save_image

The motion of the turtle can also be directed by the words: ”FORWARD”, ”BACK”,
”RIGHT”, ”LEFT”, ”XPENUP”, and ”XPENDOWN”. Here is an interesting example where
a simple shape can be used to make a more complex drawing.

include lib/graphics.4th
include lib/gturtle.4th

3Two to four megabytes, depending on your architecture.

CHAPTER 14. GRAPHICS LIBRARIES 293

300 pic_width !
300 pic_height !
color_image

clear-screen
xhome
xpendown

: octagon (--) 8 0 do 25 forward 45 right loop ;
: tile (--) 8 0 do octagon 45 right loop ;

tile s” tile.ppm” save_image

In summary, we have the following:

WORD STACK EFFECT COMMENT

turtle! x y – set turtle position
turtle@ – x y get turtle position
compass! n – set turtle directional heading in

degrees
compass@ – n get turtle directional heading in

degrees
xhome – place turtle in center of image and

set the heading to 0 degrees
xrotate n – Rotate turtle by n degrees, positive

numbers are counter clockwise.
xmove n – Move n pixels, can move forward

(+) or backwards (-)
forward n – Move n pixels forward
backward n – Move n pixels backwards
left n – Turn left (rotate) by n degrees
right n – Turn right (rotate) by n degrees
clear-screen – Clear to white background
xpenup – Change color to white so that

movent of turtle does not leave a
trail on white background

xpendown – Change color to blue; e.g., same as
using the word blue.

A couple of other words that may prove useful. Should the turtle get lost, then ”TUR-
TLE@” will give the coordinates while ”COMPASS@” will give the directional heading.
Likewise ”TURTLE!” and ”COMPASS!” will reposition the turtle. (dj)

14.6 Annotating portable bitmap images

The basic words are summarized as follows:

CHAPTER 14. GRAPHICS LIBRARIES 294

WORD STACK EFFECT COMMENT

gbanner rx cy a n – print the string a n at position rx cy
horizontal – plot the text horizontally
vertical – plot the text vertically
textup – change the text direction to upright
textdown – change the text direction to upside

down

To annotate the turtle graphic image from the last example, try the following:

include lib/graphics.4th
include lib/gbanner.4th

s" box.ppm" get_image

red horizontal text_up 5 25 s" boxes!" gbanner
black vertical text_up 75 20 s" yea!" gbanner
green vertical text_down 190 190 s" Hello there!" gbanner
magenta horizontal text_down 190 150 s" Bye bye!" gbanner

s" box2.ppm" save_image

The general syntax is just the screen position and the string with the key word being
”GBANNER”. To make it interesting, the orientation and direction of the text can eas-
ily be changed. Note the starting positions for the text in this example as the text may be
written from right to left for some orientations. (dj)

14.7 Color palettes

Since the Netpbm grayscale images are 3 times smaller than the color ones, one way to
improve the efficiency (if true color resolution is not needed) is to store the color informa-
tion in the grayscale format. While the setup shown here is not that useful, it was easily
implemented. Instead of converting a color pixel to a grayscale pixel, a 6 level rgb format
is used. For this, colors have a maximum intensity of 5, and the conversion is : palette =
38*red + 6*green + blue giving a maximum value of 215. The word ”PALETTE_IMAGE”
will set the correct defaults, e.g.:

include lib/graphics.4th
include lib/gturtle.4th
include lib/palette.4th

300 pic_width !
300 pic_height !
palette_image
(use some graphical routines)
s" ptest.ppm" save_image

This will save the image as a PGM image (with a P5 magic word). Thus when you view
the image, it will appear as a strange looking grayscale image (as another example, try the
gtest4.4th demo program) To view ptest.ppm in color, you must convert the image
to a PPM color file. There are two example programs to do this. One is color2pal.4th
and the other is pal2col.4th. Note for this particular color palette, once it is converted
back to the color format (with a P6 magic word) it should have a maximum pixel intensity
of 5. Unfortunately, many graphical viewers have trouble displaying this correctly (though
many work fine). Therefore, the col2pal.4th example will scale up the pixels values
to the 255 level.

CHAPTER 14. GRAPHICS LIBRARIES 295

Conversion between color and grayscale pixels can be performed using the words ”COLOR>GRAY”
and ”GRAY>COLOR”. If color palette and/or grayscale images are defined, the words
”COLOR>N” and ”N>COLOR” can be used instead. (dj)

WORD STACK EFFECT COMMENT

color>gray rgb – n Covert 3 byte color format to 1
byte grayscale

gray>color n – rgb Convert grayscale to color format.
The pixel still has the gray color
though

to_color – Set the library primitives so that
pixel and color data will use 3
bytes.

to_gray – Set library primitives so that pixel
and color data will use 1 byte

color_image – Set defaults for using color (PPM)
images

grayscale_image – Set defaults for using grayscale
(PGM) images

palette_image – Set defaults for using color palette.
Similar to grayscale and image will
be save in PGM format.

color>palette rgb – n Convert color information to
palette code

palette>color n - rgb Convert palette code to color
to_palette – Set library primitives so that pixel

and color data will use 1 byte
palette code.

color>n rgb – n Convert color to palette (or
grayscale) format

n>color n – rgb Convert palette (or grayscale) to
color format

14.8 Viewing and modifying bitmap images

Consider the use of bitmap images in the simple vanilla implementation of 4tH; is it possi-
ble to actually view the images? One possibility (and a fun exercise) is to use simple ASCII
text to show the images.

For example, consider an 8 character “grayscale” palette consisting of “M # % o + :
. space” or perhaps a different version consisting of “B @ & c = ; ’ space”.
By using these ASCII palettes, a bitmap image can be approximated and viewed. In this
case, to possibly enhance the ASCII image, a random switching between the two text
palettes will be used. The library file for this is gpic2txt.4th which can be used as
follows:

include lib/graphics.4th
include lib/gshrink.4th
include lib/gaspect.4th
include lib/gpic2txt.4th
s" 4th/apps/graphics/wldchild.ppm" get_image
shrink \ reduce image by 2x
hshrink \ reduce height by 2x
70 200 2 60 show_image \ col=70 to 200; lines=2 to 60

CHAPTER 14. GRAPHICS LIBRARIES 296

If a monospaced font is used and if the output consists of dark characters on a light back-
ground, than an ASCII art version of a bitmap image wldchild.ppm is produced. A
screen capture of an example output is shown in figure 14.2 in which a bold Ubuntu Mono
9 point font was used.

Figure 14.2: ASCII art view of a color bitmap image

However, if the output would have consisted of light characters on a dark background, then
a negative (or inverted) view of the image would have been produced. The can be corrected
with the use of the word normal-view? which allows the image to be viewed in either
the positive or negative format. This modification is made as follows:

false normal-view?
70 200 2 60 show_image

Similarly, if you prefer to use just one ASCII palette, this can be chosen by using:

false hi-contrast?
70 200 2 60 show_image

The word show_images treats the bitmap image like a text file consisting of lines (or rows).
Thus a pixel is addressed by its line number and column position. To get the image to a size
that which can reasonably be captured in ASCII text, the bitmap image is reduced using
“shrink” from gshrink.4th.

Likewise, since text spacing is much finer than the line spacing, the height of the image is
reduced by a factor of two using hshrink from gaspect.4th. Note that all changes
to the image size are done “in-place” within the virtual screen size defined by variables
pic_width and pic_height. A summary of the library files and words are given in
table 14.5.

These words are used in the example programs ipaint3.4th and ppm2txt.4th. Two
other examples programs that can produced some interesting effects as well as reducing
the amount of information in the bitmaps are dither.4th and bwdither.4th. Both
these use a Floyd-Steinberg_dithering scheme to produce visually pleasing images at much
reduced resolutions. Example usages for all the programs are given in the source listings.
(dj)

14.9 3D plotting

Plotting or drawing in 3D using the 2D graphics library in 4tH simply requires a few words
to map the 3D coordinates to 2D. The orientation of the default coordinate system has the

CHAPTER 14. GRAPHICS LIBRARIES 297

Word Stack Effect Comment Library
image>grayscale – Convert bit true color

image to grayscale (0 to
255 pixel intensity)

gcol2gry.4th

shrink – reduce bitmap image by
factor of 2

gshrink.4th

hshrink – reduce height by 2x gaspect.4th
hexpand – increase height by 2x
wshrink – reduce with by 2x
wexpand – increase with by 2x
show_line n1 n2 n3 output line-n1 in ASCII

text format from columns
n2 to n3

gpix2txt.4th

show_image n1 n2 n3 n4 render the bitmap image
from lines n3 to n4 and

columns n1 to n2 as ASCII
art

normal-view? flag true = positive view; false
= negative view

hi-contrast? flag true=use of two ASCII
palettes; false=use only

one

Table 14.5: Viewing and modifying bitmap images

origin towards the top left of the screen with the x-axis running down the screen rows and
the y-axis running left across the screen columns.

With a right-handed coordinate system the z-axis is then pointing out of the screen (towards
the observer). Two words that show this are “CUBE” and “AXIS”. The mapping from 3D
to 2D is done with the word “3D>2D”. The use of these words is shown below:

CHAPTER 14. GRAPHICS LIBRARIES 298

\ Example of cube using the "mirror-left" and "mirror-right" words
\ The blue line from different corner-corner orientations are
\ better viewed using different mappings of 3D to 2D
\ Loading this also loads the graphics.4th and gbanner.4th word-set
include lib/gplot3d.4th

\ Place the 3D axes in center of image
colorimage 255
whiteout
center-plot

\ Line from top-left to bottom-right is clearly visible.
mirror-left
0 0 0 100 black cube
0 0 0 3d>2d 100 100 100 3d>2d blue line
-50 0 0 red axis

\ Conversely, line from top-right to bottom left is clearly visible.
mirror-right
0 150 0 100 black cube
0 250 0 3d>2d 100 150 100 3d>2d blue line
-50 150 0 red axis

s" 2cubes.ppm" saveimage

The resulting image is shown in figure 14.3. Note the orientation of the two cubes. The
right cube is drawn with the box coming out of the page torwards the right side of the image
and this is the default orientation. One could have easily drawn the cube with an orientation
tilted towards the left size of the image.

Figure 14.3: Mirrored boxes

The orientation of 3D mapping can be controlled with two other words “MIRROR-LEFT”
and “MIRROR-RIGHT” (which is the default). One reason for switching between these
orientations is that the blue line drawn in the two cubes would not be easily visible if the
orientation was switched.

For the 3D plotting to be really useful, one would also need to be able to rotate the coordi-
nate axes to any desired orientation. This can be accomplished by defining the Euler angles

CHAPTER 14. GRAPHICS LIBRARIES 299

φ1, Φ, and φ2. These represent a rotation about the z-axis, then about the new x-axis, and
finally about the newest z-axis.

Positive values for the Euler angles represent a counter-clockwise rotation. For example,
assume the z-axis should be placed parallel to the vector znew =−1i+2 j+3k or [−1 2 3].
This can be accomplished using φ1 and Φ.

The first rotation about the z-axis is φ1 = angle between vector = −1i+ 2 j+ 0k and the
x−axis+90◦. That is φ1 = angle between [−1 2 0] and [1 0 0]+90◦ or φ1 = acos

(
−1√

5

)
+ π

2
and hence φ1 = 206.6◦.

Now a rotation about this x-axis will place the z-axis to the desired position, or Φ = angle
between [−1 2 3] and [0 0 1]. This gives Φ = acos

(
3√
14

)
= 36.7◦.

Lastly, a rotation about the newest z-axis φ2 can place the the x- and y-axes to any desired
location. Thus with the Euler angles of φ1 = 206.6◦, Φ= 36.7◦ will place the z-axis parallel
to[−1 2 3] and the rotation φ2 can then be used to set the x- and y-axes.

In 4tH, the word “EULER!” is used to set the Euler angles and these angles are defined
in degrees. Here, integer math is used to calculate the coordinate transformation. Once
the Euler angles are set, plotting is done as usual with the new orientation, which can be
viewed with the word “AXIS”. See the simple demo example below (gdemo3d.4th):

include lib/gplot3d.4th

colorimage \ define bitmap picture
600 picwidth !
400 picheight !
center-plot
255 whiteout

magenta \ draw a big box
0 0 0 euler! \ keep default axis orientation
0 0 -50 100 cube
0 0 -50 black axis

green \ draw a smaller rotated box
90 45 -20 euler! \ rotate the coordinate system
0 0 0 50 cube
0 0 0 blue axis

s" box.ppm" saveimage

The corresponding image is shown in figure 14.4. To summarize, the 3D plotting word set
is to be used in conjunction with those words already defined in the graphics package. The
complete wordset is listed in table 14.6. (dj)

14.10 3D turtle graphics

For the turtle graphics library4 gturtle.4th, the word that moves the turtle by the
number of pixels issued is “XMOVE”. Essentially, a short line of length n is drawn. If
the turtle is moving in 3D then this can be specified in “XMOVE” using the defered word
“XDSCALE”. By default, “XDSCALE” executes the word “2DPLOT”, which takes no
parameters and does absolutely nothing. However, in 3D one could define:

4See section 14.5.

CHAPTER 14. GRAPHICS LIBRARIES 300

WORD STACK EFFECT COMMENT

origin! x y – set the location of 3D-axis within
the 2D image

center-plot – place the 3D-axis axis origin at the
image center

euler! phi1 Psi phi2 – Set Euler angles to define plot
orientation

xyznew xold yold zold – x y z apply coordinate transformation to
map point to the new system

3d>2d rx cy z1 – rx cy map x,y,z to 2D for the graphic.4th
wordset

axis x y z – draw the current axis orientation at
point xyz.

cube x y z size – draw a cube at xyz
mirror-left – when mapping from 3d to 2d use

the “left” version of the cube view
mirror-right – Use the “right” version of the cube

view (default condition)

Table 14.6: 3D plotting wordset

variable turtlez
0 turtlez !

: zturtle! (x y z --) turtlez ! turtle! ;

\ place the turtle in 3D
: 3dplot (x1 y1 -- x2 y2) turtlez @ 3d>2d ;
’ 3dplot is xdscale

As a result, when “XMOVE“ is executed the turtle moves on the specified z-plane to create
an image. Some included examples and demo files using 3D plotting are listed in table
14.7. (dj)

File Description
gmirex.4th Example shows the use of cube, axis, 3d>2d, and

mirror-left and mirror-right.
gdemo3d.4th Demo shows use of euler! to rotate the coordinate

axes
plt3dex.4th Example to plot of a simple 3D surface with two

different views.

3ddemo.4th This demo plots sin
√

x2+y2√
x2+y2

with many views.

g3spiral.4th Example of using 3D plotting with turtle graphics.

Table 14.7: 3D plotting examples

CHAPTER 14. GRAPHICS LIBRARIES 301

Figure 14.4: Two boxes

Chapter 15

Preprocessor libraries

15.1 Introduction

Some people start to frown when you mention preprocessors. But most don’t even realize
that when you compile C, you’re always using a preprocessor - and with good reason!
Without a preprocessor you really wouldn’t want to write C, it would be awkward. C++
started its life as a preprocessor1. Several Forth compilers won’t even compile without a
preprocessor. Face it: there is nothing wrong with preprocessors!

Preprocessors are wonderful tools to hide awful constructs under a silky smooth syntax,
enhance your productivity, simplify maintenance and prevent programming errors. 4tH
comes with a preprocessor2 that is more powerful than C’s and shares many characteristics
with M43, like:

• Recursive macro expansion;

• Text replacement;

• Parameter substitution;

• File inclusion;

• Conditional evaluation;

• Arithmetic expressions.

In order to further enhance it, 4tH provides preprocessor libraries, which are in fact prede-
fined macros. You use a preprocessor library like you would use an ordinary one, e.g.:

include 4pp/lib/standard.4pp

After you’ve run the preprocessor, you compile as usual. Note there is no protection against
including a preprocessor library twice, but on the other hand it won’t be included by (or
include) other libraries, so that is pretty academic. If you’re running a Unix-like Operating
System, you could use make to make your life a little easier, e.g. by defining the following
rules:

1http://www2.research.att.com/~bs/hopl2.pdf
2See chapter 19 for more information.
3http://en.wikipedia.org/wiki/M4_%28computer_language%29

302

CHAPTER 15. PREPROCESSOR LIBRARIES 303

%.c : %.4th
4th cgq $< $@

%.c : %.hx
4th lgq $< $@

%.4th : %.4pp
pp4th -o $@ $<

Refer to your system documentation for more information. Finally (and this is very im-
portant), always include preprocessor libraries after including all other libraries. If you
don’t, you risk that your macros are expanded while you’re loading 4tH code that wasn’t
designed for it - which may have adverse effects. You don’t want to chase bugs that were
never there, don’t you?

15.2 Stack instructions

What sets the 4tH preprocessor apart from all other preprocessors is its built-in string stack.
And of course, with a stack comes stack instructions. Some, like @drop, @dup, @nip and
@over are built-in, but some like @swap and @rot are missing. That is exactly what this
library file provides. First of all, you have to include it:

include 4pp/lib/standard.4pp

Don’t forget to use the .4pp extension or you’ll get an error message, since the preproces-
sor won’t be able to find the file. After that you’ll have a full range of stack instructions at
your disposal to manipulate the string stack. It allows you to do things like this:

include 4pp/lib/standard.4pp
:macro _fac >4> >3> @minus @add @sign @if @drop

>3> @mul >3> >>> 1 @add <3< _fac ;
:macro __fac >>> 1 @swap >>> 1 @add >>> 2 @max

<4< >>> 2 <3< _fac ;
:macro factorial >#> __fac @drop <1< #1# ;
." 10! = " factorial 10 . cr

Which is nothing less than calculating the factorial of 10 at compile time! Now let’s break
this thing down, how does it work?

• factorial puts ”10” on the stack and calls __fac. After that, it takes the number
from the string stack and prints it;

• __fac puts ”1” on the stack, swaps both values and puts ”1” on the stack once more.
Then it adds TOS and 2OS4, puts ”3” on the stack and takes the largest value (like
’MAX’). TOS is stored in register 4 and the value ”2” is stored in register 3. Then
_fac is called.

• _fac puts the contents of register 4 and 3 on the stack, negates TOS and adds TOS
and 2OS. If the result of this subtraction is not zero, the contents of register 3 are
thrown on the stack once more and multiplied. Finally, the contents of register 3 are
incremented and a recursive call to _fac is made.

4”TOS” means: ”top of stack” and 2OS: ”second of stack”. It is a common way to refer to the top two values.

CHAPTER 15. PREPROCESSOR LIBRARIES 304

In short, the text factorial 10 is completely consumed and replaced by the result of
the calculation. That’s cool, isn’t it?

You might ask what’s wrong with registers 1 and 2. Well, nothing.. But most preprocessor
libraries use at least one register themselves - which is register 1 by convention. For the
@rot macro this library even uses register 1 and 2. That means if you have stored a value
there yourself and you use one of these predefined macros, it will get clobbered - which is
very nasty. In this example, we use @swap, which uses just register 1, so register 2, 3 and
4 are free to use.

So, save yourself hours of fruitless debugging and check whether a particular macro in a
library uses a particular register before using it yourself. Finally, note the preprocessor is
powerful enough to calculate the factorial recursively using only the string stack. But that’s
quite complex, you can make your life much easier using @swap, @rot and registers.

15.3 Coroutines

Calling a subroutine in any computer language is much like launching a program on a
single-tasking operating system: you launch it, it takes control and you won’t get it back
until it relinquishes it. That’s quite different from launching a program on a multitasking
operating system. You take the control back, give it back to the running program and so on.

Wouldn’t it be nice if 4tH could do that too? Well, I may seem like magic, but it can. Take
a look at this tiny program:

include 4pp/lib/yield.4pp
: fib 0 1 yield begin dup rot + yield again ;
: .fib fib begin dup 100 < while dup . yield repeat drop drop grab ;
: .fibs 0 ?do .fib cr loop ;
5 .fibs

So, what happens here? ”.FIB” simply prints all Fibonacci numbers smaller than 100.
”.FIBS” does that trick a number of times (5 in this case). Finally, ”FIB” calculates the
Fibonacci numbers. That’s all.

It all starts simple enough: ”.FIB” calls ”FIB”, which sets up the Fibonacci sequence. And
then it does something peculiar: it yields. Yielding is much like calling ’EXIT’, but with
one small difference: it isn’t permanent. As a matter of fact, it returns to the calling word
(the ”caller”), but it remembers where it was when it gave back the control, much like if it
were calling the word.

Ok, we’re now back at ”.FIB” and enter the loop with ’BEGIN’, with 0 and 1 at the top of
the stack. Sure, 1 is smaller than 100, so we pass the test and print ”1”. Now we encounter
another ”YIELD”, which yields the control back to ”FIB”. We enter the loop there and
calculate the next Fibonacci number - and yield again, back to ”.FIB”.

”.FIB” is at ’REPEAT’ now and jumps back to ’BEGIN’, so we test and print the number
before yielding control again. And so on, until we reach the limit and jump to ”GRAB”.
We will see why we need ”GRAB” when we examine what’s going on.

This is heavy duty stuff. C can’t do it without using every dirty trick in the book. We can
do it in two lines of preprocessor code, so what’s the secret. It’s simple, just take a look at
section 10.14 and the definition of ”YIELD”:

:macro yield r> execute ;

CHAPTER 15. PREPROCESSOR LIBRARIES 305

Whenever you yield, you take the return address of the ”caller” from the return stack - just
like you would with ’EXIT’. ’EXECUTE’ jumps to it, but leaves its own return address on
the return stack - like a call would. In fact, the ”caller” and the ”callee” swap places, or -
to put it in proper perspective - we started out with ”.FIB” calling ”FIB” and now we end
up with ”FIB” calling ”.FIB”.

Now, let’s say ”.FIB” encounters ’EXIT’ (which was compiled by ’;’). What do you think
is going to happen? It returns to its caller. Which is now ”FIB”.

That’s not what we want. First of all, ”FIB” never ends, so we can wait ’till kingdom come
until it relinquishes control. Second, we want to return to the caller of ”.FIB”, which is
”.FIBS”. Note its return address was never changed - it’s just buried beneath the return
address of ”FIB”. So we get rid of it and grab control. No surprise that this is the definition
of ”GRAB”:

:macro grab r> drop ;

If we had chosen to let ”.FIB” finish ”normally” and relinquish control through ’EXIT’
instead of ”YIELD”, we wouldn’t have needed ”GRAB”, of course. And the same goes for
”FIB”, if it had returned to ”.FIB” by ’EXIT’.

Note this is extremely powerful, but also extremely difficult to do right. Whenever control is
yielded, the stack diagram has to be exactly what the other coroutine expects. Furthermore,
you have to know at any given time what is calling what. For two words, that is feasible -
but three or more becomes increasingly difficult. It’s easy to do it wrong, but hard to do it
right.

Technically speaking, ”YIELD” does not implement coroutines, but generators. The differ-
ence between the two is that true coroutines can choose who they yield to, while generators
give you no choice - they’re always bound to one particular word. Finally, Coroutines
are also supported by an ”ordinary” 4tH library, but that implementation is slower and the
optimizer may corrupt the return stack if you don’t know what you’re doing.

15.4 Interpretation

By defining just a few macros the preprocessor is capable of interpreting and executing a
sequence of user defined macros at runtime. Let’s say you want to define a constant and do
some calculations e.g.:

include 4pp/lib/interprt.4pp

:macro /line >>> 64 ;
:macro #line >>> 16 ;
:macro @push >#> ;
:macro @* @mul ;
:macro @print @eval ;

[/line @print] constant bl_chars
[#line @print] constant bl_lines
[#line /line @* @push 8 @* @print] buffer: blocks

Bottom line: everything between the brackets is interpreted. Of course, there are other
(much better) ways to achieve this, but you catch my drift. After you’ve run the preproces-
sor you will find it has expanded the source to:

CHAPTER 15. PREPROCESSOR LIBRARIES 306

64 constant bl_chars
16 constant bl_lines
8192 buffer: blocks

Note you can use built-in macros or phony variables as long as you have wrapped them
into a macro of your own. This library only uses register 1, leaving you plenty of registers
to play with.

15.5 Closures

Yes, you’re reading it correctly: use can use the preprocessor to turn an archaic, low level
language like Forth into something very hip and modern. Closures are functions that carry
their own, persistent variables along. Some call them ”a poor mans objects”. Defining a
closure is very simple. It is almost like defining a structure:

include 4pp/lib/closures.4pp
\ counter creation word

:: counter (n1 n2 addr --)
vars \ define closure data
var: start \ initial value
var: inc \ increment per call

end-vars { \ only cells may be used!
this -> inc ! this -> start ! \ initialise closure
{: this -> inc @ this -> start dup ? +! ;}

} \ assign default behavior
;

You can’t use ”colon” to define a closure, you have to use the ”double colon” notation.
Then you start defining the variables of the closure right away. Note you can only define
cell variables. The rest is quite straight forward: instead of struct, you use vars.
Instead of using end-struct, you use end-vars to finish your data definition.

Then we start with the initalization routine. Note the first parameter of any closure routine
is always its address (just like ’DOES>’), which is put on the stack by ”{” and accessible
through ”THIS”. Any additional parameters follow after that. In this case, when creating
the closure the initial value of the counter and its increment are set.

Finally, we define the run time behavior - that is the code which is enclosed by ”{:” and
”;}”. Done. Now let’s define a few closures of the ”COUNTER” type:

5 2 sets counter counter1 \ make a counter

That’s all? Yes, that’s all you need to do to create and initialize ”COUNTER1”. Now let’s
call it:

counter1 \ 5
counter1 \ 7
counter1 \ 9

First it will print ”5”, then ”7” and finally ”9”. Now let’s try another ”COUNTER:

13 3 sets counter counter2 \ make another counter
counter2 \ 13
counter2 \ 16
counter2 \ 19

Now that wasn’t too hard, was it? Ok, before you start asking stupid questions, consider
this: wouldn’t you be better off with full fledged object orientation? If you answer this
question with ”yes”, read on. You’re in for a surprise.

CHAPTER 15. PREPROCESSOR LIBRARIES 307

15.6 Object orientation

We already told you that C++ started its life as a mere preprocessor. In 4tH, all that is
required to achieve almost full object orientation is a few humble preprocessor macros. If
you don’t like object orientation, that’s fine. You take the blue pill, the story ends, you
wake up in your bed and believe whatever you want to believe. But if you take the red pill,
you stay in Wonderland, and I show you how deep the rabbit hole really goes.

Object orientation comes with an abstract terminology that is incomprehensible to mere
humans, but scratch away the shiny surface and you’ll understand what it’s all about. Stay
with me.

15.6.1 Encapsulation

Object orientation defines encapsulation as ”a language construct that facilitates the bundling
of data with the methods operating on that data”. So what are we actually talking about.
Let’s start with a structure that holds the data. Now add a few fields that hold execution
tokens and you’re done. That’s your ”class” definition.

Building an object is nothing more than allocating storage space for your ”class”. You can
reserve that space in static or dynamic memory. That’s the easy part. The problem is, the
fields for our execution tokens are still empty and when you ”instantiate” an object, you
want these execution tokens to be initialized. The dirty trick is, you have to do that secretly
- in true object oriented tradition.

In 4tH you define a class with a class definition. A class consists of three parts, the data
definition, the ”binding” of the ”methods” and information hiding, e.g.

:class Account
extends Object \ data definition
ffield: accountBalance
virtual: CheckBalance

end-extends \ data initialization

:new 500 s>f this -> accountBalance f! ;method
:virtual CheckBalance this -> accountBalance f@ ;method

\ method binding
private{ accountBalance } \ information hiding

;class

You can only use cells in the data definition. Sorry, you have to store your strings some-
where else - we advise you to use dynamic string support5. A data definition is almost
identical to defining a structure, the only thing is you have to do it within the class defi-
nition. Object orientation also requires a thing called ”open recursion”, which is nothing
more than a ”this” or ”self” variable, which just holds the address of the ”object”. If you
stay in the realm of the standard FOOS method declaration, this is done automatically for
you.

The ”method” defining words6 put the address (that is always on the top of stack when an
object is invoked) on the return stack. Yes, you can still use the return stack, just think of
the ”THIS” variable as the ’I’ in a ’DO..LOOP’ and you’ll be fine. But there are a few
pitfalls I might mention.

If you leave a method early by using ’EXIT’ you may get in trouble. We will show you
how to handle that later on. Basically, it is not much different from using ”UNLOOP” when

5The dstringt.4th libary works pretty well.
6”:NEW”, ”:DELETE”, ”:METHOD”, ”:VIRTUAL” and ”:DEFAULT”.

CHAPTER 15. PREPROCESSOR LIBRARIES 308

exiting in the middle of a ”DO..LOOP”. And for obvious reasons ”DO..LOOP” doesn’t play
very well in conjuction with the ”THIS” variable.

The body of a class definition is actually executed when an object is created. The con-
structor method, defined with the word ”:NEW” is part of those execution semantics, so
the floating point ”property” (we call it a field) ”accountBalance” is set to 500. This is only
some syntactic suger, though - so you can omit that construct if you prefer. Just don’t leave
the constructor early! You’ll regret it if you try, since the actual constructor is the entire
class definition itself.

The colon definition that starts with ”:VIRTUAL” is just a ’:NONAME’ definition, which
leaves an execution token. ;METHOD” on its turn pokes this execution token into the
equivalent ”VIRTUAL:” field of the ”class”.

Note all classes you define are in some respect subclasses from the predefined mother of
all objects, "Object". So if the superclass of a class isn’t a class you defined, it’s always
"Object". That’s it. We’re done, now let’s use it.That’s it. We’re done, now let’s use it.

fvariable myBalance \ define an FP variable
instance Account myAccount \ create an Account object

The ”INSTANCE” word creates an object on the heap. Well, not just that; it also secretly
calls ”Account”, so the object is properly initialized. It also passes the address of the newly
created object to ”Account”, so it knows what to initialize. The curly braces in ”Account”
make sure that ”THIS” works.

myAccount => CheckBalance myBalance f! \ now pass a message
myBalance f@ f. cr \ and store the result

You pass a message to an object by using the ”=>” operator. You can also use an ”adjec-
tive”7. E.g. you can write the same piece of code like this if you want:

myAccount -> virtual CheckBalance myBalance f!
myBalance f@ f. cr

If you use ’->’ on its own you’ll just end up with the address of the methods field. When ”a
message is passed”, a ”method is invoked”. ”Passing a message” means calling the object
by name and passing all parameters. The object retrieves the reference of the actual method
and executes it: that’s the ”invocation of a method”. In 4tH, ”methods” can be ”virtual”,
which means you can store another execution token in that field at any time.

When a ”method” is ”invoked”, 4tH secretly passes the address of the object - as a matter
of fact: right on the top of the stack. The ”method” defining words take this address and
put it on the return stack. Now it starts making sense:

• The ”:NEW”, ”:DELETE”, ”:METHOD”, ”:VIRTUAL” or ”:DEFAULT word puts
the object address on the return stack;

• ”THIS” retrieves that address, so now ”accountBalance” points to the right place;

• The ”;METHOD” word clears the return stack;

• The data stack was uncluttered the whole time.
7Yes, I know: normal people would call it a cast, but allow me to introduce another, completely superfluous

concept to the already incomprehesible object orientation vocabulary.

CHAPTER 15. PREPROCESSOR LIBRARIES 309

I told you folks, it’s all smoke and mirrors. 4tH also supports static ”methods”, which
means you can’t change them later on and they’re automatically passed to all subclasses.
We could rewrite our previous example like this:

:class Account
extends Object \ data definition
ffield: accountBalance
method: CheckBalance

end-extends \ data initialization

:new 500 s>f this -> accountBalance f! ;method
:method CheckBalance this -> accountBalance f@ ;method

\ method binding
private{ accountBalance } \ information hiding

;class

You cannot invoke static methods with the ”=>” operator, you’ll have to use ”->” instead.
Why? Well, a static ”method” is just an ordinary definition, so when you call it, the address
of the object is consumed immediately. It is not expanded to an address to the ”method”
field itself. Worse, static ”methods” do not even need a ”METHOD:” declaration, since
they’re never changed and consequently don’t require any space. It’s just a little syntactic
sugar that does absolutely nothing.

Note that if you require to call a superclass method from a derived class that you can use a
":DEFAULT" definition. The difference with a ":VIRTUAL" definition is that we can never
refer to the "original" method again once we reassign a virtual method.

With ":DEFAULT" you can8, although you can only do it once: multiple defaults for the
same virtual method are not allowed. As a matter of fact, ”:DEFAULT” secretly defines a
static method and assigns its execution token to the virtual method. So, the ”original” static
method still has its own symbol in the symbol table, which you can later refer to using the
”<-” operator.

15.6.2 Subtype polymorphism

”Polymorphism” is the ability of ”objects” belonging to different types to respond to ”method”
or ”property” calls of the same name, each one according to an appropriate type-specific
behavior. Ok, that’s a hard one to swallow. Let’s break it down. We now know that is
”class” is nothing more than a structure.

In section 11.15 we already learned we could extend a structure. You may not realize
it, but you can pass a pointer to an extended structure to a word that takes a pointer to
the unextended structure and manipulate any of the fields they share - without problems.
Of course, that includes fields that hold execution tokens. That is the basic principle of
polymorphism.

Let’s investigate that one a but further. Lots of animals create sounds. Let’s make a ”class”
for them:

:class Animal
extends Object
virtual: Talk

end-extends
;class

8The reason is that 4tH doesn’t have a virtual method table. See:
http://en.wikipedia.org/wiki/Virtual_method_table

CHAPTER 15. PREPROCESSOR LIBRARIES 310

That’s all. A ”class” with one ”method”, no ”properties” and no ”binding”. You’d probably
call it a ”class with uninitialized methods”, but in object orientation it is usually called an
”interface”.

Ok, now we have an animal, let’s define a dog:

:class Dog
extends Animal
end-extends

:virtual Talk ." Woof" cr ;method
;class

The ”EXTENDS” word allows you to indicate from which class this type is derived - in
this case an ”Animal”. In this case, we don’t add any ”properties” or ”methods”, but we do
bind the previously defined method ”Talk”. We can do the same thing for a cat:

:class Cat
extends Animal
end-extends

:virtual Talk ." Meow" cr ;method
;class

If we now create a ”cat” object and a ”dog” object we can make them talk in their own
perculiar way:

static Cat MyCat
static Dog MyDog

MyCat => Talk
MyDog => Talk

That’s what’s called ”dynamic dispatch”: when a method is invoked on an object, the object
itself determines what code gets executed. You can take that a step further by defining e.g.
a figure:

:class figure \ define an empty class figure
extends Object \ with no properties and two
virtual: surface \ uninitialized methods
virtual: outline

end-extends
;class

Yes, that’s an ”interface”. Now let’s define a rectangle:

:class rectangle \ define a subtype rectangle
extends figure \ with two specific properties
field: _width \ and a private method
field: _height
method: double

end-extends
\ now initialize surface and outline

:method double 2* ;method
:virtual surface this -> _width @ this -> _height @ * ;method
:virtual outline

this -> _width @ this -> double

CHAPTER 15. PREPROCESSOR LIBRARIES 311

this -> _height @ this -> double +
;method

private{ double } \ make method private
;class

Note the method ”double” is private, which is means it can only be used within the class
itself. That’s why we made it a ”static” method, because it’s not gonna be redefined any
time soon. And let’s also define a circle while we’re at it:

:class circle \ define a subtype circle
extends figure \ with one specific property
field: radius \ and a private method
method: pi*

end-extends
\ now initialize surface and outline

:method pi* 103993 33102 */ ;method
:virtual surface this -> radius @ dup * this -> pi* ;method
:virtual outline this -> radius @ 2* this -> pi* ;method

private{ pi* } \ make method private
;class

Both subclasses have very different properties, e.g. ”radius” has very little meaning in the
context of a rectangle. However, they do share some methods, so if we instantiate them,
we can ”ask” them to calculate their surface - or their outline:

static rectangle MyRectangle \ make a rectangle instance
static circle MyCircle \ make a circle instance

4 MyRectangle -> _width ! \ initialize the rectangle
5 MyRectangle -> _height !
MyRectangle => surface . cr \ use both methods
MyRectangle => outline . cr

25 MyCircle -> radius ! \ initialize the circle
MyCircle => surface . cr \ use both methods
MyCircle => outline . cr

Nothing to it - if you know what’s under the hood.

15.6.3 Inheritance

The final feature true object orientation requires is inheritance. Inheritance is a way to reuse
code, which means that classes can inherit attributes and behavior from pre-existing classes
called ”superclasses”. So, how is this done in 4tH? Let’s define a traffic light, a simple one:

:class two-light \ create a two light traffic light
extends Object
field: Red \ red color string
field: Green \ green color string
field: State \ state of the traffic light
field: #lights \ number of lights
field: Description \ description of lights
method: Show \ show the current state
method: Configure \ configure a traffic light
virtual: Switch \ change to the next state

end-extends

CHAPTER 15. PREPROCESSOR LIBRARIES 312

Ok, this is our traffic light, the one you find on pedestrian crossings. It’s got a red light and
a green light - which totals two lights. It’s got a state so we can see what light is on at any
time and a few methods. ”Switch” makes it change from one state to another, ”Configure”
sets it up and ”Show” shows the traffic light.

Now let’s initialize our object:

:new \ set the colors
s" Red" this -> Red dup ds.init ds.place
s" Green" this -> Green dup ds.init ds.place

\ we need a table of descriptions
here [’] Green , [’] Red , here this -> Configure

;method \ now configure it

Here we see a nice example of how we can make dynamic strings work for object orien-
tation with very little trouble. We already concluded that it has two lights, so no surprises
there and we configure it by calling the ”Configure” method. This method manipulates
a pointer named ”Description” which points to an unnamed table which we’ll use in the
”Show” method:

:method Show \ show the current color
cells this -> Description @ + @c this + ds.count type cr

;method \ note we use the string offset

On a ”method” level it just takes an integer, representing the ”State” of our traffic light.
Next we fetch the item from the table, which is the offset to the appropriate ”property”
of the ”object”. So we add this offset to the current object address and fetch its contents.
Those contents point to a string in dynamic memory, which we can type. Phew! Job done.
The rest is straight forward:

:virtual Switch
this -> State dup @ dup \ get the current state
this -> Show 1+ \ show it, go to next state
this -> #lights @ mod swap ! \ and set it

;method \ assign it to the Switch method
\ free the green and red light

:delete this -> Green ds.free this -> Red ds.free ;method

The ”:DELETE” method is a destructor, which frees the memory taken by the ”lights” and
finally its own, since that behavior is inherited from the mother of all classes ”Object”.
The ”Switch” method not only reads property ”State”, it also updates it, so it completely
encapsulates it. Nothing else, but this class alone, has any business to do with ”State”, so
we can make it private. BTW, that also goes for ”#lights”, ”Description” and ”Show”:

private{ State #lights Description Show }

Now let’s make a heavier duty traffic light:

:class three-light \ create a three light traffic light
extends two-light \ based on the two light traffic light
field: Yellow \ add the color Yellow

end-extends

We only need to add the yellow light, don’t we? Sure, we need to add a string for the yellow
light:

CHAPTER 15. PREPROCESSOR LIBRARIES 313

:new \ set additional color
s" Yellow" this -> Yellow dup ds.init ds.place

The configuration may be a bit different, so we have to make and configure a new one:

\ we need a new table of descriptions
here [’] Green , [’] Yellow , [’] Red , here this -> Configure

;method

But the rest is just about the same, is it? Not quite. If we destroy our traffic light, we don’t
want to leave a yellow light on the sidewalk:

:delete this -> Yellow ds.free ;method

Yes, we destroy our yellow light first, then the rest of the traffic light (including the traffic
light itself) is destroyed by the superclass destructor, which is called automatically. A two-
light traffic light won’t behave the same as a three-light traffic light. But we only need to
change the bits that are different. The rest is inherited. If it’s a three-light traffic light, it
will behave accordingly. You can see that when you actually use the classes:

instance two-light DontWalk \ define a pedestrian light

." A pedestrian traffic light:" cr cr

DontWalk => Switch \ go to the next state four times
DontWalk => Switch
DontWalk => Switch
DontWalk => Switch
DontWalk delete cr \ now destroy it

instance three-light TrafficLight \ define a normal light

." A normal traffic light:" cr cr

TrafficLight => Switch \ go to the next state four times
TrafficLight => Switch
TrafficLight => Switch
TrafficLight => Switch
TrafficLight delete cr \ now destroy it

Now you think: ”how does he do that?” Well, frankly: by cheating! If you expand the
source, you will see what is actually going on:

[’] two-light [’] three-light [’] ~three-light (~~init)

It passes three execution tokens to a secret helper word that invokes the ”superclass” initial-
ization before invoking the initialization of the ”subclass”. If that superclass is a subclass
itself, it will call that superclass initialization and so on. When a superclass has finished
it relinquishes control to the subclass, so it can do its thing. Finally, the original subclass
itself gets the chance to override any ”properties” or ”methods” it sees fit - and then we’re
done. Hurray, we got an object - initialized and all.

It’s like you make a painting and paint over it a few times. What you see is the final picture.
You’re unaware of what is hidden under the various layers of paint - but that doesn’t mean
it’s not there or it was never painted. It’s that simple.

CHAPTER 15. PREPROCESSOR LIBRARIES 314

15.6.4 Using curly braces

Early adopters of FOOS may remember that in the past curly braces were everywhere - but
we’ve got rid of most of them, fortunately. Still, there are some rare situations where they
are indispensable:

• When you want to leave a method early;

• When you want to switch instances within a method;

• When you want to override a virtual method of a single instance;

• When you want to override a virtual method using a token.

So, first: what are curly braces? Curly braces put the object pointer on the return stack -
and take it off. When you define a method, e.g. using ”:METHOD” and ”;METHOD”, this
is done automatically for you - so you don’t need to bother. But, if you ever find yourself
in one of these situations, you most certainly will.

15.6.4.1 Leaving a method early

If you exit a method early, you bypass the ”;METHOD” word, so you’ll have to take care
of that object pointer yourself:

:method feed (--)
this -> hunger @ unless ." tama bats the offered food away" cr } ;then
." tama happily devours the offered food" cr
this -> hunger off 5 this -> digestion !

;method

Here, using ”UNLESS .. ;THEN”, an early exit is forced - and hence, you have to add a
”}” just before the ’;THEN’ in order to take that object pointer from the return stack.

15.6.4.2 Switching instances within a method

Here we have a different situation:

:virtual clone this <- clone } {
this => displayCLON this

;method

This is quite a tricky piece of code. We reimplement a virtual method by calling its own
default method, which essentially clones the current instance. It returns the cloned instance
and we want to continue with that one.

The closing curly brace takes the current object pointer from the return stack. Then the
opening curly bracket takes the cloned object pointer from the data stack and puts it on
the return stack. Hence, the subsequent invocation of ”displayCLON” is performed by the
cloned instance.

CHAPTER 15. PREPROCESSOR LIBRARIES 315

15.6.4.3 Overriding a virtual method of a single instance

Sometimes, you want to change a virtual method on an existing instance. E.g. let’s say you
defined this one:

static button foo \ define a static button

Let’s say you want to change its ”DRAW” method during runtime. Now, how do you do
that. Simple:

bar { :virtual draw reverse this <- draw normal ;method }

How does that work? It’s easy. ”BAR” leaves its pointer on the stack - and ”{” puts it on
return stack. The virtual method leaves an execution token on the stack that is applied by
”;METHOD” to the current object pointer on the return stack - just when initializing an
ordinary instance. So this works - nothing special. The closing curly brace cleans up the
mess. That’s all.

15.6.4.4 Override a virtual method using a token

Now let’s say we want to define an execution token we intend to use on a virtual method
- may be even several virtual methods. Let’s say a cloning method. However, there is no
such thing as a ”:VIRTUALTOKEN” word. So how do we do this. It’s simple: just use
’:TOKEN’:

:token {clone} { (a1 -- a2)
this allocated dup allocate abort" Cannot create object"
tuck this swap rot smove

} ;

For applying it to a virtual method simply use the ”OVERRIDES” word. Let’s say we want
to apply its execution semantics to a virtual ”CLONE” method:

{clone} overrides clone

That’s it. Done. Since you don’t use the method words, you have to add this behavior
yourself. There’s no magic here.

15.6.5 Lazy initialization

Lazy initialization is the tactic of delaying the creation of an object, the calculation of a
value, or some other expensive process until the first time it is needed. It is a kind of lazy
evaluation that refers specifically to the instantiation of objects or other resources. You’ll
find these a lot when using singleton or multiton design patterns.

In most OO languages, the name of the class itself serves as a placeholder for the object.
Since that is the name of the actual constructor - and hence is executed - that is not an
option in FOOS. Instead, we have ”NOTHING”.

You can use this only in conjunction with static methods - which is fairly obvious, since
there is no way to invoke a virtual method without an actual object. Of course, you can’t
access any properties as well - they’re not there. What do you want?

Note that since the value of ”NOTHING” is equal to ’(ERROR)’ you can create some pretty
expressive code in combination with methods that use the latter as an error value:

CHAPTER 15. PREPROCESSOR LIBRARIES 316

:method getFruit
2dup types -> hget Nothing =
if 2dup new Fruit -rot types -> hput else 2drop then

;method

In this case, a new instance is only created, when its value is not in the hashmap. Calling
the static method above is done like this:

s" Apple" Nothing -> getFruit

Agreed, FOOS is a bit different, but with alternative constructs it allows you to implement
many OO design patterns without sacrificing ease of use or clarity.

15.6.6 Forward declaration of classes

The problem is closely related to ’DEFER’ - where you have to use a word before it can
be declared. Later, when you’ve actually defined the word, you use ’IS’ to set the deferred
word to the actual execution semantics. The equivalent of ’DEFER’ is ”CLASS”, e.g.

class to_be_defined_later

If you need to refer to properties of this class - before its actually defined - it’s a good idea
to define an interface and subclass it later. Now you can allocate instances of this class in
exactly the same way as you normally would.

The next step is to define the class now - but you’ll have to use a different name, e.g.:

:class actual_definition
extends Object
method: myMethod

end-extends

(insert your method definitions here)
;class

Right after you’ve defined that class you resolve the forward declaration:

resolve to_be_defined_later actual_definition

That’s all.

15.6.7 Determining the type and size of an object

You can determine the type of an object by simply fetching it, e.g.:

MyCircle type@

You can compare it to a predetermined class by using the ”TYPEOF” word:

typeof circle

You can also determine the superclass of an object:

CHAPTER 15. PREPROCESSOR LIBRARIES 317

MyCircle parent@

And its counterpart on the class side is used like this:

parentof circle

You can compare these values with the ’=’ word, nothing special. If you want to go really
deep and decide whether some interface was incorporated somewhere down the line, you
can do that too:

MyCircle type@ YourCircle type@ derived?

This will leave a ’TRUE’ flag if ”MyCircle” was derived from the class of the object ”Your-
Circle”. Usually you may want to check against a predefined class, like this:

MyCircle type@ kindof circle =

The value all these words return is actually an execution token of the class, so you can use
it when you e.g. want to clone objects. It is secretly stored in a hidden field of the class.
Of course, what’s missing there is the size of a class. You can determine that one with the
”SIZEOF” word, e.g.

sizeof circle

If you’ve allocated objects on the heap, getting their sizes isn’t rocket science either:

MyCircle allocated

For static objects there is no way to determine their sizes (in true 4tH fashion), but that will
not be a problem, because you won’t be allocating them in a userdefined word.

15.6.8 Namespace pollution

Since 4tH has only one namespace, it can get a bit tight when using FOOS. So, these are
the rules to avoid namespace clashes:

1. Don’t use any 4tH predefined names;

2. Don’t use any names which are claimed by the libraries you imported;

3. Don’t use any FOOS predefined names;

4. Don’t start your names with a slash, underscore or tilde. These are used for name
mangling9;

5. Don’t think you can use names up to the full length 4tH allows. Name mangling,
remember?

You can reuse private names, though, and you can - of course - reimplement virtual meth-
ods.

15.6.9 Design patterns

The following design patterns have been implemented in FOOS:

9https://en.wikipedia.org/wiki/Name_mangling

CHAPTER 15. PREPROCESSOR LIBRARIES 318

Abstract factory Creational

Builder Creational

Dependency injection Creational

Factory Creational

Lazy initialization Creational

Multiton Creational

Object pool Creational

Prototype Creational

Singleton Creational

Adapter Structural

Bridge Structural

Composite Structural

Decorator Structural

Facade Structural

Flyweight Structural

Proxy Structural

Twin Structural

Blackboard Behavioral

Chain of responsibility Behavioral

Command Behavioral

Interpreter Behavioral

Iterator Behavioral

Mediator Behavioral

Memento Behavioral

Null object Behavioral

Observer Behavioral

Servant Behavioral

State Behavioral

Strategy Behavioral

Template Behavioral

Visitor Behavioral

15.7 This is the end

This is the end of it. If you mastered all we have written about 4tH, you may be just as
proficient as we are. Or even better. In the meanwhile you may even have acquired a taste
for this strange, but elegant language. If you do, it may be time to step up to Forth, since
4tH does have it limitations. This is in no way an obligation. If you feel comfortable with
4tH, please do stick with it!

If you need any help, you can contact us by sending an email to:

the.beez.speaks@gmail.com

Note that we do appreciate any input, so if you’ve written a state of the art application in
4tH, used 4tH in some special way or do have any comments or suggestions on 4tH, we’d
like to hear from you! We do also have a web-site:

http://thebeez.home.xs4all.nl/4tH/

CHAPTER 15. PREPROCESSOR LIBRARIES 319

You will find there lots of documentation and news on 4tH. We’d like to thank you for
putting so much effort in 4tH. We tried to be of assistance and we hope we did it well!

Part III

Reference guide

320

Chapter 16

Glossary

This glossary contains all of the word definitions used in version 3.64 of 4tH. The defini-
tions are presented in order of their ASCII sort. Availability of the word in the appropriate
ANS-Forth wordset is listed. This does not mean any conformance to the ANS-Forth defi-
nition.

PRONUNCIATION: Natural-language pronunciation if it differs from English.

INCLUDE: Following library file provides this word.

COMPILES TO: Describes the transformation of the word to token(s) without peephole
optimization. Compiler directives will lack this section.

SYNTAX: Describes definition characteristics if non-conformance should lead to
a compilation error.

<char> Character
<string> String constant, delimited by spaces
<literal> Expression which compiles to LITERAL (n)
<name> String of characters, stored in the symboltable
<space> Space character
<word> Any valid 4tH word.

COMPILER: Describes special actions the compiler takes when compiling this word.

STACK EFFECTS: Describes the action of the tokens on the parameter stack at runtime.
The symbols indicate the order in which input parameters have been
placed on the stack. Two dashes indicate the execution point. Any
parameters left on the stack are listed. In this notation, the top of the
stack is to the right.

n 32 (or 64) bits signed number
c 8 bits character
f boolean flag
fam file access method
h file handle (stream)
d double number (2 cells)
sp stack pointer Stack Area
x address of a cell Variable Area
addr address of a character Character Segment
xt execution token Code Segment

321

CHAPTER 16. GLOSSARY 322

FLOATING: Describes the action of floating point words on the floating point stack
at runtime. The symbols1 indicate the order in which input parameters
have been placed on the stack. Two dashes indicate the execution
point. Any parameters left on the floating point stack are listed. In this
notation, the top of the stack is to the right.

FORTH: Describes the deviation of 4tH from ANS-Forth and gives suggestions
for porting Forth programs.

1’r’ stands for real number.

CHAPTER 16. GLOSSARY 323

! CORE

PRONUNCIATION: store

COMPILES TO: ! (0)

STACK EFFECTS: n x —

Stores n in the variable at address x.

CORE

PRONUNCIATION: number-sign

COMPILES TO: # (0)

STACK EFFECTS: n1 — n2

FORTH: In Forth a double number is required.

Generate from n1 the next ASCII character which is placed in an output string, stored in
PAD. Result n2 is the quotient after the division by BASE, and is remained for further
processing. Used between <# and #>.

#! 4TH

SYNTAX: #!<space><string>

The remainder of the line is discarded. This word is used to start a 4tH source program
from a Unix type shell. An alias for \.

#> CORE

PRONUNCIATION: number-sign-greater

COMPILES TO: #> (0)

STACK EFFECTS: n1 — addr n2

FORTH: In Forth a double number is required.

Terminates numeric output conversion by dropping n1, leaving the address in PAD and
character count n2 suitable for TYPE.

#S CORE

PRONUNCIATION: number-sign-s

COMPILES TO: #S (0)

STACK EFFECTS: n1 — n2

FORTH: In Forth a double number is required.

CHAPTER 16. GLOSSARY 324

Generates ASCII text in PAD by the use of # until a zero number n2 results. Used between
<# and #>.

#TIB CORE EXT

PRONUNCIATION: number-t-i-b

INCLUDE: obsolete.4th

STACK EFFECTS: — x

X is the address of a cell containing the number of characters in the terminal input buffer
(see /TIB).

’ CORE

PRONUNCIATION: tick

COMPILES TO: LITERAL (<argument of symbol>)

SYNTAX: ’<space><name>

STACK EFFECTS: — x | xt | n

FORTH: In Forth you can determine the address of variables, constants, etc.
In 4tH the contents of the symboltable entry is returned. Of course
the token addresses of built-in primitives cannot be determined either.
E.g. use

: _+ + ; ’ _+

instead of

’ +

Compile the value contents of the symboltable entry identified as symbol <name> as a
literal.

(CORE FILE

PRONUNCIATION: paren

SYNTAX: (<space><string>)

Ignore a comment that will be delimited by a right parenthesis. May occur inside or outside
a colon-definition. A blank after the leading parenthesis is required.

(ERROR) 4TH

COMPILES TO: LITERAL (<largest negative integer>)

STACK EFFECTS: — n

CHAPTER 16. GLOSSARY 325

Returns 4tHs internal error-flag. This number cannot be printed. Usually -2^31.

) 4TH

COMPILES TO: EQ0 (0)

0BRANCH (<address of THROW>)

LITERAL (<M4ASSERT>)

THROW (0)

STACK EFFECTS: f —

FORTH: Similar constructions are available in GForth and Win32Forth.

If flag f is FALSE, the program will terminate with an error. Its compilation is dependant
on the presence of [ASSERT] (see: [ASSERT] and ASSERT().

* CORE

PRONUNCIATION: star

COMPILES TO: * (0)

STACK EFFECTS: n1 n2 — n3

Leave the product n3 of two numbers n1 and n2.

*/ CORE

PRONUNCIATION: star-slash

COMPILES TO: >R (0)

* (0)

R> (0)

/ (0)

STACK EFFECTS: n1 n2 n3 — n4

Leave the ratio n4 = n1*n2/n3.

*/MOD CORE

PRONUNCIATION: star-slash-mod

COMPILES TO: >R (0)

* (0)

R> (0)

CHAPTER 16. GLOSSARY 326

/MOD (0)

STACK EFFECTS: n1 n2 n3 — n4 n5

Leave the quotient n5 and remainder n4 of the operation n1*n2/n3.

*CONSTANT 4TH

SYNTAX: <literal><space>*CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for *CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

A defining word used to create word <name>. When <name> is later executed, it will
multiply the top of the stack with the value of <literal>.

+ CORE

PRONUNCIATION: plus

COMPILES TO: + (0)

STACK EFFECTS: n1 n2 — n3

Leave the sum n3 of n1+n2.

+! CORE

PRONUNCIATION: plus-store

COMPILES TO: +! (0)

STACK EFFECTS: n x —

Add n to the value in variable at address x.

+CONSTANT 4TH

SYNTAX: <literal><space>+CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for +CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

A defining word used to create word <name>. When <name> is later executed, it will add
the value of <literal> on the top of the stack.

+FIELD FACILITY EXT

CHAPTER 16. GLOSSARY 327

SYNTAX: STRUCT<space><literal><space>+FIELD<space><name><space>END-
STRUCT<space><name>

COMPILER: Take two previous compiled literals. The last literal is added to the
first and recompiled. The first literal is the value of a named +CON-
STANT. The instruction pointer does not change.

FORTH: This is a Forth-2012 word.

Create a field for STRUCTURE implementations. The created fieldname is an +CON-
STANT that memorizes the current offset (see: +FIELD, /FIELD, STRUCT, END-STRUCT).

+LOOP CORE

PRONUNCIATION: plus-loop

COMPILES TO: +LOOP (<address of matching DO token>)

SYNTAX: DO<space>..<space>+LOOP

STACK EFFECTS: n —

Used in the form DO .. n1 +LOOP. At runtime, +LOOP selectively controls branching back
to the corresponding DO based on n1, the loop index and the loop limit. The increment n1
is added to the index and the total compared to the limit. The branch back to DO occurs
until the new index is equal to or greater than the limit (n > 0), or until the new index is less
than the limit (n < 0). Upon exiting the loop, the parameters are discarded and execution
continues ahead.

+PLACE COMUS

COMPILES TO: COUNT (0)

+ (0)

PLACE (0)

STACK EFFECTS: addr1 n addr2 —

Copies the string at address addr1 with count n to address addr2.

+TO 4TH

COMPILES TO: VARIABLE (<address of value>)

+! (0)

STACK EFFECTS: n —

SYNTAX: +TO<space><name>

Add n to the value.

CHAPTER 16. GLOSSARY 328

+X/STRING XCHAR EXT

INCLUDE: xchar.4th

STACK EFFECTS: addr1 n1 — addr2 n2

FORTH: This is a Forth-2012 word.

Step forward by one xchar in the buffer defined by addr1 n1. addr2 n2 is the remaining
buffer after stepping over the first xchar in the buffer.

, CORE

PRONUNCIATION: comma

COMPILES TO: , (<literal>)

SYNTAX: <literal><space>,

COMPILER: The previously compiled literal is changed into a NOOP instruction.
The instruction pointer is not incremented.

FORTH: Forth pops a value from the stack. This is not possible in 4tH. Instead
the previously compiled literal has its codefield changed to NOOP.

Store the literal into the next available location.

," COMUS

COMPILES TO: ," (<address of string constant>)

SYNTAX: ,"<space><string>"

FORTH: Compilation characteristics are quite different. 4tH compiles only the
address, Forth compiles the entire string.

Compile the string, delimited by " in the String Segment and leave the offset as the address
of a string constant (see: @C).

,"" 4TH

COMPILES TO: ," (<address of null string constant>)

Compile a null string in the String Segment and leave the offset as the address of a string
constant (see: @C).

,| 4TH

COMPILES TO: ," (<address of string constant>)

SYNTAX: ,|<space><string>|

CHAPTER 16. GLOSSARY 329

Compile the string, delimited by | in the String Segment and leave the offset as the address
of a string constant (see: @C).

- CORE

PRONUNCIATION: minus

COMPILES TO: - (0)

STACK EFFECTS: n1 n2 — n3

Leave the difference of n1 - n2 in n3.

-> 4TH

COMPILER: The instruction pointer is not incremented. In fact, -> is a dummy.

SYNTAX: <name><space>-><space><name>

Separation between a structure and its member.

-ROT COMUS

COMPILES TO: ROT (0)

ROT (0)

STACK EFFECTS: n1 n2 n3 — n3 n1 n2

Rotate top stack item below the next two items.

-TRAILING STRING

PRONUNCIATION: dash-trailing

COMPILES TO: -TRAILING (0)

STACK EFFECTS: addr n1 — addr n2

Adjusts the character count n1 of a string beginning address to suppress the output of
trailing blanks, i.e. the characters from addr+n1 to addr+n2 are blanks.

-TRAILING-GARBAGE XCHAR EXT

INCLUDE: anstools.4th

STACK EFFECTS: addr n1 — addr n2

FORTH: This is a Forth-2012 word.

CHAPTER 16. GLOSSARY 330

Examine the last xchar in the string addr n1 - if the encoding is correct and it represents a
full xchar, n2 equals n1, otherwise, n2 represents the string without the last (garbled) xchar.
-TRAILING-GARBAGE does not change this garbled xchar.

. CORE

PRONUNCIATION: dot

COMPILES TO: . (0)

STACK EFFECTS: n —

Print a number to the current output device, converted according to the numeric BASE. A
trailing blank follows.

." CORE

PRONUNCIATION: dot-quote

COMPILES TO: ." (<address of string constant>)

SYNTAX: ."<space><string>"

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device.

.(CORE EXT

PRONUNCIATION: dot-paren

COMPILES TO: ." (<address of string constant>)

SYNTAX: .(<space><string>)

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device. An alias for .".

.R CORE EXT

PRONUNCIATION: dot-r

COMPILES TO: .R (0)

STACK EFFECTS: n1 n2 —

Print the number n1 right aligned in a field whose width is n2 to the current output device.
No following blank is printed.

.S TOOLS

PRONUNCIATION: dot-s

CHAPTER 16. GLOSSARY 331

INCLUDE: anstools.4th

STACK EFFECTS: —

Copy and display the values currently on the data stack.

.| 4TH

COMPILES TO: ." (<address of string constant>)

SYNTAX: .|<space><string>|

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device.

/ CORE

PRONUNCIATION: slash

COMPILES TO: / (0)

STACK EFFECTS: n1 n2 — n3

Leaves the quotient n3 of n1/n2.

/CELL COMUS

COMPILES TO: LITERAL (<size of a cell>)

STACK EFFECTS: — n

Returns the size of a cell in address units.

/CHAR COMUS

COMPILES TO: LITERAL (<size of char>)

STACK EFFECTS: — n

Returns the size of a character in address units.

/CONSTANT 4TH

SYNTAX: <literal><space>/CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for /CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

CHAPTER 16. GLOSSARY 332

A defining word used to create word <name>. When <name> is later executed, it will
divide the top of the stack by the value of <literal>.

/FIELD 4TH

SYNTAX: STRUCT<space><literal><space>/FIELD<space>END-STRUCT<space><name>

COMPILER: Take two previous compiled literals. The last literal is compared to
the first and the larger one of the two is recompiled. The instruction
pointer does not change.

Create a field for UNION implementations (see: +FIELD, /FIELD, STRUCT, END-STRUCT).

/MOD CORE

PRONUNCIATION: slash-mod

COMPILES TO: /MOD (0)

STACK EFFECTS: n1 n2 — n3 n4

Leave the remainder n3 and quotient n4 of n1/n2.

/PAD 4TH

COMPILES TO: LITERAL (<size of PAD>)

STACK EFFECTS: — n

FORTH: Equivalent to:

: /PAD S" /PAD" ENVIRONMENT? DROP ;

Returns the size of PAD.

/STRING STRING

PRONUNCIATION: slash-string

COMPILES TO: SWAP (0)

OVER (0)

- (0)

>R (0)

+ (0)

R> (0)

STACK EFFECTS: addr1 n1 n2 — addr2 n3

CHAPTER 16. GLOSSARY 333

Adjust the character string at addr1 by n2 characters. The resulting character string, speci-
fied by addr2 n3 , begins at addr1 plus n2 characters and is n1 minus n characters long.

/TIB 4TH

COMPILES TO: LITERAL (<size of TIB>)

STACK EFFECTS: — n

Returns the size of the terminal input buffer.

0< CORE

PRONUNCIATION: zero-less

COMPILES TO: 0< (0)

STACK EFFECTS: n — f

Leave a TRUE flag if number n is less than zero (negative), otherwise leave a FALSE flag
in f.

0<> CORE EXT

PRONUNCIATION: zero-not-equals

COMPILES TO: 0<> (0)

STACK EFFECTS: n — f

Leave a TRUE flag if number n is not equal to zero, otherwise leave a FALSE flag in f.

0= CORE

PRONUNCIATION: zero-equals

COMPILES TO: 0= (0)

STACK EFFECTS: n — f

Leave a TRUE flag if number n is equal to zero, otherwise leave a FALSE flag in f.

0> CORE EXT

PRONUNCIATION: zero-greater

COMPILES TO: 0> (0)

STACK EFFECTS: n — f

CHAPTER 16. GLOSSARY 334

Leave a TRUE flag if number n is greater than zero (positive), otherwise leave a FALSE
flag in f.

1+ CORE

PRONUNCIATION: one-plus

COMPILES TO: +LITERAL (1)

STACK EFFECTS: n — n+1

Increment n by 1.

1- CORE

PRONUNCIATION: one-minus

COMPILES TO: +LITERAL (-1)

STACK EFFECTS: n — n-1

Decrement n by 1.

2! CORE

PRONUNCIATION: two-store

INCLUDE: anscore.4th

STACK EFFECTS: n1 n2 x —

Store the cell pair n1 n2 at x, with n2 at x and n2 at the next consecutive cell.

2* CORE

PRONUNCIATION: two-star

COMPILES TO: *LITERAL (2)

STACK EFFECTS: n — n*2

Multiply n by 2. Performs a left shift.

2/ CORE

PRONUNCIATION: two-slash

COMPILES TO: 2/ (0)

STACK EFFECTS: n — n/2

CHAPTER 16. GLOSSARY 335

Divide n by 2. Performs a right shift.

2>R CORE EXT

PRONUNCIATION: two-to-r

COMPILES TO: >R (0)

>R (0)

STACK EFFECTS: n1 n2 —

FORTH: Forth swaps both values before transfering them to the return stack.

Transfer cell pair n1 n2 to the return stack.

2@ CORE

PRONUNCIATION: two-fetch

INCLUDE: anscore.4th

STACK EFFECTS: x — n1 n2

Fetch the cell pair n1 n2 stored at x. n2 is stored at x and n1 at the next consecutive cell.

2DROP CORE

PRONUNCIATION: two-drop

COMPILES TO: DROP (0)

DROP (0)

STACK EFFECTS: n1 n2 —

Drop cell pair n1 n2 from the stack.

2DUP CORE

PRONUNCIATION: two-dupe

COMPILES TO: OVER (0)

OVER (0)

STACK EFFECTS: n1 n2 — n1 n2 n1 n2

Duplicate cell pair n1 n2.

2NIP TOOLBELT

CHAPTER 16. GLOSSARY 336

COMPILES TO: ROT (0)

DROP (0)

ROT (0)

DROP (0)

STACK EFFECTS: n1 n2 n3 n4 — n3 n4

Drop the third and fourth items on the stack.

2OVER CORE

PRONUNCIATION: two-over

INCLUDE: anscore.4th

STACK EFFECTS: n1 n2 n3 n4 — n1 n2 n3 n4 n1 n2

Copy cell pair n1 n2 to the top of the stack.

2R> CORE EXT

PRONUNCIATION: two-r-from

COMPILES TO: R> (0)

R> (0)

STACK EFFECTS: — n1 n2

FORTH: Forth swaps both values after transfering them from the return stack.

Transfer cell pair n1 n2 from the return stack.

2R@ CORE EXT

PRONUNCIATION: two-r-fetch

COMPILES TO: R> (0)

I (0)

OVER (0)

>R (0)

STACK EFFECTS: — n1 n2

FORTH: Forth swaps both values after transfering them from the return stack.

Copy cell pair n1 n2 from the return stack.

CHAPTER 16. GLOSSARY 337

2RDROP 4TH

COMPILES TO: RDROP (0)

RDROP (0)

STACK EFFECTS: —

Drop a cell pair from the return stack.

2ROT DOUBLE EXT

PRONUNCIATION: two-rote

INCLUDE: anscore.4th

STACK EFFECTS: n1 n2 n3 n4 n5 n6 — n3 n4 n5 n6 n1 n2

Rotate the top three cell pairs on the stack bringing cell pair n1 n2 to the top of the stack.

2SWAP CORE

PRONUNCIATION: two-swap

COMPILES TO: ROT (0)

>R (0)

ROT (0)

R> (0)

STACK EFFECTS: n1 n2 n3 n4 — n3 n4 n1 n2

Exchange the top two cell pairs.

4TH# 4TH

COMPILES TO: LITERAL (<4tH version in hexadecimal>)

STACK EFFECTS: — n

Constant containing the 4tH version in hexadecimal.

: CORE

PRONUNCIATION: colon

COMPILES TO: BRANCH (<address of matching ; token>)

SYNTAX: :<space><name>..<space>;

CHAPTER 16. GLOSSARY 338

Creates a subroutine defining <name> as equivalent to the following sequence of 4tH word
definitions until the next ;.

:NONAME CORE EXT

PRONUNCIATION: colon-no-name

COMPILES TO: LITERAL (<address of next BRANCH>)

BRANCH (<address of matching ; token>)

SYNTAX: :NONAME<space>..<space>;

STACK EFFECTS: — xt

Create an execution token xt and compile the current definition. The execution semantics of
xt will be determined by the words compiled into the body of the definition. This definition
can be executed later by using xt EXECUTE.

:PROTO 4TH

COMPILES TO: BRANCH (<address of matching ; token>)

SYNTAX: :PROTO<space>..<space>;

Creates a subroutine for a previously PROTO: defined <name> as equivalent to the follow-
ing sequence of 4tH word definitions until the next ; (see: PROTO:).

:REDO 4TH

COMPILES TO: BRANCH (<address of matching ; token>)

LITERAL (<original value>) | VARIABLE (<original value>)

SYNTAX: :REDO<space><name><space>..<space>;

Create an subroutine <name> that first pushes the original value of <name> on the stack.
The words after <name> determine what the actual execution behavior will be (see: DOES>).

:TOKEN 4TH

COMPILES TO: BRANCH (<address of matching ; token>)

SYNTAX: :TOKEN<space><name><space>..<space>;

FORTH: The equivalent in Forth is:

:noname ; constant <name>

Create an execution token <name> and compile the current definition. The execution se-
mantics of <name> will be determined by the words compiled into the body of the defini-
tion. This definition can be executed later by using <name> EXECUTE.

CHAPTER 16. GLOSSARY 339

; CORE

PRONUNCIATION: semi-colon

COMPILES TO: EXIT (0)

SYNTAX: See :

Terminate a colon definition. At runtime, return to the calling word by popping a token-
address from the return stack.

;ENDOF 4TH

COMPILES TO: EXIT (0)

SYNTAX: OF<space>..<space>;ENDOF

When compiled within a colon-definition, terminates execution of that definition at that
point. It also marks the conclusion of the conditional structure.

;THEN 4TH

COMPILES TO: EXIT (0)

SYNTAX: IF<space>..<space>;THEN

When compiled within a colon-definition, terminates execution of that definition at that
point. It also marks the conclusion of the conditional structure.

;] COMP.LANG.FORTH

COMPILES TO: EXIT (0)

SYNTAX: See [:

FORTH: Several Forths support this word, e.g. gForth, iForth and VFX Forth.

Ends the current nested definition, and resumes compilation to the previous current defini-
tion (if any).

< CORE

PRONUNCIATION: less-than

COMPILES TO: < (0)

STACK EFFECTS: n1 n2 — f

Leave a TRUE flag if n1 is less than n2; otherwise leave a FALSE flag in f.

CHAPTER 16. GLOSSARY 340

<# CORE

PRONUNCIATION: less-number-sign

COMPILES TO: <# (0)

FORTH: In Forth a double number is required.

Setup for pictured numeric output formatting in PAD using the words <#, #, #S, SIGN,
HOLD, #>.

<> CORE EXT

PRONUNCIATION: not-equals

COMPILES TO: <> (0)

STACK EFFECTS: n1 n2 — f

Leave a TRUE flag if n1 does not equal n2; otherwise leave a FALSE flag in f.

<= 4TH

COMPILES TO: > (0)

0= (0)

STACK EFFECTS: n1 n2 — f

Leave a TRUE flag if n1 is less or equal than n2; otherwise leave a FALSE flag in f.

= CORE

PRONUNCIATION: equals

COMPILES TO: = (0)

STACK EFFECTS: n1 n2 — f

Leave a TRUE flag if n1 equals n2; otherwise leave a FALSE flag in f.

> CORE

PRONUNCIATION: greater-than

COMPILES TO: > (0)

STACK EFFECTS: n1 n2 — f

Leave a TRUE flag if n1 is greater than n2; otherwise leave a FALSE flag in f.

CHAPTER 16. GLOSSARY 341

>= 4TH

COMPILES TO: < (0)

0= (0)

STACK EFFECTS: n1 n2 — f

Leave a TRUE flag if n1 is greater or equal than n2; otherwise leave a FALSE flag in f.

>BODY CORE

PRONUNCIATION: to-body

COMPILES TO: ENVIRON (<address of FIRST>)

+ (0)

STACK EFFECTS: n — x

FORTH: In Forth, >BODY works with every CREATEd datatype.

n is the ticked value of a VARIABLE, VALUE, DEFER or FILE. >BODY returns its ad-
dress in the Variable Area.

>FLOAT FLOATING

PRONUNCIATION: to-float

INCLUDE: ansfpio.4th

zenfpio.4th

fpin.4th

STACK EFFECTS: addr n — f

FLOATING: — r

An attempt is made to convert the string specified by addr and n to internal floating-point
representation. If the string represents a valid floating-point number in the syntax ”mantissa
(with optional exponent)”, its value r and true are returned. If the string does not represent
a valid floating-point number only false is returned.

>IN CORE

PRONUNCIATION: to-in

COMPILES TO: LITERAL (<address of >IN>)

STACK EFFECTS: — x

A variable containing the address within the Character Segment from which the next text
will be parsed. PARSE uses and moves the value of >IN.

CHAPTER 16. GLOSSARY 342

>NUMBER CORE

PRONUNCIATION: to-number

INCLUDE: tonumber.4th

todbl.4th

STACK EFFECTS: n1 a1 n2 — n3 a2 n4

d1 a1 n1 — d2 a2 n4

n3|d2 is the unsigned result of converting the characters within the string specified by a1
n2 into digits, using the number in BASE, and adding each into n1|d1 after multiplying
n1|d2 by the number in BASE. Conversion continues left-to-right until a character that is
not convertible, including any + or -, is encountered or the string is entirely converted. a2
is the location of the first unconverted character or the first character past the end of the
string if the string was entirely converted. n4 is the number of unconverted characters in
the string. An ambiguous condition exists if n3|d2 overflows during the conversion.

>R CORE

PRONUNCIATION: to-r

COMPILES TO: >R (0)

STACK EFFECTS: n —

Remove n from the stack and place it on the return stack. Use should be balanced with R>
in the same definition.

>STRING 4TH

COMPILES TO: OVER (0)

PLACE (0)

STACK EFFECTS: a n —

Convert a string identified by address a and length n to a terminated string at address a. Use
only on string variables.

>ZERO 4TH

COMPILES TO: DUP (0)

XOR (0)

STACK EFFECTS: n — 0

Sets the top of the stack to zero.

CHAPTER 16. GLOSSARY 343

? TOOLS

PRONUNCIATION: question

COMPILES TO: @ (0)

. (0)

STACK EFFECTS: x —

Print the value contained in the variable at address x in free format according to the current
BASE.

?DO CORE EXT

PRONUNCIATION: question-do

COMPILES TO: ?DO (0)

SYNTAX: ?DO<space>..<space>+LOOP

?DO<space>..<space>LOOP

STACK EFFECTS: n1 n2 —

If n1 is equal to n2, continue execution at LOOP or +LOOP. Otherwise set up loop control
parameters with index n2 and limit n1 and continue executing immediately following ?DO.
Anything already on the return stack becomes unavailable until the loop control parameters
are discarded.

?DUP CORE

PRONUNCIATION: question-dupe

INCLUDE: pickroll.4th

STACK EFFECTS: n — 0 | n n

Duplicate n if it is non-zero.

?EXIT 4TH

COMPILES TO: 0BRANCH (<address after EXIT>)

EXIT (0)

STACK EFFECTS: f —

When compiled within a colon-definition, conditionally terminates execution of that defi-
nition when flag f is non-zero.

@ CORE

CHAPTER 16. GLOSSARY 344

PRONUNCIATION: fetch

COMPILES TO: @ (0)

STACK EFFECTS: x — n

Leave the contents n of the variable at address x on the stack.

@C CROSS EXT

COMPILES TO: @C (0)

STACK EFFECTS: xt — n | addr

FORTH: In Forth the word @ can also be used to fetch values from the dictio-
nary. Due to 4tHs internal structure this is not possible. This word is
officially not a part of ANS-Forth.

Leave the contents n of the parameter field of token address xt on the stack. If n contains
an string constant compiled by ,” it is copied to the PAD. Its address is returned as addr.

@GOTO 4TH

SYNTAX: @GOTO<space><string>

The remainder of the line is discarded. This word is used to start a 4tH source program
from a MS type shell. An alias for \.

ABORT CORE

FORTH: In Forth the behaviour of ABORT is different from QUIT (-1 THROW).
In 4tH it doesn’t really matter which one you use.

An alias for QUIT.

ABORT" CORE

PRONUNCIATION: abort-quote

COMPILES TO: 0BRANCH (<address of QUIT>)

LITERAL (stdout)

USE (0)

.” (<address of string constant>)

CR (0)

QUIT (0)

SYNTAX: ABORT”<space><string>”

CHAPTER 16. GLOSSARY 345

STACK EFFECTS: n —

FORTH: In Forth the behaviour of ABORT” is different from QUIT (-2 THROW).

Remove n from the stack. If any bit of n is not zero, display the string and set the program
counter to the end of the program. Effectively quits execution.

ABS CORE

PRONUNCIATION: abs

COMPILES TO: ABS (0)

STACK EFFECTS: n1 — n2

Leave the absolute value of n1 as n2.

ACCEPT CORE

COMPILES TO: ACCEPT (0)

STACK EFFECTS: addr n1 — n2

FORTH: In Forth no null character is appended.

Read n1 characters from the current input device to address addr. If input is read from
the terminal CR will terminate the input stream. All other devices will terminate reading
when an EOF occurs. In all cases input will end when n1 characters have been read. A null
character is added to the end of the input when reading from the keyboard. The number n2
represents the number of characters actually read.

AGAIN CORE EXT

COMPILES TO: BRANCH (<address of the token following BEGIN>)

SYNTAX: BEGIN<space>..<space>AGAIN

At runtime, AGAIN forces execution to return to the corresponding BEGIN. Execution
cannot leave this loop. AGAIN is an alias for REPEAT.

AKA 4TH

SYNTAX: AKA<space><word name><space><name>

Create a word <name> with the same compilation and execution semantics as the existing
word <word name>. The word <word name> has to be user defined, a built-in constant or
a word that compiles to a single token. Flow control words, preprocessor2 words, defining
words and inline macros cannot be ’AKA’ed.

24tHs internal preprocessor, not the external preprocessor PP4tH. External preprocessor words are not recog-
nized by 4tH at all, so they can’t be ’AKA’ed anyway.

CHAPTER 16. GLOSSARY 346

ALIAS 4TH

COMPILES TO: TO (<variable address>)

STACK EFFECTS: xt —

SYNTAX: ALIAS<space><name>

Create a name which will hold an execution token and store xt. ALIAS does not require a
previously defined DEFER.

ALIGN CORE

COMPILER: The instruction pointer is not incremented. In fact, ALIGN is a dummy.

If the dataspace pointer is not aligned, reserve enough space to align it.

ALIGNED CORE

COMPILER: The instruction pointer is not incremented. In fact, ALIGNED is a
dummy.

STACK EFFECTS: n — n

n is the first aligned address greater than or equal to n.

ALLOCATE MEMORY

INCLUDE: ansmem.4th

memchar.4th

memcell.4th

STACK EFFECTS: n — addr f

Allocate n address units of contiguous data space. The initial content of the allocated space
is undefined. If the allocation succeeds, addr is the aligned starting address of the allocated
space and f is false. If the operation fails, addr does not represent a valid address and f is
true.

AND CORE

COMPILES TO: AND (0)

STACK EFFECTS: n1 n2 — n3

Leave the bitwise logical AND of n1 AND n2 as n3.

APP 4TH

CHAPTER 16. GLOSSARY 347

COMPILES TO: LITERAL (<application variable>)

STACK EFFECTS: — x

This word returns the variable address x in the Variable Area to an array of application
specific variables. If APP equals FIRST no application specific variables have been defined.

APPEND 4TH

COMPILES TO: LITERAL (<fam>)

STACK EFFECTS: — fam

This will leave a file access method modifier on the stack, signalling that output will be
appended. Must be added to another file access modifier. Used in combination with OUT-
PUT.

ARGN 4TH

COMPILES TO: ARGN (0)

STACK EFFECTS: — n

Returns the number of arguments that have been passed to 4tH (see: ARGS).

ARGS 4TH

COMPILES TO: ARGS (0)

STACK EFFECTS: n1 — addr n2

Copies argument n1 to the PAD and leaves address addr and length n2 on the stack (see:
ARGN).

ARRAY 4TH

SYNTAX: <literal><space>ARRAY<space><name>

COMPILER: The previously compiled literal is taken as an argument for ARRAY.
The instruction pointer is decremented, actually deleting the literal.

FORTH: Roughly equivalent to:

: ARRAY CREATE CELLS ALLOT ;

Allocate <literal> cells of contiguous data space beginning at <name> in the Integer Seg-
ment. The initial content of the allocated space is undefined.

ASSERT(4TH

CHAPTER 16. GLOSSARY 348

SYNTAX: ASSERT(<space><word>..<word><space>)

FORTH: Similar constructions are available in GForth and Win32For.

Mark the beginning of an assertion. If assertions are disabled all words following upto)
are commented out (see: [ASSERT] and)).

BASE CORE

COMPILES TO: LITERAL (<address of BASE>)

STACK EFFECTS: — x

A variable containing the current number BASE used for input and output.

BEGIN CORE

SYNTAX: BEGIN<space>..<space>AGAIN

BEGIN<space>..<space>WHILE<space>..<space>UNTIL

BEGIN<space>..<space>WHILE<space>..<space>REPEAT

FORTH: Within a BEGIN .. REPEAT construct, multiple WHILEs may be
used as well, but additional words are necessary to complete the con-
struct.

At runtime begin marks the start of a sequence that may be repetitively executed. It serves
as a return point from the corresponding UNTIL, AGAIN or REPEAT. When executing
UNTIL, a return to BEGIN will occur if the top of the stack is false; for AGAIN and
REPEAT a return to BEGIN always occurs. Multiple WHILEs may be used.

B/BUF SOURCEFORGE

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: — n

Returns the length of a block.

BIN FILE

INCLUDE: ansfile.4th

STACK EFFECTS: fam1 — fam2

Modify file access method fam1 to additionally select a binary, i.e., not line oriented, file
access method, giving access method fam2. Since 4tH does this automatically, BIN is a
dummy.

CHAPTER 16. GLOSSARY 349

BL CORE

PRONUNCIATION: b-l

COMPILES TO: LITERAL (<ASCII value of space>)

STACK EFFECTS: — c

A constant that leaves the ASCII value for "blank".

BLANK STRING

COMPILES TO: LITERAL (<ASCII value of space)

FILL (0)

STACK EFFECTS: n addr —

If n is greater than zero, store the character value for space in n consecutive character
positions beginning at addr.

BLK BLOCK

PRONUNCIATION: b-l-k

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: — x

FORTH: In Forth, a block cannot have the number zero. BLK contains the
number of the block being interpreted.

x is the address of a cell containing the number of the mass-storage block currently cached.
An ambiguous condition exists if a program directly alters the contents of BLK.

BLOCK BLOCK

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: n — addr

Addr is the address of the first character of the block buffer assigned to mass-storage block
n. An ambiguous condition exists if u is not an available block number. If block n is
already in a block buffer, addr is the address of that block buffer. If block n is not already in
memory, unassign the block buffer. If the block in that buffer has been UPDATEd, transfer
the block to mass storage and transfer block n from mass storage into that buffer. a-addr is
the address of that block buffer. At the conclusion of the operation, the block buffer pointed
to by addr is the current block buffer and is assigned to n.

CHAPTER 16. GLOSSARY 350

BOUNDS COMUS

COMPILES TO: OVER (0)

+ (0)

SWAP (0)

STACK EFFECTS: addr n — addr addr+n

Convert a starting value and count into the form required for a DO or ?DO loop.

BUFFER BLOCK

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: n — addr

Addr is the address of the first character of the block buffer assigned to mass-storage block
n. An ambiguous condition exists if n is not an available block number. If block n is
already in a block buffer, addr is the address of that block buffer. If block n is not already in
memory, unassign the block buffer. If the block in that buffer has been UPDATEd, transfer
the block to mass storage. a-addr is the address of that block buffer. At the conclusion of
the operation, the block buffer pointed to by addr is the current block buffer and is assigned
to n.

BUFFER: CORE EXT

SYNTAX: <literal><space>BUFFER:<space><name>

COMPILER: The previously compiled literal is taken as an argument for BUFFER:.
The instruction pointer is decremented, actually deleting the literal.

FORTH: This is a Forth-2012 word.

Allocate <literal> address units of contiguous data space beginning at <name> in the Char-
acter Segment. The initial content of the allocated space is undefined.

C! CORE

PRONUNCIATION: c-store

COMPILES TO: C! (0)

STACK EFFECTS: c addr —

Store 8 bits of c at address addr in the Character Segment.

C" 4TH

CHAPTER 16. GLOSSARY 351

SYNTAX: C"<space><string>"

COMPILER: All printable characters from the string are added as characters to the
String Segment. Nothing is actually compiled.

FORTH: There is a rarely used3 CORE EXT word in ANS-Forth with the
same name. This one behaves entirely different.

Reserve space for all the printable characters of the string issued in the String Segment and
store those characters in that space.

C, CORE

PRONUNCIATION: c-comma

SYNTAX: <literal><space>C,

COMPILER: The previously compiled literal is added as a character to the String
Segment. The instruction pointer is decremented, actually deleting
the literal.

FORTH: Forth pops a value from the stack. This is not possible in 4tH.

Reserve space for one character in the String Segment and store char in the space.

C@ CORE

PRONUNCIATION: c-fetch

COMPILES TO: C@ (0)

STACK EFFECTS: addr — c

Leave the 8 bits contents of Character Segment address addr as c.

CASE CORE EXT

SYNTAX: CASE<space>..<space>OF<space>..<space>ENDOF<space>..<space>ENDCASE

CASE<space>..<space>OF<space>..<space>;ENDOF<space>..<space>ENDCASE

Mark the start of the CASE..OF..ENDOF..ENDCASE structure.

CATCH EXCEPTION

COMPILES TO: CATCH (0)

(CATCH) (0)
3A.3.1.3.4 Counted strings (abridged): ”Forth 94 moved toward the consistent use of the ’c-addr u’ rep-

resentation of strings on the stack. The use of the alternate ’address of counted string’ stack representation is
discouraged. The new word C", added as a porting aid for existing programs, also uses the counted string repre-
sentation”.

CHAPTER 16. GLOSSARY 352

STACK EFFECTS: xt — n

Push an exception frame on the return stack and execute the execution token xt in such
a way that control can be transferred to a point just after CATCH if THROW is executed
during the execution of xt (see: THROW).

CELL+ CORE

PRONUNCIATION: cell-plus

COMPILES TO: +LITERAL (1)

STACK EFFECTS: x1 — x2

Add the the size of a cell in cells to x1 giving x2.

CELL- COMUS

COMPILES TO: +LITERAL (-1)

STACK EFFECTS: x1 — x2

Subtract the the size of a cell in cells to x1 giving x2.

CELLS CORE

COMPILER: The instruction pointer is not incremented. In fact, CELLS is a dummy.

STACK EFFECTS: n — n

n is the size in cells of n cells.

CFIELD: FACILITY EXT

SYNTAX: CFIELD:<space><name>

COMPILER: The previously compiled literal is taken as an argument for CFIELD:
and incremented afterwards. The instruction pointer is left unchanged.

FORTH: This word may only be used in structures that are completely made
up out of CHARS. In Forth-2012, there is no such restriction.

The semantics are identical to the execution semantics of the phrase 1 CHARS +FIELD.

CHAR CORE

PRONUNCIATION: char

COMPILES TO: LITERAL (<ASCII-value of character>)

CHAPTER 16. GLOSSARY 353

SYNTAX: CHAR<space><char>

STACK EFFECTS: — c

Compiles the ASCII-value of <char> as a literal. At runtime the value is thrown on the
stack.

CHAR+ CORE

PRONUNCIATION: char-plus

COMPILES TO: +LITERAL (1)

STACK EFFECTS: addr1 — addr2

Add the the size of a character in characters to addr1 giving addr2.

CHAR- 4TH

COMPILES TO: +LITERAL (-1)

STACK EFFECTS: addr1 — addr2

Subtract the the size of a character in characters to addr1 giving addr2.

CHAR-BITS 4TH

COMPILES TO: LITERAL (<#bits in a character>)

STACK EFFECTS: — n

n is the number of bits in a character.

CHARS CORE

PRONUNCIATION: chars

COMPILER: The instruction pointer is not incremented. In fact, CHARS is a
dummy.

STACK EFFECTS: n — n

FORTH: In 4tH CHARS is a dummy, but it can be used to make a program
ANS-compatible.

n is the size in characters of n characters.

CHOP 4TH

COMPILES TO: +LITERAL (-1)

CHAPTER 16. GLOSSARY 354

SWAP (0)

+LITERAL (1)

SWAP (0)

STACK EFFECTS: a n — a+1 n-1

Deletes the first character from the string defined by address a and length n.

CIN 4TH

COMPILES TO: ENVIRON (<address of CIN>)

STACK EFFECTS: — n

Identifies the input source.

CLOSE 4TH

COMPILES TO: CLOSE (0)

STACK EFFECTS: h —

CLOSE will close a file or pipe, previously opened by OPEN and release the stream. De-
pending on the file access method, the terminal will be made the current input-device,
otherwise the screen will be made the current output-device.

CLOSE-BLOCKFILE SOURCEFORGE

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: —

Flush and close the current block file.

CLOSE-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: h — f

Close the file identified by handle h. Flag f is the implementation-defined I/O result code.

CMOVE STRING

PRONUNCIATION: c-move

COMPILES TO: CMOVE (0)

CHAPTER 16. GLOSSARY 355

STACK EFFECTS: addr1 addr2 n —

FORTH: In Forth there are two words for this operation, CMOVE and CMOVE>.
Usage depends on the direction of the move. In 4tH CMOVE is smart,
like MOVE.

Move the specified quantity of bytes (n) beginning at address addr1 to addr2.

CMOVE> STRING

PRONUNCIATION: c-move-up

COMPILES TO: CMOVE (0)

STACK EFFECTS: addr1 addr2 n —

An alias for CMOVE (see: CMOVE).

COMPARE STRING

INCLUDE: compare.4th

STACK EFFECTS: addr1 n1 addr2 n2 — n3

FORTH: ANS-Forth requires COMPARE to return -1 when strings are smaller,
0 when they match and 1 when strings are larger. 4tH only returns the
according sign. Furthermore, ANS-Forth takes the case into account.
The default behavior of this word is a case-insensitive comparison.
Note that the actual behavior of COMPARE can be determined by
issuing the appropriate pragmas - including an ANS-Forth compliant
behavior.

Compare the string specified by addr1 n1 to the string specified by addr2 n2 . The strings
are compared, beginning at the given addresses, character by character, up to the length of
the shorter string or until a difference is found. If the two strings are identical, n3 is zero. If
the two strings are identical up to the length of the shorter string, n3 is negative if n1 is less
than n2 and positive otherwise. If the two strings are not identical up to the length of the
shorter string, n3 is negative if the first non-matching character in the string specified by
addr1 n1 has a lesser numeric value than the corresponding character in the string specified
by addr2 n2 and positive otherwise.

CONSTANT CORE

SYNTAX: <literal><space>CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

FORTH: In Forth, the literal value is popped from the stack. This cannot be
done in 4tH.

CHAPTER 16. GLOSSARY 356

A defining word used to create word <name>. When <name> is later executed, it will push
the value of <literal> on the stack.

COUNT CORE

COMPILES TO: COUNT (0)

STACK EFFECTS: addr1 — addr2 n

FORTH: Programs assuming that the string is a so-called counted string will
not work. Well-written programs only assume the correct input- and
output-parameters.

Leave the Character Segment address addr2 and count n of an ASCIIZ string beginning at
Character Segment address addr1. Typically COUNT is followed by TYPE.

COUT 4TH

COMPILES TO: ENVIRON (<address of COUT>)

STACK EFFECTS: — n

Identifies the output source.

CR CORE

PRONUNCIATION: c-r

COMPILES TO: CR (0)

Transmit a carriage return to the selected output-device. The actual sequence sent is OS-
and stream-dependant.

CREATE CORE

SYNTAX: CREATE<space><name>

FORTH: In Forth this will create a dictionary header.

Leaves <name> in the symboltable and replace further occurences with LITERAL <xt>.
<xt> represents the address in the Code Segment where CREATE was compiled.

CREATE-BLOCKFILE SOURCEFORGE

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: n1 addr n2—

CHAPTER 16. GLOSSARY 357

Create a blank block file named in the character string specified by addr and n2, with a size
of n1 blocks.

CREATE-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addr n fam — h f

Create the file named in the character string specified by addr and n, and open it with file
access method fam. The meaning of values of fam is implementation defined. If a file
with the same name already exists, recreate it as an empty file. If the file was successfully
created and opened, f is zero, handle h is its identifier, and the file has been positioned to
the start of the file. Otherwise, f is the implementation-defined I/O result code and h is
undefined.

C| 4TH

SYNTAX: C|<space><string>|

COMPILER: All printable characters from the string are added as characters to the
String Segment. Nothing is actually compiled.

Reserve space for all the printable characters of the string issued in the String Segment and
store those characters in that space.

D+ DOUBLE

PRONUNCIATION: d-plus

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 d2 — d3

Add d1 to d2, giving the sum d3.

D- DOUBLE

PRONUNCIATION: d-minus

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 d2 — d3

Subtract d2 from d1, giving the difference d3.

D. DOUBLE

PRONUNCIATION: d-dot

CHAPTER 16. GLOSSARY 358

INCLUDE: dbldot.4th

STACK EFFECTS: d —

Display d in free field format.

D.R DOUBLE

PRONUNCIATION: d-dot-r

INCLUDE: dbldot.4th

STACK EFFECTS: d n —

Display d right aligned in a field n characters wide. If the number of characters required to
display d is greater than n, all digits are displayed with no leading spaces in a field as wide
as necessary.

D0< DOUBLE

PRONUNCIATION: d-zero-less

INCLUDE: ansdbl.4th

STACK EFFECTS: d — f

Flag f is true if and only if d is less than zero.

D0= DOUBLE

PRONUNCIATION: d-zero-equals

INCLUDE: ansdbl.4th

STACK EFFECTS: d — f

Flag f is true if and only if d is equal to zero.

D2* DOUBLE

PRONUNCIATION: d-two-star

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 — d2

D2 is the result of shifting d1 one bit toward the most-significant bit, filling the vacated
least-significant bit with zero.

D2/ DOUBLE

CHAPTER 16. GLOSSARY 359

PRONUNCIATION: d-two-slash

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 — d2

D2 is the result of shifting d1 one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

D< DOUBLE

PRONUNCIATION: d-less-than

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 d2 — f

Flag f is true if and only if d1 is less than d2.

D= DOUBLE

PRONUNCIATION: d-equals

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 d2 — f

Flag f is true if and only if d1 is equal to d2.

D>F FLOATING

PRONUNCIATION: d-to-f

INCLUDE: ansfloat.4th

zentodbl.4th

STACK EFFECTS: d —

FLOATING: — r

r is the floating-point equivalent of d. An ambiguous condition exists if d cannot be pre-
cisely represented as a floating-point value.

D>S DOUBLE

PRONUNCIATION: d-to-s

COMPILER: The instruction pointer is not incremented. In fact, D>S is a dummy.

STACK EFFECTS: n — n

CHAPTER 16. GLOSSARY 360

Convert the number n to number n with the same numerical value.

DABS DOUBLE

PRONUNCIATION: d-abs

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 — d2

D2 is the absolute value of d1.

DECIMAL CORE

COMPILES TO: RADIX (10)

FORTH: See HEX.

Set the numeric conversion BASE for decimal output at runtime.

DEFER CORE EXT

COMPILES TO: LITERAL ((ERROR))

TO (<variable address>)

SYNTAX: DEFER<space><name>

STACK EFFECTS: —

FORTH: This is a Forth-2012 word.

Create a name which will hold an execution token for a word whose behavior will be
determined later and may be varied. The initial value will trigger an error if used before
proper assignment.

DEFER! CORE EXT

COMPILES TO: ENVIRON (<address of FIRST>)

+ (0)

! (0)

STACK EFFECTS: xt x —

FORTH: This is a Forth-2012 word.

Set the vector x to execute xt.

DEFER@ CORE EXT

CHAPTER 16. GLOSSARY 361

COMPILES TO: ENVIRON (<address of FIRST>)

+ (0)

@ (0)

STACK EFFECTS: x — xt

FORTH: This is a Forth-2012 word.

xt is the xt associated with the deferred word corresponding to x.

DELETE-FILE FILE

COMPILES TO: DELETE-FILE (0)

STACK EFFECTS: a n — f

Delete the file named in the character string specified by c-addr u. Return zero on success
or true on failure.

DEPTH CORE

COMPILES TO: SP@ (0)

STACK EFFECTS: — n

Returns the number of items on the stack in n, before DEPTH was executed. An alias for
SP@.

DMAX DOUBLE

PRONUNCIATION: d-max

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 d2 — d3

D3 is the greater of d1 and d2.

DMIN DOUBLE

PRONUNCIATION: d-min

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 d2 — d3

D3 is the lesser of d1 and d2.

DNEGATE DOUBLE

CHAPTER 16. GLOSSARY 362

PRONUNCIATION: d-negate

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 — d2

D2 is the negation of d1.

DO CORE

COMPILES TO: DO (0)

SYNTAX: DO<space>..<space>+LOOP

DO<space>..<space>LOOP

STACK EFFECTS: n1 n2 —

At runtime DO begins a sequence with repetitive execution controlled by a loop limit n1
and an index with initial value n2. DO removes these from the stack. Upon reaching LOOP
or +LOOP the index is altered. Until the new index equals or exceeds the limit, execution
loops back to just after DO; otherwise the loop parameters are discarded and execution
continues ahead. Both n1 and n2 are determined at runtime and may be the result of other
operations. Within a loop I will copy the current value of the index on the stack.

DOES> CORE

PRONUNCIATION: does

COMPILES TO: BRANCH (<address of matching ; token>)

LITERAL (<original value>) | VARIABLE (<original value>)

SYNTAX: CREATE|BUFFER:|STRING|CONSTANT|VARIABLE|ARRAY<space>..-
<space>DOES><space>..<space>;

FORTH: In ANS-Forth, DOES> is typically combined with CREATE and has
no interpretation semantics. The typical use of DOES> in 4tH will
lead usually to compilation errors. Some Forth compilers (like gForth)
are largely compatible with this 4tH construct.

Replace the execution semantics of the most recent definition with the execution seman-
tics following DOES>. An error condition exists if the most recent definition was not a
CREATE, BUFFER:, STRING, CONSTANT, VARIABLE or ARRAY.

DONE 4TH

COMPILES TO: BRANCH (<address of matching DONE, REPEAT or UNTIL to-
ken>)

SYNTAX: WHILE<space>..<space>DONE<space>..<space>DONE

FORTH: Equivalent to:

CHAPTER 16. GLOSSARY 363

: DONE 1 CS-ROLL POSTPONE ELSE 1 CS-ROLL ; IMMEDIATE

At runtime DONE executes after the true following WHILE. DONE forces execution to
skip over the following false part and resumes execution after the second DONE, which
skips execution to just after REPEAT or UNTIL, effectively exiting the structure.

DROP CORE

COMPILES TO: DROP (0)

STACK EFFECTS: n —

Drop the number from the stack.

DU< DOUBLE EXT

PRONUNCIATION: d-u-less

INCLUDE: ansdbl.4th

STACK EFFECTS: d1 d2 — f

Flag is true if and only if usigned double d1 is less than unsigned double d2.

DUMP TOOLS

INCLUDE: dump.4th

dumpbase.4th

STACK EFFECTS: addr n —

Display the contents of n consecutive addresses starting at addr.

DUP CORE

PRONUNCIATION: dupe

COMPILES TO: DUP (0)

STACK EFFECTS: n — n n

Duplicate the value on the stack.

ELSE CORE

COMPILES TO: BRANCH (<address of matching THEN token>)

SYNTAX: IF<space>..<space>ELSE<space>..<space>THEN

CHAPTER 16. GLOSSARY 364

At runtime ELSE executes after the true following IF. ELSE forces execution to skip over
the following false part and resumes execution after the THEN.

EMIT CORE

COMPILES TO: EMIT (0)

STACK EFFECTS: c —

Transmit the ASCII character with code n to the selected output device.

EMPTY-BUFFERS BLOCK EXT

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: —

Unassign all block buffers. Do not transfer the contents of any UPDATEd block buffer to
mass storage.

ENDCASE CORE EXT

PRONUNCIATION: end-case

COMPILES TO: DROP (0)

SYNTAX: CASE<space>..<space>OF<space>..<space>ENDOF<space>..<space>ENDCASE

CASE<space>..<space>OF<space>..<space>;ENDOF<space>..<space>ENDCASE

At runtime ENDCASE serves as the destination of a forward branch from ENDOF. It marks
the conclusion of the conditional structure.

ENDOF CORE EXT

PRONUNCIATION: end-of

COMPILES TO: BRANCH (<address of matching ENDCASE token>)

SYNTAX: CASE<space>..<space>OF<space>..<space>ENDOF<space>..<space>ENDCASE

At runtime ENDOF executes after the ”matching” part following OF. ENDOF forces execu-
tion to skip over the following ”non-matching” part and resumes execution at ENDCASE.

END-STRUCT 4TH

SYNTAX: STRUCT<space><literal><space>+FIELD<space><name><space>END-
STRUCT<space><name>

CHAPTER 16. GLOSSARY 365

STRUCT<space><literal><space>/FIELD<space>END-STRUCT<space><name>

COMPILER: The previously compiled literal is taken as an argument for END-
STRUCT, creating a constant that holds the length of the STRUCT.
The instruction pointer is decremented, actually deleting the literal.

FORTH: Similar constructions are available in gForth. +FIELD is part of Forth
2012.

Terminate the definition of a STRUCT. The created structure is an constant that memorizes
the size of the structure (see: +FIELD, /FIELD, STRUCT).

ENUM 4TH

SYNTAX: <literal><space>ENUM<space><name>

COMPILER: The previously compiled literal is taken as an argument for ENUM
and incremented afterwards. The instruction pointer is left unchanged.

FORTH: This word is available in some Forths.

A defining word used to create word <name>. When <name> is later executed, it will push
the value of <literal> on the stack.

ENVIRON@ 4TH

COMPILES TO: ENVIRON@ (0)

STACK EFFECTS: addr1 n1 — addr2 n2

addr1 is the address of a character string containing the name of an environment variable
and n1 is the string’s character count. If successful, it returns address addr2 and count n2
of the contents of the environment variable. On error both address addr2 and count n2 are
zero. Note that the contents may be truncated if there is not enough space available in the
PAD.

ENVIRONMENT? CORE

PRONUNCIATION: environment-query

INCLUDE: environ.4th

STACK EFFECTS: addr n — -f

addr is the address of a character string and n is the string’s character count. The character
string should contain a keyword from ANS-Forth environmental queries or the optional
word sets to be checked for correspondence with an attribute of the present environment.
The system treats the attribute as unknown, the returned flag is false.

EQUATES 4TH

CHAPTER 16. GLOSSARY 366

SYNTAX: <variable><space>EQUATES<space><name>

COMPILER: A variable, with an optional literal expression containing an offset, is
entered as a new variable in the symbol table.

FORTH: This word is equivalent to CONSTANT in most Forths.

A defining word used to create a static pointer to a variable or an array, which will behave
as if it were a normal variable. When <name> is later executed, it will push the address
<var> on the stack, so that a fetch or store may access this location.

ERASE CORE EXT

COMPILES TO: LITERAL (0)

FILL (0)

STACK EFFECTS: addr n —

If n is greater than zero, clear all bits in each of n consecutive address units of memory
beginning at addr.

ERROR? 4TH

COMPILES TO: LITERAL (<largest negative integer>)

OVER (0)

= (0)

STACK EFFECTS: n — n f

If n equals (ERROR), leave a true flag, otherwise leave a false flag. Determines whether n
indicates an error condition. The resulting stack diagram is ANS-Forth compliant.

EVALUATE CORE

INCLUDE: evaluate.4th

STACK EFFECTS: addr n —

FORTH: In Forth, the entire dictionary is available. In 4tH, the only words
available are explicitly defined by the program.

Make the string described by addr and n the input buffer and interpret. Other stack effects
are due to the words EVALUATEd.

EXCEPT 4TH

COMPILES TO: 0= (0)

0BRANCH (<address of matching REPEAT token>)

CHAPTER 16. GLOSSARY 367

STACK EFFECTS: f —

SYNTAX: BEGIN<space>..<space>WHILE|EXCEPT<space>..<space>REPEAT

BEGIN<space>..<space>WHILE|EXCEPT<space>..<space>UNTIL

At runtime, EXCEPT selects conditional execution based on number n. If f is FALSE, EX-
CEPT continues execution of the code thru to REPEAT, which branches back to BEGIN. If
f is TRUE, execution skips to just after REPEAT, exiting the structure. Multiple EXCEPTs
may be used.

EXECUTE CORE

COMPILES TO: EXECUTE (0)

STACK EFFECTS: xt —

Execute the colon definition whose token-address xt is on the stack. The current token-
address is pushed on the returnstack.

EXIT CORE

COMPILES TO: EXIT (0)

When compiled within a colon-definition, terminates execution of that definition at that
point. At runtime functionally equivalent to ;.

EXPECT CORE EXT

INCLUDE: obsolete.4th

STACK EFFECTS: addr n —

Receive a string of at most n-1 characters. The editing functions, if any, that the system
performs in order to construct the string of characters are implementation-defined. Input
terminates when an implementation-defined line terminator is received or when the string is
n-1 characters long. When input terminates the display is maintained in an implementation-
defined way. Store the string at addr and its length in SPAN (see SPAN).

F! FLOATING

PRONUNCIATION: f-store

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: x —

FLOATING: r —

CHAPTER 16. GLOSSARY 368

Store r at address x.

F* FLOATING

PRONUNCIATION: f-star

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r3

Multiply r1 by r2 giving r3.

F** FLOATING EXT

PRONUNCIATION: f-star-star

INCLUDE: falog.4th

zenfalog.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r3

Raise r1 to the power r2, giving the product r3.

F+ FLOATING

PRONUNCIATION: f-plus

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r3

Add r1 to r2 giving the sum r3.

F- FLOATING

PRONUNCIATION: f-minus

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r3

CHAPTER 16. GLOSSARY 369

Subtract r2 from r1 giving r3.

F. FLOATING EXT

PRONUNCIATION: f-dot

INCLUDE: ansfpio.4th

zenfpio.4th

fpout.4th

STACK EFFECTS: —

FLOATING: r —

Display, with a trailing space, the top number on the floating-point stack using fixedpoint
notation. An ambiguous condition exists if the value of BASE is not (decimal) ten or if the
character string representation exceeds the size of the pictured numeric output string buffer.

F/ FLOATING

PRONUNCIATION: f-slash

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r3

Divide r1 by r2, giving the quotient r3. An ambiguous condition exists if r2 is zero, or the
quotient lies outside of the range of a floating-point number.

F0< FLOATING

PRONUNCIATION: f-zero-less-than

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: — f

FLOATING: r —

Flag f is true if and only if r is less than zero.

F0= FLOATING

PRONUNCIATION: f-zero-equals

INCLUDE: ansfloat.4th

CHAPTER 16. GLOSSARY 370

zenfloat.4th

STACK EFFECTS: — f

FLOATING: r —

Flag f is true if and only if r is equal to zero.

F< FLOATING
PRONUNCIATION: f-less-than

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: — f

FLOATING: r1 r2 —

Flag f is true if and only if r1 is less than r2.

F>D FLOATING
PRONUNCIATION: f-to-d

INCLUDE: ansfloat.4th

zentodbl.4th

STACK EFFECTS: — d

FLOATING: r —

Double number d is the double-cell signed-integer equivalent of the integer portion of r. The
fractional portion of r is discarded. An ambiguous condition exists if the integer portion of
r cannot be precisely represented as a double-cell signed integer.

F>S FLOATING EXT
PRONUNCIATION: f-to-s

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: — n

FLOATING: r —

FORTH: The implementation of ansfloat.4th is Forth-2012 compliant.

Number n is the less significant portion of the double word that would be produced by the
word F>D applied to the floating-point value r. An ambiguous condition exists if applying
F>D to r would result in an ambiguous condition.

CHAPTER 16. GLOSSARY 371

F@ FLOATING

PRONUNCIATION: f-fetch

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: x —

FLOATING: — r

Float r is the value stored at address x.

FABS FLOATING EXT

PRONUNCIATION: f-abs

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the absolute value of r1.

FACOS FLOATING EXT

PRONUNCIATION: f-a-cos

INCLUDE: asinacos.4th

zenfasin.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the principal radian angle whose cosine is r1. An ambiguous condition exists if
| r1 | is greater than one.

FACOSH FLOATING EXT

PRONUNCIATION: f-a-cosh

INCLUDE: fatanh.4th

zenatanh.4th

STACK EFFECTS: —

FLOATING: r1 — r2

CHAPTER 16. GLOSSARY 372

Float r2 is the floating-point value whose hyperbolic cosine is r1. An ambiguous condition
exists if r1 is less than one.

FALIGN FLOATING

PRONUNCIATION: f-align

INCLUDE: ansfloat.4th

STACK EFFECTS: —

FLOATING: —

If the data-space pointer is not float aligned, reserve enough data space to make it so. In
4tH, it is a dummy.

FALIGNED FLOATING

PRONUNCIATION: f-aligned

INCLUDE: ansfloat.4th

STACK EFFECTS: x — x

FLOATING: —

Address x is the first float-aligned address greater than or equal to address x. In 4tH, it is a
dummy.

FALOG FLOATING EXT

PRONUNCIATION: f-a-log

INCLUDE: falog.4th

zenfalog.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Raise ten to the power r1, giving r2.

FALSE CORE EXT

COMPILES TO: LITERAL (<false>)

STACK EFFECTS: — -f

Returns a FALSE flag on the stack.

CHAPTER 16. GLOSSARY 373

FASIN FLOATING EXT

PRONUNCIATION: f-a-sine

INCLUDE: asinacos.4th

zenfasin.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the principal radian angle whose sine is r1. An ambiguous condition exists if |
r1 | is greater than one.

FASINH FLOATING EXT

PRONUNCIATION: f-a-cinch

INCLUDE: fatanh.4th

zenatanh.4th

STACK EFFECTS: —

FLOATING: r1 — r2

FORTH: The implementation on fatanh.4th is Forth-2012 compliant.

Float r2 is the floating-point value whose hyperbolic sine is r1. An ambiguous condition
exists if r1 is less than zero.

FATAN FLOATING EXT

PRONUNCIATION: f-a-tan

INCLUDE: asinacos.4th

zenfasin.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the principal radian angle whose tangent is r1.

FATAN2 FLOATING EXT

PRONUNCIATION: f-a-tan-two

INCLUDE: fatan2.4th

zenatan2.4th

STACK EFFECTS: —

CHAPTER 16. GLOSSARY 374

FLOATING: r1 r2 — r3

FORTH: The implementation on fatan2.4th is Forth-2012 compliant.

Float r3 is the radian angle whose tangent is r1/r2. An ambiguous condition exists if r1 and
r2 are zero.

FATANH FLOATING EXT

PRONUNCIATION: f-a-tan-h

INCLUDE: fatanh.4th

zenatanh.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the floating-point value whose hyperbolic tangent is r1. An ambiguous condition
exists if r1 is outside the range of -1 to 1.

FCOS FLOATING EXT

PRONUNCIATION: f-cos

INCLUDE: fsinfcos.4th

fsincost.4th

zenfsin.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the cosine of the radian angle r1.

FCOSH FLOATING EXT

PRONUNCIATION: f-cosh

INCLUDE: sinhcosh.4th

zenfsinh.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the hyperbolic cosine of r1.

FDEPTH FLOATING

CHAPTER 16. GLOSSARY 375

PRONUNCIATION: f-depth

INCLUDE: ansfloat.4th

STACK EFFECTS: — n

FLOATING: —

N is the number of values contained on the default separate floating-point stack.

FDROP FLOATING

PRONUNCIATION: f-drop

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: —

FLOATING: r —

Remove r from the floating-point stack.

FDUP FLOATING

PRONUNCIATION: f-dupe

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: —

FLOATING: r — r r

Duplicate r.

FE. FLOATING EXT

PRONUNCIATION: f-e-dot

INCLUDE: ansfpio.4th

fpout.4th

STACK EFFECTS: —

FLOATING: r —

Display, with a trailing space, the top number on the floating-point stack using engineering
notation, where the significand is greater than or equal to 1.0 and less than 1000.0 and the
decimal exponent is a multiple of three. An ambiguous condition exists if the value of
BASE is not (decimal) ten or if the character string representation exceeds the size of the
pictured numeric output string buffer.

CHAPTER 16. GLOSSARY 376

FEXP FLOATING EXT

PRONUNCIATION: f-e-x-p

INCLUDE: fexp.4th

fexpt.4th

zenfexp.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Raise e to the power r1, giving r2.

FEXPM1 FLOATING EXT

PRONUNCIATION: f-e-x-p-m-one

INCLUDE: fexpm1.4th

zenexpm1.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Raise e to the power r1 and subtract one, giving r2.

FIELD: FACILITY EXT

SYNTAX: FIELD:<space><name>

COMPILER: The previously compiled literal is taken as an argument for FIELD:
and incremented afterwards. The instruction pointer is left unchanged.

FORTH: This word may only be used in structures that are completely made
up out of CELLS. In Forth, there is no such restriction.

The semantics are identical to the execution semantics of the phrase ALIGNED 1 CELLS
+FIELD.

FILE 4TH

COMPILES TO: LITERAL ((ERROR))

TO (<variable address>)

SYNTAX: FILE<space><name>

STACK EFFECTS: —

Create a value name which will hold a filehandle. The initial value will trigger an error if
used before proper assignment.

CHAPTER 16. GLOSSARY 377

FILE-POSITION FILE

INCLUDE: ansfile.4th

STACK EFFECTS: h — n f

n is the current file position for the file identified by handle h. Flag f is the implementation-
defined I/O result code. n is undefined if f is non-zero.

FILE-SIZE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: h — n f

n is the size, in characters, of the file identified by handle h. Flag f is the implementation-
defined I/O result code. This operation does not affect the value returned by FILE-POSITION.
n is undefined if f is true.

FILE-STATUS FILE EXT

INCLUDE: ansfile.4th

STACK EFFECTS: addr n1 — n2 f

Return the status of the file identified by the character string addr n1. If the file exists,
flag f is zero; otherwise flag f is the implementation-defined I/O result code. n2 contains
implementation defined information about the file.

FILES 4TH

COMPILES TO: LITERAL (<number of open files>)

STACK_EFFECTS: — n

Returns the maximum number of open streams 4tH can handle. Two of these streams are
predefined, STDIN and STDOUT.

FILL CORE

COMPILES TO: FILL (0)

STACK EFFECTS: addr n c —

Fills n bytes in the Character Segment, beginning at address addr, with character c.

FIRST 4TH

COMPILES TO: ENVIRON (<address of FIRST>)

CHAPTER 16. GLOSSARY 378

STACK EFFECTS: — x

Leaves the variable address x of the first user-variable. If FIRST is greater than LAST, no
user-variables have been defined.

FLN FLOATING EXT

PRONUNCIATION: f-l-n

INCLUDE: flnflog.4th

flnflogb.4th

zenfln.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the natural logarithm of r1. An ambiguous condition exists if r1 is less than or
equal to zero.

FLNP1 FLOATING EXT

PRONUNCIATION: f-l-n-p-one

INCLUDE: flnp1.4th

zenflnp1.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the natural logarithm of the quantity r1 plus one. An ambiguous condition exists
if r1 is less than or equal to negative one.

FLOAT+ FLOATING

PRONUNCIATION: float-plus

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: x1 — x2

FLOATING: —

Add the size in address units of a floating-point number to address x1, giving address x2.

FLOATS FLOATING

CHAPTER 16. GLOSSARY 379

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: n1 — n2

FLOATING: —

Number n2 is the size in address units of n1 floating-point numbers.

FLOG FLOATING EXT

PRONUNCIATION: f-log

INCLUDE: flnflog.4th

flnflogb.4th

zenfln.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the base-ten logarithm of r1. An ambiguous condition exists if r1 is less than or
equal to zero.

FLOOR FLOATING

INCLUDE: ansfloat.4th

zenfloor.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Round r1 to an integral value using the ”round toward negative infinity” rule, giving r2.

FLUSH BLOCK

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: —

Perform the function of SAVE-BUFFERS, then unassign the block buffer.

FLUSH-FILE FILE EXT

INCLUDE: ansfile.4th

STACK EFFECTS: h — f

CHAPTER 16. GLOSSARY 380

Attempt to force any buffered information written to the file referred to by handle h to be
written to mass storage, and the size information for the file to be recorded in the stor-
age directory if changed. If the operation is successful, f is zero. Otherwise, it is an
implementation-defined I/O result code.

FM/MOD CORE

PRONUNCIATION: f-m-slash-mod

INCLUDE: mixed.4th

STACK EFFECTS: d1 n1 — n2 n3

Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and output
stack arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient
lies outside the range of a single-cell signed integer.

FMAX FLOATING

PRONUNCIATION: f-max

INCLUDE: ansfloat.4th

zenfmin.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r3

Float r3 is the greater of r1 and r2.

FMIN FLOATING

PRONUNCIATION: f-min

INCLUDE: ansfloat.4th

zenfmin.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r3

Float r3 is the lesser of r1 and r2.

FNEGATE FLOATING

PRONUNCIATION: f-negate

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: —

CHAPTER 16. GLOSSARY 381

FLOATING: r1 — r2

Float r2 is the negation of r1.

FOVER FLOATING

PRONUNCIATION: f-over

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r1 r2 r1

Place a copy of r1 on top of the floating-point stack.

FREE MEMORY

INCLUDE: ansmem.4th

memchar.4th

memcell.4th

STACK EFFECTS: addr — f

Return the contiguous region of data space indicated by addr to the system for later alloca-
tion. addr shall indicate a region of data space that was previously obtained by ALLOCATE
or RESIZE. If the operation succeeds, f is false. If the operation fails, f is true.

FROT FLOATING

PRONUNCIATION: f-rot

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: —

FLOATING: r1 r2 r3 — r2 r3 r1

Rotate the top three floating-point stack entries.

FROUND FLOATING

PRONUNCIATION: f-round

INCLUDE: ansfloat.4th

zenround.4th

CHAPTER 16. GLOSSARY 382

STACK EFFECTS: —

FLOATING: r1 — r2

Round r1 to an integral value using the ”round to nearest” rule, giving r2.

FS. FLOATING EXT

PRONUNCIATION: f-s-dot

INCLUDE: ansfpio.4th

fpout.4th

STACK EFFECTS: —

FLOATING: r —

Display, with a trailing space, the top number on the floating-point stack in scientific no-
tation. An ambiguous condition exists if the value of BASE is not (decimal) ten or if the
character string representation exceeds the size of the pictured numeric output string buffer.

FSIN FLOATING EXT

PRONUNCIATION: f-sine

INCLUDE: fsinfcos.4th

fsincost.4th

zenfsin.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the sine of the radian angle r1.

FSINCOS FLOATING EXT

PRONUNCIATION: f-sine-cos

INCLUDE: fsinfcos.4th

fsincost.4th

zenfsin.4th

STACK EFFECTS: —

FLOATING: r1 — r2 r3

Float r2 is the sine of the radian angle r1. Float r3 is the cosine of the radian angle r1.

CHAPTER 16. GLOSSARY 383

FSINH FLOATING EXT

PRONUNCIATION: f-cinch

INCLUDE: sinhcosh.4th

zenfsinh.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the hyperbolic sine of r1.

FSQRT FLOATING EXT

PRONUNCIATION: f-square-root

INCLUDE: ansfloat.4th

zenfsqrt.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the square root of r1. An ambiguous condition exists if r1 is less than zero.

FSWAP FLOATING

PRONUNCIATION: f-swap

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: —

FLOATING: r1 r2 — r2 r1

Exchange the top two floating-point stack items.

FTAN FLOATING EXT

PRONUNCIATION: f-tan

INCLUDE: fsinfcos.4th

fsincost.4th

zenfsin.4th

STACK EFFECTS: —

FLOATING: r1 — r2

CHAPTER 16. GLOSSARY 384

Float r2 is the tangent of the radian angle r1. An ambiguous condition exists if cos (r1) is
zero.

FTANH FLOATING EXT

PRONUNCIATION: f-tan-h

INCLUDE: sinhcosh.4th

zenfsinh.4th

STACK EFFECTS: —

FLOATING: r1 — r2

Float r2 is the hyperbolic tangent of r1.

FTRUNC FLOATING

INCLUDE: ftrunc.4th

zentrunc.4th

STACK EFFECTS: —

FLOATING: r1 — r2

FORTH: The implementation of ftrunc.4th is Forth-2012 compliant.

Round r1 to an integral value using the "round towards zero" rule, giving r2.

F~ FLOATING EXT

PRONUNCIATION: f-proximate

INCLUDE: ansfloat.4th

zenfprox.4th

STACK EFFECTS: — f

FLOATING: r1 r2 r3 —

If r3 is positive, flag is true if the absolute value of (r1 minus r2) is less than r3. If r3 is zero,
flag is true if the implementation-dependent encoding of r1 and r2 are exactly identical. If
r3 is negative, flag is true if the absolute value of (r1 minus r2) is less than the absolute
value of r3 times the sum of the absolute values of r1 and r2.

HERE CORE

COMPILES TO: LITERAL (<token address>)

STACK EFFECTS: — xt

CHAPTER 16. GLOSSARY 385

FORTH: Leaves the address of the next available dictionary location. Since
4tH doesn’t have a dictionary location, its use is very different.

At runtime, HERE leaves the address xt in the Code Segment where it was compiled.

HEX CORE EXT

COMPILES TO: RADIX (16)

FORTH: In Forth this construction

HEX : SOMETIN 16 ;

will compile 16 as a hexadecimal number. In 4tH it will simply be
compiled and 16 will be compiled as a decimal number. To emulate
this construction use

[HEX] : SOMETIN 16 ;

instead.

Set the numeric conversion BASE for hexadecimal output at runtime.

HI 4TH

COMPILES TO: ENVIRON (<address of HI>)

STACK EFFECTS: — addr

Leaves the address of the last character in the Character Segment.

HIDE 4TH

SYNTAX: HIDE<space><name>

Find <name>, then delete name from the symbol table. Used to create private definitions.

HOLD CORE

COMPILES TO: HOLD (0)

STACK EFFECTS: c —

Used between <# and #> to insert an ASCII character into a pictured numeric output string,
e.g. [HEX] 2E HOLD will place a decimal point.

HOLDS CORE EXT

INCLUDE: holds.4th

CHAPTER 16. GLOSSARY 386

STACK EFFECTS: a n —

FORTH: This is a Forth-2012 word.

Adds a string to the picture numeric output buffer.

I CORE

COMPILES TO: R@ (0)

STACK EFFECTS: — n

Used with a DO .. LOOP to copy the loop index to the stack. An alias for R@.

I’ 4TH

COMPILES TO: R’@ (0)

STACK EFFECTS: — n

Used with a DO .. LOOP to copy the loop limit to the stack. An alias for R’@.

IF CORE

COMPILES TO: 0BRANCH (<address of matching ELSE|THEN token>)

STACK EFFECTS: f —

SYNTAX: See ELSE, THEN

At runtime, IF selects execution based on f. If f is non-zero, execution continues ahead
through the true part. If f is zero execution skips till just after ELSE to execute the false
part. After each part, execution resumes after THEN.

IMMEDIATE CORE

COMPILER: The instruction pointer is not incremented. In fact, IMMEDIATE is a
dummy.

STACK EFFECTS: —

Make the most recent definition an immediate word.

INCLUDE FILE-EXT

SYNTAX: INCLUDE<space><string><space>

COMPILER: The contents of the file are inserted at this position.

FORTH: This is a Forth-2012 word.

CHAPTER 16. GLOSSARY 387

An alias for [NEEDS (see: [NEEDS).

INPUT 4TH

COMPILES TO: LITERAL (<fam>)

STACK EFFECTS: — fam

This will leave a file access method on the stack, signalling an operation on an input-device.

INVERT CORE

COMPILES TO: INVERT (0)

STACK EFFECTS: n1 — n2

Leave n1’s binary complement as n2. This word is not equivalent to 0=.

IS CORE EXT

COMPILES TO: TO (<variable address>)

STACK EFFECTS: xt —

SYNTAX: IS<space><name>

Store xt in the value identified by name, previously defined by DEFER (see: DEFER).

J CORE

COMPILES TO: R"@ (0)

STACK EFFECTS: — n

Used with an embedded DO .. +LOOP to copy the outer loop index to the stack. Copies in
fact the third item of the returnstack, so it’s an alias for R"@.

KEY CORE

INCLUDE: key.4th

STACK EFFECTS: — c

FORTH: This implementation is identical to the one in pForth. It requires hit-
ting the <ENTER> key, before any character is returned.

Receive one character char, a member of the implementation-defined character set. All
standard characters can be received.

CHAPTER 16. GLOSSARY 388

KEY? FACILITY

PRONUNCIATION: key-question

INCLUDE: key.4th

STACK EFFECTS: — f

FORTH: This implementation is identical to the one in pForth. KEY? always
returns false.

If a character is available, return true. Otherwise, return false.

LAST 4TH

COMPILES TO: ENVIRON (<address of LAST>)

STACK EFFECTS: — x

Leaves the variable address x of the last variable in the Variable Area.

LATEST 4TH

COMPILES TO: The last defined word

Compile the last word that has been added to the symbol table (defined). Is equivalent to
RECURSE if used within a colon definition.

LEAVE CORE

COMPILES TO: RDROP (0)

R@ (0)

>R (0)

Force termination of a DO .. +LOOP at the next opportunity by setting the loop index equal
to the loop limit. The limit itself remains unchanged, and execution proceeds normally until
+LOOP is encountered.

LIST BLOCK EXT

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: n —

Display block n in an implementation-defined format. Store n in SCR.

CHAPTER 16. GLOSSARY 389

LO 4TH

COMPILES TO: LITERAL (<TIB+PAD>)

STACK EFFECTS: — addr

Leaves the offset of the first character of the Allocation Area in the Character Segment. If
LO is greater than HI, no memory has been allocated.

LOAD BLOCK

INCLUDE: ansblock.4th

multiblk.4th

BEFORE: evaluate.4th

STACK EFFECTS: n —

FORTH: In Forth, the entire dictionary is available. In 4tH, the only words
available are explicitly defined by the program.

Save the current input-source specification. Store n in BLK (thus making block n the input
source and setting the input buffer to encompass its contents), set >IN to zero, and execute
EVALUATE. When the parse area is exhausted, restore the prior input source specification.

LOOP CORE

COMPILES TO: LOOP (<address of matching DO token>)

SYNTAX: DO<space>..<space>LOOP

Used in the form DO .. LOOP. At runtime, LOOP selectively controls branching back to
the corresponding DO based on the loop index and the loop limit. The index is incrementex
and compared to the limit. The branch back to DO occurs until the new index is equal to the
limit. Upon exiting the loop, the parameters are discarded and execution continues ahead.

LSHIFT CORE

PRONUNCIATION: l-shift

COMPILES TO: SHIFT (0)

STACK EFFECTS: n1 n2 — n3

Performs a logical bit shift on n1. Specifically, SHIFT shifts a number a number of bits,
specified in n2, using a logical register shift. An alias for SHIFT.

M* CORE

PRONUNCIATION: m-star

CHAPTER 16. GLOSSARY 390

INCLUDE: mixed.4th

STACK EFFECTS: n1 n2 — d

d is the signed product of n1 times n2.

M*/ DOUBLE

PRONUNCIATION: m-star

INCLUDE: mixed.4th

STACK EFFECTS: d1 n1 n2 — d2

Multiply d1 by n1 producing the triple-cell intermediate result t. Divide t by n2 giving the
double-cell quotient d2. An ambiguous condition exists if n2 is zero or negative, or the
quotient lies outside of the range of a double-precision signed integer.

M+ DOUBLE

PRONUNCIATION: m-star

INCLUDE: mixed.4th

STACK EFFECTS: d1 n1 — d2

Add n1 to d1, giving the sum d2.

MAX CORE

COMPILES TO: MAX (0)

STACK EFFECTS: n1 n2 — n3

Leave n3 as the greater of the two numbers n1 and n2.

MAX-CHAR 4TH

COMPILES TO: LITERAL (<largest unsigned character>)

STACK EFFECTS: — n

FORTH: Equivalent to:

: MAX-CHAR S" MAX-CHAR" ENVIRONMENT? DROP ;

Returns the largest unsigned character that 4tH can handle. Usually 255.

MAX-N COMUS

COMPILES TO: LITERAL (<largest positive integer>)

CHAPTER 16. GLOSSARY 391

STACK EFFECTS: — n

FORTH: Equivalent to:

: MAX-N S" MAX-N" ENVIRONMENT? DROP ;

Returns the largest positive integer that 4tH can handle. Usually 2^31 or 2^63.

MIN CORE

COMPILES TO: MIN (0)

STACK EFFECTS: n1 n2 — n3

Leave n3 as the smaller of the two numbers n1 and n2.

MOD CORE

COMPILES TO: MOD (0)

STACK EFFECTS: n1 n2 — n3

Leave the remainder of n1/n2 with the same sign as n1 in n3.

MOVE CORE

COMPILES TO: CMOVE (0)

STACK EFFECTS: addr1 addr2 n —

Move the specified quantity of bytes (n) beginning at address addr1 to addr2 in the Char-
acter Segment.

MS FACILITY EXT

INCLUDE: ansfacil.4th

STACK EFFECTS: n —

FORTH: In Forth, the resolution is significantly higher than between +0 and
+1999 ms.

Wait at least u milliseconds.

N>R TOOLS EXT

INCLUDE: ntor.4th

STACK EFFECTS: n1 n2 n3 nx x —

FORTH: This is a Forth-2012 word.

CHAPTER 16. GLOSSARY 392

Remove x+1 items from the data stack and store them for later retrieval by NR>. The
return stack may be used to store the data. Until this data has been retrieved by NR>: (a)
this data will not be overwritten by a subsequent invocation of N>R and (b) a program
may not access data placed on the return stack before the invocation of N>R. Be sure to
undercut tail optimization by applying the [FORCE] directive to each definition using this
word! (see [FORCE]).

NEGATE CORE

COMPILES TO: NEGATE (0)

STACK EFFECTS: n1 — -n1

Leave n1 negated (two’s complement).

NIP CORE EXT

COMPILES TO: SWAP (0)

DROP (0)

STACK EFFECTS: n1 n2 — n2

Drop the first item below the top of stack.

NOT COMUS

COMPILES TO: 0= (0)

STACK EFFECTS: n — f

An alias for 0= (see: 0=).

NR> TOOLS EXT

INCLUDE: ntor.4th

STACK EFFECTS: — n1 n2 n3 nx x

FORTH: This is a Forth-2012 word.

Retrieve the items previously stored by an invocation of N>R. x is the number of items
placed on the data stack. It is an ambiguous condition if NR> is used with data not stored
by N>R. Be sure to undercut tail optimization by applying the [FORCE] directive to each
definition using this word! (see [FORCE]).

NUMBER 4TH

COMPILES TO: NUMBER (0)

CHAPTER 16. GLOSSARY 393

STACK EFFECTS: addr n1 — n2

FORTH: Some Forths support this word too, but issue a message on error.

Convert an string at offset addr with length n1 in the Character Segment to number n2. If
numeric conversion is not possible (ERROR) is left on the stack.

OCTAL 4TH

COMPILES TO: RADIX (8)

FORTH: See HEX.

Set the numeric conversion BASE for octal output at runtime.

OF CORE EXT

COMPILES TO: OVER (0)

= (0)

0BRANCH (<address of matching ENDOF|;ENDOF token>)

DROP (0)

STACK EFFECTS: n1 n2 — n1 |

SYNTAX: See CASE, ENDOF, ENDCASE

At runtime, if the two values on the stack are not equal, discard the top value and continue
execution at the location specified by the next ENDOF. Otherwise, discard both values and
continue execution in line.

OFFSET 4TH

SYNTAX: OFFSET<space><name>

FORTH: Equivalent to:

: OFFSET CREATE DOES> SWAP CHARS + C@ ;

Leaves <name> in the symboltable and replaces further occurences of <name> with an
execution procedure which takes an index from the stack and leaves the character concerned
on the stack.

OMIT 4TH

COMPILES TO: OMIT (0)

STACK EFFECTS: c —

CHAPTER 16. GLOSSARY 394

Skips all leading delimiters in the Character Segment, using character c as a delimiter.

OPEN 4TH

COMPILES TO: OPEN (0)

STACK EFFECTS: addr n fam — h

OPEN will open the file, which name has been specified by an ASCIIZ string, starting at
offset addr in the Character Segment and having length n. Depending on the file access
method, the file or pipe will be opened for reading, otherwise for writing. If the file or pipe
was succesfully opened it will be connected to a stream and a valid filehandle will be left
on the stack. If not, (ERROR) will be left on the stack. Note that OPEN does not connect
a stream to a channel (see: USE).

OPEN-BLOCKFILE SOURCEFORGE

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: addr n —

Open the block file named in the character string specified by addr n. If successful then set
it as the current block file, otherwise abort.

OPEN-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addr n fam — h f

Open the file named in the character string specified by addr n, with file access method
indicated by fam. The meaning of values of fam is implementation defined. If the file is
successfully opened, flag f is zero, handle h is its identifier, and the file has been positioned
to the start of the file. Otherwise, f is the implementation-defined I/O result code and h is
undefined.

OR CORE

COMPILES TO: OR (0)

STACK EFFECTS: n1 n2 — n3

Leave the bitwise logical OR in n3 of the numbers n1 and n2.

OUT COMUS

COMPILES TO: LITERAL (<address of OUT>)

CHAPTER 16. GLOSSARY 395

STACK EFFECTS: — x

A variable containing the the value that will be returned to the host program.

OUTPUT 4TH

COMPILES TO: LITERAL (<fam>)

STACK EFFECTS: — fam

This will leave a file access method on the stack, signalling an operation on an output-
device.

OVER CORE

COMPILES TO: OVER (0)

STACK EFFECTS: n1 n2 — n1 n2 n1

Copy the second stack value to the top of the stack.

PAD CORE EXT

COMPILES TO: LITERAL (<address of PAD>)

STACK EFFECTS: — addr

Leave the address of the text output buffer.

PARSE CORE EXT

COMPILES TO: PARSE (0)

STACK EFFECTS: c — addr n

Reads a string from TIB, using character c as a delimiter. Leaves the addr/count pair addr
n. The resulting string is not zero-terminated. If the parse area was empty, the resulting
string has a zero length.

PARSE-WORD 4TH

COMPILES TO: DUP (0)

OMIT (0)

PARSE (0)

STACK EFFECTS: c — addr n

FORTH: This is a Forth-2012 word.

CHAPTER 16. GLOSSARY 396

Reads a string from the Character Segment, using character c as a delimiter and skipping
all leading delimiters. Leaves the addr/count pair addr n. The resulting string is not zero-
terminated.

PAUSE 4TH

COMPILES TO: PAUSE (0)

STACK_EFFECTS: —

Saves a stackframe, closes all files and quits execution. Leaves the virtual machine in a
state where it can resume execution.

PICK CORE EXT

INCLUDE: pickroll.4th

STACK EFFECTS: nu .. n1 n2 u — nu .. n1 n2 nu

Remove u. Copy the nu to the top of the stack.

PIPE 4TH

COMPILES TO: LITERAL (<fam>)

STACK EFFECTS: — fam

This will leave a file access method modifier on the stack, signalling an operation on a
pipe. Must be added to another file access modifier. Used in combination with INPUT and
OUTPUT. If an OS does not support pipes, opening a pipe will always fail.

PLACE COMUS

COMPILES TO: PLACE (0)

STACK EFFECTS: addr1 n addr2 —

Copies the string at address addr1 with count n to address addr2.

PRECISION FLOATING EXT

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: — n

FLOATING: —

CHAPTER 16. GLOSSARY 397

Return the number of significant digits currently used by F, FE, or FS as n.

PROTO: 4TH

COMPILES TO: BRANCH (<address after next branch>)

BRANCH ((ERROR))

Compiles a ”trampoline” for a subsequent :PROTO definition, which will resolve the pro-
visionary jump address (see: :PROTO) .

QUERY CORE EXT

INCLUDE: obsolete.4th

STACK EFFECTS: —

Make the user input device the input source. Receive input into the terminal input buffer,
replacing any previous contents. Make the result, whose address is returned by TIB, the
input buffer. Set >IN to zero.

QUIT CORE

COMPILES TO: QUIT (0)

FORTH: This word has quite another meaning in Forth.

Sets the program counter to the end of the program. Effectively quits execution.

R"@ 4TH

COMPILES TO: R"@ (0)

STACK EFFECTS: — n

Copy the third return stack item to the stack.

R’@ TOOLBELT

COMPILES TO: R’@ (0)

STACK EFFECTS: — n

Copy the second return stack item to the stack.

R/O FILE

PRONUNCIATION: r-o

CHAPTER 16. GLOSSARY 398

INCLUDE: ansfile.4th

STACK EFFECTS: — fam

fam is the implementation-defined value for selecting the read only file access method.

R/W FILE

PRONUNCIATION: r-w

INCLUDE: ansfile.4th

STACK EFFECTS: — fam

fam is the implementation-defined value for selecting the read write file access method.

R> CORE

PRONUNCIATION: r-from

COMPILES TO: R> (0)

STACK EFFECTS: — n

Remove the top value from the return stack and leave it on the stack.

R@ CORE

PRONUNCIATION: r-fetch

COMPILES TO: I (0)

STACK EFFECTS: — n

Copy the top of the return stack to the stack.

RDROP 4TH

COMPILES TO: RDROP (0)

STACK EFFECTS: —

Drop the top number from the return stack.

READ-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addr n1 h — n2 f

CHAPTER 16. GLOSSARY 399

Read n1 consecutive characters to addr from the current position of the file identified by
handle h. If n1 characters are read without an exception, flag f is zero and n2 is equal to
n1. If the end of the file is reached before n1 characters are read, flag f is zero and n2 is the
number of characters actually read. At the conclusion of the operation, FILE-POSITION
returns the next file position after the last character read.

READ-LINE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addr n1 h — n2 f1 f2

Read the next line from the file specified by handle h into memory at the address addr. At
most n1 characters are read. Up to two implementation-defined line terminating characters
may be read into memory at the end of the line, but are not included in the count n2.
The line buffer provided by addr should be at least n1+2 characters long. If the operation
succeeded, flag f1 is true and flag f2 is zero. If a line terminator was received before n1
characters were read, then n2 is the number of characters, not including the line terminator,
actually read (0 <= n2 <= n1). When n1 = n2 the line terminator has yet to be reached.
If the operation is initiated when the value returned by FILE-POSITION is equal to the
value returned by FILE-SIZE for the file identified by handle h, flag f1 is false, flag f2 is
zero, and n2 is zero. If flag f2 is non-zero, an exception occurred during the operation
and f2 is the implementation-defined I/O result code. At the conclusion of the operation,
FILE-POSITION returns the next file position after the last character read.

RECURSE CORE

COMPILES TO: CALL (<last defined word>)

Compile a call to the current colon-definition inside the current colon-definition. If this
word is used outside a colon definition it is undefined.

REFILL CORE EXT FILE EXT

COMPILES TO: REFILL (0)

STACK EFFECTS: — f

Attempt to fill the input buffer from the input source, returning a true flag if successful.
When the input source is the user input device, attempt to receive input into the terminal
input buffer. When the input source is a text file, attempt to read the next line from the
text-input file. If successful, make the result the input buffer, set >IN to zero, and return
true. Receipt of a line containing no characters is considered successful. If there is no input
available from the current input source, return false.

RENAME-FILE FILE EXT

INCLUDE: ansren.4th

STACK EFFECTS: a1 n1 a2 n2 — f

CHAPTER 16. GLOSSARY 400

FORTH: Forth usually does a true rename. 4tH copies the original file to a new
file and deletes the old one.

Rename the file named by the character string a1 n1 to the name in the character string a2
n2. It returns true on error and false on success.

REPEAT CORE

COMPILES TO: BRANCH (<address of matching BEGIN>)

SYNTAX: BEGIN<space>..<space>WHILE<space>..<space>REPEAT

FORTH: Within a BEGIN .. REPEAT construct, multiple WHILEs may be
used as well, but additional words are necessary to complete the con-
struct.

At runtime, REPEAT forces an unconditional branch back to just after the corresponding
BEGIN. Multiple WHILEs may be used.

REPLACES STRING EXT

INCLUDE: substit.4th

STACK EFFECTS: a1 n2 a2 n2 —

FORTH: This is a Forth-2012 word.

Set the string defined by a1 and n1 as the text to substitute for the substitution named by
a2 and n2. If the substitution does not exist it is created. The program may then reuse
the buffer a1 n1 without affecting the definition of the substitution. Ambiguous conditions
occur as follows:

1. The substitution cannot be created.

2. The name of a substitution contains a delimiter character.

REPOSITION-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: n h — f

Reposition the file identified by handle h to n. Flag f is the implementation-defined I/O re-
sult code. An ambiguous condition exists if the file is positioned outside the file boundaries.
At the conclusion of the operation, FILE-POSITION returns the value n.

REPRESENT FLOATING

INCLUDE: represnt.4th

STACK EFFECTS: addr n1 — n2 f1 f2

CHAPTER 16. GLOSSARY 401

FLOATING: r —

At addr, place the character-string external representation of the significand of the floating-
point number r. The size of the buffer identified by addr must be greater than or equal
to MAXDIGITS and will not be terminated by REPRESENT. Return the decimal-base
exponent as n2, the sign as f1 and ”valid result” as f2. The character string shall consist of
the n1 most significant digits of the significand represented as a decimal fraction with the
implied decimal point to the left of the first digit, and the first digit zero only if all digits
are zero. The significand is rounded to n1 digits following the ”round to nearest” rule; n2
is adjusted, if necessary, to correspond to the rounded magnitude of the significand. If f2 is
true then r was in the implementation-defined range of floating-point numbers. If f1 is true
then r is negative. An ambiguous condition exists if the value of BASE is not decimal ten.

RESIZE MEMORY

INCLUDE: ansmem.4th

memchar.4th

memcell.4th

STACK EFFECTS: addr1 n — addr2 f

Change the allocation of the contiguous data space starting at the address addr1, previously
allocated by ALLOCATE or RESIZE, to n address units. n may be either larger or smaller
than the current size of the region. If the operation succeeds, addr2 is the aligned starting
address of n address units of allocated memory and f is false. The values contained in the
region at addr1 are copied to addr2, up to the minimum size of either of the two regions.
If they are the same, the values contained in the region are preserved to the minimum of
n or the original size. If addr2 is not the same as addr1, the region of memory at addr1
is returned to the system according to the operation of FREE. If the operation fails, addr2
equals addr1, the region of memory at addr1 is unaffected, and f is true.

RESTORE-INPUT CORE EXT

INCLUDE: evaluate.4th

STACK EFFECTS: n1 n2 a1 n3 h n4 — f

Attempt to restore the input source specification to the state described by n1 through h.
Flag is true if the input source specification cannot be so restored.

REWIND 4TH

COMPILES TO: LITERAL (0)

SWAP (0)

SEEK (0)

STACK EFFECTS: h — f

CHAPTER 16. GLOSSARY 402

Reposition the file identified by handle h to the beginning of the file. If the operation is
successful, FALSE is returned, otherwise TRUE.

ROLL CORE EXT

INCLUDE: pickroll.4th

STACK EFFECTS: nu n1 .. n2 u — n1 .. n2 nu

Remove u. Rotate u+1 items on the top of the stack.

ROT CORE

PRONUNCIATION: rote

COMPILES TO: ROT (0)

STACK EFFECTS: n1 n2 n3 — n2 n3 n1

Rotate the top three values on the stack, bringing the third to the top.

RP@ 4TH

COMPILES TO: RP@ (0)

STACK EFFECTS: — sp

Return the address sp of the stack position of the top of the return stack as it was before
RP@ was executed.

RSHIFT CORE

PRONUNCIATION: r-shift

COMPILES TO: NEGATE (0)

SHIFT (0)

STACK EFFECTS: n1 n2 — n3)

Perform a logical right shift of n2 bit-places on n1, giving n2. Put zeroes into the most
significant bits vacated by the shift (depends on implementation4).

S" CORE FILE

PRONUNCIATION: s-quote

COMPILES TO: S" (<address of string constant>)

4Some C compilers do an arithmetic shift, leaving the most significant bit set.

CHAPTER 16. GLOSSARY 403

SYNTAX: S"<space><string>"

STACK EFFECTS: — addr n

Compiles string delimited by " in the String Segment with an execution procedure to move
the string to PAD. Leaves the address and the length of the string on the stack.

S>D CORE

PRONUNCIATION: s-to-d

COMPILER: The instruction pointer is not incremented. In fact, S>D is a dummy.

STACK EFFECTS: n — n

Convert the number n to double number n with the same numerical value.

S>F FLOATING EXT

PRONUNCIATION: s-to-f

INCLUDE: ansfloat.4th

zenfloat.4th

STACK EFFECTS: n —

FLOATING: — r

FORTH: The implementation of ansfloat.4th is Forth-2012 compliant.

r is the floating-point equivalent of the single-cell value n.

S| 4TH

COMPILES TO: S" (<address of string constant>)

SYNTAX: S|<space><string>|

STACK EFFECTS: — addr n

Compiles string delimited by | in the String Segment with an execution procedure to move
the string to PAD. Leaves the address and the length of the string on the stack.

SAVE-BUFFERS BLOCK

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: —

CHAPTER 16. GLOSSARY 404

Transfer the contents of each UPDATEd block buffer to mass storage. Mark the buffer as
unmodified.

SAVE-INPUT CORE EXT

INCLUDE: evaluate.4th

STACK EFFECTS: — n1 n2 a1 n3 h n4

n1 through h describe the current state of the input source specification for later use by
RESTORE-INPUT.

SCONSTANT 4TH

SYNTAX: S"<space><string>"<space>SCONSTANT<space><name>

COMPILER: The previously compiled string address is taken as an argument for
SCONSTANT. The instruction pointer is decremented, actually delet-
ing the string address.

A defining word used to create word <name>. When <name> is later executed, it will push
the current address and the length of the string constant on the stack.

SCR BLOCK EXT

PRONUNCIATION: s-c-r

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: — x

x is the address of a cell containing the block number of the block most recently LISTed.

SEARCH STRING

INCLUDE: search.4th

STACK EFFECTS: addr1 n1 addr2 n2 — addr3 n3 f

Search the string specified by addr1 n1 for the string specified by addr2 n2 . If flag is true, a
match was found at addr3 with n3 characters remaining. If flag is false there was no match
and addr3 is addr1 and n3 is n1.

SEEK 4TH

COMPILES TO: SEEK (0)

STACK EFFECTS: n h — f

CHAPTER 16. GLOSSARY 405

Reposition the file identified by handle h to n. If n is positive, TELL returns the value n. If
n is negative, the file is repositioned relative to the end of the file. If n equals (ERROR), the
file is repositioned to the end of the file. If the operation is successful, FALSE is returned,
otherwise TRUE.

SET-PRECISION FLOATING EXT

INCLUDE: ansfloat.4th

zenans.4th

STACK EFFECTS: n —

FLOATING: —

Set the number of significant digits currently used by F, FE, or FS to n.

SHIFT 4TH

COMPILES TO: SHIFT (0)

STACK EFFECTS: n1 n2 — n3

Performs a logical bit shift on n1. Specifically, SHIFT shifts a number a number of bits,
specified in n2, using a logical register shift.

SIGN CORE

COMPILES TO: SIGN (0)

STACK EFFECTS: n1 n2 — n2

Stores an ASCII ’-’ sign just before the converted numeric output string in PAD when n1
is negative. n1 is discarded, but n2 is maintained. Must be used between <# and #>.

SM/REM CORE

PRONUNCIATION: s-m-slash-rem

INCLUDE: mixed.4th

STACK EFFECTS: d n1 — n2 n3

Divide d by n1, giving the symmetric quotient n3 and the remainder n2. Input and output
stack arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient
lies outside the range of a single-cell signed integer.

SMOVE 4TH

COMPILES TO: SMOVE (0)

CHAPTER 16. GLOSSARY 406

STACK EFFECTS: x1 x2 n —

FORTH: Equivalent to:

: SMOVE CELLS MOVE ;

Move the specified quantity of cells (n) beginning at address x1 to x2.

SOURCE CORE

COMPILES TO: LITERAL (<address of TIB variable>)

@ (0)

LITERAL (<address of TIB-size variable>)

@ (0)

STACK EFFECTS: — addr n

addr is the address of, and n is the number of characters in, the currently used TIB.

SOURCE! SOURCEFORGE

COMPILES TO: LITERAL (<address of TIB-size variable>)

! (0)

LITERAL (<address of TIB variable>)

! (0)

STACK EFFECTS: addr n —

FORTH: In Forth, >IN is set to zero. In 4tH this is left up to the application
programmer.

Make the string described by c-addr and u the current input buffer. A program is allowed to
refill the input buffer without restoring the original input source; upon a refill, the system
shall accept the new portion of text to the current refill buffer and make it the input buffer.

SOURCE-ID CORE EXT FILE

PRONUNCIATION: source-i-d

COMPILES TO: ENVIRON (<address of CIN>)

STACK EFFECTS: — n

Identifies the input source.

SP@ 4TH

CHAPTER 16. GLOSSARY 407

COMPILES TO: SP@ (0)

STACK EFFECTS: — sp

Return the address sp of the stack position of the top of the stack as it was before SP@ was
executed.

SPACE CORE

COMPILES TO: LITERAL (<ASCII value of space>)

EMIT (0)

Transmit an ASCII blank to the current output device.

SPACES CORE

COMPILES TO: SPACES (0)

STACK EFFECTS: n —

Transmit n ASCII blanks to the current output device.

SPAN CORE EXT

INCLUDE: obsolete.4th

STACK EFFECTS: — x

X is the address of a cell containing the count of characters stored by the last execution of
EXPECT (see EXPECT).

STACK-CELLS 4TH

COMPILES TO: LITERAL (<number of integers>)

STACK EFFECTS: — n

FORTH: Equivalent to:

: STACK-CELLS S" STACK-CELLS" ENVIRONMENT? DROP
;

Returns the number of integers that the Stack Area can contain. Both stacks share the Stack
Area.

STDIN 4TH

COMPILES TO: LITERAL (<address of stream>)

CHAPTER 16. GLOSSARY 408

STACK EFFECTS: — h

Leaves a filehandle on the stack associated with the standard keyboard input device. This
stream cannot be closed.

STDOUT 4TH

COMPILES TO: LITERAL (<address of stream>)

STACK EFFECTS: — h

Leaves a filehandle on the stack associated with the standard screen output device. This
stream cannot be closed.

STOW 4TH

COMPILES TO: OVER (0)

SWAP (0)

STACK EFFECTS: n1 n2 — n1 n1 n2

Duplicates the second item on the stack.

STRING 4TH

SYNTAX: <literal><space>STRING<space><name>

COMPILER: The previously compiled literal is taken as an argument for STRING.
The instruction pointer is decremented, actually deleting the literal.

FORTH: This word is 4tH specific. Roughly equivalent to:

: STRING CREATE CHARS ALLOT ;

Allocate <literal> characters of contiguous data space beginning at <name> in the Charac-
ter Segment. The initial content of the allocated space is undefined.

STRUCT 4TH

COMPILES TO: LITERAL (0)

SYNTAX: STRUCT<space><literal><space>+FIELD<space><name><space>END-
STRUCT<space><name>

STRUCT<space><literal><space>/FIELD<space>END-STRUCT<space><name>

STACK EFFECTS: — n

FORTH: Similar constructions are available in GForth. +FIELD is part of Forth
2012.

CHAPTER 16. GLOSSARY 409

A constant, which initiates a STRUCT definition (see: +FIELD, /FIELD, END-STRUCT).

SUBSTITUTE STRING EXT

INCLUDE: substit.4th

STACK EFFECTS: a1 n1 a2 n2 – a2 n3 n4

FORTH: This is a Forth-2012 word.

Perform substitution on the string at a1 and n1 placing the result at string a2 and n2, re-
turning a2 and n3, the length of the resulting string. An ambiguous condition occurs if the
resulting string will not fit into a2 n2 or if a2 is the same as a1. The return value n4 is pos-
itive (0..+n) on success and indicates the number of substitutions made. A negative value
for n4 indicates that an error occurred, leaving a2 and n3 undefined. Substitution occurs
from the start of a1 and n1 in one pass and is non-recursive. When a substitution name
surrounded by ’%’ delimiters is encountered by SUBSTITUTE, the following occurs:

1. If the name is null, a single delimiter character is substituted, i.e. %% is replaced by
%.

2. If the name is a valid substitution name, the leading and trailing delimiter characters
and the enclosed substitution name are replaced by the substitution text.

3. If the name is not a valid substitution name, the name with leading and trailing de-
limiters is passed unchanged to the output.

SWAP CORE

COMPILES TO: SWAP (0)

STACK EFFECTS: n1 n2 — n2 n1

Exchange the top two values on the stack.

SYNC 4TH

COMPILES TO: SYNC (0)

STACK EFFECTS: —

Attempt to force any buffered information written to the device referred to by the output
channel to be written.

TABLE 4TH

SYNTAX: TABLE<space><name>

FORTH: Available in some Forths.

CHAPTER 16. GLOSSARY 410

Leaves <name> in the symboltable and replace further occurences with LITERAL <xt>.
<xt> represents the address in the Code Segment where TABLE was compiled. An alias
for CREATE.

TAG 4TH

SYNTAX: TAG<space><name1><space><name2>

FORTH: This word is 4tH specific. Roughly equivalent to:

: TAG ’ >BODY 1 CELLS - CREATE , DOES> DUP @ -
;

Create a CONSTANT <name2> which contains the difference in characters between the
current address of the String Segment and previously defined OFFSET <name1>. This
constant can be used as an index to <name1> to retrieve any binary strings defined directly
after the definition of <name2>.

TELL 4TH

COMPILES TO: TELL (0)

STACK EFFECTS: h — n

n is the current file position for the file identified by handle h.

TH COMUS

COMPILES TO: + (0)

STACK EFFECTS: x1 n — x2

FORTH: This word is not part of ANS-Forth or Forth-79, but can be found in
other Forths. It can be very handy when porting 4tH programs. Just
define TH as:

: TH CELLS + ;

When you’re using a construction like:

VAR 2 TH

In both 4tH and Forth the third element will be referenced. The use
of TH to reference an element of a string in the Character Segment is
allowed in 4tH, but the resulting source cannot be ported to Forth.

Used to reference an element in an array of integers. Will return the address of the n-th
element in array x1 as x2. An alias for +.

THEN CORE

SYNTAX: IF<space>..<space>ELSE<space>..<space>THEN

CHAPTER 16. GLOSSARY 411

At runtime THEN serves only as the destination of a forward branch from IF or ELSE. It
marks the conclusion of the conditional structure.

THROW EXCEPTION

COMPILES TO: THROW (0)

STACK EFFECTS: n —

FORTH: The values of THROW are not conforming the ANS-Forth standard.

If n is non-zero, pop the topmost exception frame from the return stack, along with every-
thing beyond that frame. Then adjust the return- and datastacks so they are the same as the
depths saved in the exception frame, put n on top of the data stack, and transfer control to
a point just after the CATCH that pushed that exception frame (see: CATCH).

THROW" 4TH

COMPILES TO: 0BRANCH (<address of QUIT>)

LITERAL (stdout)

USE (0)

.” (<address of string constant>)

LITERAL (<throw code>)

CR (0)

THROW (0)

SYNTAX: <literal><space>THROW”<space><string>”

STACK EFFECTS: n1 n2 —

Remove n1 from the stack. If any bit of n1 is not zero, display the string and throw an
exception with error code literal n2.

TIB CORE EXT

PRONUNCIATION: t-i-b

COMPILES TO: LITERAL (<address of Terminal Input Buffer>)

STACK EFFECTS: — addr

FORTH: In Forth this is a variable. However, it is unlikely you’ll ever find a
program which assigns another value to it.

A constant which leaves the address of the Terminal Input Buffer on the stack.

TIME 4TH

CHAPTER 16. GLOSSARY 412

COMPILES TO: TIME (0)

STACK EFFECTS: — n

Returns the number of seconds since January 1st, 1970.

TIME&DATE FACILITY

PRONUNCIATION: time-and-date

INCLUDE: ansfacil.4th

STACK EFFECTS: — n1 n2 n3 n4 n5 n6

Return the current time and date. n1 is the second {0...59}, n2 is the minute {0...59}, n3 is
the hour {0...23}, n4 is the day {1...31}, n5 is the month {1...12}, and n6 is the year (e.g.,
1991).

TO CORE EXT

COMPILES TO: TO (<variable address>)

STACK EFFECTS: n —

SYNTAX: TO<space><name>

Store n in the value identified by name, previously defined by VALUE (see: VALUE).

TRUE CORE EXT

COMPILES TO: LITERAL (<flag>)

STACK EFFECTS: — f

FORTH: In ANS-Forth TRUE is represented by a -1 value.

Returns a true flag on the stack.

TUCK CORE EXT

COMPILES TO: SWAP (0)

OVER (0)

STACK EFFECTS: n1 n2 — n2 n1 n2)

Copy the first (top) stack item below the second stack item.

TYPE CORE

COMPILES TO: TYPE (0)

CHAPTER 16. GLOSSARY 413

STACK EFFECTS: addr n —

Transmit n characters from addr to the selected output device.

U. CORE

PRONUNCIATION: u-dot

INCLUDE: dbldot.4th

STACK EFFECTS: n —

Display n in free field format as an unsigned number.

U.R CORE EXT

PRONUNCIATION: u-dot-r

INCLUDE: dbldot.4th

STACK EFFECTS: n1 n2 —

Display unsigned number n1 right aligned in a field n2 characters wide. If the number of
characters required to display n1 is greater than n2, all digits are displayed with no leading
spaces in a field as wide as necessary.

U< CORE

PRONUNCIATION: u-less-than

INCLUDE: ansdbl.4th

STACK EFFECTS: n1 n2 — f

Flag f is true if and only if unsigned number n1 is less than unsigned number n2.

U> CORE EXT

PRONUNCIATION: u-greater-than

INCLUDE: ansdbl.4th

STACK EFFECTS: n1 n2 — f

Flag f is true if and only if unsigned number n1 is greater than unsigned number n2.

UM* CORE

PRONUNCIATION: u-m-star

INCLUDE: mixed.4th

CHAPTER 16. GLOSSARY 414

STACK EFFECTS: n1 n2 — d

Multiply n1 by n2, giving the unsigned double-cell product d. All values and arithmetic are
unsigned.

UM/MOD CORE

PRONUNCIATION: u-m-slash-mod

INCLUDE: mixed.4th

STACK EFFECTS: d n1 — n2 n3

Divide d by n1, giving the quotient n3 and the remainder n2. All values and arithmetic are
unsigned. An ambiguous condition exists if n1 is zero or if the quotient lies outside the
range of a single-cell unsigned integer.

UNESCAPE STRING EXT

INCLUDE: substit.4th

STACK EFFECTS: a1 n1 a2 – a2 n2

FORTH: This is a Forth-2012 word.

Replace each ’%’ character in the input string a1 n1 by two ’%’ characters. The output is
represented by a2 n2. The buffer at a2 must be big enough to hold the unescaped string.

UNLESS 4TH

COMPILES TO: 0= (0)

0BRANCH (<address of matching ELSE|THEN token>)

STACK EFFECTS: f —

SYNTAX: See ELSE, THEN

At runtime, UNLESS selects execution based on f. If f is zero, execution continues ahead
through the true part. If f is non-zero execution skips till just after ELSE to execute the
false part. After each part, execution resumes after THEN.

UNLOOP CORE

COMPILES TO: RDROP (0)

RDROP (0)

STACK EFFECTS: —

CHAPTER 16. GLOSSARY 415

Discard the loop-control parameters for the current nesting level. An UNLOOP is required
for each nesting level before the definition may be EXITed.

UNTIL CORE

COMPILES TO: 0BRANCH (<address of matching BEGIN>)

STACK EFFECTS: f —

SYNTAX: BEGIN<space>..<space>WHILE<space>..<space>UNTIL

FORTH: The optional WHILE word is not supported.

At runtime UNTIL controls the conditional branch back to the corresponding BEGIN. If f
is FALSE execution returns to just after BEGIN; if f is TRUE execution continues ahead.

UPDATE BLOCK

INCLUDE: ansblock.4th

multiblk.4th

STACK EFFECTS: —

Mark the current block buffer as modified. An ambiguous condition exists if there is no
current block buffer. UPDATE does not immediately cause I/O.

USE 4TH

COMPILES TO: USE (0)

STACK EFFECTS: h —

USE will associate the stream identified by filehandle h with the appropriate input- or
output-channel, depending on the file access method used when opening the stream (see:
OPEN). No streams are closed.

VALUE CORE EXT

COMPILES TO: TO (<variable address>)

STACK EFFECTS: n —

SYNTAX: <literal><space>VALUE<space><name>

Create a symboltable entry for the value name with an initial value n. At runtime, n will be
placed on the stack.

VARIABLE CORE

SYNTAX: VARIABLE<space><name>

CHAPTER 16. GLOSSARY 416

A defining word used to create variable <name>. When <name> is later executed, it will
push the address <var> on the stack, so that a fetch or store may access this location.

VARS 4TH

COMPILES TO: VARS (0)

STACK EFFECTS: — x

This word returns the begin of the variables area.

W/O FILE

PRONUNCIATION: w-o

INCLUDE: ansfile.4th

STACK EFFECTS: — fam

fam is the implementation-defined value for selecting the write only file access method.

WHILE CORE

COMPILES TO: 0BRANCH (<address of matching REPEAT token>)

STACK EFFECTS: f —

SYNTAX: BEGIN<space>..<space>WHILE|EXCEPT<space>..<space>REPEAT

BEGIN<space>..<space>WHILE|EXCEPT<space>..<space>UNTIL

FORTH: Within a BEGIN .. REPEAT construct, multiple WHILEs may be
used as well, but additional words are necessary to complete the con-
struct.

At runtime, WHILE selects conditional execution based on number n. If f is TRUE,
WHILE continues execution of the code thru to REPEAT, which branches back to BE-
GIN. If f is FALSE, execution skips to just after REPEAT, exiting the structure. Multiple
WHILEs may be used.

WIDTH 4TH

COMPILES TO: LITERAL (<number of characters>)

STACK EFFECTS: — n

A constant which leaves the maximum number of characters, allowed in a <name> label.

WITHIN CORE EXT

INCLUDE: range.4th

CHAPTER 16. GLOSSARY 417

STACK EFFECTS: n1 n2 n3 — f

Perform a comparison of a test value n1 with a lower limit n2 and an upper limit n3 ,
returning true if either (n2 < n3 and (n2 <= n1 and n1 < n3)) or (n2 > n3 and (n2 <= n1 or
n1 < n3)) is true, returning false otherwise.

WORD CORE

INCLUDE: word.4th

STACK EFFECTS: c — addr

Skip leading delimiters and parse characters delimited by c. Addr is the address of the
parsed word. If the parse area was empty or contained no characters other than the delim-
iter, the resulting string has a zero length.

WRITE-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addr n h — f

Write n characters from addr to the file identified by handle h starting at its current position.
Flag f is the implementation-defined I/O result code. At the conclusion of the operation,
FILE-POSITION returns the next file position after the last character written to the file, and
FILE-SIZE returns a value greater than or equal to the value returned by FILE-POSITION.

WRITE-LINE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addr n h — f

Write n characters from addr followed by the implementation-dependent line terminator to
the file identified by handle h starting at its current position. Flag f is the implementation-
defined I/O result code. At the conclusion of the operation, FILE-POSITION returns the
next file position after the last character written to the file, and FILE-SIZE returns a value
greater than or equal to the value returned by FILE-POSITION.

X-SIZE XCHAR

INCLUDE: xchar.4th

STACK EFFECTS: addr n1 — n2

FORTH: This is a Forth-2012 word.

n2 is the number of chars used to encode the first xchar stored in the string addr n1. To cal-
culate the size of the xchar, only the bytes inside the buffer may be accessed. An ambiguous
condition exists if the xchar is incomplete or malformed.

CHAPTER 16. GLOSSARY 418

X-WIDTH XCHAR EXT

INCLUDE: xchar.4th

STACK EFFECTS: addr n1 — n2

FORTH: This is a Forth-2012 word.

n2 is the number of monospace ASCII characters that take the same space to display as the
the xchar string addr n1; assuming a monospaced display font, i.e. xchar width is always
an integer multiple of the width of an ASCII character.

X\STRING- XCHAR EXT

INCLUDE: xchar.4th

STACK EFFECTS: addr n1 — addr1 n2

FORTH: This is a Forth-2012 word.

Search for the penultimate xchar in the string addr1 n1. The string addr1 n2 contains all
xchars of addr n1, but the last. Unlike XCHAR-, X\STRING- can be implemented in
encodings where xchar boundaries can only reliably detected when scanning in forward
direction.

XC-SIZE XCHAR

INCLUDE: xchar.4th

STACK EFFECTS: addr — n

FORTH: This is a Forth-2012 word.

n is the number of pchars used to encode xchar in memory.

XC-WIDTH XCHAR EXT

INCLUDE: xchar.4th

STACK EFFECTS: n1 — n2

FORTH: This is a Forth-2012 word.

n2 is the number of monospace ASCII characters that take the same space to display as the
xchar; i.e. xchar width is always an integer multiple of the width of an ASCII char.

XC@+ XCHAR

INCLUDE: xchar.4th

STACK EFFECTS: addr1 — addr2 n

FORTH: This is a Forth-2012 word.

CHAPTER 16. GLOSSARY 419

Fetches the xchar at addr1. addr2 points to the first memory location after the retrieved
xchar.

XC!+ XCHAR

INCLUDE: xchar.4th

STACK EFFECTS: n addr1 — addr2

FORTH: This is a Forth-2012 word.

Stores the xchar at addr1. addr2 points to the first memory location after the stored xchar.

XC!+? XCHAR

INCLUDE: xchar.4th

STACK EFFECTS: n1 addr1 n2 — addr2 n3 f

FORTH: This is a Forth-2012 word.

Stores the xchar into the string buffer specified by addr1 n2. addr2 n3 is the remaining
string buffer. If the xchar did fit into the buffer, flag is true, otherwise flag is false, and
addr2 n3 equal addr1 n2. XC!+? is safe for buffer overflows.

XCHAR+ XCHAR

INCLUDE: xchar.4th

STACK EFFECTS: addr1 — addr2

FORTH: This is a Forth-2012 word.

Adds the size of the xchar stored at addr1 to this address, giving addr2.

XCHAR- XCHAR EXT

INCLUDE: xchar.4th

STACK EFFECTS: addr1 — addr2

FORTH: This is a Forth-2012 word.

Goes backward from addr1 until it finds an xchar so that the size of this xchar added to
addr2 gives addr1. There is an ambiguous condition when the encoding doesn’t permit
reliable backward stepping through the text.

XEMIT XCHAR

INCLUDE: xchar.4th

CHAPTER 16. GLOSSARY 420

STACK EFFECTS: n —

FORTH: This is a Forth-2012 word.

Prints an xchar on the terminal.

XHOLD XCHAR EXT

INCLUDE: xchar.4th

STACK EFFECTS: n —

FORTH: This is a Forth-2012 word.

Adds an xchar to the picture numeric output buffer.

XOR CORE

PRONUNCIATION: x-or

COMPILES TO: XOR (0)

STACK EFFECTS: n1 n2 — n3

Leave the bitwise logical XOR of n1 XOR n2 as n3.

[’] CORE

PRONUNCIATION: bracket-tick

COMPILES TO: LITERAL (<tok>)

SYNTAX: [’]<space><name>

STACK EFFECTS: — n | x | xt

FORTH: See ’.

Compile the value contents of the symboltable entry identified as symbol <name> as a
literal. An alias for ’.

[: COMP.LANG.FORTH

COMPILES TO: LITERAL (<address of next BRANCH>)

BRANCH (<address of matching ; token>)

SYNTAX: [:<space>..<space>;]

STACK EFFECTS: — xt

FORTH: Several Forths support this word, e.g. gForth, iForth and VFX Forth.

CHAPTER 16. GLOSSARY 421

Suspends compiling to the current definition (if any), starts a new nested definition, and
compilation continues with this nested definition.

[=] 4TH

COMPILES TO: LITERAL (<flag>)

SYNTAX: <literal><space><literal><space>[=]

COMPILER: Two previously compiled literals are taken as arguments and a true
flag is recompiled when they are equal. The instruction pointer is
decremented, actually deleting the literals.

STACK EFFECTS: — f

FORTH: Equivalent to =.

[ABORT] 4TH

FORTH: Roughly equivalent to:

[ABORT]

Compilation is aborted immediately.

[ASSERT] 4TH

Toggles assertions. Assertions are disabled by default (see: ASSERT(and)).

[BINARY] 4TH

FORTH: Roughly equivalent to:

[2 BASE !]

When encountered during compilation it will set the radix to binary. All subsequent literals
will be interpreted as binary numbers. Runtime behaviour will be controlled by HEX,
OCTAL and DECIMAL.

[CHAR] CORE

PRONUNCIATION: bracket-char

COMPILES TO: LITERAL (<ASCII-value of character>)

SYNTAX: [CHAR]<space><char>

STACK EFFECTS: — c

CHAPTER 16. GLOSSARY 422

Compiles the ASCII-value of <char> as a literal. At runtime the value is thrown on the
stack. An alias for CHAR.

[DECIMAL] 4TH

FORTH: Roughly equivalent to:

[DECIMAL]

When encountered during compilation it will set the radix to decimal. All subsequent
literals will be interpreted as decimal numbers. Runtime behaviour will be controlled by
HEX, OCTAL and DECIMAL.

[DEFINED] SEARCH EXT

COMPILES TO: LITERAL (<flag>)

STACK EFFECTS: — f

SYNTAX: [DEFINED]<space><name>

FORTH: This is a Forth-2012 word.

If the name is defined, return TRUE, else return FALSE.

[ELSE] TOOLS EXT

PRONUNCIATION: bracket-else

SYNTAX: <literal><space>[IF]<space><word>..[ELSE]<space><word>..[THEN]

Skipping leading spaces, parse and discard space-delimited words from the parse area,
including nested occurrences of [IF] ... [THEN] and [IF] ... [ELSE] ... [THEN], until the
word [THEN] has been parsed and discarded.

[FORCE] 4TH

Disables all optimization for the compilation of one single word.

[HEX] 4TH

FORTH: Roughly equivalent to:

[HEX]

When encountered during compilation it will set the radix to hexadecimal. All subsequent
literals will be interpreted as hexadecimal numbers. Runtime behaviour will be controlled
by HEX, OCTAL and DECIMAL.

CHAPTER 16. GLOSSARY 423

[IF] TOOLS EXT

PRONUNCIATION: bracket-if

SYNTAX: <literal><space>[IF]<space><word>..[ELSE]<space><word>..[THEN]

COMPILER: The previously compiled literal is taken as an argument for [IF]. The
instruction pointer is decremented, actually deleting the literal.

FORTH: Forth pops a value from the stack. In 4tH though, you have to supply
a literal expression5.

If flag is true, do nothing. Otherwise, skipping leading spaces, parse and discard space-
delimited words from the parse area, including nested occurrences of [IF] ... [THEN] and
[IF] ... [ELSE] ... [THEN], until either the word [ELSE] or the word [THEN] has been
parsed and discarded.

[IGNORE] 4TH

SYNTAX: [IGNORE]<space><name>

COMPILER: The name is added to the symboltable. Subsequent occurrences of the
name will be ignored.

FORTH: Roughly equivalent to:

: [ignore] create does> drop ;

Recognize name, but do not perform any action or compile any code for it.

[MAX] 4TH

COMPILES TO: LITERAL (<max>)

SYNTAX: <literal><space><literal><space>[MAX]

COMPILER: Two previously compiled literals are taken as arguments, the larger
one of the two is recompiled. The instruction pointer is decremented,
actually deleting the literals.

STACK EFFECTS: — n

FORTH: Equivalent to MAX.

[NAMES] 4TH

COMPILER: The symboltable is not discarded, so a symbolic decompile can be
performed.

Note that the symboltable is never saved to disk, nor can it be reloaded. The symboltable
is retained in memory until the next direct or indirect call to free_4th().

5See section 7.13.

CHAPTER 16. GLOSSARY 424

[NEEDS 4TH

SYNTAX: [NEEDS<space><string>]

COMPILER: The contents of the file are inserted at this position.

Open the file specified by <string> and include its contents at the current position. When
the end of the file is reached, close the file and continue compilation. An error condition
exists if the named file can not be opened, if an I/O exception occurs reading the file, or if
an I/O exception occurs while closing the file.

[NOT] 4TH

COMPILES TO: LITERAL (<flag>)

SYNTAX: <literal><space>[NOT]

COMPILER: A previously compiled literal is taken as an argument and a true flag is
recompiled when it is equal to zero. The instruction pointer is decre-
mented, actually deleting the literal.

STACK EFFECTS: — f

FORTH: Equivalent to 0=.

[OCTAL] 4TH

FORTH: Roughly equivalent to:

[8 BASE !]

When encountered during compilation it will set the radix to octal. All subsequent liter-
als will be interpreted as octal numbers. Runtime behaviour will be controlled by HEX,
OCTAL and DECIMAL.

[PRAGMA] 4TH

SYNTAX: [PRAGMA]<space><name>

A defining word used to create word <name>. When <name> is later executed, it will push
the value TRUE on the stack. Intended to define pragmas for use in an include file.

[SIGN] 4TH

COMPILES TO: LITERAL (<sign>)

SYNTAX: <literal><space>[SIGN]

COMPILER: A previously compiled literal is taken as an argument, and its sign
recompiled. The instruction pointer is decremented, actually deleting
the literal.

CHAPTER 16. GLOSSARY 425

STACK EFFECTS: — -1|0|1

Used to convert a previously compiled literal to a single value, leaving only its sign.

[THEN] TOOLS EXT

PRONUNCIATION: bracket-then

Does nothing. Acts as a marker for [IF] (see: [IF]).

[UNDEFINED] SEARCH EXT

COMPILES TO: LITERAL (<flag>)

STACK EFFECTS: — f

SYNTAX: [UNDEFINED]<space><name>

FORTH: This is a Forth-2012 word.

If the name is defined, return FALSE, else return TRUE.

\ CORE EXT

PRONUNCIATION: backslash

SYNTAX: \<space><string>

The remainder of the line is discarded. Used for comment.

Chapter 17

Editor manual

17.1 Introduction

Forth organises its mass storage into "screens" of 1024 characters. Forth may have one
screen in memory at a time for storing text. The screens are numbered, starting with screen
0.

Each screen is organised as 16 lines with 64 characters. The Forth screens are merely an
arrangement of virtual memory and do not correspond to the screen format of the target
machine. Due to this format, the use of the comment word ’\’ is not allowed. Use ’(’
instead.

17.2 Selecting a screen and input of text

After you’ve started an editing session, you need to select a screen to edit. The screen is
given a number and selected by using:

n CLEAR (clear screen n and select for editing).

To input new text to screen after CLEAR, the P (put) command is used. Example:

0 P THIS IS HOW
1 P TO INPUT TEXT
2 P TO LINES 0, 1, 2 OF SELECTED SCREEN.

17.3 Line editing

During this description of the editor, reference is made to PAD. This is a text buffer which
may hold a line of text to be found or deleted by a string editing command. Do not confuse
this PAD with 4tHs PAD. It is only called that way by convention.

426

CHAPTER 17. EDITOR MANUAL 427

17.4 Line editing commands

n D Delete line n but hold it in PAD. Line 15 becomes free as all statements
move up 1 line.

n E Erase line n with blanks.

n I Insert the text from PAD at line n, moving the old line n and following
lines down. Line 15 is lost.

n H Hold line n at PAD (used by system more often than by user).

n R Replace line n with the text in PAD.

n S Spread at line n. Line n and following lines move down 1 line. Line n
becomes blank. Line 15 is lost.

n T Display line n and copy it to PAD.

n P text Put ’text’ at line n, overwriting its previous contents.

17.5 Screen editing commands

n LIST List screen n and select it for editing: if screen n is not the current screen,
it will request to load from memory.

n CLEAR Clear screen n with blanks and select it for editing.

n INSERT Insert screen n. The current screen n and all screens following it are
moved down. The last screen is lost.

n m COPY Copy the contents of screen n to screen m. The original contents of
screen m are lost.

FLUSH Used at the end of an editing session to save the current screen to mem-
ory.

UNDO Used to reload the current screen again, thus undoing all changes since
the last flush (triggered by CLEAR, FLUSH or LIST).

L List the current screen. The cursor line is relisted after the screen listing
to show the cursor position.

17.6 Cursor control and string editing

The screen of text being edited resides in a buffer area of storage. The editing cursor is a
variable holding an offset into this buffer area. Commands are provided from the user to
position the cursor either directly or by searching for a string of buffer text, and to insert or
delete text at the cursor position.

CHAPTER 17. EDITOR MANUAL 428

17.7 Commands to position the cursor

n M Move the cursor by n characters and the cursor line. The position of the
cursor on its line is shown by a ^ (caret).

n W Wipe n characters to the left of the cursor.

TOP Position the cursor at the start of the screen.

17.8 String editing commands

B Used after F to back up the cursor by the length of the most recent text.

C text Copy in text to the cursor line at the cursor position.

F text Search forward from the current cursor position until string ’text’ is
found. The cursor is left at the end of the string and the cursor line
printed. If the string is not found an error message is given and the cur-
sor repositioned to the top of the screen.

N Find the next occurrence of the string found by an F command

TlLL text Delete on the cursor line from the cursor till the end of string text.

X text Find and delete the next occurrence of the string ’text’.

17.9 Saving and exiting

WRITE Saves the current contents of all screens to the block-file. No flushing is
done.

WQ Flushes the current screen and saves the current contents of all screens to
the block-file.

Q Quits the editor without saving.

EXPORT name Saves the current contents of all screens to the text-file with the name
’name’. No flushing is done.

17.10 Calculator mode

The calculator mode is a simulation of what is known as the "Forth calculator mode". You
can use it to try out a host of 4tH words in interactive mode. It also serves nicely as a
deskcalculator. You can freely mix editor and calculator commands.

We tried to include as many 4tH words as possible, although we had to modify some due
to the limitations imposed by the system. There are eight pre-defined user-variables called
"A." though "H.". You can use these variables like any other user-variable.

You cannot declare new variables or make any colon-definitions in interactive mode. If you
are unclear how to use the built-in calculator please refer to the Primer and the Glossary.
By convention, calculator mode uses "OK" as the prompt. The following table shows you
which commands are available:

CHAPTER 17. EDITOR MANUAL 429

EDITOR 4TH EQUIVALENT EDITOR 4TH EQUIVALENT

+ + @ @
th th ? ?
- - base! base !
* * decimal decimal
/ / octal octal
q quit binary 2 base !
quit quit .(<string>) .(<string>)
bye quit mod mod
. . abs abs
.r .r negate negate
drop drop invert invert
dup dup min min
rot rot max max
swap swap or or
over over and and
A. variable a. a. xor xor
B. variable b. b. lshift lshift
C. variable c. c. rshift rshift
D. variable d. d. depth depth
E. variable e. e. cells cells
F. variable f. f. 1+ 1+
G. variable g. g. cell+ cell+
H. variable h. h. 1- 1-
! ! cell- cell-
+! +! space space
(<string>) (<string>) spaces spaces
cr cr 2* 2*
time time 2/ 2/
char char /mod /mod
[char] [char] */ */
emit emit */mod */mod

Table 17.2: DC commands

Chapter 18

Shell manual

18.1 Introduction

The 4tsh shell is a multitasking environment for 4tH. 4tH features cooperative multitasking,
which means programs have to relinquish control to the shell using ’PAUSE’, otherwise the
program will keep in control. The best place to add ’PAUSE’ is usually somewhere in a
loop. 4tH comes with several example multitasking programs for you to try out. 4tsh can
be used as a command line replacement for 4th, since you can enable multitasking in the
editor.

4tsh is scriptable. Scripts are stored in blockfiles, because block I/O is completed within
a single context. If you prefer to use your own editor, you need to convert your script to
a blockfile. 4tH comes with a conversion program, called txt2blk.4th. Every twelve
lines are converted to a block, leaving four additional lines for future modifications. Your
lines should be limited to 63 characters or less.

When a script it loaded, the first block is executed automatically. By convention, the first
block is block 0. When the execution of a block has completed, the script stops. You can
call other blocks by using ”LOAD”. When the execution of a called block has completed,
the execution of the previous block will resume at the point where execution was transferred
to the called block. It is recommended to use the first block as an application load screen1,
e.g.

(4tsh application load screen)
1 load (initialization)
2 load (checking conditions)
3 load (error handling)

An application load screen is simply a block that consecutively loads all the blocks that
make up your script. You can run an arbitrary number of scripts at startup by issuing them
on the command line, e.g.

4tsh boot.scr startup.scr tasks.scr

When all scripts have finished execution, control will automatically be transferred to the
monitor.

1See ”Thinking Forth”, chapter 5.

430

CHAPTER 18. SHELL MANUAL 431

18.2 Loading and saving

load” s” Loads HX file s from disk and leaves the task number on the stack.

compile” s” Loads and compiles source file s and leaves the task number on the stack.

n save” s” Saves task number n to HX file s.

n write” s” Generates C source file s from task number n.

n1 n2 see Decompiles task number n1 from opcode n2 on.

18.3 Task management

task Leaves the task number of the current monitor on the stack.

boot Starts a new monitor and runs the boot scripts.

pause Deactivates the monitor for one cycle.

n pauses Deactivates the monitor for n cycles.

n run Awakes and switches to task number n.

n awake Awakes task number n.

n sleep Deactivates task number n, but leaves it in memory.

n kill Deactivates task number n and removes it from memory.

tasks Lists all tasks.

halt Kills all tasks and shuts down 4tsh.

18.4 Scripting

script” s" Run script s. Does only work in interactive mode.

n load Load and interpret block n. Does not work in interactive mode.

:: s Define label s.

goto s Goto label s. Works in interactive mode, but only if s resides on the same
line.

n if Execute the words between if and the corresponding then, but only if n
is non-zero. Works in interactive mode. If you fail to provide a corre-
sponding then you will be prompted to provide it manually.

then Marker for if.

n not Leaves a non-zero value on the stack if n is zero, otherwise zero.

n status Leaves the status of task number n on the stack.

done Constant holding the termination status returned by status.

running Constant holding the active status returned by status.

sleeping Constant holding the inactive status returned by status.

CHAPTER 18. SHELL MANUAL 432

18.5 Stack, I/O and arithmetic

4tsh 4TH EQUIVALENT 4tsh 4TH EQUIVALENT

+ + . .
- - dup dup
* * rot rot
/ / over over
cr cr swap swap
.(.(drop drop
((= =

Table 18.1: 4tsh commands

Chapter 19

Preprocessor manual

19.1 Introduction

The preprocessor is a tool written in 4tH that has the following features:

• It expands special macro definitions. These macro definitions can contain anything
you want;

• It strips whitespace and comments;

• It collects all include files and inserts them into the source;

• It translates FORTRAN-like formulas;

• It expands [CHAR] and CHAR constructs.

This tool can help you to solve several problems:

• Your 4tH implementation has serious memory restrictions, so certain sources cannot
be compiled;

• You have to port Forth programs that use complex jump constructs.

• You have to write Forth compatible programs without the use of easy.4th;

• You can simplify development by writing complex programs much more easily;

• You need to eliminate ”noise words” or add syntactic sugar;

• You need to inline code in a structured way;

• It may serve in some situations as a debugging tool.

Note that the preprocessor is just a tool to automate certain sourcecode manipulations.
It doesn’t compile anything, although it does perform some syntax checks1. Succesfully
processed source can be rejected by the compiler for any number of reasons.

Every valid 4tH program is automatically valid 4tH preprocessor source. In addition the
preprocessor supports special preprocessor words, which are listed below.

1The preprocessor is sometimes even more pedantic than 4tH itself, see section 19.7.

433

CHAPTER 19. PREPROCESSOR MANUAL 434

19.2 Macros

A macro starts with the word :MACRO and is delimited by a semi-colon like a normal
definition. A macro may span several lines and may contain anything you want, including
conditional and loop statements. Macros may be nested, but they may not contain certain
directives.

This ANS Forth definition is impossible to define in 4tH:

: STEP 8 POSTPONE LITERAL POSTPONE +LOOP ;

In the preprocessor you can define it like this:

:MACRO STEP 8 +LOOP ;

Macros are expanded by the preprocessor which means that every time it finds ”STEP” it
will be replaced by ”8 +LOOP”.

The functionality of macros can be enhanced by special macro command. All supported
macro commands are listed in table 19.1.

19.2.1 Back quoted strings

You can’t print a semi-colon inside a macro, because it will be interpreted to be the end of
the macro. In order to defeat the interpreter you can use back quoted strings. Back quoted
strings are printed verbatim, so this will work:

:macro extra_stack : dip over swap ‘ ;‘ ;

You can even define entire strings:

:macro nul? dup 0= ‘ abort" Missing string"‘ ;

Note that back quoted strings are only interpreted within macros. Outside macros they are
ignored.

19.2.2 Registers

The preprocessor has 4 global registers, which can only be used inside macro definitions.
Take this definition:

:MACRO MONTH @1@ @2@ CREATE #1# #2# , DOES> @C . ‘ ;‘ ;
MONTH SEPTEMBER 9

Will expand to:

CREATE SEPTEMBER 9 , DOES> @C . ;

The commands @1@ through @4@ parse a word and store it in register 1 through 4. The
commands #1# though #4# print the string stored there. Registers retain their values
between calls, e.g.:

CHAPTER 19. PREPROCESSOR MANUAL 435

:MACRO BEGIN-STRUCTURE @1@ STRUCT ;
:MACRO END-STRUCTURE END-STRUCT #1# ;

BEGIN-STRUCTURE point
1 CELLS +FIELD p.x
1 CELLS +FIELD p.y

END-STRUCTURE

Will expand to:

STRUCT
1 CELLS +FIELD p.x
1 CELLS +FIELD p.y

END-STRUCT point

19.2.3 Parsing strings

Strings can be parsed by using the 1 through 4 commands and store them in register
1 through 4. They always have to be followed by a delimiter, e.g.:

INCLUDE lib/escape.4th
:MACRO S\" 1 " ‘ S" ‘ >1> |#| >>> " |#| S>ESCAPE ;

S\" \tAnd the winner is:\t\q4tH compiler\q!"

Will expand to:

S" \tAnd the winner is:\t\q4tH compiler\q!" S>ESCAPE

19.2.4 The string stack

If four registers are not enough, there is also a string stack you can use to store strings. This
macro will read a string and push it on the string stack:

:MACRO BEGIN-STRUCTURE @1@ >1> STRUCT ;

This macro will pop the string from the string stack and print it:

:MACRO END-STRUCTURE END-STRUCT <2< #2# ;

So if you write code like this:

BEGIN-STRUCTURE point
FIELD: p.x
FIELD: p.y

END-STRUCTURE

It will be expanded to this:

STRUCT
FIELD: p.x
FIELD: p.y

END-STRUCT point

If you’re really short on registers, you can write a macro that saves the current value on
the stack and restores it afterwards. Note that the string stack remains completely intact
between calls. Just remember to keep it balanced at all times.

CHAPTER 19. PREPROCESSOR MANUAL 436

19.2.5 Phony variables

There are six phony variables >#>, <#<, >>>, $#$, _#_ and |#|. >#> works very
much like @1@, @2@, etc. in that it parses a string. But instead of assigning it to a register,
it is put on the string stack directly. <#< drops the top of the stack, so the sequence >#>
<#< simply ignores a string:

:macro create @1@ @2@ >#> <#< >#> <#< #2# string #1# ;
create mystring 20 chars allot

>>> takes the next name or back quoted string and puts it on the string stack. So this will
assign ”Hello world!” to the first register:

:macro hello >>> ‘ Hello world¡ <1< ;

$#$ is much like the 1 through 4 commands, except it puts the parsed string on the
string stack. Just like its cousins, it requires a delimiter. We could rewrite our implementa-
tion of ”S\"” as follows:

include lib/escape.4th
:macro S\" $#$ " ‘ S" ‘ |#| >>> " |#| s>escape ;

S\" \tAnd the winner is:\t\q4tH compiler\q!"

Then _#_, which simply prints the top of the stack. Finally |#|, which is used to concate-
nate strings. Normally before a string is printed a space or newline is added. |#| takes the
top of the string stack and prints it as is. This way you can build macros like this, which
prints a string constant:

:macro literal: @1@ ‘ S" ‘ >1> |#| >>> " |#| ;
literal: Hello

Needless to say that phony variables are only recognized within macros.

19.2.6 Branching and looping

The preprocessor also offers some simple branching and looping functionality. It may
seem unusual and awkward at first, but it does the job. Basically, it exits the macro without
discarding the flag, e.g.:

:macro ex1 >>> 0 @if ‘ This is never printed‘ ;
:macro example ‘ Print this‘ ex1 @drop ;
example

Will only print ”Print this”. @if will render true when the numerical equivalent of the
string on the stack is non-zero. However, the flag - either zero or non-zero - will remain
on the stack, so we have to drop it one nesting level lower by calling @drop, which is a
synonym for <#<. We can also add an ”else” clause easily:

:macro ex1 >>> 0 @if ‘ This is never printed‘ ;
:macro ex2 ex1 @else ‘ But this is‘ ;
:macro example ‘ Print this‘ ex2 @drop ;
example

CHAPTER 19. PREPROCESSOR MANUAL 437

@else is the reverse of @if and exits the macro when the numerical equivalent of the
string on the stack is non-zero, preserving and inverting the flag. The reason for the latter
is, that you can always use @else for the alternate branch, no matter if you used @if,
@ifnot, @while or @until.

@else is also known by another name @ifnot. Using @if and @else you can build an
entire ”case” like construct:

:macro chars? >>> chars @while #2# string #1# ;
:macro cells? >>> cells @while #2# array #1# ;
:macro (create)
@1@ @2@ @3@ @4@
>3> chars? @else @drop
>3> cells? @else table #1# #2# #3# #4# ;

:macro create (create) @drop ;

This one in particular mimics the ANS-Forth ’CREATE’ word, which is subsequently trans-
formed into typical 4tH constructs, so you can compile code like this:

create mystring 20 chars allot
create myarray 40 cells allot
create mytable 5 , 6 , 7 ,

@while leaves a true flag on the stack when the top two strings are equal. Its counterpart
is @until, which leaves a true flag on the stack when the top two strings are not equal.
Using recursion, you can even build loops:

:macro line
@1@ >1> >>> %stop% @until @drop
‘ ," ‘ >1> |#| >>> ‘ "‘ |#| @2@ #2# , line ;

:macro make @1@ table #1# line @drop ;

Note you’ll have to drop the previous flag with each new iteration if you don’t want to
unbalance your string stack. It allows you to process code like this:

make bla
terminate 5 negate 6
virtual 7 endorse 9

%stop%

Which will result in a nice little table, ready to compile. Note all loops are based on
recursion, so if you nest too deep you may run out of stack space, which will result in an
internal error.

19.2.7 Functions

There are several functions you can use within a macro. @add, for example, will add the
two topmost entries on the string stack and leave the result. You can easily create counted
loops with @add:

:macro hello @if Hello! >>> -1 @add hello ;
:macro hello’s >#> hello @drop ;

So this will print ”Hello!” ten times:

CHAPTER 19. PREPROCESSOR MANUAL 438

hello’s 10

With @minus you can negate a number on the stack, so subtractions are possible too.
Multiplications can also be performed by using @mul. Divisions are supported by the
@divrm function, which leaves the division and modulo on the stack. If you want to
evaluate the result of an arithmetic expression, you can use @sign. @sign returns -1
when the top of the string stack is negative, 1 when it is positive and else zero. It closely
resembles the [SIGN] directive of 4tH.

@cell will leave a true flag on the stack if the top of the stack can be converted to a
number. Some stack instructions are provided as well, like @drop, @dup, @nip and
@over. They work exactly like their 4tH counterparts. @cr simply issues a newline.

The most elusive function may be @eval. If the top of the string stack contains the name
of a user-defined macro, it will be executed. If it doesn’t, the top of the stack is simply
printed. You can use this function to interpret a string of user-defined macros or simply
print the top of the stack.

You can check the existence of a user-defined macro with @exist, which leaves a non-
zero value if the top of the string stack is the name of a user-defined macro. Finally,
@match will compare the two topmost items on the string stack and leave a zero value if
they match.

19.3 Invocation (script)

Since the preprocessor is written in 4tH, you can invoke it in the usual way:

4th cxq pp4th.4th mysource.4pp mysource.4th

You can also use make, see section 27.11. Note the preprocessor uses the DIR4TH envi-
ronment variable to locate include files.

19.3.1 Options

The preprocessor supports the following options:

-D symbol Define symbol as a CONSTANT, with value 1. You may add as
many -D options as you require.

-D symbol=value Define symbol as a CONSTANT, with value value. You may add as
many -D options as you require.

-v Enter verbose mode and show all files included hierarchically.

-n Enables a symbolic decompile.

19.4 Invocation (executable)

The preprocessor is also embedded in a executable, so you can execute, decompile or save
the generated file right away. It recognizes .4pp files and preprocesses them automatically.
All other files are automatically compiled.

CHAPTER 19. PREPROCESSOR MANUAL 439

When a file is preprocessed a temporary file is created in your working directory. Unless
you specifically indicate this temporary file should be kept, it is deleted. The name of this
temporary file is equal to the preprocessor file, but with a .4pi extension.

This version of the preprocessor honors the DIR4TH environment variable completely. Pa-
rameters following the input filename are passed to the compiled program when executing.

19.4.1 Options

The preprocessor supports the following options:

-D symbol Define symbol as a CONSTANT, with value 1. You may add as
many -D options as you require.

-D symbol=value Define symbol as a CONSTANT, with value value. You may add as
many -D options as you require.

-o filename Specify the name of the output file when preprocessing, generating
or saving.

-i Show all files included hierarchically.

-c Load a sourcefile and compile it.

-p Preprocess a 4tH preprocessor file.

-d Decompile a 4tH program.

-n Enables a symbolic decompile in conjunction with the -d option.

-g Generate a C sourcefile (default: out.c).

-k Keep intermediate file.

-s Save a 4tH program (default: out.hx).

-x Execute a 4tH program.

-v Enter verbose mode.

-V Show version and exit.

19.5 Preprocessor commands

\ s The remainder of the line s is discarded. Used for comment.

(s) Discard comment s that is delimited by a right parenthesis. A blank
after the leading parenthesis is required.

char c Replaces character c as with its ASCII value.

[char] c Replaces character c as with its ASCII value.

include s The contents of file s, delimited by whitespace, are inserted at this
position.

[needs s] The contents of file s, delimited by a right bracket, are inserted at
this position.

CHAPTER 19. PREPROCESSOR MANUAL 440

:macro s ; Create a macro with the name s, delimited by a semi-colon. When
s is encountered it is replaced by the contents of the macro. A
macro may contain any sequence of valid 4tH words, including
conditional and loop statements, but no macros or include files.

scrap: s Delete a macro with the name s. After that, s will not be expanded
anymore and name s can be used to define a new macro. Note that
the macro space allocated by s is not freed.

let s Expand FORTRAN formula s, see section 13.1 for details.

[single] Set FORTRAN formula translation to single word precision.

[double] Set FORTRAN formula translation to double word precision.

[float] Set FORTRAN formula translation to floating point.

[binary] Sets radix to binary.

[octal] Sets radix to octal.

[decimal] Sets radix to decimal.

[hex] Sets radix to hexadecimal.

19.6 Error messages

Usage: pp4th infile outfile Issue a preprocessor file and a source file on the com-
mandline

Macro space exhausted The combined size of all macro definitions is too large

Unexpected macro The preprocessor found a :MACRO word within a pre-
viously started macro definition

Too many macros There are too many macro definitions in the currently
processed file

Duplicate macro A macro with this name is already defined

Undefined macro A SCRAP: directive was followed by an undefined macro
name

Directive not allowed here You cannot use an INCLUDE, [NEEDS, SCRAP: or
LET directive within a macro

Unexpected end of file A number, character, string, name or other expression
was expected in the currently processed file

String too long The string parsed was too long to be stored in a variable

Missing string A 1, 2, 3, 4, $#$ or >>> variable was not
followed by a string

Bad number The top of the string stack is not a valid number

String stack empty There were no strings left on the string stack

String stack full There were too many strings stored on the string stack

CHAPTER 19. PREPROCESSOR MANUAL 441

String stack not empty There were still items on the string stack after process-
ing the current file

Unknown operator Only +, -, unary -, *, / and ^ are supported in a formula

Precedence error The correct precedence cannot be determined - often a
missing left parenthesis

Cannot execute operator An internal formula translation error: Execution seman-
tics are missing

Not an operand One of the parameters of a function is not a valid operand

Unmatched parenthesis An unmatched (and) pair in a formula - often a miss-
ing right parenthesis

Invalid expression An internal formula translation error: Expression stack
is garbled

Formula stack not empty An internal formula translation error: Items left on the
formula stack after evaluation

Seek failed The preprocessor was unable to restore the file status
after processing an include file

Cannot open <file> Could not find a preprocessor file

Include file nested too deep Too many include files included within other include
files

Cannot open include file Could not find an include file

Cannot read include file Could not read the include file

Internal error An internal condition caused the preprocessor to stop,
e.g. stack overflow

19.7 Known bugs and limitations

• Some programs use conditional compilation to accommodate large comments. The
preprocessor can only assume such sections contain compilable code and will treat
it as such. If these comments contain words that are identical to macro names or
preprocessor commands the appropriate substitutions will be made, which may in
some circumstances raise errors.

• Some programs will span (comments across several lines. Although 4tH will accept
such comments, it is a violation of the ANS-Forth standard. The preprocessor does
not support such usage.

• The length of a text line should not exceed 255 characters as buffer overflows may
occur.

• Character literals are expanded under the current radix, so take care when using them
in a macro.

• Back quoted strings offer no protection against macro expansion. If a back quoted
string is recognized as a macro name, add a leading or trailing space.

CHAPTER 19. PREPROCESSOR MANUAL 442

• Although macro definitions may be nested, extreme nesting of macros is known to
trigger internal errors.

• A runaway recursion may trigger internal or end-of-file errors.

• Severe violations of the ANS-Forth standard may trigger erratic behavior.

19.8 Preprocessor libraries

This table list all libraries, the user words they provide, their field of application and the
registers they use. It is not recommended to use any internal words defined in the library
nor to define any words starting with an underscore. Some libraries contain words that are
intended to be used inside other macros, others provide new keywords you can use in your
programs. Note that not all libraries can be combined. Refer to the source for details.

Some libraries clobber one or more registers. If any of these registers contain meaningful
values when you use the library, these values will be overwritten. Save them on the stack
before using any of these words or refrain from using these registers yourself.

LIBRARY PROVIDES APPLICA-
TION

REGISTERS
USED

closures.4pp :: vars end-vars var: this { } set
sizeof {: ;}

Program –

ansforth.4pp action-of synonym
begin-structure end-structure

Program –

double.4pp d% 2variable 2constant Program –
float.4pp f% fvariable ffield: fconstant Program –
foos.4pp Object Nothing derived? :class

type@ typeof parent@ kindof
parentof sizeof extends ;class
virtual: method: end-extends { }
this :new :delete :virtual :default
:method => virtual ;method <-
default delete static new instance
private{ overrides class resolve

Program –

rangext.4pp le ge lt gt Program –
ifdef.4pp @ifdef @ifndef @then Program –
sbslquot.4pp s\" Program –
yield.4pp yield grab Program –
interprt.4pp [] Macro –
compare.4pp @gt @eq @lt Macro –
standard.4pp @swap @rot @max @min @abs Macro @swap: 1;

@rot: 1, 2

CHAPTER 19. PREPROCESSOR MANUAL 443

COMMAND DESCRIPTION

@n@ Parses the next string and puts it in register n

#n# Prints the contents of register n

>n> Pushes the contents of register n on the string stack

<n< Pops the ”top of string stack” and puts it in register n

n Parses the next string, using the delimiter following it, and puts it in register n

$#$ Parses the next string, using the delimiter following it, and pushes it on the string stack

>#> Parses the next string and pushes it on the string stack

<#<
@drop

Discards the ”top of string stack”

|#| Prints the ”top of string stack” without white space

Prints the ”top of string stack” with white space

>>> Pushes the string following it on the string stack

@cr Prints a line delimiter

@if If the numerical value of the ”top of string stack” is zero, the rest of the macro definition
is skipped

@dup Duplicates the ”top of string stack”

@nip Discards the ”second of string stack”

@add Adds the numerical value of the ”top of string stack” and the numerical value of the
”second of string stack”

@mul Multiplies the numerical value of the ”top of string stack” and the numerical value of the
”second of string stack”

@divrm Divides the numerical value of the ”second of string stack” by the numerical value of the
”top of string stack” and leaves the quotient and remainder

@over Duplicates the ”second of string stack”

@else
@ifnot

If the numerical value of the ”top of string stack” is non-zero, the rest of the macro
definition is skipped

@exist Pops the ”top of string stack”. If this represents a valid macro name, a TRUE value is
pushed onto the string stack

@minus Negates the ”top of string stack”

@eval Pops the ”top of string stack”. If the ”top of the string stack” contains the name of a
macro, it will be executed. If it doesn’t, it is printed

@cell Pops the ”top of string stack”. If it contains a numerical value, a TRUE value is pushed
onto the string stack

@sign Pops the ”top of string stack”. If it’s numerical value is negative, ”-1” is pushed onto the
string stack. If it is zero, ”0” is pushed onto the string stack, otherwise ”1”

@match Pops the ”top of string stack” and ”second of string stack”. If both strings are equal, ”0”
is pushed on the string stack. If ”second of string stack” is smaller than ”top of string
stack”, a negative value is pushed on the string stack, otherwise a positive value

@until Pops the ”top of string stack” and ”second of string stack”. If both strings are equal, the
rest of the macro definition is skipped

@while Pops the ”top of string stack” and ”second of string stack”. If the strings differ, the rest
of the macro definition is skipped

Table 19.1: Macro commands

Chapter 20

uBasic manual

20.1 Introduction

uBasic is an integer Basic interpreter in the tradition of Tiny Basic, with which it is largely
compatible. It is derived from a program made by Herbert Schildt in the late eighties and
published in his book ”C: The complete reference”. This version is entirely written in 4tH,
some bugs have been removed and several additional features have been added. In order to
execute a program you can invoke it in the usual way:

4th cxq ubasic.4th lander.bas

Of course, you may opt to create an executable or script suited for your operating system.

20.2 Statements

• Labels must be prefixed by an underscore and can contain any character, except de-
limiters;

• Labels are internally converted to signed integers and can be treated as such1;

• Labels are valid line numbers;

• Line numbers are numeric, so 0020 refers to the same label as 20;

• Line numbers and labels are optional unless there is a GOSUB, GOTO, PROC or
FUNC() statement referring to them;

• Precedence, from high to low: (,), unary -, ^, *, / , %, +, -, #, =, <, >;

• A compound statement may consist of a single statement;

• Whitespace is ignored;

• uBasic is not case sensitive.

1This is called ”hashing”. Two strings may result in same hash value, which is called a ”collision”. The chance
on a collision is rather small, about 0.04%.

444

CHAPTER 20. UBASIC MANUAL 445

CONCEPT DEFINITION ABBREVIATION
Line number Any positive integer a
Label Any combination of ASCII-7

characters, except delimiters; must
be prefixed by an underscore

a

Number Any signed integer or label n
Function ABS(), RND(), TOS(), POP(),

SGN(), NOT(), AND(), XOR(),
OR(), SHL(), ORD(), TIME(),
FUNC(), LEN(), VAL(), STR(),
CHAR(), PEEK(), CLIP(),
CHOP(), COMP(), NAME(),
LINE(), USED(), FREE(), JOIN(),
DUP(), ASK(), CMD(), TOK(),
OPEN(), READ(), HERE(), SET(),
MIN(), MAX(), IIF(), INFO(),
HEAD(), MARK()

f

Variable A to Z v
Local variable A@ to Z@ v
Primitive Any variable v, function f, pointer

sp or fp, or number n
p

Operator #, =, <, >, *, /, +, -, ^ or % o
Delimiters All operators, plus ’, ;, : , (,)

and ,
d

Term p o p t
Expression t o t e
Array element @ (e) v
Partition name @A to @Z pn
Partition element @pn (e) v
String Any combination of ASCII-7

characters
s

String pointer A pointer to a string, represented
by a large negative integer.

sp

Quoted string Any combination of ASCII-7
characters (except a double quote)
between double quotes

q

String argument A quoted string q or string pointer
sp

sa

File pointer A pointer to a file, represented by a
small positive integer.

fp

Keyword IF, PRINT, REM, GOTO, GOSUB,
FOR, NEXT, LET, INPUT,
RETURN, END, STOP, PUSH,
CONTINUE, BREAK, DO, LOOP,
UNTIL, WHILE, ELSE, ENDIF,
LOCAL, PARAM, PROC,
UNLOOP, WRITE, CLOSE, DIM

k

Statement Correct use of a keyword st
Compound statement st : st : st c
Line a c ln

CHAPTER 20. UBASIC MANUAL 446

LET v = e | sp | fp This statement assigns the value of the expression or string pointer
to the variable. The keyword LET is optional.

LET v := e | sa | fp This statement assigns the value of the expression or string ar-
gument to the variable. The keyword LET is optional.

GOTO e The GOTO statement permits changes in the sequence of pro-
gram execution. Normally programs are executed in the numer-
ical sequence of the program line numbers, but the next state-
ment to be executed after a GOTO has the line number derived
by the evaluation of the expression in the GOTO statement.
Note that this permits you to compute the line number of the
next statement on the basis of program parameters during pro-
gram execution. An error stop occurs if the evaluation of the
expression results in a number for which there is no line.

GOSUB e[(e[,e])] The GOSUB statement is like the GOTO statement, except that
uBasic remembers the line number of the GOSUB statement,
so that the next) occurrence of a RETURN statement will result
in execution proceeding from the statement following the GO-
SUB. Subroutines called by GOSUB statements may be nested
up to a predefined depth. The label or line number may option-
ally be followed by a list of comma separated expressions. The
results of these expressions are put on the stack.

RETURN(e) The RETURN statement transfers execution control to the line
following the most recent unRETURNed GOSUB, PROC or
FUNC(). If there is no matching GOSUB, PROC or FUNC()
an error stop occurs. A RETURN statement may be followed
by an optional expression. The result of this expression will be
put on the top of the stack.

LOCAL(e) LOCAL() allocates the number of local variables, specified in
e, in the current scope. Subsequent LOCAL() statements within
the current scope add additional local variables, but leave exist-
ing local variables intact. The scope changes by either issuing
a GOSUB or RETURN statement. Local variables are not ini-
tialized and naming starts with ’A’. Thus, an initial LOCAL(3)
defines local variables A@, B@ and C@. A subsequent LO-
CAL(1) within the same scope will create D@.

PARAM(e) PARAM() creates local variables, like LOCAL(), but also ini-
tializes them using the stack. The top of the stack is used to
initialize the last created local variable.

DIM pn(e) DIM() creates a new array partition of length e immediate after
the previously created partition and associates it with the parti-
tion name pn. If an array partition with name pn already exists,
it will remain unchanged. An error stop occurs if not enough
space is available in the array to create a new partition with
length e.

IF e THEN c The IF statement evaluates an expression. If the expression ren-
ders non-zero, the entire compound statement is executed; if
zero, the associated compound statement is skipped. The key-
word THEN is optional. If an IF statement does not contain a
compound statement, multiple line syntax is assumed, requiring

CHAPTER 20. UBASIC MANUAL 447

the use of the ENDIF keyword. A multiple line syntax block
may not contain a single line syntax statement.

ELSE Will execute all statements following it until the keyword EN-
DIF is encountered, if the expression of the corresponding IF
statement renders zero. Assumes multiple line syntax. The
ELSE clause is optional.

ENDIF Terminates an IF statement in multiple line syntax.

END The END statement must be the last executable statement in
a program. The END statement may be used to terminate a
program at any time, and there may be as many END statements
in a program as needed.

REM s The REM statement permits comments to be interspersed in the
program. Its execution has no effect on program operation, ex-
cept for the time taken. A simple quote (’) can be used as an
alias for ”: REM”.

PUSH e[, e] Evaluates one or more expressions, separated by commas, and
puts the results on the stack. The rightmost expression is top of
stack.

PRINT [q|e [,|;q|e]],|;|- This statement prints the values of the expressions and/or the
contents of the quoted strings. Expressions are evaluated and
printed as signed numbers; strings are printed as they occur in
the PRINT statement, except for the escape characters listed in
table 13.3. When the items are separated by commas the printed
values are justified in columns of 8 characters wide; when semi-
colons are used there is no separation between the printed items.
Thus, PRINT 1,2,3 prints as 1 2 3 and PRINT 1;2;3 prints as
123. Commas and semicolons, strings and expressions may be
mixed in one PRINT statement at will. If a PRINT statement
ends with a comma or semicolon, uBasic will not terminate the
output line so that several PRINT statements may print on the
same output line, or an output message may be printed on the
same line as an input request (see INPUT). When the PRINT
statement does not end with a comma or semicolon the line is
terminated.

WRITE fp, [q|e [,|;q|e]],|;|- Write the following PRINT expression to the output file rep-
resented by filepointer fp. See PRINT.

CLOSE fp Close the file represented by filepointer fp.

PROC e[(e[,e])] An alias for GOSUB.

INPUT q ,|; v The quoted string q is printed. If the quoted string is omitted, a
question mark is prompted. A new line is read in and the input
line is scanned for a number. The value thus derived is stored in
the variable.

FOR v = e TO e STEP e Sets up a control variable with an initial value (first expres-
sion), an optional limit (second expression), an optional incre-
ment (third expression) and a looping address referring to the

CHAPTER 20. UBASIC MANUAL 448

statement after the FOR statement. If STEP is omitted an in-
crement of 1 is assumed. If TO and STEP are omitted, an infi-
nite loop is assumed. If the initial value is greater than the limit,
execution will continue after the matching NEXT. See NEXT.

NEXT v Increments the control variable and then jumps to the matching
FOR statement. The variable is optional. Every FOR state-
ment must be matched by one single NEXT statement. Poor
programming style, such as the use of GOTO to exit loops or
conditional NEXT statements, may leave unused frames on the
FOR stack. See UNLOOP.

DO A control structure to repeat a set of statements an indefinite
number of times, usually WHILE or UNTIL a condition is sat-
isfied. See LOOP.

LOOP Every DO statement must be matched by one single LOOP
statement. Poor programming style, such as the use of GOTO to
exit loops or conditional LOOP statements, may leave unused
frames on the FOR stack. See UNLOOP.

CONTINUE Resumes iteration of the matching FOR loop, incrementing the
corresponding control variable where appropriate. If any loop
limits are reached, execution will continue after the matching
NEXT.

BREAK Terminates the matching FOR or DO loop unconditionally.

WHILE e Terminates the matching FOR or DO loop by calling BREAK
if the expression renders zero.

UNTIL e Terminates the matching FOR or DO loop by calling BREAK
if the expression renders non-zero.

UNLOOP Discard the FOR stack frame for the current nesting level. An
UNLOOP is required for each nesting level before the loop can
be exited by executing GOTO or RETURN.

20.3 Functions

USING q Prints the first number following it according to the quoted for-
mat string. The quoted string should contain one or more for-
mat specifiers as listed in table 9.1. May only be used within a
PRINT or a WRITE statement. Returns nothing.

TAB(e) Moves the text cursor to a specified print position. May only be
used within a PRINT or a WRITE statement. Does not retain
the previous print position when used in a subsequent WRITE
statement. Returns nothing.

CHR(e) Prints the character associated with code e. May only be used
within a PRINT or a WRITE statement. Returns nothing.

SHOW(sp) Prints the string associated with string pointer sp. May only be
used within a PRINT or a WRITE statement. Returns nothing.

CHAPTER 20. UBASIC MANUAL 449

RND(e) Returns a random number between 0 and the value of the ex-
pression. Thus, B=RND(3) assigns either 0, 1 or 2 to B.

ABS(e) Returns the absolute value of the expression.

SGN(e) Returns the signum of the expression. When e is less than, equal
to and greater than zero, SGN(e) returns -1, zero and one, re-
spectively.

NOT(e) Returns e binary complement.

AND(e,e) Returns the bitwise logical AND of e AND e.

OR(e,e) Returns the bitwise logical OR of e OR e.

XOR(e,e) Returns the bitwise logical XOR of e XOR e.

SHL(e,e) Returns the result of a logical bit shift on e. It shifts a number
of bits left, specified in the second e. A negative value performs
a right shift.

MIN(e,e) Returns the lesser of e and e.

MAX(e,e) Returns the greater of e and e.

ORD(q) Returns the value associated with a single character, specified
by q.

TOS() Returns the top of the stack.

POP() Takes the top from the stack and returns its value.

TIME() Returns the Unix epoch. A value of zero equals 00:00:00 GMT
on January 1st, 1970.

LEN(sa) Returns the length of the string represented by argument sa.

VAL(sa) Converts the string represented by argument sa to a number.
Returns INT_MIN on error.

STR(e) Converts the result of expression e to a string pointer.

CHAR(e) Converts the character associated with code e to a string pointer.

PEEK(sa,e) Returns the code of the character at position e of argument sa.
The result of e must be between zero and LEN(sa)-1.

CLIP(sa,e) Returns a pointer to a string containing all the characters of
sa minus the last e. The result of e must be between 0 and
LEN(sa).

CHOP(sa,e) Returns a pointer to a string containing all the characters of
sa minus the first e. The result of e must be between 0 and
LEN(sa).

COMP(sa,sa) Compares the strings in arguments sa and sa. Returns zero if
both strings are identical. Returns non-zero if the strings differ.
Like SGN(), the result can be used to determine which string is
smaller.

CHAPTER 20. UBASIC MANUAL 450

NAME(sa) Converts the label in string argument sa to a linenumber. The
leading underscore of the label must be omitted. Note that the
resulting linenumber may not be valid.

LINE(e) Returns a flag. If the linenumber in e is valid, it returns TRUE
otherwise FALSE.

USED() Returns the number of elements currently on the stack.

FREE(e) Returns the number of free string pointers. If e is non-zero it
performs garbage collection first. Note that garbage collection is
automatic and manual garbage collection is only required under
very rare circumstances.

JOIN(sa,sa[,sa]) Concatenate two or more string arguments. Returns a pointer to
the concatenated strings.

DUP(sa) Duplicate or retrieve argument sa. Returns a pointer to the du-
plicated or retrieved string.

ASK(sa) String argument sa is printed. A new line is read in and the
complete input line is copied to a string. Returns a pointer to
the string read.

INFO(sa) Returns the value associated with string argument sa (see table
20.2). If no value is associated with the string argument given,
it returns the value associated with ”nil”.

CMD(e) If e is out of range, it returns the number of arguments given on
the command line. If e is between 1 and CMD(0) it returns a
string pointer to the appropriate commandline argument.

FUNC(e[(e[,e])]) Calls the subroutine at e. The label or line number may op-
tionally be followed by a list of comma separated expressions.
The results of these expressions are put on the stack. Returns
the top of the stack provided by RETURN() after executing the
subroutine.

OPEN(sa, q) Opens the file, which name has been specified by string argu-
ment sa. The file access method is determined by quoted string
q, ”r” for reading and ”w” for writing. If the file was succesfully
opened it returns file pointer fp. If the file could not be opened,
a negative value is returned.

READ(fp) Attempt to fill the input buffer by reading the next line from the
input text-file, represented by file pointer fp, returning a true
flag if successful. Receipt of a line containing no characters is
considered to be successful. If there is no input available, return
false.

MARK(fp) Returns the current file position for the file identified by file
pointer fp.

HEAD(fp, e) Reposition the file identified by file pointer fp to e. If e is
positive, MARK() returns the value e. If e is negative, the
file is repositioned relative to the end of the file. If e equals
INFO("nil"), the file is repositioned to the end of the file. If the
operation is successful, FALSE is returned, otherwise TRUE.

CHAPTER 20. UBASIC MANUAL 451

TOK(e) Reads a string from the input buffer, using the character with
ASCII code e as a delimiter. Returns a string pointer to the
parsed token. If the input buffer was empty, the resulting string
has a zero length. TOK(0) will return the remainder of the input
buffer.

HERE() Returns the current cursor position in the input buffer. If the
cursor position hasn’t changed after a subsequent invocation of
TOK(), the input buffer is empty.

SET(v, e | sa) Returns the result of the expression e or string argument sa vari-
able v was assigned to.

IIF(e, e | sa, e | sa) If the first expression e is non-zero, the second expression or
string argument is returned. If the first expression e is zero, the
third expression or string argument is returned.

ARGUMENT UNIT DESCRIPTION

arraysize elements Size of the array
bytesize bits Number of bits in a byte
max-n constant Largest positive integer
nil constant Value of ’nil’ constant
stacksize elements Size of the stack
version constant Version number
wordsize bits Number of bits in an integer

Table 20.2: Arguments for INFO()

20.4 Error messages

An error message takes the form of:

A message, B:C

Where A is the error code, B is the line number where the error occurred and C the position
within that line (excluding the label itself). The latter points to the last character of the
token which caused the error.

CODE MESSAGE DESCRIPTION
0 OK Program terminated succesfully.
1 NEXT, CONTINUE or

BREAK without FOR
There was one more NEXT than there
were FORs. BREAK or CONTINUE
were used outside a FOR loop (FOR stack
underflow).

2 Variable not found The variable name did not consist of a sin-
gle, alphabetic character, local variable or
array - or partition - element. The lo-
cal variable didn’t exist within the current
scope.

CHAPTER 20. UBASIC MANUAL 452

CODE MESSAGE DESCRIPTION
3 Subscript wrong The subscript of the array - or partition - el-

ement was out of bounds. A partition with
this size could not be created.

4 Duplicate label A label was defined twice.
5 Undefined label A jump or call to an undefined label was

attempted.
6 Number too big The number didn’t fit in a signed integer.
7 RETURN without

GOSUB
There has been one more RETURN than
there were GOSUBs (GOSUB stack un-
derflow).

8 Too many nested FOR
loops

Too many FOR statements were embed-
ded in other FOR statements (FOR stack
overflow).

9 Too many nested GOSUBs Too many GOSUBs were called (GOSUB
stack overflow).

A Assignment expected A ’=’ character was expected. May be a
superfluous variable.

B Delimiter expected A closing parenthesis, comma or double
quote was expected.

C Nonsense in BASIC A statement or expression was not com-
posed correctly.

D Expression expected An expression was expected.
E String expected A quoted string was expected.
F Not a string The expression did not result in a valid

string pointer.
G Not a function The function is unknown or misspelled.
H ENDIF or NEXT expected A FOR or IF statement was not properly

terminated by NEXT or ENDIF.
I Too many strings Too many string pointers were assigned

and none can be freed.
J Too many labels Too many labels were defined, decrease the

number of labels.
K Stack empty Too many POP()s were issued (data stack

underflow)
L Stack full Too many PUSHs were issued (data stack

overflow)
M Too many locals Too many local variables were defined.
N Out of scope An attempt was made to enter an invalid

scope.
O Keyboard interrupt CRTL-D was pressed when waiting for

user input.
P Memory leak detected An internal condition caused a memory

leak.

20.4.1 System messages

System failure An internal condition caused the interpreter to stop, e.g. division
by zero, invalid file I/O, etc.

File loading error The source file could not be opened.

Out of memory The source file was bigger than available memory.

Chapter 21

TopITSM manual

21.1 Introduction

The TopITSM utility is a tool to analyze abstract information streams between ITSM repos-
itories. It consists of an abstract set of repositories (“nodes”) and the information exchanged
between them (“edges”). Company specific information can be added in order to:

• Identify technology gaps;

• Identify missing interfaces;

• Verify the consistency of the organizational structure;

• Map repositories to a specific ITSM methodology.

The following dimensions are supported:

• Class (predefined);

• Department;

• Tool;

• Process (ITSM framework).

21.1.1 Classes

Administration A repository which is (mostly) updated and maintained manually;

Tool A repository which is (mostly) updated and maintained automatically;

Cruncher A repository which is (mostly) derived from other, external sources or reposi-
tories. Its main purpose is to process and/or present this information.

453

CHAPTER 21. TOPITSM MANUAL 454

21.2 Requirements

PROGRAM STATUS URL

Graphviz Highly recommended http://www.graphviz.org/download/

PDF viewer Recommended https://mupdf.com/downloads/index.html

Spreadsheet (.xls) Optional https://www.libreoffice.org/download/download/

RTF editor Optional https://www.libreoffice.org/download/download/

Note a lot of PDF viewers and Office applications are known to work, including Acrobat
Reader and Microsoft Office. It’s essential they can be called from the command-line. Note
some applications may require to be included in the PATH to work. Consult the manual of
your particular Operating System if you’re unfamiliar with this procedure.

TopITSM can be operated without any of these additional programs with the following
limitations:

• TopITSM may generate the .dot file without Graphviz, however you won’t be able
to convert it to a .pdf file. A warning may be issued;

• You can generate .pdf files, but you won’t be able to show them on the fly without
a PDF viewer;

• You can generate .xls and .rtf files, but you won’t be able to show them on the
fly without an Office application.

21.3 Installing TopITSM

• Create a working directory on your local machine;

• Copy all .idx and .dbm files from the /apps/topitsm directory to your working
directory.

Finally, an .ini file has to be created. It has the following format:

[applications]
pdf=evince
rtf=lowriter
dot=dot
xls=localc

• The “applications” section is mandatory;

• Add the name of your PDF viewer executable after the “pdf=” entry;

• Add the name of your spreadsheet executable after the “xls=” entry;

• Add the name of your RTF executable after the “rtf=” entry;

• Add the name of your dot executable after the “dot=” entry.

Note you may add switches and/or paths if required. Save the file to your TopITSM direc-
tory as topitsm.ini. TopITSM will not function without an .ini file.

CHAPTER 21. TOPITSM MANUAL 455

21.4 Using TopITSM

Now navigate to your TopITSM directory and issue:

4th cxq topitsm.4th

If all is well, TopITSM will respond with:

Initializing..
Type ’help’ for help. OK

The “OK” prompt indicates that TopITSM is now ready for your commands.

21.4.1 Help

Entering “help” will show the online help page.

21.4.2 Calculator

TopITSM contains a full integer RPN desk-calculator, much like the Unix dc utility or
HP calculators. Only multiplication, division, addition and subtraction operations are sup-
ported. A ’dot’ will destructively display the Top of the Stack, e.g.:

23 45 + .

Will return:

68 OK

The following stack operators are available:

COMMAND DESCRIPTION

DROP Removes the “Top of Stack”

DUP Duplicates the “Top of Stack”

OVER Duplicates “Second of Stack” to “Top of Stack”

SWAP Switches “Top of Stack” with “Second of Stack”

E.g. this will calculate 162:

16 dup * .
256 OK

Note the calculator uses the native stack, so if you leave excessive amounts of superfluous
values on the stack this may serious impede other operations.

CHAPTER 21. TOPITSM MANUAL 456

21.4.3 TopITSM documents

TopITSM can generate three kinds of documents:

1. A Word document, containing the definitions of all repositories;

2. An Excel sheet, containing all attributes (including the definitions) of all the reposi-
tories;

3. Graphviz source-code, which can be rendered by Graphviz to a PDF file.

You can select the kind of document you want to generate by issuing the commands DOCUMENT,
SHEET or GRAPH. Issuing one of these commands will leave the document type on the
stack.

21.4.4 TopITSM views

The selected view determines how documents will be ordered or clustered. TopITSM will
startup in the “normal” view. The following views are available:

CLASS Will sort or cluster a document on the class of the repository, see section 21.1.1;

DEPARTMENT Will sort or cluster a document on the department, which is responsible
or accountable for the repository;

TOOL Will sort or cluster a document on the tool, which hosts the repository;

PROCESS Will sort or cluster a document on the ITSM process, which is supported by
this repository;

NORMAL Will sort on the name of the repository. No clustering will be applied.

None of these commands has any stack effects.

21.4.5 Generating documents

The actual generation of these documents will be achieved by issuing one of these com-
mands:

GENERATE Will generate the document type which is specified by the Top of the Stack;

SHOW Will generate the document type which is specified by the Top of the Stack and
show it by starting the appropriate viewer.

Note that commands can be concatenated. E.g. this will calculate the square of 23, set the
view to normal and generate a Word document:

23 dup * . normal document generate
529 OK

We advise you to cluster commands in a meaningful way, i.e. select a view, document and
generation method:

process graph show
OK

Documents are always stored in your TopITSM directory and will be silently overwritten.

CHAPTER 21. TOPITSM MANUAL 457

21.4.6 Error handling

Unknown commands are echoed and appended by a question mark. Internal errors will
generate an “Oops”, e.g:

blah
blah? OK
.
Oops OK

Note that any messages of supporting programs are not suppressed and will be shown
verbatim. Stack frames will be preserved as they were before the offending command was
issued.

21.5 Backup and restore

TopITSM has a built-in DBMS. The database consists of .idx and .dbm files in the
archive. If the database is incomplete or corrupt TopITSM will not successfully initialize
- and abort. You can dump the contents of the database and reload them. The database is
dumped in .csv format with a semi-colon as delimiter. This is usually the default .csv
format of Excel.

Note that although the spreadsheet produced by TopITSM shares some of the fields with
the nodes backup, it is not equivalent and hence not suited for import.

21.5.1 Backup

• In order to backup the nodes, issue: export" nodes.csv". Note that the space
after EXPORT" is significant. You may use any filename you see fit;

• In order to backup the edges, issue: save" edges.csv". Note that the space
after SAVE" is significant. You may use any filename you see fit.

Files are saved in the TopITSM directory unless you explicitly issue another path.

21.5.2 Restore

• In order to restore the nodes, issue: import" nodes.csv". Note that the space
after IMPORT" is significant. You may select any relevant file in any directory or
drive;

• In order to restore the edges, issue: load" edges.csv". Note that the space
after LOAD" is significant. You may select any relevant file in any directory or drive.

Note that you may seriously damage the database if you do not use a compliant file. If this
occurs, we advise you to restore the original database files.

CHAPTER 21. TOPITSM MANUAL 458

21.5.3 Changing node properties

• Export the nodes as described in section 21.5.1;

• Edit the file (e.g. using Notepad or Excel);

• Complete the following fields:

– Tooling, the tool, which hosts the repository;

– Department, the department, which is responsible or accountable for the repos-
itory. You can also use “roles” or “persons” if required;

– Process, the ITSM process, which is supported by this repository. The default
is ITILv31, but the ”Cube” methodology is also available. If this is the same
“best practice” used in your organization, you can leave it as it is.

• Do not change the following fields unless you know exactly what you’re doing:

– Name;

– Description;

– Label;

– Shape;

– Fillcolor;

– Abbreviation;

– Class.

• Save the .csv file and ensure you use the proper delimiter - a semi-colon;

• Import the resulting .csv file as described in section 21.5.2. The changes are ap-
plied immediately and normal operation can be resumed without a restart.

1ITIL® - "ITIL® is a (registered) Trade Mark of AXELOS Limited. All rights reserved."

Chapter 22

ANS Forth statement

Forth, like BASIC, has always suffered from a lack - or may be an abundance of standards.
Both languages had many dialects, which were highly incompatible. However, although
there was never a generally accepted BASIC standard, a simple BASIC program can be
easily converted to almost any existing implementation of the language.

The Forth community had a different approach to the problem. They kept changing the
core every few years, so even now it’s very hard to find a program which can run on any
Forth with little modification. Calling those very different versions a standard didn’t really
help.

So when the ANSI-standard committee began its work they had a few very tough nuts to
crack. In our view the ANS-Forth standard is big step forward, but not perfect. It has not
fully regained the simplicity we found in the Forth-79 and still has some serious flaws,
although most are an inheritance from Forth-83.

We do feel the need for a real Forth standard, so we tried to make 4tH as ANS-Forth (a.k.a.
Forth-94) compatible as possible without sacrificing the ease of use that we had in mind
when we designed it. About 95% of the CORE wordset is supported.

4tH was built according to the ANS-Forth standard, but with a tiny Forth-79 flavor. Full
compliance to the ANS-Forth standard was never an objective. According to the ANS-
Forth standard 4tH cannot be an "ANS-Forth System", since the standard does not cover
this kind of implementation.

There have been efforts to modernize ANS-Forth, the Forth-200x initiative, which has re-
sulted in Forth-2012. In our view a number of proposals have been accepted which eroded
the consistency of Forth as a language standard even further. We tend to handle Forth-2012
proposals pragmatically: if it doesn’t violate the basic principles we have stated, we will
comply and align.

If you want to know if a certain language construct in Forth-2012 is supported, please
consult the documentation.

22.1 ANS-Forth Label

According to the ANS-Forth standard, section 5.2.2, this system is capable of compiling:

ANS Forth Programs

Requiring:

459

CHAPTER 22. ANS FORTH STATEMENT 460

• the Block word set

• the Exception word set

• the Memory word set

• the String Extensions word set

Requiring selected words from:

• the Core Extensions word set

• the Block Extensions word set

• the Double number word set

• the Double number Extensions word set

• the Facility Extensions word set

• the File-Access word set

• the File-Access Extensions word set

• the Floating-Point word set

• the Floating-Point Extensions word set

• the Programming-Tools word set

• the Programming-Tools Extensions word set

• the String word set

• the XCHAR wordset

• the XCHAR Extensions word set.

End of label. Although the ANS-Forth standard (section 4.1) requires documentation to be
presented in a prescribed format, 4tH does not comply for the simple reason that due to its
architecture it is not considered to be a "ANS Forth System" (sections 3.3, 3.4, 5.1).

Note that due to this special architecture some words are missing from the CORE wordset
or behave slightly different, so some "ANS Forth Programs" with the requirements men-
tioned above may not compile or compile only with modifications.

22.2 Unsupported CORE words

These words are not available in 4tH. Some CORE words are only available in source
(ANS-Forth, section 3). You can find them in the 4tH glossary. The behaviour of some 4tH
words may differ from the ANS-Forth definition.

ALLOT
FIND
LITERAL
POSTPONE
STATE
[
]

CHAPTER 22. ANS FORTH STATEMENT 461

22.3 Supported ANS Forth word sets

The words in the following sections are supported by 4tH; external words are in italics,
preprocessor words are underlined. Please note that due to 4tHs special architecture some
words may behave slightly different, so some "ANS Forth Programs" using these words
may need modifications in order to run properly. More words are available in source and
can be loaded when required.

22.3.1 Core Extensions word set

#TIB
.(
.R
0<>
0>
2>R
2R>
2R@
:NONAME
<>
?DO
ACTION-OF
AGAIN
CASE
ENDCASE
ENDOF
ERASE
EXPECT
FALSE
HEX
HOLDS
OF
NIP
PAD
PARSE
PARSE-NAME
PICK
QUERY
REFILL
RESTORE-INPUT
ROLL
S\"

CHAPTER 22. ANS FORTH STATEMENT 462

SAVE-INPUT
SOURCE-ID
TIB
TO
TRUE
TUCK
U.R
U>
VALUE
WITHIN
\

22.3.2 Block Extensions word set

EMPTY-BUFFERS
LIST
SCR

22.3.3 Double number word set

2CONSTANT
2VARIABLE
D+
D-
D.
D.R
D0<
D0=
D2*
D2/
D<
D=
D>S
DABS
DMAX
DMIN
DNEGATE
M+
M*/

CHAPTER 22. ANS FORTH STATEMENT 463

22.3.4 Double number Extensions word set

2ROT
DU<

22.3.5 Facility Extensions word set

+FIELD
BEGIN-STRUCTURE
CFIELD:
END-STRUCTURE
FIELD:
KEY?
MS
TIME&DATE

22.3.6 File-Access word set

(
BIN
CLOSE-FILE
CREATE-FILE
DELETE-FILE
FILE-POSITION
FILE-SIZE
OPEN-FILE
R/O
R/W
READ-FILE
READ-LINE
REPOSITION-FILE
S"
SOURCE-ID
W/O
WRITE-FILE
WRITE-LINE

22.3.7 File-Access Extensions word set

FILE-STATUS
FLUSH-FILE
REFILL
RENAME-FILE

CHAPTER 22. ANS FORTH STATEMENT 464

22.3.8 Floating-Point word set

>FLOAT
D>F
F!
F*
F+
F-
F0<
F0=
F<
F>D
F@
FALIGN
FALIGNED
FCONSTANT
FDEPTH
FDROP
FDUP
FLOAT+
FLOATS
FLOOR
FMAX
FMIN
FNEGATE
FOVER
FROT
FROUND
FSWAP
FVARIABLE
REPRESENT

22.3.9 Floating-Point Extensions word set

F**
F.
F>S
FABS
FACOS
FACOSH
FALOG
FASIN

CHAPTER 22. ANS FORTH STATEMENT 465

FASINH
FATAN
FATAN2
FATANH
FCOS
FCOSH
FE.
FEXP
FEXPM1
FFIELD:
FLN
FLNP1
FLOG
FS.
FSIN
FSINCOS
FSINH
FSQRT
FTAN
FTANH
F~
PRECISION
S>F
SET-PRECISION

22.3.10 Programming-Tools word set

.S
?
DUMP

22.3.11 Programming-Tools Extensions word set

N>R
NR>
SYNONYM
[ELSE]
[IF]
[THEN]

CHAPTER 22. ANS FORTH STATEMENT 466

22.3.12 String word set

-TRAILING
/STRING
BLANK
CMOVE
CMOVE>
COMPARE
SEARCH

22.3.13 XCHAR word set

X-SIZE
XC-SIZE
XC@+
XC!+
XC!+?
XCHAR+
XEMIT

22.3.14 XCHAR Extensions word set

-TRAILING-GARBAGE
X-WIDTH
XHOLD
XC-WIDTH
+X/STRING
X\STRING-
XCHAR-

Chapter 23

Porting guide

23.1 Introduction

4tH is ANS-Forth compatible. That means that 4tH and ANS-Forth share a common word-
set, so you can write programs that run on both systems. This guide will show you how you
can write portable programs or convert eligible ANS-Forth programs to 4tH with as little
effort as possible.

23.2 General guidelines

We have already stated that 4tH and ANS-Forth have much in common, but it is unlikely
that you can write a non-trivial program that runs unmodified on both platforms without
resorting to conditional compilation, which allows you to "hide" implementation specific
code. The word ’4TH#’ not only holds 4tH’s version number, but is also an effective way
to differentiate between 4tH and other compilers:

[DEFINED] 4TH# [IF]
variable span
: expect 1- accept span ! ;
[THEN]

Of course, the opposite works too:

[UNDEFINED] 4TH# [IF]
s" easy.4th" included
[THEN]

If you have an interactive program you might want to disable the 4tH autostart:

[DEFINED] 4TH# [IF] start-program [THEN]

Otherwise ’REFILL’ will try to get its input from the file instead of the keyboard.

467

CHAPTER 23. PORTING GUIDE 468

23.3 Differences between 4tH and ANS-Forth

Like any software, 4tH is a compromise. We have to address the requirements of both
newbies and power users, which means we have to make choices1 concerning ANS-Forth
compliancy. There are several reasons why 4tH is not completely ANS-Forth compliant:

1. 4tH uses a different architecture which makes it impossible to be ANS-Forth com-
pliant, so some constructions are simply not feasible;

2. Some constructions in ANS-Forth are considered to be illogical, unelegant, bloated,
not intuitive, error prone, inefficient or otherwise not acceptable;

3. 4tH maintains a close relationship with C, so it is more logical and efficient to use
C-conventions instead of ANS-Forth conventions.

Where possible, we try to minimize the consequences for our users by hiding the differ-
ences behind abstractions or other transparent solutions. But sometimes, we simply can’t.
In this section we will show you which differences there are between 4tH and ANS-Forth
and how you can either avoid or resolve them.

23.3.1 Strings

In 4tH, strings are stored in an ASCIIZ format. ANS-Forth uses counted strings. In
4tH there is no such thing as a countbyte, since it uses a terminator. If you limit the
use of ’COUNT’ only to string variables and constants, and exclusively use ’PLACE’ or
’+PLACE’ you should be fine, since the address/count convention of ANS-Forth is fully
supported. Should you resort to low level operations which require a terminator, you might
have to define an equivalent word in ANS-Forth to make your program portable.

’S"’ does have interpretation semantics, but the string stored at the address ’S"’ returns
might have a very short lifespan, depending on your ANS-Forth compiler. 4tH has a trans-
parent, circular buffer that protects the string from overwriting, but when you port your
program you might not be that lucky. Note that ANS-Forth does not require compilers to
provide these facilities.

23.3.2 Double numbers

4tH uses only signed 32 bit cells, but some words in ANS-Forth, like ’<#’, ’#>’, ’FILE-
SIZE’, ’FILE-POSITION’ and ’REPOSITION-FILE’ require the use of double numbers.
You can easily fix this by adding ’S>D’, which converts a number to a double number. Its
counterpart, ’D>S’, is available too. In 4tH these words have no effect.

23.3.3 Booleans

Another nice topic for a flame war is the value of truth. In ANS-Forth the ’TRUE’ has
the value "-1", which means all bits are set. Which is very clever. You can ’XOR’, ’OR’,
’AND’ and ’INVERT’ it with any other value and it will behave as logical value. But "the
all bits set" flag has its drawbacks too. Let’s see what the ANS-Forth standard says about
flags:

1You may or may not agree with the choices we made, but you can rest assured we have given them consider-
able thought.

CHAPTER 23. PORTING GUIDE 469

"A FALSE flag is a single-cell datum with all bits unset, and a TRUE flag
is a single-cell datum with all bits set. While Forth words which test flags
accept any non-null bit pattern as true, there exists the concept of the well-
formed flag. If an operation whose result is to be used as a flag may produce
any bit-mask other than TRUE or FALSE, the recommended discipline is to
convert the result to a well-formed flag by means of the Forth word 0<> so that
the result of any subsequent logical operations on the flag will be predictable.
In addition to the words which move, fetch and store single-cell items, the
following words are valid for operations on one or more flag data residing on
the data stack: AND OR XOR INVERT"

We highly recommend the discipline of converting a non-zero value to a well-formed flag.
But we don’t understand why ’INVERT’ is a valid way to manipulate a flag. We’ll try to
explain you why.

Forth traditionally has no specific logical operators. Instead, binary operators were used.
This put ’INVERT’ (or ’NOT’ as it was called in Forth-79) in a difficult position. ’IN-
VERT’ing any non-zero value will result in a non-zero value, except when all bits are set.

That is why ’0=’ was introduced, a full-fledged logical operator. So why use ’INVERT’
when you want to perform a logical operation? Another quote:

"Since a "char" can store small positive numbers and since the character
data type is a sub-range of the unsigned integer data type, C! must store the n
least-significant bits of a cell (8 <= n <= bits/cell). Given the enumeration of
allowed number representations and their known encodings, "TRUE xx C! xx
C@" must leave a stack item with some number of bits set, which will thus
will be accepted as non-zero by IF."

This is another problem of using "all bits set" as a true flag: you store a well formed flag in
an address unit that should easily be able to handle it and you’ll never get it back. A flag
is a boolean and can have two values: either true or false. The smallest unit that can hold a
boolean is a bit. ANS-Forth programmers are denied that privilege.

But why are some Forth programmers so keen on their “all bits set” flag? Well, you can do
neat things with it.

: >CHAR DUP 9 > 7 AND + ASCII 0 + ;

This will convert a digit to its ASCII representation. True, it is a clever piece of program-
ming, but in our opinion it is bad style. Why? Because you are using a flag as a bitmask,
which is a completely different datatype. Although there is no such thing as “data typing”
in Forth, this way of programming makes it difficult to understand and maintain a program,
which the ANS-Forth standard acknowledges:

"The discipline of circumscribing meaning which a program may assign
to various combinations of bit patterns is sometimes called data typing. Many
computer languages impose explicit data typing and have compilers that pre-
vent ill-defined operations. Forth rarely explicitly imposes data-type restric-
tions. Still, data types implicitly do exist, and discipline is required, particu-
larly if portability of programs is a goal. In Forth, it is incumbent upon the
programmer (rather than the compiler) to determine that data are accurately
typed."

CHAPTER 23. PORTING GUIDE 470

But there is an even more compelling reason why 4tH returns ”1” as the ’TRUE’ value.
”-1” is only valid in a 2-complement context. What it actually means is ”all bits set”.
Mathematically it means nothing, contrary to ”1”, which is return value associated with the
Iverson bracket2.

That is why 4tH uses "1" as a true flag. Usually, it won’t make much difference. Except
when you use ’INVERT’ to invert a flag or intend to make obfuscated programs. If you use
’0=’ instead, you won’t run in any trouble, not even when you port your program to ANS-
Forth. Clarity may introduce a little overhead, but in this age of multi-gigaherz machines,
who is counting? E.g. you could program “>CHAR” like this:

\ convert a flag to a bit mask
: >MASK 0 SWAP IF INVERT THEN ; (f -- mask)

\ convert a digit to ASCII
: >CHAR DUP 9 > >MASK 7 AND + ASCII 0 + ; (n -- c)

If you still want to change the true flag, you can by simply changing a #define in
cmds_4th.h:

#define F_T ~(0L)

But we doubt whether it will be a great benefit to your programming style.

23.3.4 CREATE..DOES>

In both 4tH and ANS-Forth it is possible to change the runtime behavior of variables. E.g.
in ANS-Forth, ’CONSTANT’ is usually defined as:

: CONSTANT CREATE , DOES> @ ;
10 CONSTANT MY_CONST
MY_CONST . CR

Of course there is a predefined word in 4tH that does this, but if you wanted to mimic this
behavior you would have to define it like this:

CREATE MY_CONST 10 , DOES> @C ; \ Definition of CONSTANT
MY_CONST . CR \ Works the same way

The point is that the ANS-Forth "CREATE DOES>" construct cannot be ported to 4tH,
although all words seem to be supported. A rule of the thumb is that defining words cannot
be used to define new defining words, like in ANS-Forth. Most errors will be trapped by
4tH’s compiler, though3.

Just remember that a ’:REDO’ definition can easily be ported to ANS-Forth. If you want
to write a portable program, ’:REDO’ is the way to do it.

2https://en.wikipedia.org/wiki/Iverson_bracket
3Note that the use of ’DOES>’ in 4tH is called ”interpretation” in ANS-Forth, which is explicitly forbidden.

Some Forth compilers (like gForth) have defined the interpretation semantics of ’DOES>’ and are consequently
largely compatible with 4tH’s ’DOES>’.

CHAPTER 23. PORTING GUIDE 471

23.3.5 HERE

Be careful with ’HERE’. ’HERE’ looks and acts a lot like the ANS-Forth ’HERE’, but
since the architecture is different it serves quite another function. When ’HERE’ is used
for address arithmetic with definitions or arrays of constants, it works right out of the box.
If not, it usually doesn’t.

23.3.6 2>R and 2R>

These words are included in order to let you put two items on the Return Stack at once,
fetch them using ’2R@’ and return them on the Data Stack safely. However, ANS-Forth
assumes a certain order of these two items, so they can be fetched separately by ’R@’
and ’R>’. 4tH does not support this specific order. A safe way to emulate the ANS-Forth
behavior is to swap the values before you put them on the stack and swap them again when
they are retrieved, e.g.:

2R> DO
I over - 3 .R
over I = IF ." *" ELSE SPACE THEN
I 2 + 7 MOD 0= IF CR THEN

LOOP 2DROP ;

Becomes:

R> R> SWAP DO
I over - 3 .R
over I = IF ." *" ELSE SPACE THEN
I 2 + 7 MOD 0= IF CR THEN

LOOP 2DROP ;

Note that the latter is ANS-Forth compliant.

23.3.7 Interpretation and compilation mode

There are several words, which act differently in interpretation and compilation mode.
In Forth-79, some of them were "state-smart", which means they adjusted their behavior
depending on the mode the system was in. In Forth-83 and subsequently ANS-Forth, they
became "dumb" words and counterparts were designed for each mode. Other words lacked
interpretation semantics all together.

4tH has got neither a true interpretation mode nor a state. But if you want to port 4tH code
to ANS-Forth, this has to be dealt with. In 4tH this porting issue is resolved by several
aliases. Some words have an alias since they do not have interpretation semantics in the
ANS-Forth standard, but are often used outside colon-definitions in 4tH. This will enable
you to make a word that mimics these interpretation semantics.

This table lists all "dumb" words with their counterparts. "Interpretation" means it has to
be used outside colon-definitions. "Compilation" means it has to be used inside colon-
definitions.

INTERPRETATION COMPILATION

’ [’]
.(."
CHAR [CHAR]

Table 23.1: Dumb words

CHAPTER 23. PORTING GUIDE 472

Finally, in ANS-Forth all flowcontrol words (like IF, THEN, BEGIN, WHILE, DO, LOOP)
may only be used inside colon-definitions.

23.3.8 BEGIN..WHILE..REPEAT

4tH allows you to use multiple WHILE’s in a BEGIN..WHILE..REPEAT construct. ANS-
Forth allows that too, but requires an extra ’THEN’ for each additional ’WHILE’. In short,
this is the 4tH version:

0 begin dup 10 < while 1+ dup 5 mod while 1+ repeat

And this is the ANS-Forth version:

0 begin dup 10 < while 1+ dup 5 mod while 1+ repeat then

To make this work, we have to resort to conditional compilation:

0 begin dup 10 < while 1+ dup 5 mod while 1+ repeat
[undefined] 4th# [if] then [then]

It’s not beautiful, but it works. The same applies when ’UNTIL’ is used instead of ’RE-
PEAT’. BEGIN..WHILE..AGAIN constructs are not supported by ANS-Forth, so be care-
ful when considering ’AGAIN’ too much of an alias of ’REPEAT’. Also bear in mind that
DONE..DONE clauses can be defined in ANS-Forth, but still require conditional compila-
tion if you resort to multiple ’WHILE’s.

23.3.9 DO..LOOP

It is well-known in the Forth community that DO..LOOP is flawed. There have been several
attempts to correct this, but they never got it right. On many occasions it even got worse.
But why is DO..LOOP flawed?

’DO’ puts the limit and the index on the Return Stack, but it doesn’t decide whether the
loop is actually entered. So, every loop is executed at least once. After each iteration
’LOOP’ decides whether it iterates once more.

In our opinion it would have been better when ’DO’ had made that decision (like any other
language), but we can still live with that. The real trouble came with DO..+LOOP.

’+LOOP’ is a logical extension. Every single language allows you to change the step.
But contrary to what one might expect, ’+LOOP’ doesn’t terminate when the loop limit is
reached or exceeded, but when the loop index crosses "the boundary between the loop limit
minus one and the loop limit".

What does that mean? Well, consider these three loops and try to predict what will be
printed. Note: every loop is executed at least once:

(1) 5 0 do i . 1 +loop cr
(2) 5 0 do i . -1 +loop cr
(3) -5 0 do i . -1 +loop cr

You would probably expect to see:

CHAPTER 23. PORTING GUIDE 473

0 1 2 3 4
0
0 -1 -2 -3 -4

And that is what you get when you use 4tH. But this is not what you will get with ANS-
Forth:

0 1 2 3 4
0 -1 -2 -3 .. 6 5
0 -1 -2 -3 -4 -5

The behaviour of the second loop is caused, because ’+LOOP’ doesn’t take into account
that it is counting down. So it iterates until the loop index reaches the loop limit by wrap-
around arithmetic.

The behaviour of the third loop is caused by the ANS-Forth definition: the loop index must
"cross the boundary between the loop limit minus one and the loop limit". In this case, the
boundary is between -5 and -6.

DO..+LOOP didn’t behave like this since the beginning of Forth: it was introduced in
Forth-83. We preserved the Forth-79 definition as closely as possible, because it is much
more intuitive.

Some claim that ?DO..+LOOP will save it. As a matter of fact, it does. But only when the
loop index and the loop limit are the same:

0 0 ?do i . loop

In that case the loop won’t be entered. But it still won’t save us for loops like this:

5 0 do i . -1 +loop cr

The authors of gForth claim that a whole host of new DO..LOOP words are the solution.
We don’t think so:

100 -100 do i . i 1+ 2/ negate +loop cr

The bottomline is: you can’t let two words make the same decision. 4tHs ’+LOOP’ checks
which direction it is going (up or down) and evaluates the loop arguments accordingly. We
feel it is the best we can do for you.

Is there no way we can circumvent these problems? Yes, there is. It may not be too elegant
or even fast, but it solves the problem. We just emulate C’s for():

12 >r begin \ set up loop index
r@ 10 < \ check loop limit

while
r@ . \ access loop index
r> 2+ >r \ increment loop index

repeat \ next iteration
r> drop cr \ drop loop index

Which is "equivalent" to:

10 12 ?do i . 2 +loop cr

Except that it works as expected. And as an extra bonus it is portable to ANS-Forth. Are
these differences between the ANS-Forth and 4tH implementation of DO..LOOP really
that important? Not in practice. Nobody really wants a loop that depends on wrap-around
arithmetic, and you’ll hardly ever see a ’+LOOP’ with a negative subscript. Everybody
wants their programs to be understandable and maintainable, so the DO..LOOPs you’ll
encounter will usually be well-behaved.

CHAPTER 23. PORTING GUIDE 474

23.3.10 I/O

It is trivial to define the ANS-Forth FILE wordset in 4tH, but almost impossible to do the
opposite. So if you want to make a portable program use the ANS-Forth FILE wordset
by including the ansfile.4th library file. The reason why 4tH uses a different I/O
subsystem is twofold:

1. 4tH’s I/O subsystem is far more powerful and elegant. Instead of defining a whole
new wordset, 4tH reuses most of the available I/O words, like ’TYPE’, ’EMIT’,
’ACCEPT’ and ’REFILL’4, which is very Forth-like.

2. 4tH’s I/O was initially quite primitive and this was the only way to extend the system
without breaking too much code.

This example is taken from gForth, but runs identically on both 4tH and gForth:

[defined] 4th# [if] \ if this is 4tH, include
include lib/ansfile.4th \ ANS Forth FILE wordset
include lib/compare.4th \ and the word COMPARE

[else] \ if this is not 4tH,
s" lib/easy.4th" included \ include 4tH compatibility

[then]

0 Value fd-in \ input file handle
0 Value fd-out \ output file handle
: open-input (addr u --) r/o open-file throw to fd-in ;
: open-output (addr u --) w/o create-file throw to fd-out ;

s" foo.in" open-input \ open input file
s" foo.out" open-output \ open output file

: show 2dup type cr ; \ show the line

256 Constant max-line \ size of basic buffer
max-line 2 + string line-buffer \ extend by two bytes:

\ ANS Forth requirement!
: scan-file (addr u --)
begin \ read a line
line-buffer max-line fd-in read-line throw

while \ is it identical?
>r 2dup line-buffer r> show compare dup

while \ if so, exit loop
drop \ clean up

repeat \ ANS requires an extra
[undefined] 4th# [if] then [then] \ then after each WHILE
drop 2drop

;
\ now scan the file

s" The text I search is here" scan-file

fd-in close-file throw \ close input file
fd-out close-file throw \ close output file

Since section 11.3.12 of the ANS-Forth standard clearly states that an I/O exception shall
not cause a ’THROW’, we have to mention that ’FILE-SIZE’, ’FILE-STATUS’ and ’REPOSITION-
FILE’ are not entirely ANS-Forth compliant.

4As a matter of fact, a new set of words have been proposed that allow redirection of these words. 4tH already
has that functionality.

CHAPTER 23. PORTING GUIDE 475

23.4 Easy 4tH

4tH programs won’t run on ANS-Forth all by itself. You’ll usually need several definitions
to make them work. In collaboration with Wil Baden we have developed an interface
between ANS-Forth and 4tH. It consists of two files, easy.4th and ezneeds.4th.
These library files enable you to run most 4tH programs under ANS-Forth. In order to
succesfully compile and run a 4tH program under ANS-Forth it must have been written
with ANS-Forth in mind. The rest is simple: just add a couple of lines at the beginning of
your 4tH program:

[UNDEFINED] 4TH# [IF]
s" easy4th.4th" included

[THEN]

That’s all! Most of the 4tH words are now known to your very own ANS-Forth compiler.
If your compiler already supports ’INCLUDE’, you might be tempted to use:

[UNDEFINED] 4TH# [IF]
include easy4th.4th

[THEN]

This will actually work but since 4tH recognizes and acts on the ’INCLUDE’ directive, it
will load the interface. A slight memory and CPU penalty is the result.

23.4.1 Enabling the String Space

Optionally, you can define a ’CONSTANT’ before including Easy 4tH, which enables sup-
port for arrays of string constants:

<size> constant /STRING-SPACE

The parameter "SIZE" represents the size of the String Segment. When you decompile a
4tH program, it will show you exactly how much space is allocated to the String Segment.
In order to port a single 4tH program, this is all the information you need!

4tH message : No errors at word 1105
Object size : 1106 words
String size : 2539 chars
Variables : 19 cells
Strings : 262 chars
Reliable : Yes

In this case the "/STRING-SPACE" must be at least 2539 bytes. So, give or take a few
changes, let’s say 3072 bytes. We advise you to allocate a little more memory than is
strictly necessary. You can also use Easy 4tH to make ANS-Forth understand 4tH. Just
type:

16384 constant /STRING-SPACE
s" easy4th.4th" included

Now you can play around with ANS-Forth using the 4tH language. If you use a lot of
string constants you might run out of space, but your ANS-Forth compiler will give you a
message when that happens.

Note that - depending on the ANS-Forth compiler you’re using - Easy 4tH may redefine
some words, although it will try to minimize these redefinitions as much as possible.

CHAPTER 23. PORTING GUIDE 476

23.4.2 The structure of Easy 4tH

Easy 4tH may look like a large program, but it isn’t. It basically tries to figure out what your
compiler supports and what is still left to define. It always prefers the native definition to its
own. E.g. if your compiler already supports ’PLACE’, Easy 4tH will leave that definition
intact and assume it has been defined correctly.

• Easy 4tH will start by defining several defining words like ’STRING’, ’STRUCT’
and ’ARRAY’. Since there is no standard definition for these words, it will overwrite
any existing definition.

• After that, Easy 4tH will query the environment and define a ’CONSTANT’ when
successful. When not, a warning is issued.

• Several 4tH specific compiling words are defined.

• Easy 4tH checks for the presence of several ANS-Forth and COMUS words. If they
are not there, they are defined. Warnings are issued where applicable.

• In the next stage the PARSING, CONVERSION and TIME subsystems of 4tH are de-
fined. Warnings are issued where applicable.

• All 4tH words that cannot be defined in ANS-Forth are marked as unsupported.
When used, an error message is issued and compilation aborted.

• ezneeds.4th is loaded and ’[NEEDS’ and ’INCLUDE’ are defined if needed.

Note that your own compiler may issue error messages or warnings too, e.g. about redefi-
nitions.

23.5 The preprocessor

The preprocessor5 (PP4tH) is also a very useful tool to make ANS-Forth compliant pro-
grams, especially when double numbers or floating point numbers are involved. The pre-
processor supports a lot of ANS-Forth words which are not supported by 4tH like ”SYN-
ONYM”, ”ACTION-OF”, etc. It allows you to enter double numbers or floating point
constants with ease, provided you included the proper preprocessor library, e.g.:

f% 234.34e-2

Yes, ”F%” isn’t ANS-Forth either, but a very small library enables your ANS-Forth com-
piler to compile these numbers without any additional overhead, e.g.:

[DEFINED] 4TH# [IF]
include 4pp/lib/float.4pp
[ELSE]
s" lib/ezpp4th.4th" included
[THEN]

f% 234.34e-2 f. cr

For your convenience, those words are ”state smart”, so you can use them both inside and
outside definitions as this sample session shows you:

5See section 19.

CHAPTER 23. PORTING GUIDE 477

Gforth 0.6.2, Copyright (C) 1995-2003 Free Software Foundation, Inc.
Gforth comes with ABSOLUTELY NO WARRANTY; for details type ‘license’
Type ‘bye’ to exit
[DEFINED] 4TH# [IF] ok
include 4pp/lib/float.4pp ok
[ELSE] ok
s" lib/ezpp4th.4th" included ok
[THEN] ok
f% 234.34e-2 f. cr 2.3434
ok
: test f% 234.34e-2 f. cr ; ok
test 2.3434
ok
see test
: test
2.343400E0 f. cr ; ok

Of course, you can write double number or floating point programs without the preproces-
sor, but they will contain a lot of ”noise” words and are neither easy to read nor to maintain.
Using the preprocessor really simplifies your life in these circumstances.

23.6 Converting ANS-Forth programs to 4tH

4tH is a subset of ANS-Forth, so it might be difficult to find a program that will run on 4tH
without at least some rewriting. And there is no guarantee that it will work, because most
ANS-Forth programs weren’t written with 4tH in mind. We’ll list the major pitfalls:

• Programs requiring unsupported words or most words from the FACILITY, FA-
CILITY EXT, SEARCH and SEARCH EXT wordsets are generally impossible to
port.

• Definitions manipulating the dictionary or the stacks. But 4tH has no dictionary and
does not allow direct access to the stacks.

• Definitions that switch between interpretation and compilation mode. 4tH either
interprets or compiles; you cannot switch between the two on the fly. User-defined
’IMMEDIATE’ words generally don’t work.

• Definitions using ’CREATE’ and ’DOES>’ can be difficult to port. The only way
is to do the ’CREATE’ part manually and wrap the ’DOES>’ part into a ’:REDO’
definition. Another way to port this kind of code is to resort to the 4tH preprocessor.

• Definitions requiring the LOCAL and LOCAL EXT wordsets are difficult to port.
You’ll need to rewrite them extensively by using the locals.4th library file.

• Definitions using ANS-Forth enhanced flow control require some rewriting and con-
ditional compilation.

• Programs that assume they may store cells and characters in the same dataspace
require some rewriting. Use the ncoding.4th library file.

Chapter 24

Errors guide

24.1 How to use this manual

This manual contains all the error messages 4tH can possibly issue. It is organized like
this:

MESSAGE: This features the message from errs_4th.c, the error-code returned in
ErrNo and the C-mnemonic.

WORDS: Words that can trigger this error.

EXAMPLE: This features a 4tH one-liner that will trigger the error.

CAUSE: This lists all possible causes of the error.

HINTS: This will give you some directions on how to fix the error.

24.2 Interpreter (exec_4th)

When exiting this function ErrLine will contain the address of the word in the Code Seg-
ment where the error occured.

MESSAGE: No errors (#0 M4NOERRS)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE: A program was succesfully executed.

HINTS: Make an error ;)

MESSAGE: Out of memory (#1 M4NOMEM)

WORDS: Not applicable

EXAMPLE: Not applicable

478

CHAPTER 24. ERRORS GUIDE 479

CAUSE: There was not enough free memory to allocate the Character Segment or
the Integer Segment.

HINTS:

1. Reduce the amount of memory your program allocates and recompile.

2. Add more physical memory or increase swap space.

3. Recompile 4tH under another operating system (flat memory space) or another mem-
ory model.

MESSAGE: Bad object (#2 M4BADOBJ)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE: An unknown token was encountered in the H-code.

HINTS: Contact us, this should never happen.

MESSAGE: Stack overflow (#3 M4SOVFLW)

WORDS: Any word that pushes items on the Data Stack.

EXAMPLE: STACK 1+ 0 DO I LOOP

CAUSE: The Data Stack collided with the Return Stack.

HINTS:

1. Don’t push too many elements on the Data Stack.

2. Merge colon-definitions. Reduce the number of nested DO..LOOPs.

3. If you are using recursion, try if you can achieve the same result with a loop.

4. Make sure that your stacks are still balanced when returning from a colon-definition.
Don’t leave any unused data on the Data Stack. Flow-control words can have unex-
pected stack effects!

MESSAGE: Stack empty (#4 M4SEMPTY)

WORDS: Any word that pops items from the Data Stack.

EXAMPLE: 0 SWAP

CAUSE: The Data Stack did not contain the required number of items to complete
the operation.

HINTS:

1. Make sure that your stack is still balanced when returning from a colon-definition.

CHAPTER 24. ERRORS GUIDE 480

2. Make sure that the required number of items are on the stack when performing the
operation.

3. If the problem occurs within an interpreter driven application, make sure that you
check the number of elements are on the stack before allowing the operation.

MESSAGE: Return stack overflow (#5 M4ROVFLW)

WORDS: Any word that pushes items on the Return Stack; calling a user defined
word

EXAMPLE: : DUMMY DUMMY ; DUMMY

CAUSE: The Return Stack collided with the Data Stack.

HINTS:

1. Don’t push too many elements on the Data Stack.

2. Merge colon-definitions. Reduce the number of nested DO..LOOPs.

3. If you are using recursion, try if you can achieve the same result with a loop.

4. Make sure that your stacks are still balanced when returning from a colon-definition.
Don’t leave any unused data on the Data Stack. Flow-control words can have unex-
pected stack effects!

MESSAGE: Return stack empty (#6 M4REMPTY)

WORDS: Any word that pops items from the Return Stack; returning from a user
defined word

EXAMPLE: R>

CAUSE: The Return Stack did not contain the required number of items to complete
the operation.

HINTS:

1. Balance R> and >R inside your colon-definition. Flow-control words can have un-
expected stack effects!

2. Be careful when using R> and >R inside a DO..LOOP.

MESSAGE: Bad string (#7 M4BADSTR)

WORDS: ARGS OFFSET

EXAMPLE: -1 ARGS

CAUSE: There was either no argument on the command line or no binary string
constant with this index.

CHAPTER 24. ERRORS GUIDE 481

HINTS:

1. Use a valid index for ARGS.

2. Use a valid index for the offset.

MESSAGE: Bad variable (#8 M4BADVAR)

WORDS: ! @ +! ? SMOVE

EXAMPLE: 6 ARRAY NAME NAME -5 TH @

CAUSE: You tried to access a variable or array element, but its address in the Integer
Segment is invalid.

HINTS:

1. Be sure that all stack-items are in the right order when address calculations, fetches
or stores are made.

2. Use a valid array index or address.

3. Don’t transfer any cells to or from a invalid array index or address.

4. Don’t try to overwrite read-only system variables.

MESSAGE: Bad address (#9 M4BADADR)

WORDS: All string handling words

EXAMPLE: 10 STRING BUFFER TIB CHAR- BUFFER /TIB CMOVE

CAUSE: You tried to access a character, but its address in the Character Segment is
invalid.

HINTS:

1. Be sure that all stack-items are in the right order when address calculations, fetches
or stores are made.

2. Make sure that the number of elements is correct when you use words like CMOVE,
COUNT, FILL.

3. Terminate strings.

4. You exceeded the maximum length of PAD when you defined a string constant using
S".

5. You exceeded the maximum length of PAD when you fetched a commandline argu-
ment using ARGS.

MESSAGE: Divide by zero (#10 M4DIVBY0)

CHAPTER 24. ERRORS GUIDE 482

WORDS: / MOD /MOD */ */MOD

EXAMPLE: 1 0 / . CR

CAUSE: You tried to divide by zero.

HINTS: Check the divisor before you use it.

MESSAGE: Bad token (#11 M4BADTOK)

WORDS: @C EXECUTE EXIT CATCH

EXAMPLE: : DUMMY ; ’ DUMMY 5 - DUP @C SWAP EXECUTE

CAUSE: You tried to jump to a token or access the argument of a token, but its
address in the Code Segment is invalid.

HINTS:

1. Be sure that all stack-items are in the right order when address calculations, fetches
or jumps are made.

2. Make sure the address you’re using is within the Code Segment.

3. Be sure that the name after ’ is that of a colon-definition.

MESSAGE: I/O error (#14 M4IOERR)

WORDS: All words performing I/O

EXAMPLE: OUTPUT FILE 5 . CR

CAUSE:

1. You tried to read from or write to an unopened file.

2. You tried to USE, SEEK or TELL an unused stream.

3. There was an I/O error when you tried to read from or write to a file.

4. There was an error when you tried to close an open file with CLOSE.

5. There was an error when 4tH tried to close a file after the program terminated.

HINTS:

1. Open a file before you try to read or write to it. Check the value OPEN returns.

2. Make sure the values on the stack are correct when you perform I/O.

3. Make sure the values on the stack are correct when addressing streams.

4. Make sure that there is enough space left on the device you try to write to. Make sure
it functions correctly.

CHAPTER 24. ERRORS GUIDE 483

MESSAGE: Assertion failed (#15 M4ASSERT)

WORDS:)

EXAMPLE: [ASSERT] ASSERT(FALSE)

CAUSE: The top of the stack was FALSE when) executed.

HINTS: Correct the condition) acted upon.

MESSAGE: Unhandled exception (#16 M4THROW)

WORDS: THROW

EXAMPLE: 1 THROW

CAUSE: A THROW was encountered without a previous call from CATCH. The top
of stack contained an error number outside the range of system errors.

HINTS: Make sure that a THROW can only be reached from a previous CATCH.

MESSAGE: Bad radix (#17 M4BADRDX)

WORDS: .R . # NUMBER

EXAMPLE: 1 BASE ! 5 . CR

CAUSE: The 4tH variable BASE contained a value outside the 2 to 36 range during
a conversion.

HINTS: Take care that BASE stays within the 2 to 36 range.

MESSAGE: Bad stream (#18 M4BADDEV)

WORDS: USE SEEK TELL CLOSE

EXAMPLE: -1 CLOSE

CAUSE:

1. The filehandle you tried to use was out of range.

2. You may not SEEK, TELL or CLOSE the streams STDIN and STDOUT.

3. You may not SEEK or TELL a pipe.

HINTS:

1. Make sure you use a proper stream when using USE, SEEK, TELL or CLOSE.

2. Check stack manipulations or use a variable or value.

MESSAGE: Bad pointer (#20 M4BADPTR)

CHAPTER 24. ERRORS GUIDE 484

WORDS: CATCH THROW PAUSE

EXAMPLE: : ME R> R> R> DROP -5 >R >R >R 1 THROW ; ’ ME CATCH

CAUSE: The stack pointer THROW or PAUSE tried to use was invalid.

HINTS:

1. Be careful when you manipulate the Return Stack.

2. Contact us, this should never happen.

24.3 Compiler (comp_4th)

When exiting this function ErrLine will contain the address in the Code Segment where
the next word would have been compiled if the error hadn’t occured. This is logical, since
4tH always reports where the error occured. And all previous words have been succesfully
compiled.

MESSAGE: No errors (#0 M4NOERRS)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE: A source was succesfully compiled.

HINTS: Make an error ;)

MESSAGE: Out of memory (#1 M4NOMEM)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE: There was not enough free memory to allocate the H-code header, the Code
Segment, the symbol-table or the control-stack.

HINTS:

1. Compact your source by removing all comment and whitespace or use the prepro-
cessor1.

2. Add more physical memory or increase swap space.

3. Recompile 4tH under another compiler (flat memory space) or another memory
model.

MESSAGE: Bad object (#2 M4BADOBJ)

1See chapter 19.

CHAPTER 24. ERRORS GUIDE 485

WORDS: All defining words

EXAMPLE: CR CR 20 STRING

CAUSE:

1. A word could not be compiled due to lack of space in the Code Segment.

2. A definition could not be compiled due to lack of space in the symbol-table.

HINTS:

1. Trying to make words private by using conditional compilation may trigger this error.
Remove the offending HIDE.

2. In certain circumstances, incomplete data declarations may trigger this error. Com-
plete the declaration.

3. Contact us, this should never happen with normal source-code.

MESSAGE: Bad string (#7 M4BADSTR)

WORDS: SCONSTANT

EXAMPLE: 6 SCONSTANT BAD

CAUSE: The expression, which was compiled right before the word which caused
the error, was not a string constant created by S" or S|.

HINTS: Use a string constant created by S" or S|.

MESSAGE: Bad variable (#8 M4BADVAR)

WORDS: EQUATES

EXAMPLE: 6 EQUATES BAD

CAUSE: The expression, which was compiled right before the word which caused
the error, did not compile to a variable.

HINTS: Use a expression, which compiles to a variable.

MESSAGE: Divide by zero (#10 M4DIVBY0)

WORDS: / /CONSTANT

EXAMPLE: 0 /CONSTANT WRONG 1 WRONG

CAUSE:

1. You tried to divide by zero in a literal expression.

2. You tried to apply a zero /CONSTANT.

CHAPTER 24. ERRORS GUIDE 486

HINTS:

1. Check the divisor before you use it.

2. Don’t define a zero /CONSTANT.

MESSAGE: Wrong type (#12 M4NOTYPE)

WORDS: TO IS ALIAS DEFER FILE VALUE :REDO DOES> TAG

EXAMPLE: 0 CONSTANT WRONG 5 TO WRONG

CAUSE:

1. The name after TO isn’t a VALUE.

2. The name after IS isn’t a DEFER.

3. The name after DEFER or ALIAS is already defined and not a DEFER.

4. The name after VALUE or FILE is already defined and not a VALUE.

5. You tried to create a :REDO or DOES> definition for an unsupported datatype.

6. The name after TAG isn’t an OFFSET.

HINTS:

1. Use TO only in combination with a VALUE.

2. Use IS only in combination with a DEFER.

3. Use a different name.

4. Use a different name.

5. Use a proper datatype when creating a :REDO or DOES> definition.

6. Use TAG only in combination with an OFFSET.

MESSAGE: Undefined name (#13 M4NONAME)

WORDS: <name> ’ [’] RECURSE AKA HIDE

EXAMPLE: ’ HELLO ("hello" is not defined)

CAUSE:

1. The name which caused the error is not present in the symbol-table.

2. The name is not defined at all.

3. It is not a valid number in the current radix.

4. Underflow or overflow occured during number conversion.

CHAPTER 24. ERRORS GUIDE 487

5. RECURSE is used outside a colon definition.

6. The name you used is longer than WIDTH characters.

HINTS:

1. Note that most of the words above only work with names defined inside the program
and not with built-in names2.

2. Usually a typo; correct spelling.

3. Set the appropriate radix by using [BINARY], [OCTAL], [DECIMAL] or [HEX].

4. Don’t use numbers less or equal to (ERROR) or greater than MAX-N.

5. Remove the offending RECURSE.

6. Use a shorter name.

MESSAGE: I/O error (#14 M4IOERR)

WORDS: [NEEDS INCLUDE

EXAMPLE: [NEEDS nosuchfile.4th]

CAUSE:

1. The source file you tried to read doesn’t exist.

2. There was an error reading the source file.

3. There was an error when 4tH tried to close the source file.

HINTS:

1. Make sure the file you try to open exists and is in the path. Change your working
directory if necessary. Check the DIR4TH environment variable.

2. Make sure the device functions correctly.

MESSAGE: Bad literal (#19 M4BADLIT)

WORDS: All words requiring a literal expression

EXAMPLE: 10 DUP ARRAY NAME

CAUSE: The expression, which was compiled right before the word which caused
the error, did not compile to a literal.

HINTS: Use a literal expression.

2AKA does offer limited capability in this field.

CHAPTER 24. ERRORS GUIDE 488

MESSAGE: Nesting too deep (#21 M4NONEST)

WORDS: All flow control words and colon definitions

EXAMPLE: 10 0 DO 10 0 DO <more flow-control structures> LOOP LOOP

CAUSE: The control-stack, that holds all references to addresses of flow-control
structures in the Code Segment, overflowed.

HINTS: Make separate colon-definitions of the flow-control structures that caused
the error.

MESSAGE: No program (#22 M4NOPROG)

WORDS: All words that do not compile any tokens

EXAMPLE: 10 ARRAY NAME (Won’t compile)

CAUSE:

1. The source didn’t contain any compilable words.

2. The source was corrupt.

3. A runaway comment, invalid declaration or misconstructed conditional compilation
clause.

4. Using reserved words as names.

HINTS:

1. Make a program that actually does something.

2. Make sure that the source actually contains 4tH source-code.

3. Terminate your comments, declarations and conditional compilations properly.

4. Don’t use any reserved words as names.

MESSAGE: Incomplete declaration (#23 M4NODECL)

WORDS: All defining words and compiler directives

EXAMPLE: 10 CONSTANT CONSTANT NAME

CAUSE:

1. Syntax errors; usually a missing name or a literal expression.

2. Incomplete compiler directives or expressions, like a leading comma.

3. An assertion, beginning with ASSERT(, is missing a right parenthesis. Assertions
are not enabled at that point.

4. An [IF] is not balanced by a [THEN].

CHAPTER 24. ERRORS GUIDE 489

HINTS:

1. Use an appropriate expression or name.

2. Complete compiler directives and expressions.

3. Add a right parenthesis at the end of the expression.

4. Add a [THEN] for each [IF] statement.

MESSAGE: Unmatched conditional (#24 M4NOJUMP)

WORDS: All flow control words and colon definitions

EXAMPLE: : WRONG IF DROP BEGIN FALSE LOOP ;

CAUSE: The flow-control word that caused the error didn’t match with the previous
flow-control word (BEGIN after IF) or was missing.

HINTS: Use the appropriate flow-control word to terminate a flow-control structure.

MESSAGE: Unterminated string (#25 M4NOSTR)

WORDS: ." \ (.(," S" S| ,| ABORT" THROW" @GOTO [NEEDS INCLUDE
[CHAR] CHAR [DEFINED] [UNDEFINED]

EXAMPLE: ." Hello world

CAUSE:

1. A required delimiter is missing at the end of a string.

2. An error occured at the very end of the source.

HINTS:

1. Add the required delimiter at the end of the string.

2. Complete the source properly. Contact us if this isn’t the cause.

MESSAGE: Null string (#26 M4NULSTR)

WORDS: See error #25, except [CHAR] CHAR [DEFINED] [UNDEFINED]

EXAMPLE: ." "

CAUSE:

1. The string between the word and its delimiter did not contain any characters.

2. There was more than one whitespace character between INCLUDE and the string
following it.

CHAPTER 24. ERRORS GUIDE 490

HINTS:

1. Use a string that contains at least one single character.

2. Delete all superfluous whitespace characters between INCLUDE and the string fol-
lowing it. If the error persists, try using [NEEDS instead.

MESSAGE: Duplicate name (#27 M4DUPNAM)

WORDS: All defining words

EXAMPLE: : TH CELLS + ;

CAUSE: The name you used for a definition is already in use by either 4tH, the
libraries you included or your own program.

HINTS: Use a different name.

MESSAGE: Name too long (#28 M4BADNAM)

WORDS: All defining words

EXAMPLE: VARIABLE JUSTTOOLONGANAMEFORCOMFORT

CAUSE: The name you used for a definition is too long.

HINTS: Use a shorter name.

MESSAGE: Compilation aborted (#29 M4CABORT)

WORDS: [ABORT]

EXAMPLE: [ABORT]

CAUSE: An [ABORT] directive was encountered during compilation.

HINTS: The original programmer must have had a reason to abort compilation in
this particular circumstance. See the program in question for additional
information.

24.4 Loader (load_4th)

Since the loader works with complete segments, the words don’t have to do much with
fixing an error. Therefore, it reports that nothing has been loaded (word 0) or everything
has been loaded (the last word).

MESSAGE: No errors (#0 M4NOERRS)

WORDS: Not applicable

EXAMPLE: Not applicable

CHAPTER 24. ERRORS GUIDE 491

CAUSE: A program was succesfully loaded.

HINTS: Keep up the good work. ;)

MESSAGE: Out of memory (#1 M4NOMEM)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE: There was not enough free memory to allocate the header, the Code Seg-
ment or the String Segment.

HINTS:

1. Reduce the amount of memory your program allocates and recompile.

2. Add more physical memory or increase swap space.

3. Recompile 4tH under another compiler (flat memory space) or another memory
model.

MESSAGE: Bad object (#2 M4BADOBJ)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE:

1. You tried to load a file, that was not an HX-file.

2. You tried to load an HX-file from a previous version of 4tH.

3. You tried to load an HX-file for a different application.

4. You tried to load an HX-file for a different architecture.

5. You tried to load an inconsistent HX-file.

HINTS:

1. Use a proper HX-file.

2. Recompile the source, using the current 4tH compiler.

3. If the source is compatible, you might recompile the source, using your own 4tH
compiler.

4. If the source is compatible, you might recompile the source, using your own 4tH
compiler.

5. Recompile the source, using your own 4tH compiler.

CHAPTER 24. ERRORS GUIDE 492

MESSAGE: I/O error (#14 M4IOERR)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE:

1. The file could not be opened.

2. There was an I/O error while the file was read.

3. The file could not be closed.

HINTS:

1. Use a valid filename.

2. Make sure the device functions correctly.

3. Make sure the device functions correctly.

24.5 Saver (save_4th)

Since the saver works with complete segments, the words don’t have to do much with fixing
an error. Therefore, it reports that nothing has been saved (word 0) or everything has been
saved (the last word).

MESSAGE: No errors (#0 M4NOERRS)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE: A program was succesfully saved.

HINTS: Keep up the good work. ;)

MESSAGE: I/O error (#14 M4IOERR)

WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE:

1. The file could not be opened.

2. There was an I/O error while the file was written.

3. The file could not be closed.

HINTS:

1. Make sure you got enough inodes or directory-entries left on the device you want to
write to. Use a valid filename.

2. Make sure that there is enough space left on the device you try to write to. Make sure
it functions correctly.

3. Make sure the device functions correctly.

Chapter 25

4tH library

25.1 4tH library files

This list contains all the 4tH library files with short descriptions of their functionality. If a
file only contains ANS-Forth words, these words are listed.

3dup3rot.4th Standard stack operators for manipulating three stack items.

4dup4rot.4th Standard stack operators for manipulating four stack items.

acker.4th An implementation of the Ackermann function.

acptword.4th Read a word from a file, regardless of linebreaks.

adler32.4th A port of the FFL ”Adler 32 checksum” module.

allsheet.4th Write CSV, XLS, XML, KSP, FODS or HTML spreadsheet files.

ansblock.4th BLK, UPDATE, CLEAR, EMPTY-BUFFERS, SAVE-BUFFERS, FLUSH,
BLOCK, BUFFER, LIST

anscore.4th 2!, 2@, 2OVER, 2ROT

ansdbl.4th U<, U>, D+, D2*, DNEGATE, D-, D<, DABS, D2/, DU<, D=, D0<,
D0=, DMAX, DMIN

ansfacil.4th TIME&DATE, MS

ansfile.4th FILE-SIZE, READ-LINE, OPEN-FILE, CLOSE-FILE, FILE-POSITION,
REPOSITION-FILE, READ-FILE, WRITE-FILE, FLUSH-FILE, WRITE-
LINE, FILE-STATUS, CREATE-FILE, BIN, R/O, W/O, R/W

ansfloat.4th FLOAT, F2/, F2*, PRECISION, SET-PRECISION, FCLEAR, FDEPTH,
FDUP, FDROP, FNEGATE, D>F, F>D, FLOAT+, FLOATS, F@, F!,
FSIGN?, F0=, F0<, FABS, FALIGN, FALIGNED, FSWAP, FPICK, FNIP,
FROT, F+, F-, F<, F=, FLOOR, FROUND, FMIN, FMAX, F*, F/, F~,
FSQRT

ansfpio.4th F., R., FS., FE., >FLOAT, F.S

ansmem.4th ALLOCATED, FREE, PARAGRAPH, ALLOCATE, RESIZE

ansquote.4th An implementation of an S\" like word.

493

CHAPTER 25. 4TH LIBRARY 494

ansren.4th RENAME-FILE

anstools.4th .S

arcfour.4th An implementation of the RC4 encryption algorithm.

argopen.4th Allows you to easily open files, whose names were listed on the com-
mand line.

ascii7.4th Filtering strings to the ASCII-7 subset.

asciixml.4th Conversion of XML character entities.

asinacos.4th FATAN, FASIN, FACOS

back.4th The TOOLBELT implemention of the backward string tokenizing words
-SCAN and BACK.

backtrak.4th An implementation of the backtracking words by M.L. Gassanenko.

banners.4th An implementation of the Unix ’banner’ functionality.

base64.4th Base64 encoding and decoding words.

baseexec.4th Execute a word using a specified radix.

basename.4th Several POSIX basename(), dirname() like words.

binomial.4th An implementation of binomial coefficients and Catalan numbers.

binquick.4th An implementation of the binary quick sort algorithm.

binssort.4th An implementation of the binary insertion sort algorithm.

bintree.4th An implementation of a "binary tree", containing keys and values.

bintrkv.4th An implementation of an associative array, using a binary tree.

bitarray.4th An implementation of bit arrays.

bitfield.4th An implementation of bitfields.

bitosort.4th An implementation of the bitonic sort algorithm.

bitrevse.4th A library to reverse bitpatterns.

bits.4th Several words to manipulate individual bits.

bitset.4th Several BSD ffs(), fls() like words.

boxes.4th Places ASCII boxes around strings.

breakq.4th Tests for character equality in a string.

brow.4th A library for searching lookup tables using the ”binary search” algo-
rithm.

bsearch.4th An implementation of a binary search.

bstable.4th Binary search table library with low level functions.

bub2sort.4th An implementation of the bubble sort algorithm.

bublsort.4th An implementation of the bubble sort algorithm.

CHAPTER 25. 4TH LIBRARY 495

buffer.4th An implementation of user-defined ring buffers.

cansignd.4th Prints numbers in canonical signed digit (CSD) representation.

capitals.4th Converts strings to CaMeL case.

cards.4th A library which allows you to easily implement card games.

ccitt2.4th Conversion between CCITT-2 and ASCII.

charat.4th Some strchr() like words.

chars.4th All printable ASCII-7 characters turned into constants.

chi2.4th Several ”Chi square” related floating point functions.

chkisbn.4th Check the validity of a ISBN, EAN or GTIN number.

chkisin.4th Check the validity of an International Securities Identification Number
(ISIN) number.

chmatch.4th A library with regular expression like words.

choose.4th Some words that return a random number within a user-defined range.

cir2sort.4th An implementation of the enhanced circle sort algorithm.

circsort.4th An implementation of the circle sort algorithm.

coc2sort.4th An implementation of the optimized cocktail sort algorithm.

cocksort.4th An implementation of the cocktail sort algorithm.

com2sort.4th An implementation of the ”comb sort with a different ending” algorithm.

combsort.4th An implementation of the ”comb sort with a different ending” algorithm.

commadot.4th Add thousands separator to a signed integer.

compare.4th COMPARE

compose.4th Compose a sequence of execution tokens and execute it.

comus.4th Some well known COMUS words.

concat.4th Concatenate multiple character strings.

constant.4th Several constants.

convert.4th A template which allows you to easily create simple conversion pro-
grams.

country.4th A table with ISO 3166-1 country codes.

countstr.4th Support for ANS-Forth counted strings.

cp437htm.4th Converts CP437 characters to HTML character entities.

crc.4th An implementation of the CRC16 encoding.

crc32.4th An implementation of the CRC32 encoding.

create-w.4th A library for outputting tables in 4tH format.

csimpson.4th A library for numerical integration using ”Simpsons composite rule”.

CHAPTER 25. 4TH LIBRARY 496

cstring.4th Extracting characters from the beginning or the end of a string.

csv-w.4th Write CSV files.

csvfrom.4th Converts a string with embedded double (CSV escaped) quotes.

csvtype.4th Outputs a string as a CSV field, taking embedded quotes and delimiters
into consideration.

ctos.4th Converts a character to a string.

cut.4th Remove a leading or trailing substring from a string.

cyclsort.4th An implementation of the cycle sort algorithm.

damm.4th An implementation of the Damm checksum algorithm.

darray.4th An library to create dynamic arrays (sequential access).

date2xls.4th Converts Julian dates to/from the Excel-1900 format.

dblbin.4th Double word binary operations.

dbldiv.4th Double word divisions.

dbldot.4th D.R, D., U.R, U.

dblsharp.4th Double word equivalents of the <#, #>, SIGN, # and #S words.

dblshift.4th Fast double word shifting words, both logical and arithmetic.

dbm.4th A tiny database management system.

dbmidx.4th An index extension to the tiny DBM.

dbms.4th Binds indexes to DBM tables and extends CRUD operations.

dda.4th An implementation of a digital differential analyzer, part of Portable
Bitmap graphics suite.

ddigroot.4th Calculates OEIS A010888 sequence and additive persistence of double
cell numbers.

ddotf.4th Prints double numbers as floating point numbers.

debug.4th An implementation of a breakpoint debugger.

digiroot.4th Calculates OEIS A010888 sequence and additive persistence of single
cell numbers.

digit.4th Converts a numeric character to its numeric equivalent.

discord.4th A library for calculating the Discordian or Erisian calendar.

dostime.4th The date and time format used in DOS interrupt 21, AX=5700h.

dpower.4th Fast integer exponentation of a double word.

drange.4th A double word equivalent of WITHIN.

dsqrt.4th Double word square root.

dst.4th Determines ”daylight saving time” in the US and EU.

CHAPTER 25. 4TH LIBRARY 497

dstrarrt.4th A library to manage an entire array of dynamic strings.

dstring.4th An implementation of dynamic strings.

dstringt.4th A tiny implementation of dynamic strings.

dump.4th DUMP

dumpbase.4th DUMP

easter.4th Calculates the date of Easter for a given year.

easy.4th An ANS-Forth library to port 4tH programs to ANS-Forth.

ellipint.4th An implementation of the Complete Elliptic Integrals functions.

embed.4th Converts a string with embedded ASCII codes.

emits.4th Emits a single character several times.

enclose.4th Retrieve the string between the delimiters.

enter.4th Enter a number from the keyboard.

environ.4th ENVIRONMENT?

erf.4th A high accuracy implementation of the erf() function.

erf1.4th An alternative implementation of the erf() function.

escape.4th Converts a string with embedded escape codes.

etl.4th Extract, transform and load library for CSV files.

evaluate.4th SAVE-INPUT, RESTORE-INPUT, EVALUATE

exceptn.4th A minimal implementation of the Sourceforge library extention to the
ANS EXCEPTION wordset.

expout.4th Simple floating point exponential output library.

ezneeds.4th Part of the ANS-Forth library to port 4tH programs to ANS-Forth (easy.4th).

ezpp4th.4th An ANS-Forth library defining the preprocessor prefixes D% and F%.

factor.4th An implementation of several Factor1 combinators.

falog.4th F**, FALOG

fast-fac.4th Fast factorial function.

fast-fib.4th Fast Fibonacci function.

fatan2.4th FATAN2

fatanh.4th FASINH, FACOSH, FATANH

fbessel.4th An implementation of Regular spherical Bessel functions.

fbeta.4th An implementation of the Complete Beta function.

fbetacdf.4th An implementation of the Incomplete Beta function.

1”Factor” is a stack-oriented programming language created by Slava Pestov.

CHAPTER 25. 4TH LIBRARY 498

fbetapdf.4th An implementation of the Beta Probability density function.

fcartes.4th Cartesian to polar coordinates conversion.

fcbrt.4th An implementation of the floating point cube root function.

fdeg2rad.4th Degrees to radians conversion (and vice versa).

felip.4th An implementation of the Complete Elliptic Integral function.

fenter.4th Enter a floating point number from the keyboard.

fequals.4th An implementation of several extended floating point comparison words.

ferf.4th An implementation of the erf() function.

fexp.4th FEXP

fexpflni.4th FEXP, FLN

fexpint.4th An implementation of the Real Exponential Integral function.

fexpm1.4th FEXPM1

fexpt.4th FEXP

ffl-frc.4th An implementation of words for using fractions.

ffsfls.4th Fast BSD ffs() and fls() functions.

fgamma.4th An implementation of the high accuracy Spouge gamma function.

fhaversn.4th An implementation of the haversine formula.

figures.4th Prints out numbers in full English words.

files.4th Several words for querying and manipulating files.

filestat.4th An interface to the Unix stat command.

filter.4th Filters a character out of a string.

filtring.4th Filters several characters out of a string.

fixeddot.4th Prints out numbers in fixed point notation.

fixedfld.4th A library for reading fixed length field files.

flnflog.4th FLN, FLOG

flnflogb.4th FLN, FLOG

flnp1.4th FLNP1

flocals.4th A library for implementing local floating point variables.

flogist.4th An implementation of the logistic function and its first derivative.

floordiv.4th A library for floored integer division.

floormod.4th Another library for floored integer division.

forwdiff.4th An implementation of the forward difference function.

fp0.4th Floating point configuration 0.

CHAPTER 25. 4TH LIBRARY 499

fp1.4th Floating point configuration 1.

fp2.4th Floating point configuration 2.

fp3.4th Floating point configuration 3.

fp4.4th Floating point configuration 4.

fp5.4th Floating point configuration 5.

fpconst.4th Several floating point constants for ANS floating point library.

fpdot.4th Floating point pictured numeric output operators.

fpin.4th >FLOAT

fpolar.4th Polar to Cartesian coordinates conversion.

fpout.4th FS., FS.R, (FS.), FE., FE.R, (FE.), F., F.R, (F.), G., G.R, (G.)

fpow.4th Fast exponentiation of ANS floating point numbers with integer expo-
nents.

fpow10.4th Fast initialization of floating point base 10 constants with integer expo-
nents.

fq.4th An implementation of the ”Q” function.

fracout.4th Simple fixed-point output with optional thousands separator.

fraction.4th An implementation of fractional arithmatic words.

fractext.4th Mathematical functions for the fractional arithmatic words library.

frexp.4th Several frexp(), ldexp() like words.

fsincost.4th FSIN, FCOS, FSINCOS, FTAN

fsinfcos.4th FSIN, FCOS, FSINCOS, FTAN

fsinnpi.4th Calculate sine near a multiple of π .

fsl-util.4th The utilities for the Forth Scientific Library.

fsm.4th Finite States Machines, Julian Noble style.

fsprintf.4th An almost complete implementation of sprintf() with floating point
support.

fstack.4th A library for creating extra floating point stacks.

fsum.4th A stack-based implementation of the high accuracy Kahan–Babuška sum-
mation algorithm.

fsum_arr.4th An array-based implementation of the high accuracy Kahan–Babuška
summation algorithm.

ftrunc.4th FTRUNC, FCEIL

fvector.4th Several ANS floating point vector functions.

fwt.4th A port of the FFL ”fixed width types” module.

fwtlite.4th A more compact implementation of the FFL ”fixed width types” module.

CHAPTER 25. 4TH LIBRARY 500

fxexpln.4th Fixed point exponential and natural logarithm functions.

fzeta.4th An implementation of the Riemann zeta function.

gamma.4th An implementation of the gamma, loggamma and reciprocal gamma
functions.

gammaln.4th An implementation of the Lanczos loggamma function.

gammapq.4th An implementation of the Incomplete Gamma function.

garccirc.4th Draws an arc of a circle, part of Portable Bitmap graphics suite.

gaspect.4th Adjust the aspect ratio of a PPM/PGM image.

gauslege.4th A library for numerical integration using a 10-point Gauss–Legendre
quadrature.

gauss.4th An implementation of the Gaussian (normal) probablity functions.

gbanner.4th Graphic character output, part of Portable Bitmap graphics suite.

gbezier.4th Draw Bezier curves, part of the Portable Bitmap graphics suite.

gbk2utf8.4th Converts GBK/2 encoded strings to UTF8.

gburst.4th Draw lines emanating from a central focal point, part of Portable Bitmap
graphics suite.

gc.4th A simple ”mark-and-release” garbage collector.

gcdlcd.4th An implementation of the least and greatest common denominator func-
tions.

gcircle.4th Fast circle drawing algorithm, part of the Portable Bitmap graphics suite.

gcol2gry.4th Color to grayscale conversion, part of the Portable Bitmap graphics suite.

gellipse.4th Ellipse drawing algorithm, part of the Portable Bitmap graphics suite.

getdate.4th A library for detecting and converting several date formats.

getenv.4th A getenv() like word.

getopts.4th Some getopt() like words.

gfill.4th Floodfill an enclosed area, part of the Portable Bitmap graphics suite.

gflood.4th Fast and memory efficient floodfill algorithm, part of the Portable Bitmap
graphics suite.

glines.4th Several line drawing routines, part of Portable Bitmap graphics suite.

glocal.4th Turn global variables temporarily into local variables.

gmkiss.4th A high performance random number generator.

gmskiss.4th An even higher performance random number generator.

gno2sort.4th An implementation of an optimized gnome sort algorithm.

gnomsort.4th An implementation of the gnome sort algorithm.

CHAPTER 25. 4TH LIBRARY 501

gpic2txt.4th Bitmap to ASCII image conversion, part of the Portable Bitmap graphics
suite.

gplot3d.4th A library for plotting and generating 3D graphics images.

graphics.4th An implementation of Portable Bitmap graphics functions.

graycode.4th Binary reflected Gray code implementation.

gshrink.4th Halves the dimensions of an image, part of the Portable Bitmap graphics
suite.

gtkipc.4th An alternative interface to GTK-server.

gtkserv.4th An interface to GTK-server.

gturtle.4th An implementation of Turtle graphics, part of the Portable Bitmap graph-
ics suite.

hamming.4th An implementation of the Hamming (7,4) linear error-correcting codes.

harshad.4th Identifies Harshad numbers.

hash.4th An implementation of several well known hash functions.

hashbuck.4th An implementation of hash tables with buckets.

hashkey.4th An implementation of hash tables with binary search.

hashtabl.4th An implementation of hash tables without buckets.

hea2sort.4th An implementation of the heap sort algorithm.

headings.4th An implementation of ”boxing the compass”.

heapsort.4th An implementation of the heap sort algorithm.

hiorder.4th Several high order words.

hms2secs.4th Decodes time strings.

holds.4th HOLDS

horner.4th An implementation for evaluation of a polynomial by the Horner method.

html.4th Create simple HTML 4.01 Transitional formatted files.

html-w.4th Writes tables to HTML 4.01 Transitional formatted files.

huntjoin.4th The TOOLBELT implemention of the string replacing words HUNT and
JOIN.

i18n.4th A library for internationalization support (i18n).

i8859htm.4th Converts ISO-8859 characters to HTML character entities.

icompare.4th COMPARE, ICOMPARE

identify.4th Converts a string to an identifier.

idsystem.4th Differentiating between Microsoft and POSIX OSes.

info.4th A library for making Unix man like information systems.

CHAPTER 25. 4TH LIBRARY 502

inifile.4th A library for interpreting INI files.

inimanag.4th A library for creating and modifying INI files.

ins2sort.4th An implementation of the insert sort algorithm.

instsort.4th An implementation of the insert sort algorithm.

intelhex.4th Create Intel HEX format files.

interprt.4th A library for making simple Forth-like interpreters.

intpfile.4th A library for interpreting Forth-like scripts from file.

intrsort.4th An implementation of the intro sort algorithm.

isdate.4th Checks whether a date is valid.

ismpsort.4th An implementation of the improves simple sort algorithm.

isprime.4th Checks whether a number is a prime number.

isqrt.4th A fast integer square root function.

istype.4th Several isalnum(), isalpha(), isascii(), isdigit() like
words.

json-w.4th Write JSON ECMA-404 files.

kaprekar.4th Checks whether a number is a Kaprekar number.

key.4th KEY, KEY?

knuthrng.4th An implementation of Donald Knuth’s recommended ”Subtractive RNG”.

koksp-w.4th Write KOffice KSpread XML 1.x files.

kpre.4th An enhanced implementation of the Regular Expressions engine by Brian
W. Kernighan and Rob Pike.

latex.4th Create simple LATEX files.

leading.4th Strips leading spaces from a string.

leaf.4th An implementation of key/value pairs using a linked list.

legacy.4th An implementation of the legacy word CONVERT.

levensht.4th A fast implementation of the Levenshtein Distance algorithm.

license.4th Prints the GPLv2 license.

lists.4th An implementation of LISP-like list functions.

locals.4th A library for implementing local variables.

logger.4th Write Linux-like log-files.

logtime.4th Format the current time and date as in Linux log-files.

longjday.4th Prints a date in a long or short format.

luhn.4th Performs the Luhn test, which is used by some credit card companies to
distinguish valid credit card numbers.

CHAPTER 25. 4TH LIBRARY 503

lz77.4th An implementation of the 1977 Ziv-Lempel file compression algorithm.

m3todate.4th Converts a large number of ”DD-MMM-YY(YY)” strings to day, month,
year format.

matcher.4th Several string pattern matching functions.

math.4th Several integer math words.

mbinoml.4th An implementation of binomial coefficients and Catalan numbers.

md5.4th A port of the FFL ”MD5 checksum” module.

memcell.4th ALLOCATED, FREE, ALLOCATE, RESIZE

memchar.4th ALLOCATED, FREE, ALLOCATE, RESIZE

menu.4th A library for creating simple menus.

mergsort.4th An implementation of the merge sort algorithm.

mersenne.4th An implementation of the Mersenne Twister.

message.4th A more complete implementation of the Sourceforge library extention to
the ANS EXCEPTION wordset.

mif-prng.4th An implementation of the Philips/NXP Mifare Crypto-1 randomizer.

minstd.4th An implementation of the Lehmer random number generator.

mixed.4th UM/MOD, FM/MOD, SM/REM, UM*, M*, M*/, M+, MU*, MU/MOD

mon3date.4th Formats a date in the DD-MMM-YYYY notation.

morse.4th Words for encoding and decoding Morse signs.

mrg32k3a.4th An implementation of the MRG32k3a PRNG.

msxls2-w.4th Write MS-Excel 2.1 files.

msxmls-w.4th Write MS-Excel XML 2003 files.

multiblk.4th BLK, UPDATE, CLEAR, EMPTY-BUFFERS, SAVE-BUFFERS, FLUSH,
BLOCK, BUFFER, LIST

multifac.4th A library for calculating multi factorials.

namedstk.4th Name the items on a user stack.

ncoding.4th A library for storing numbers in character buffers.

norm-pdf.4th An implementation of several Probability Density functions.

ntor.4th Saves or retrieves several values to or from the return stack.

obsolete.4th #TIB, EXPECT, QUERY

odevsort.4th An implementation of the ”odd even” merge sort algorithm.

oofods-w.4th Write OpenOffice FODS files.

opgftran.4th Infix to postfix formula translation.

ordidate.4th An implementation of several ”ordinal date” and week functions.

CHAPTER 25. 4TH LIBRARY 504

oyelsort.4th An implementation of the Oyelami sort algorithm.

padding.4th Pads strings and prints padded strings.

palette.4th Several Portable Bitmap palette manipulation words.

palindrm.4th Checks whether a string is a palindrome.

pancsort.4th An implementation of the pancake sort algorithm.

pangram.4th Checks whether a string is a pangram.

parseurl.4th A library which breaks up an URL in its basic components.

parsexml.4th A library which allows easy parsing of XML and HTML files.

parsing.4th Several enhanced parsing words.

parsname.4th An implementation of PARSE-NAME, which allows parsing regardless
of whitespace characters.

pcylfun.4th An implementation of parabolic cylinder functions U and V, plus related
confluent hypergeometric functions.

perfect.4th Checks whether a number is a perfect number.

permcomb.4th An implementation of permutations and combinations.

perrin.4th An implementation of the Perrin sequence.

phone.4th A library for parsing and standardizing phone numbers.

pickroll.4th PICK, ROLL, ?DUP

picture.4th An implementation of pictured numeric output words.

placelne.4th Parse a buffer and copy the resulting line to a string variable.

place-n.4th Copy a string several times to a string variable.

plecuyer.4th An implementation of the Pierre LEcuyer randomizer.

polys.4th An implementation of Chebyshev, Bessel, Hermite, Laguerre and Leg-
endre polynomials.

power.4th Fast integer exponentiation.

prefixno.4th Formats prefixed numbers.

print.4th Printing of strings with automatic linebreaks.

printf.4th A tiny implementation of printf().

prio-q.4th An implementation of a priority queue.

prioq.4th Another implementation of a priority queue.

prng.4th Leaves a pseudo random number in the range (0,1) on the FP stack.

qsort.4th An implementation of the qsort() function.

quiz.4th A template for creating and evaluating simple quiz programs.

quotes.4th Removes leading and trailing quotes from a string.

CHAPTER 25. 4TH LIBRARY 505

radxsort.4th An implementation of the radix LSB sort algorithm.

ramdisk.4th An implementation of a simple RAM disk.

ran4.4th An implementation of the RAN4 random number generator.

randbin.4th Generates random binary patterns.

randjava.4th A copy of the Java randomizer.

randlcg.4th A collection of linear congruential random number generators.

randlcg2.4th A collection of linear congruential random number generators.

randmwcp.4th An implementation of a ”Multiply With Carry” random number genera-
tor.

random.4th Simple linear congruential random number generators.

randoom.4th An exact copy of the ”Doom” random number generator.

range.4th WITHIN, BETWEEN

rbounds.4th A version of BOUNDS that allows you to access memory in reverse or-
der.

rcheck.4th Checks if the Return Stack is balanced.

rdepth.4th DEPTH and .S like words for the return stack.

refills.4th A library to store file position markers on a stack.

replace.4th Several words for replacing and deleting substrings within strings.

represnt.4th REPRESENT

reverse.4th An implementation of the strrev() function.

rndubias.4th An implementation of an unbiased randomizer.

rot13.4th An implementation of the ROT13 function.

row.4th A library for searching lookup tables.

rtf.4th Create simple RTF 1.x formatted files.

runiform.4th An implementation of the Uniform randomizer.

savefile.4th SAVE-INPUT and RESTORE-INPUT like words for files.

say.4th An interface to the Festival library.

sbreak.4th An implementation of the strpbrk() function.

scanfile.4th A library for quickly skipping to a predefined position in a text file.

scanskip.4th An implementation of the COMUS string tokenizing words SKIP, SCAN
and SPLIT.

scomma.4th Add thousands separator to a decimal numeric string.

search.4th SEARCH

sedol.4th Check a Stock Exchange Daily Official List code.

CHAPTER 25. 4TH LIBRARY 506

sel2sort.4th An implementation of the selection sort algorithm.

selcsort.4th An implementation of the selection sort algorithm.

semiprim.4th A library for testing semi-prime numbers.

sequence.4th An implementation of Factor-like2 sequences.

sfpout.4th FS., FS.R, (FS.), FE., FE.R, (FE.), F., F.R, (F.)

sha1.4th A port of the FFL ”SHA-1 checksum” module.

sha256.4th A port of the FFL ”SHA-2 checksum” module.

shelsort.4th An implementation of the Shell sort algorithm.

shuffle.4th A library for shuffling character and numeric arrays.

simp38.4th A library for numerical integration using ”Simpsons 3/8 rule”.

simpson.4th A library for numerical integration using ”Simpsons rule”.

simpsort.4th An implementation of the simple sort algorithm.

sinhcosh.4th FSINH, FCOSH, FTANH

slice.4th Several string slicing words.

slowsort.4th An implementation of the slow sort algorithm.

slurptxt.4th Read a text file to memory and returns an array of pointers.

soundex.4th An implementation of the SOUNDEX function.

speak.4th An interface to the eSpeak library.

spelldis.4th An implementation of a simple ”spelling distance” algorithm.

spinner.4th Coroutine for an activity spinner.

split.4th The TOOLBELT implemention of the string splitting words /SPLIT and
-SPLIT.

splitext.4th Splits a string at a given substring.

splitpth.4th Splits the filename from the path on DOS-like and *Nix Operating Sys-
tems.

sprintf.4th A tiny implementation of sprintf().

sqrtrem.4th A very fast integer square root function with remainder.

srtstack.4th Sorts the Data Stack.

sscanf.4th An parsing function resembling scanf().

stack.4th An implementation of user-defined stacks.

startend.4th The TOOLBELT implemention of the string comparison words STARTS?
and ENDS?.

statist.4th Several floating point statistical functions.

2”Factor” is a stack-oriented programming language created by Slava Pestov.

CHAPTER 25. 4TH LIBRARY 507

stemleaf.4th A library for plotting stem-leaf diagrams.

stester.4th A small library by Josh Grams for testing Forth words.

stmstack.4th An implementation of a single string stack with error detection.

stoosort.4th An implementation of the stooge sort algorithm.

strbuf.4th A library for creating and managing string buffers.

strcount.4th Counts the number of certain substrings in a string.

strstack.4th An implementation of a string stack using a circular buffer.

strtime.4th Converts a timestamp into human readable time strings.

strto10k.4th Converts a string to a 10K scaled number.

stsstack.4th An implementation of a true string stack.

substit.4th REPLACES, SUBSTITUTE, UNESCAPE

sumdivs.4th Calculates the sum of all positive divisors, a.k.a. divisor function.

swapping.4th Exchanges one character in a string for another.

system.4th An implementation of the system() function.

tabs.4th Converts tabs in strings to spaces and vice versa.

taylor.4th A library for creating approximation functions using Taylor series.

tea.4th An implementation of the TEA encryption algorithm.

tean.4th An implementation of the TEA New encryption algorithm.

termansi.4th Several ANSI Terminal words.

threevl.4th An implementation of ”three value logic”.

throw.4th Several THROW constants.

throwstr.4th Converts a THROW code to a string.

th-word.4th The TOOLBELT implemention of the substring extraction words TH-
WORD and TH-WORD-BACK.

time3339.4th Compose a date/time string according to RFC 3339.

time.4th Several time and date related words.

timer.4th Words for measuring execution times.

toarabic.4th Converts Roman numerals to Arabic numerals.

todate.4th Recognizes, parses and converts date strings.

todbl.4th >NUMBER

tofloat.4th >FLOAT

tokenize.4th A library for tokenizing strings.

tonumber.4th >NUMBER

CHAPTER 25. 4TH LIBRARY 508

toolbelt.4th Some well known TOOLBELT words.

toolfile.4th Some TOOLBELT inspired, contextless I/O words.

toroman.4th Converts Arabic numerals to Roman numerals.

totime.4th A library for printing time stamps.

totriple.4th Converts a string to a triple length number.

translat.4th An implementation of the PHP strtr() function.

tre.4th An implementation of a tiny Regular Expressions engine.

trim.4th The TOOLBELT implemention of the string leading and trailing whites-
pace stripping words.

triple.4th A library of arithmetic words for triple length numbers.

triplus.4th Triple word equivalents of D+, D2/ and D2*.

trisharp.4th Triple word equivalents of the <#, #>, SIGN, # and #S words.

tst.4th A port of the FFL test module.

tt800.4th An implementation of the TT800 random number generator.

ttester.4th A library for testing Forth words.

ulcase.4th Converts strings and characters from upper case to lower case and vice
versa.

unicdgbk.4th Converts Chinese Unicode characters to GBK/2.

unitconv.4th Converts imperial units to SI units and vice versa.

userpad.4th An implementation of a user-defined circular string buffer.

ustodate.4th Converts a large number of "Month Day Year" strings to day, month,
year format.

utf8.4th An implementation of the UTF-8 codec.

utf8gbk2.4th An UTF-8 to GBK/2 characterset conversion.

utf8type.4th An implementation of TYPE with built-in ISO-8859 to UTF8 conver-
sion.

varray.4th An library to create dynamic arrays (random access).

version.4th A word returning the 4tH version as a string.

vmem.4th Allocates variables, strings and arrays in blockfiles.

weekend.4th Calculates the number of workdays and weekends between two times-
tamps.

well512.4th An implementation of the WELL512 random number generator.

westhtml.4th A CP437 and ISO-8859 Western characterset HTML conversion.

wichill.4th An implementation of the Wichman Hill randomizer.

wildcard.4th A word for comparing strings using wildcards.

CHAPTER 25. 4TH LIBRARY 509

wildcrdr.4th A recursive word for comparing strings using wildcards.

word.4th WORD

wwwopen.4th An interface to the cURL or Wget ”GET” command.

xchar.4th X-SIZE, XC-SIZE, XC@+, XC!+, XC!+?, XCHAR+, XEMIT, -TRAILING-
GARBAGE, X-WIDTH, XHOLD, XC-WIDTH, +X/STRING , X\STRING-
, XCHAR-

xdump.4th Another DUMP alternative.

yesno.4th A library with vectors for inverting words.

yesorno.4th Get a ’yes’ or ’no’ answer from the console and return a flag.

yield.4th An implementation of generator-type coroutines.

zenans.4th FROT, FOVER, FDUP, FSWAP, FDROP, F@, F!, FLOATS, PRECI-
SION, SET-PRECISION

zenatan2.4th FATAN2

zenatanh.4th FASINH, FACOSH, FATANH

zencart.4th Cartesian to polar coordinates conversion.

zenconst.4th Several floating point constants for Zen floating point library.

zendegrd.4th Degrees to radians conversion (and vice versa).

zenexpm1.4th FEXPM1

zenfalog.4th F**, FALOG

zenfasin.4th FATAN, FASIN, FACOS

zenfcbrt.4th An implementation of the floating point cube root function.

zenferf.4th An implementation of the erf() function.

zenfexp.4th FEXP

zenfexpt.4th FEXP

zenfln.4th FLN, FLOG

zenflnp1.4th FLNP1

zenfloat.4th FLOAT, FLOAT+, F+, FNEGATE, F-, FABS, F*, F/, F0=, F0<, F<, F=,
D>F

zenfloor.4th FLOOR

zenfmin.4th FMIN, FMAX

zenfpio.4th >FLOAT, F.

zenfpow.4th Fast exponentiation of Zen floating point numbers with integer expo-
nents.

zenfprox.4th F~

zenfsin.4th FSIN, FCOS, FTAN, FSINCOS

CHAPTER 25. 4TH LIBRARY 510

zenfsinh.4th FSINH, FCOSH, FTANH

zenfsqrt.4th FSQRT, F2/

zengamm2.4th A slower, but more accurate implementation of the Gamma function by
the Ramanujan method.

zengamma.4th An implementation of the Gamma function by the Mortici method.

zenhaver.4th An implementation of the haversine formula.

zenhornr.4th An implementation for evaluation of a polynomial by the Horner method.

zenpolar.4th Polar to Cartesian coordinates conversion.

zenround.4th FROUND

zentaylr.4th A library for creating approximation functions using Taylor series.

zentodbl.4th F>D

zentrunc.4th FTRUNC, FCEIL

zxrandom.4th An exact copy of the Sinclair ZX Spectrum floating point random num-
ber generator.

25.2 FOOS classes

dstr.4th A dynamic string class.

hashmap.4pp A hashing table class with an object storing subclass.

list.4pp A list and stack class with an object storing subclass.

stream.4pp A file handling class.

25.3 Library dependencies

Here all mixed, double and floating point library files and their dependencies are listed. If
only one of the listed files is needed resolve a dependency, they are printed in italics.

Library Family Depends on
ansdbl.4th anscore.4th

constant.4th
ansfloat.4th ANS mixed.4th

triplus.4th
dblshift.4th

ansfpio.4th ANS ansfloat.4th
dblsharp.4th

asinacos.4th ANS fpconst.4th
taylor.4th

chi2.4th ANS/Zen ansfloat.4th
zenans.4th

csimpson.4th ANS ansfloat.4th
dblbin.4th ansdbl.4th

CHAPTER 25. 4TH LIBRARY 511

Library Family Depends on
dbldiv.4th mixed.4th
dbldot.4th dblsharp.4th
dblsharp.4th mixed.4th
dblshift.4th constant.4th
ddigroot.4th mixed.4th
ddotf.4th dblsharp.4th
dpower.4th mixed.4th
drange.4th ansdbl.4th
dsqrt.4th mixed.4th
ellipint.4th ANS flnflog.4th

horner.4th
erf.4th ANS fexp.4th

fequals.4th
erf1.4th ANS/Zen fexp.4th

zenans.4th
zenfexp.4th

expout.4th ANS/Zen fpdot.4th
falog.4th ANS fexp.4th

flnflog.4th
fatan2.4th ANS asinacos.4th
fatanh.4th ANS flnflog.4th
fbessel.4th ANS ansfloat.4th
fbeta.4th ANS gammaln.4th

fexp.4th
fbetacdf.4th ANS gammaln.4th

fexp.4th
fbetapdf.4th ANS fbeta.4th

falog.4th
fcartes.4th ANS asinacos.4th
fcbrt.4th ANS ansfloat.4th
fdeg2rad.4th ANS/Zen fpconst.4th

zenconst.4th
felip.4th ANS ansfloat.4th

fpconst.4th
fenter.4th ANS/Zen ansfpio.4th

zenfpio.4th
fpin.4th
tofloat.4th

fequals.4th ANS/Zen ansfloat.4th
zenans.4th

ferf.4th ANS fpconst.4th
taylor.4th

fexp.4th ANS fpconst.4th
fpow.4th

fexpint.4th ANS fexp.4th
flnflog.4th

fexpflni.4th ANS/Zen ansfloat.4th
zenans.4th
fxexpln.4th

fexpm1.4th ANS fexp.4th
fexpt.4th ANS fpconst.4th

taylor.4th

CHAPTER 25. 4TH LIBRARY 512

Library Family Depends on
fpow.4th
ftrunc.4th

fgamma.4th ANS falog.4th
fhaversn.4th ANS fsinfcos.4th

asinacos.4th
fdeg2rad.4th

flnflog.4th ANS frexp.4th
ansfpio.4th
fpin.4th
tofloat.4th

flnflogb.4th ANS fpow10.4th
fpconst.4th

flnp1.4th ANS flnflog.4th
flocals.4th ANS/Zen ansfloat.4th

zenans.4th
flogist.4th ANS fexp.4th
forwdiff.4th ANS/Zen ansfloat.4th

zenans.4th
fp0.4th Zen zenfloat.4th

zenfpio.4th
fp1.4th Zen zenfloat.4th

zenfpio.4th
zenans.4th

fp2.4th Zen zenfloat.4th
zenans.4th
fpin.4th
fpout.4th

fp3.4th ANS ansfloat.4th
ansfpio.4th

fp4.4th ANS ansfloat.4th
fpin.4th
fpout.4th

fp5.4th ANS ansfloat.4th
tofloat.4th
fpout.4th

fpconst.4th ANS/Zen ansfpio.4th
fpin.4th
tofloat.4th

fpdot.4th ANS/Zen ansfloat.4th
zenans.4th
zenround.4th

fpin.4th ANS/Zen tonumber.4th
ansfloat.4th
zenans.4th

fpolar.4th ANS fsinfcos.4th
fpout.4th ANS/Zen range.4th

represnt.4th
fpow.4th ANS ansfloat.4th
fpow10.4th ANS/Zen ansfloat.4th

zenfloat.4th
fq.4th ANS ferf.4th

CHAPTER 25. 4TH LIBRARY 513

Library Family Depends on
fracout.4th ANS/Zen fpdot.4th
frexp.4th ANS ansfloat.4th
fsincost.4th ANS fpconst.4th

taylor.4th
fsinfcos.4th ANS fpconst.4th
fsinnpi.4th ANS fpow.4th
fsl-util.4th ANS ansfpio.4th

fpout.4th
fsprintf.4th ANS/Zen fpout.4th
fstack.4th ANS/Zen ansfloat.4th

zenans.4th
fsum.4th ANS/Zen ansfloat.4th

zenans.4th
fsum_arr.4th ANS/Zen ansfloat.4th

zenans.4th
ftrunc.4th ANS ansfloat.4th
fvector.4th ANS ansfloat.4th
fzeta.4th ANS falog.4th
gamma.4th ANS fequals.4th

fexp.4th
flnflog.4th
fsinfcos.4th
horner.4th

gammaln.4th ANS flnflog.4th
fpow10.4th

gammapq.4th ANS gammaln.4th
fexp.4th

gauslege.4th ANS fsinfcos.4th
gauss.4th ANS horner.4th
horner.4th ANS fsl-util.4th
mbinoml.4th mixed.4th
mersenne.4th ANS/Zen ansfloat.4th

zenans.4th
zenfsqrt.4th
zentodbl.4th

mixed.4th ansdbl.4th
norm-pdf.4th ANS fexp.4th
pcylfun.4th ANS falog.4th

fpow10.4th
gamma.4th

permcomb.4th mixed.4th
plecuyer.4th ANS/Zen ansfloat.4th

zenfloat.4th
polys.4th ANS ansfloat.4th
prng.4th ANS/Zen ansfloat.4th

zenans.4th
ran4.4th mixed.4th

dblbin.4th
randlcg.4th mixed.4th
represnt.4th ANS/Zen dbldot.4th

ansfloat.4th

CHAPTER 25. 4TH LIBRARY 514

Library Family Depends on
zenans.4th

runiform.4th ANS/Zen ansfloat.4th
zenfloat.4th

sfpout.4th ANS/Zen ansfloat.4th
zenans.4th
fpdot.4th

simps38.4th ANS ansfloat.4th
simpson.4th ANS ansfloat.4th
sinhcosh.4th ANS fexpm1.4th
statist.4th ANS/Zen falog.4th

zenfsqrt.4th
zenans.4th
zenfalog.4th

taylor.4th ANS ansfloat.4th
todbl.4th digit.4th

mixed.4th
tofloat.4th ANS fpow.4th
tonumber.4th digit.4th
triple.4th triplus.4th

mixed.4th
tt800.4th ANS/Zen ansfloat.4th

zenans.4th
wichill.4th ANS/Zen ansfloat.4th

zenans.4th
zenans.4th Zen zenround.4th

zentodbl.4th
zenatan2.4th Zen zenfasin.4th
zenatanh.4th Zen zenfln.4th

zenfsqrt.4th
zencart.4th Zen zenfasin.4th

zenfsqrt.4th
zenconst.4th Zen zenfpio.4th

fpin.4th
zendegrd.4th Zen zenfloat.4th
zenexpm1.4th Zen zenfexp.4th
zenfalog.4th Zen zenfexp.4th

zenfln.4th
zenfasin.4th Zen zentaylr.4th

zenfsqrt.4th
zenconst.4th

zenfcbrt.4th Zen zenfsqrt.4th
zenferf.4th Zen zentaylr.4th

zenfsqrt.4th
zenconst.4th

zenfexp.4th Zen zenfpow.4th
zenconst.4th

zenfexpt.4th Zen zentaylr.4th
zentrunc.4th
zenconst.4th
zenfpow.4th

zenfln.4th Zen zenfloat.4th

CHAPTER 25. 4TH LIBRARY 515

Library Family Depends on
zenconst.4th

zenflnp1.4th Zen zenfln.4th
zenfloat.4th Zen mixed.4th
zenfloor.4th Zen zenfloat.4th
zenfmin.4th Zen zenfloat.4th
zenfpio.4th Zen (none)
zenfpow.4th Zen zenfloat.4th
zenfprox.4th Zen zenfloat.4th
zenfsin.4th Zen zenfloor.4th

zentaylr.4th
zenfsinh.4th Zen zenexpm1.4th
zenfsqrt.4th Zen zenfloat.4th
zengamma.4th Zen zenfsqrt.4th

zenfalog.4th
zengamm2.4th Zen zenfsqrt.4th

zenfalog.4th
zenhaver.4th Zen zenfsin.4th

zenfasin.4th
zenfsqrt.4th
zendegrd.4th

zenhornr.4th Zen zenfloat.4th
zenpolar.4th Zen zenfsin.4th

zenround.4th
zenround.4th Zen zentrunc.4th
zentaylr.4th Zen zenfloat.4th
zentodbl.4th Zen zenfloat.4th
zentrunc.4th Zen zenfloor.4th
zxrandom.4th ANS/Zen ansfloat.4th

zenfloat.4th

zenfloat

zenans

zenfpio

fpin
fpout

sfpout

ansfloat

ansfpio
fpin

tofloat

fpout

sfpout

other ANS FP words

other ZEN FP words

Required layer

Either-or layer Optional layer

Figure 25.1: Floating point I/O stacks

• The grey ovals depict library file dependencies that are not automatically resolved.

• Dotted lines indicate that only one of the pictured dependencies needs to be resolved.

CHAPTER 25. 4TH LIBRARY 516

ansfloat.4th

dblshift.4th

mixed.4thtriplus.4th

fsl-util.4th

ansfpio.4thfpout.4thsfpout.4th

dblsharp.4th

range.4th represnt.4thfpdot.4th

fpin.4th

tonumber.4th

tofloat.4th

fpow.4th

ansdbl.4th

anscore.4thconstant.4th

asinacos.4th

fpconst.4th taylor.4th

chi2.4th csimpson.4th

dblbin.4th

dbldiv.4th

dbldot.4th

ddigroot.4th

ddotf.4th

dpower.4th

drange.4th

dsqrt.4th

ellipint.4th

flnflog.4th

horner.4th

frexp.4th

erf1.4th

fexp.4th

erf.4th

fequals.4th

expout.4th

falog.4th fatan2.4th

fatanh.4th

fbessel.4th

fbeta.4th

gammaln.4th

fpow10.4th

fbetacdf.4th

fbetapdf.4th

fcartes.4th

fcbrt.4th

fdeg2rad.4thfelip.4th

fenter.4th

ferf.4th

fexpint.4th

fexpflni.4th

fxexpln.4th

fexpm1.4th

fexpt.4th

ftrunc.4th

fgamma.4th

fhaversn.4th

fsinfcos.4thflnflogb.4thflnp1.4th

flocals.4th

flogist.4th

forwdiff.4th

digit.4th

fpolar.4thfq.4th

fracout.4th

fsincost.4th

fsinnpi.4th

fsprintf.4th

fstack.4th fsum.4th fsum_arr.4th fvector.4th

fzeta.4th

gamma.4th gammapq.4th gauslege.4thgauss.4th

mbinoml.4th

mersenne.4th

norm-pdf.4th

pcylfun.4th

permcomb.4th

plecuyer.4th polys.4th prng.4th

ran4.4th randlcg.4th

runiform.4th simps38.4th simpson.4th

sinhcosh.4thstatist.4th

todbl.4th

triple.4th

tt800.4th wichill.4th zxrandom.4th

Figure 25.2: Double, mixed and floating point word dependencies (ANS)

zenfloat.4th

mixed.4th

zenfpio.4th

fpout.4th

range.4threpresnt.4th

sfpout.4th

fpdot.4thfpin.4th

zenans.4thtonumber.4th

zentodbl.4th zenround.4th

ansdbl.4th

anscore.4th constant.4th

chi2.4th

dblbin.4th

dbldiv.4th

dbldot.4th

dblsharp.4th

ddigroot.4th

ddotf.4th

dpower.4th

drange.4th

dsqrt.4th

erf1.4th

zenfexp.4th

zenconst.4th zenfpow.4thexpout.4th

fdeg2rad.4th

fenter.4th

fequals.4th fexpflni.4th

fxexpln.4th

flocals.4th forwdiff.4th

digit.4th

fpow10.4th

fracout.4th

fsprintf.4th

fstack.4thfsum.4th fsum_arr.4th

mbinoml.4th

mersenne.4th

zenfsqrt.4th

permcomb.4th

plecuyer.4th

prng.4th

ran4.4thrandlcg.4th

runiform.4th

statist.4th

zenfalog.4th

zenfln.4th

todbl.4th

triple.4th

triplus.4th

tt800.4th wichill.4th

zentrunc.4th

zenatan2.4th

zenfasin.4th

zentaylr.4th

zenatanh.4th zencart.4th

zendegrd.4th

zenexpm1.4th

zenfcbrt.4th zenferf.4th zenfexpt.4th

zenfloor.4th

zenflnp1.4th

zenfmin.4th zenfprox.4th

zenfsin.4th

zenfsinh.4thzengamm2.4th zengamma.4th

zenhaver.4th

zenhornr.4th

zenpolar.4th

zxrandom.4th

Figure 25.3: Double, mixed and floating point word dependencies (Zen)

Chapter 26

Change log

26.1 What’s new in version 3.64.0

Words

• The words +TO, ;THEN, R"@, I’, ?EXIT, [NAMES], EXCEPT, UNLESS, THROW",
>ZERO, RDROP, 2RDROP, CASE, OF, ENDOF, ;ENDOF, ENDCASE and STOWwere
added.

• The words R’@, */, UNLOOP and LEAVE were changed.

Functionality

• The words +TO, ;THEN, R"@, I’, ?EXIT, [NAMES], EXCEPT, UNLESS, THROW",
>ZERO, RDROP, 2RDROP, CASE, OF, ENDOF, ;ENDOF, ENDCASE and STOWwere
added.

• The preprocessor now supports single, double and floating point FORTRAN formu-
las.

• Destructors and constructors were added to FOOS (Forth Object Oriented Simple).

• An ”expert mode” has been added to 4tH.

• The [NAMES] directive enables symbolic decompilation.

• The behavior of COMPARE can be influenced by issuing the appropriate pragmas.

• The library files now support Intel hex format.

• Global variables can be converted to local variables.

• New binary search libraries were added.

• Dynamic string support was added.

• Dynamic array support was added.

• CCITT-2 and CRC32 support were added.

• A new priority queue library was added.

517

CHAPTER 26. CHANGE LOG 518

• A general purpose filename splitting library was added.

• Internationalization support (i18n) was added.

• A fast Levenshtein Distance library was added.

• A sequences library was added

• A floating point equivalent of >NUMBER was added.

• A fast >FLOAT implementation was added to ANS floating point.

• Fast single and double word exponentiation libraries were added.

• A fast fixed point exponentiation and natural logarithm library was added.

• Several mathematical functions were added to the fractions library.

• The graphics suite now includes routines for drawing circles, arcs, ellipses and dif-
ferent lines.

• The graphics suite now includes flood fill routines.

• MRG32k3a was added to the random number generators.

• Binary Insertionsort and a simple Timsort were added to the sort algorithms.

• Preprocessing is 2.5x times faster, compilation is 25% faster (on average).

Bugfixes

• A bug in the SHIFT opcode was fixed.

• Another bug in bsearch.4th was fixed.

• The Zen and ANS floating point libaries were tuned.

• The library strstack.4th was rewritten.

• The library fpin.4th was rewritten.

Developer

• The words +TO, ;THEN, R"@, I’, ?EXIT, [NAMES], EXCEPT, UNLESS, THROW",
>ZERO, RDROP, 2RDROP, CASE, OF, ENDOF, ;ENDOF, ENDCASE and STOWwere
added.

• The words R’@, */, UNLOOP and LEAVE were changed.

• The preprocessor now supports single, double and floating point FORTRAN formu-
las.

• Destructors and constructors were added to FOOS (Forth Object Oriented Simple).

• An ”expert mode” has been added to 4tH.

• New optimizers were added, simplifying or eliminating ”R> DROP”, ”>R RDROP”,”>R
R>” and ”R> >R” sequences.

• The [NAMES] directive enables symbolic decompilation.

CHAPTER 26. CHANGE LOG 519

• The behavior of COMPARE can be influenced by issuing the appropriate pragmas
(compare.4th, icompare.4th).

• All library files now throw an exception instead of abort.

• The library files now support Intel hex format (intelhex.4th).

• Global variables can be converted to local variables (glocal.4th).

• New binary search libraries were added (brow.4th, bstable.4th).

• Dynamic string support was added (dstring.4th, dstringt.4th, dstrarrt.4th).

• Dynamic array support was added (varray.4th).

• CCITT-2 and CRC32 support were added (ccitt2.4th, crc32.4th).

• A new priority queue library was added (prioq.4th).

• A general purpose filename splitting library was added (splitpth.4th).

• Internationalization support (i18n) was added (i18n.4th).

• A fast Levenshtein Distance library was added (levensht.4th).

• A sequences library was added (sequence.4th);

• A floating point equivalent of >NUMBER was added (fpin.4th).

• A fast >FLOAT implementation was added to ANS floating point (tofloat.4th).

• Fast single and double word exponentiation libraries were added (power.4th,
dpower.4th).

• A fast fixed point exponentiation and natural logarithm library was added (fxexpln.4th).

• Several mathematical functions were added to the fractions library (fractext.4th).

• The graphics suite now includes routines for drawing circles (gcircle.4th), arcs
(gbezier.4th, garccirc.4th), ellipses (gellipse.4th) and different lines
(gburst.4th, dda.4th, glines.4th).

• The graphics suite now includes flood fill routines (gfill.4th, gflood.4th).

• MRG32k3a (mrg32k3a.4th) was added to the random number generators.

• Binary Insertionsort (binssort.4th) and a simple Timsort (timsort.4th)
were added to the sort algorithms.

• The gview.4th library was replaced by gpic2txt.4th.

• The hiorder.4th library was reorganized.

• Overhaul of some floating point libraries to use full 64-bit precision.

CHAPTER 26. CHANGE LOG 520

Documentation

• All documentation now reflects the functionality of the current version;

• The ”overview” section was modified;

• The ”guided tour” was completely overhauled;

• Several sections concerning CASE..ENDCASE were removed;

• Several sections concerning object orientation were modified and expanded;

• New sections on CASE..ENDCASE were added;

• The graphics library got its own chapter. Several new sections were added to it;

• New sections on binary search tables were added;

• A section on dynamic strings was added;

• A section on dynamic arrays was added;

• A section on alternative loop- and branch constructs was added;

• A section on internationalization was added;

• A section on sequences was added;

• A chapter on TopITSM was added;

• The section on local variables was expanded;

• The section on exceptions was expanded;

• The section on optimization was expanded;

• The section on fractions was changed;

• All sections on dynamic memory were changed.

Hints

Porting your v3.62.5 programs to v3.64.0 shouldn’t be any problem. Source files will
compile correctly without modification. There are six things to consider:

COMUS.4PP

This preprocesor library was removed. The words RDROP and +TO are now natively sup-
ported by the compiler.

GVIEW.4TH

The library gview.4th is now depreciated. It is replaced by gpic2txt.4th. If you
have any programs which still use gview.4th, please rewrite them. gview.4th is no
longer supported and will be permanently removed in a future release.

CHAPTER 26. CHANGE LOG 521

FPIN.4TH

In previous versions, this library could be used by zenfloat.4th. Now you have to
include zenans.4th as well. This was always recommended practice anyway.

HIORDER.4TH

This library was reorganized. If you used zip in your programs, either change it to
reduce or add this definition to the top of your file:

aka reduce zip

The word .cells was converted into a comment. No other changes are required.

FOOS.4PP

In the previous version, a base class was declared like this:

:: <class>
class
end-class {}

;

In the current version this syntax is no longer supported:

:class <class>
extends Object
end-extends

;class

Please note the missing curly braces. Previously, methods were defined like this:

:method { word .. word } ;method

In the current version, the execution semantics of curly braces have been incorporated in all
of these keywords: END-EXTENDS, ;CLASS, :NEW, :DELETE, :VIRTUAL, :DEFAULT,
:METHOD and ;METHOD. They should be removed in order to avoid runtime errors:

:method word .. word ;method

No other changes should be required. Destructor-like methods will continue to work. How-
ever, it is advised to take advantage of the new destructor support. Current constructors will
continue to work properly without modifications.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are +TO, ;THEN, R"@, I’,
?EXIT, [NAMES], EXCEPT, UNLESS, THROW", >ZERO, RDROP, 2RDROP, CASE, OF,
ENDOF, ;ENDOF, ENDCASE and STOW.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed1)
ANS-Forth standard, except for porting purposes.

1A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 522

26.2 What’s new in version 3.62.5

Words

• None.

Functionality

• Introsort was added to the sort algorithms.

• Several new randomizers were added.

• Indexes can now be bound to their database files.

• The new ”Extract, transform and load” library parses .CSV files automatically.

• The padding.4th library was partly redesigned.

• Singleton objects are supported.

• The library files now support binary trees, printf() like output, INI file manage-
ment and full blown associative arrays.

Bugfixes

• None.

Developer

• Several LINT fixes have been applied to the source code.

• Introsort was added to the sort algorithms.

• Several new randomizers were added.

• Indexes can now be bound to their database files.

• The new ”Extract, transform and load” library parses .CSV files automatically.

• The padding.4th library was partly redesigned.

• Singleton objects are supported.

• The library files now support binary trees, printf() like output, INI file manage-
ment and full blown associative arrays.

Documentation

• A section on associative arrays with binary trees was added.

• A section on binding indexes to database files was added.

• A section on parsing fixed-width text files was added.

• A section on managing INI files was added.

CHAPTER 26. CHANGE LOG 523

• A section on printf() like formatting was added.

• A section on extract, transform and load was added.

• A section on triple numbers was added.

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.62.4 programs to V3.62.5 shouldn’t be any problem. Source files will
compile correctly without modification and executables will run unmodified. There are
two things to consider:

PADDING.4TH redesign

If you used the words ”+PAD” or ”+FILL” anywhere in your programs, you will have
to change them in order to compile properly. The easiest fix is to add these lines at the
beginning of your program:

: +fill rot dup >r swap >r count 2dup chars + >r
rot over max dup rot - r> swap r> fill r> place ;

: +pad bl +fill ;

No other changes are required.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed2)
ANS-Forth standard, except for porting purposes.

This release is dedicated to Wil Baden, my mentor, without whom 4tH would have been an
entirely different beast.

26.3 What’s new in version 3.62.4

Words

• The words ’MAX-CHAR’ and ’CHAR-BITS’ were added.
2A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 524

Functionality

• The words ’MAX-CHAR’ and ’CHAR-BITS’ were added.

• The library files now support RTF generation, triple cell extended precision maths,
numerical integration, canonical signed digit representation and a high speed integer
square root.

• New implementations of the gamma function were added.

• A 3D library was added to the graphics libraries.

Bugfixes

• An obscure bug in ’+LOOP’ optimization was fixed.

• A name collision between math.4th and fconstant.4th was fixed.

• Some LATEX related issues were fixed in latex.4th and html.4th.

Developer

• The words ’MAX-CHAR’ and ’CHAR-BITS’ were added.

• The library files now support RTF generation, triple cell extended precision maths,
numerical integration, canonical signed digit representation and a high speed integer
square root.

• New implementations of the gamma function were added.

• A 3D library was added to the graphics libraries.

Documentation

• Compatibility with Forth-20xx is now explicitly listed. The section ”ANS Forth
statement” was modified accordingly.

• New sections on writing RTF files, 3D plotting and numerical integration were added
to the manual.

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.62.3 programs to V3.62.4 shouldn’t be any problem. Most source files
will compile correctly without modification and executables will run unmodified. There
are two things to consider:

Library reorganization

Some LATEX related issues were fixed in latex.4th and html.4th. Consequently, their
behavior was slightly changed. The UseTOC pragma isn’t required anymore, because you
can now supply it as a flag to %texTitle and %htmlTitle. No other changes are
required.

CHAPTER 26. CHANGE LOG 525

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’MAX-CHAR’ and ’CHAR-
BITS’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed3)
ANS-Forth standard, except for porting purposes.

26.4 What’s new in version 3.62.3

Words

• The word ’,""’ has been added.

Functionality

• Null-string constants can be compiled.

• ”>FLOAT” of the library zenfpio.4th will now accept most floating point for-
mats.

• The library files now support regular expressions, bit reversal, CREATE and JSON
output, database indexes, local variables (both cell and floating point), floating point
user stacks, several new randomizers and sorting routines.

• 4tH executable can now call external editors .

Bugfixes

• A bug in dsqrt.4th was fixed.

Developer

• Null-string constants can be compiled.

• ”>FLOAT” of the library zenfpio.4th will now accept most floating point for-
mats.

• The library files now support regular expressions, bit reversal, CREATE and JSON
output, database indexes, local variables (both cell and floating point), floating point
user stacks, several new randomizers and sorting routines.

• 4tH executable can now call external editors.

• The library wildcard.4th was rewritten.

• The library dbmsort.4th was replaced by dbmidx.4th.

• The optimizer has been enhanced by optimizing ’NEGATE’ more consistently.
3A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 526

Documentation

• All documentation now reflects the functionality of the current version.

• The section on database sorting was replaced by database indexing.

• Sections on local variables, tabular formats and regular expressions were added.

Hints

Porting your V3.62.2 programs to V3.62.3 shouldn’t be any problem. Most source files
will compile correctly without modification and executables will run unmodified. There
are four things to consider:

Android version

if you’re using Android v3.x or higher, 4tH is now installed in ATEs app_HOME folder. If
you’re upgrading you may have to remove older 4tH executables in the shared_prefs
folder and repeat the post-installation procedure.

Library reorganization

If you used wildcard.4th in your programs you have to make a few changes to make
them work properly. The easiest way is to define this word at the beginning of your pro-
gram:

: wild-match 2swap match-wild ;

After that your program should compile and run correctly.

Databases

If you used dbmsort.4th in your programs you have to make a few changes to make
them work properly. This library is completely replaced by dbmidx.4th, which supports
indexing. Table 26.1 will show you which changes to make.

Although we regret the significant changes you may have to make, please note that there
are significant advantages to indexes. Most importantly, you can update, save and load
indexes, so you may never need to have to scan and sort tables again. Furthermore, you can
use several indexes at the same time. See section 13.28 for more details.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved word is ’,""’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed4)
ANS-Forth standard, except for porting purposes.

4A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 527

SORT (old) INDEX (new) COMMENT

8192 constant /sort-index

include lib/heapsort.4th

include lib/dbmsort.4th

include lib/shelsort.4th

include lib/dbmidx.4th

You can choose any algorithm
from table 12.4. The size will
be determined later on.

’ heapsort is db.sorting
This is not required anymore.

db.scan

db.key Firstname db.sort

idx.create 8192 {char} db.key

Firstname

abort” Can’t make index”

to Pers.First

A sorted index is created with
this single statement. Note the
size is defined here. It returns
an address to the index and a
true flag on error. Creating an
index is done only once.

0 db.sorted @ db.goto Pers.First 0 idx.goto
You can’t directly retrieve
rowid’s anymore. On the other
hand, you rarely need to.

db.norows 0 do

i db.sorted @ db.goto

db.buffer -> Firstname count type cr

loop

Pers.First dup idx.first

begin

dup idx.error 0= while

db.buffer -> Firstname count type cr

dup idx.next

repeat idx.clear

This a typical retrieval loop,
moving through the entire index
from begin to end. It will now
be exited by detecting the end
of the index. In this example,
the error is cleared.

db.buffer -> db.sortkey count type cr Pers.First idx.key count type cr
Both print the current value
of the key field in the active
record.

Pers.First idx.close

abort” Can’t close index”

An index has to be explicitly
closed.

Table 26.1: Database index conversion

26.5 What’s new in version 3.62.2

Words

• The words ’[*]’, ’[+]’, ’[/]’ and ’[NEGATE]’ have been removed.

• The words ’C”’, ’C|’, ’[:’ and ’;]’ have been added.

Functionality

• Support for quotations was added.

• The library files now support coroutines, HTML generation, Adler32, MD5, SHA-1
and SHA-256 checksum routines and several new randomizers.

• ANS Forth conversion and library specific support in the preprocessor were moved
to external preprocessor libraries.

• The object orientation method definition syntax has been cleaned up.

CHAPTER 26. CHANGE LOG 528

• The closures syntax has been cleaned up.

• Most preprocessor libraries don’t use any registers anymore.

• Symbol definition and verbose options were added to the preprocessor.

• The preprocessor now supports _#_, $#$, @dup, @over, @nip, @cr and the new
@cell function.

• The preprocessor has been vastly enhanced, so you can now execute, save or generate
a C source without calling 4th separately.

Bugfixes

• A bug in parsing.4th was fixed.

• A malformed call to calloc() was fixed in comp_4th().

• Some murky code in comp_4th.c was cleaned up.

Developer

• Support for quotations was added.

• The library files now support coroutines, HTML generation, Adler32, MD5, SHA-1
and SHA-256 checksum routines and several new randomizers.

• ANS Forth conversion and library specific support in the preprocessor were moved
to external preprocessor libraries.

• The object orientation method definition syntax has been cleaned up.

• The closures syntax has been cleaned up.

• Most preprocessor libraries don’t use any registers anymore.

• Symbol definition and verbose options were added to the preprocessor.

• The preprocessor now supports _#_, $#$, @dup, @over, @nip, @cr and the new
@cell function.

• The preprocessor has been vastly enhanced by adding a C wrapper (pp4th.c), so
you can now execute, save or generate a C source without calling 4th separately.

Documentation

• All documentation now reflects the functionality of the current version.

• A section on coroutines was added.

• A section on generating HTML files was added.

Hints

Porting your V3.62.1 programs to V3.62.2 shouldn’t be any problem. Most source files
will compile correctly without modification and executables will run unmodified. There
are eight things to consider:

CHAPTER 26. CHANGE LOG 529

Preprocessor

The previous incarnations of the preprocessor were just a straight compile of the 4tH
source. Now a C wrapper has been added that vastly expands the capabilities of the pre-
processor. It also means that the invocation of the preprocessor has changed from:

pp4th infile.4pp outfile.4th

To:

pp4th -o outfile.4th infile.4pp

If you use any scripts or Makefiles that use the preprocessor, you have to change them
accordingly.

Obsolete compiler directives

The compiler directives ’[*]’, ’[/]’, ’[+]’ and ’[NEGATE]’ were obsolete since V3.62.0.
They have been removed. Replace them with ’*’, ’/’, ’+’ and ’NEGATE’.

3DUP

It moved from comus.4th to 3dup3rot.4th. Change your include files accordingly.

LATEX

Some changes were made to latex.4th in order to support compatibility with html.4th.
If this is important to you, we advise you to use %print when adding plain text. Further-
more, the optional package ”url” was exchanged for ”hyperref”, so URL: is not supported
anymore. You can use %link instead, but you will have to rewrite your code. If you
used the following words in your code, you either have to define them yourself or use an
alternative word with a different stack diagram:

Old Definition Alternative
means: : means: ." \item[" type ."] " cr ; %describe

item: : item: ." \item " ; %item

No other changes are required.

FOOS

The FOOS syntax has been significantly improved and is now much more consistent. This
table will show you the differences between the old and the new syntax:

Old FOOS syntax New FOOS syntax
method: name virtual: name

static: name method: name

:method .. ; defines name :virtual name .. ;method

:static name .. ; :method name .. ;method

:static name1 .. ; overrides name2 :default name2 .. ;method

new name1 name2 instance name1 name2

CHAPTER 26. CHANGE LOG 530

Invoking methods has been slightly changed as well:

Method Invocation Shorthand
static object -> method (none)
virtual object -> virtual method object => method

default object -> default method object <- method

Closures

The closures syntax has been significantly improved and is now much more consistent.
This table will show you the differences between the old and the new syntax:

Old closures syntax New closures syntax
fields vars

field: name var: name

end-fields end-vars

new name1 name2 set name1 name2

Note the previous version of closures hardly had any syntax, so conversion is not straight-
forward. Still, since the design itself hasn’t changed the original code should still run. Most
of the new syntax has been derived from FOOS, so you should feel at home pretty quickly.
The run time definition is enclosed between ”{:” and ”;}” pairs. All closures are statically
defined now.

Preprocessor

Several built-in macros have been moved to a library. If your program uses any of the
keywords listed in ”Provides”, you have to include the library listed in ”Include”.

INCLUDE PROVIDES

double.4pp d% 2variable 2constant
float.4pp f% fvariable ffield: fconstant
ansforth.4pp action-of synonym

begin-structure end-structure
case of endof endcase

sbslquot.4pp s\"

No other changes are required.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’C”’, ’C|’, ’[:’ and ’;]’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed5)
ANS-Forth standard, except for porting purposes.

5A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 531

26.6 What’s new in version 3.62.1

Words

• The words ’:TOKEN’ and ’EQUATES’ have been added.

Functionality

• Named execution tokens can be defined.

• Static variable and array pointers can be defined.

• The library files now support virtual memory, simple garbage collection, RfC 4180
compliant parsing, SEDOL numbers, Chi square calculations, runtime macros and
several new sorting routines.

• Several new date- and time parsing functions were added to the library.

• Several beta- and gamma related functions were added to the floating point libraries.

• The preprocessor now supports division and modulo with the new @divrm function.

Bugfixes

• Several obscure bugs in the peephole optimizer were fixed.

• Address checking was added to the ’TO’ and ’VALUE’ tokens.

• A documented bug in SkipSource() was fixed.

• A bug in DoCloseParen() was fixed.

• A bug in bsearch.4th was fixed.

• Some bugs in parsing.4th were fixed.

• parse-csv in parsing.4th is now mostly RfC 4180 compliant.

Developer

• The library files now support virtual memory, simple garbage collection, RfC 4180
compliant parsing, SEDOL numbers, Chi square calculations, runtime macros and
several new sorting routines.

• Several new date- and time parsing functions were added to the library.

• Several beta- and gamma related functions were added to the floating point libraries.

• The new library file multiblk.4th is a multi buffer implementation of the BLOCK
wordset. It is a drop-in replacement for ansblock.4th.

• A new peephole optimizer was added to the compiler, optimizing ’1 +LOOP’ ex-
pressions.

• Named execution tokens can be defined.

• Static variable and array pointers can be defined.

• The file null.4th was integrated in constant.4th.

• The preprocessor now supports division and modulo with the new @divrm function.

CHAPTER 26. CHANGE LOG 532

Documentation

• All documentation now reflects the functionality of the current version.

• The sections ”Random numbers” and ”Sorting” were moved.

• Sections on static variable pointers, execution tokens, garbage collection and virtual
memory were added.

Hints

Porting your V3.62.0 programs to V3.62.1 shouldn’t be any problem. All source files will
compile correctly without modification and executables will run unmodified. There are
three things to consider:

Obsolete compiler directives

Last warning: the compiler directives ’[*]’, ’[/]’, ’[+]’ and ’[NEGATE]’ have become ob-
solete since V3.62.0. It is recommended to change your sources accordingly by replacing
them with ’*’, ’/’, ’+’ and ’NEGATE’. Note these language elements will be removed in a
future version.

NULL

The constant ’NULL’ is now part of constant.4th. The file null.4th has been
removed. Please change your sources accordingly.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’:TOKEN’ and ’EQUATES’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed6)
ANS-Forth standard, except for porting purposes.

This release was time-sponsored by Ordina N.V.
http://www.ordina.com

26.7 What’s new in version 3.62.0

Words

• The words ’SMOVE’, ’LATEST’, ’*CONSTANT’
and ’/CONSTANT’ have been added.

6A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

http://www.ordina.com

CHAPTER 26. CHANGE LOG 533

Functionality

• The library files now support logfiles, automated date parsing, LZ77 file compression
and CSV file creation.

• The compiler directives ’[*]’, ’[/]’, ’[+]’ and ’[NEGATE]’ are no longer required.
They can be replaced by ’*’, ’/’, ’+’ and ’NEGATE’.

• The latest defined word can be compiled anonymously.

• Object orientation now supports static methods.

Bugfixes

• A ”division by zero” error in ’[/]’ was fixed.

• A small error in the Linux Makefile was fixed.

• A warning in 4th.c with some GCC compilers was fixed.

• Some patches were applied to facilitate the Raspberry Pi port.

• Some bugs in chars.4th and base64.4th were fixed.

• ’BUFFER’ in ansblock.4th is now ANS-Forth compliant.

• ’CREATE-FILE’ in ansfile.4th is now ANS-Forth compliant.

Developer

• The library files now support logfiles, automated date parsing, LZ77 file compression
and CSV file creation.

• The latest defined word can be compiled anonymously.

• Object orientation now supports static methods.

• The library file ansblock.4th is now largely ANS-Forth compliant. The Source-
forge ”Block reserved extension words” were added.

• New peephole optimizers were added to the compiler, so the compiler directives
’[*]’, ’[/]’, ’[+]’ and ’[NEGATE]’ are no longer required.

• exec_4th() can be optimized for GCC by using the compiler switch -DUSEGCCGOTO.

• The word ’SMOVE’ was added, making the library cellmove.4th superfluous.

Documentation

• All documentation now reflects the functionality of the current version.

• A section on GCC specific optimizations was added.

• A ”change log” was added.

CHAPTER 26. CHANGE LOG 534

Hints

Porting your V3.61.5 programs to V3.62.0 shouldn’t be any problem. All source files will
compile correctly without modification. There are four things to consider:

SMOVE

Since the word ’SMOVE’ is now a native word, the library cellmove.4th has become
superfluous. However, you will notice that most source files will continue to compile fine.
Still, it is recommended to remove any references to this former library.

Obsolete compiler directives

The compiler directives ’[*]’, ’[/]’, ’[+]’ and ’[NEGATE]’ have become obsolete. It is
recommended to change your sources accordingly by replacing them with ’*’, ’/’, ’+’ and
’NEGATE’. Note obsolete language elements may be removed in future versions.

Block files

The former block file interface has been replaced with the Sourceforge version. If you
used ”USE-BLOCK” or ”C/SCR” in any of your programs, you will have to replace them
with ”OPEN-BLOCKFILE” and ”B/BUF”, respectively. ”BUFFER” and ”BLOCK” were
aliases. If you have used ”BUFFER” anywhere in your program, you should check whether
it continues to run properly.

In general, you should check any program that uses the ANS BLOCK wordset, since the
new version has more solid error trapping, which may require additional exception han-
dling.

New reserved words

If you used the any of the new reserved words in your program as a name, you should re-
place those names by another. The new reserved words are ’SMOVE’, ’LATEST’, ’*CON-
STANT’ and ’/CONSTANT’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed7)
ANS-Forth standard, except for porting purposes.

26.8 What’s new in version 3.61.5

Words

• The word ’CFIELD:’ has been added.
7A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 535

Functionality

• The library files now support FCEIL, KEY, KEY?, SUBSTITUTE, REPLACES,
UNESCAPE, counted strings, ”Q” function, Catalan numbers, Riemann zeta func-
tion, a spell distance function, several new graphics functions and frexp(), ldexp()
like words.

• A new implementation of the ANS MEMORY wordset was added, allowing for con-
current string- and cell heaps.

• New preprocessor words were added like FFIELD:, @eval, @mul, @minus and
@sign.

• New preprocessor libraries add support for object orientated programming and clo-
sures.

Bugfixes

• The speed and accuracy of the FSIN, FCOS, FTAN, FEXP, FLN and FLOG words
was improved.

• Some minor fixes were applied to VECTOR and EXECUTE.

• A bug in ”PARSE” was fixed.

• Stack usage of the preprocessor was significantly reduced.

Developer

• The library files now support FCEIL, KEY, KEY?, SUBSTITUTE, REPLACES,
UNESCAPE, counted strings, ”Q” function, Catalan numbers, Riemann zeta func-
tion, a spell distance function, several new graphics functions and frexp(), ldexp()
like words.

• A new implementation of the ANS MEMORY wordset was added, allowing for con-
current string- and cell heaps.

• The library files back.4th, scanskip.4th, startend.4th, tokenize.4th
and trim.4th were rewritten.

• The library files fsinfcos.4th, fexp.4th and flnflog.4thwere rewritten.

• The library file dproduct.4th was replaced by fvector.4th.

• New preprocessor words were added like FFIELD:, @eval, @mul, @minus and
@sign. Stack usage was significantly reduced.

• New preprocessor libraries add support for object orientated programming and clo-
sures.

• New peephole optimizers were added to the compiler.

• The message ”Name too long” was added.

CHAPTER 26. CHANGE LOG 536

Documentation

• All documentation now reflects the functionality of the current version.

• A chapter on preprocessor libraries was added.

• A section on floating point functions was added.

Hints

Porting your V3.61.4 programs to V3.61.5 shouldn’t be any problem. All executables will
run correctly without recompilation. Most source files will need no modifications. There
are two things to consider:

Library reorganization

• The library file dproduct.4th was replaced by an ANS floating point version,
called fvector.4th. If you have programs that use this library, you either have to
integrate the old library or rewrite your program for ANS floating point.

• The words /SPLIT and -SPLIT were taken out of back.4th and placed in library
file of their own. If you have programs that use these words, you have to add
split.4th to the include files.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved word is ’CFIELD:’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed8)
ANS-Forth standard, except for porting purposes.

26.9 What’s new in version 3.61.4

Words

• The words ’[ELSE]’ and ’[IGNORE]’ have been added.

Functionality

• Alternative code after a failed condition can be evaluated during compilation without
repeating the inverted expression.

• Words without compilation semantics can be defined.

• The library files now support stem-leaf plots, finite difference, compass boxing,
HTML and XML character entities, Hamming (7,4) codes and Base64 conversion.

8A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 537

• The library files now support FEXPM1 and FLNP1 for both ANS and Zen floating
point.

• The preprocessor was enhanced. Macros can be undefined with the ’SCRAP:’ key-
word. Simple flow control was added.

• PAD size is increased to 768 characters to make pictured numeric output 64 bit com-
pliant.

Bugfixes

• Several minor bugs in selected library members have been fixed.

• The speed and accuracy of the FSINH, FCOSH and FTANH words was improved.

• The accuracy of the FASIN, FACOS and FATAN words was significantly improved.

• The speed of several other ANS floating point words was significantly improved.

• The preprocessor does now check for undefined or duplicate macros.

• A bug in ’OFFSET’ was fixed.

Developer

• Alternative code after a failed condition can be evaluated during compilation without
repeating the inverted expression.

• Words without compilation semantics can be defined.

• The library files now support stem-leaf plots, finite difference, compass boxing,
HTML and XML character entities, Hamming (7,4) codes and Base64 conversion.

• The library files now support FEXPM1 and FLNP1 for both ANS and Zen floating
point.

• The library file stsstack.4th was rewritten.

• The preprocessor was enhanced. Macros can be undefined with the ’SCRAP:’ key-
word. Simple flow control was added.

• PAD size is increased to 768 characters to make pictured numeric output 64 bit com-
pliant.

Documentation

• All documentation now reflects the functionality of the current version.

• A section on XML and HTML conversion was added.

Hints

Porting your V3.61.3 programs to V3.61.4 shouldn’t be any problem. Most of them will
only need recompilation. Source files will need no or just minor modifications. There are
two things to consider:

CHAPTER 26. CHANGE LOG 538

Library reorganization

The stsstack.4th library used to be initialized like this:

1024 constant /mystack
/mystack string mystack
mystack string-stack

That has now become:

1024 constant /mystack
/mystack string mystack
mystack /mystack string-stack

No other changes are required.

Preprocessor

The following preprocessor variables are not supported anymore: ?#? and ===. If
you used them anywhere in your preprocessor files you’ll have to replace them or use the
following macro definitions (assuming macro variable 4 is not used):

:macro ?#? @match <4< #4# ;
:macro === ?#? [not] ;

Note the definition of === is slightly different, so it cannot be used as a ”drop in” replace-
ment. Given the following example:

:macro create
@1@ @2@ @3@ >#> <#<
>3> === chars [if] #2# string #1# [then]
>3> === cells [if] #2# array #1# [then]

;

Then all you have to do is change it to this:

:macro ?#? @match <4< #4# ;
:macro === ?#? [not] ;

:macro create
@1@ @2@ @3@ >#> <#<
>3> >>> chars === [if] #2# string #1# [then]
>3> >>> cells === [if] #2# array #1# [then]

;

No other changes are required. Note the new preprocessor has some new and powerful
features so it may be worth to rewrite your macros.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’[ELSE]’ and ’[IGNORE]’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed9)
ANS-Forth standard, except for porting purposes.

9A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 539

26.10 What’s new in version 3.61.3

Words

• The words ’[PRAGMA]’, ’/FIELD’ and ’[MAX]’ have been added.

• Renamed ’:THIS’ to ’:REDO’.

• The word ’DOES>’ has been changed.

Functionality

• Unions can be defined.

• The library files now support Chebyshev, Bessel, Hermite, Laguerre and Legendre
polynomials, RAM disks, menus, bitfields, bit arrays, several new sorting algorithms,
Morse signs and 3VL.

• The preprocessor was enhanced, supporting S\", token concatenation, string compar-
ison, variable assignment and smart double number/FP literals.

• ’DOES>’ can also be used to change the execution semantics of basic datatypes.

Bugfixes

• A bug concerning shared libraries in the Linux Makefile was fixed.

• Overflow and underflow errors in number conversion were fixed.

• A bug in the ”IF” statement of 4tsh was fixed.

• The accuracy of the ”FERF” words was significantly improved.

Developer

• Unions can be defined.

• The library files now support Chebyshev, Bessel, Hermite, Laguerre and Legendre
polynomials, RAM disks, menus, bitfields, bit arrays, several new sorting algorithms,
Morse signs and 3VL.

• The preprocessor was enhanced, supporting S\", token concatenation, string compar-
ison, variable assignment and smart double number/FP literals.

• The support function str2cell() was added.

• ’DOES>’ can also be used to change the execution semantics of basic datatypes.

• Instead of defining constants to control conditional compilation in include files, prag-
mas are now supported.

CHAPTER 26. CHANGE LOG 540

Documentation

• All documentation now reflects the functionality of the current version.

• Sections on menus, unions, bit arrays and bitfields were added.

• The sections on structures, sorting, random numbers, changing behavior of data and
adding your own libraries were expanded.

Hints

Porting your V3.61.2 programs to V3.61.3 shouldn’t be any problem. Most executables will
run correctly without recompilation. Source files will need no or just minor modifications.
There are three things to consider:

:THIS..DOES>

The easiest way to convert this expression to the new syntax is to remove ’DOES>’ and
rename ’:THIS’ to ’:REDO’, e.g.:

create myconstant max-n ,
:this myconstant does> @c ;

Becomes:

create myconstant max-n ,
:redo myconstant @c ;

If you fail to remove ’DOES>’ a compiler error is issued. No other changes are required.

Preprocessor

The following preprocessor variables are not supported anymore: %1%, %2%, %3%, %4%,
@#@ and #;#. If you used them anywhere in your preprocessor files you’ll have to replace
them or use the following macro definitions:

:macro %1% ‘ S" ‘ >1> |#| >>> " |#| ;
:macro %2% ‘ S" ‘ >2> |#| >>> " |#| ;
:macro %3% ‘ S" ‘ >3> |#| >>> " |#| ;
:macro %4% ‘ S" ‘ >4> |#| >>> " |#| ;
:macro @#@ >#> <#< ;
:macro #;# ‘ ;‘ ;

Just include them at the beginning of your file and you should be fine. Note that these
definitions are also expanded outside macros, so don’t use preprocessor variables as names
inside your program.

CHAPTER 26. CHANGE LOG 541

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’:REDO’, ’[PRAGMA]’,
’/FIELD’ and ’[MAX]’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed10)
ANS-Forth standard, except for porting purposes.

This release is dedicated to Dennis Ritchie, without whom none of this would be here.

26.11 What’s new in version 3.61.2

Words

• The words ’DONE’, ’TAG’, ’REWIND’ and ’>STRING’ have been added.

Functionality

• Specific code can be executed after a failed ’WHILE’ just before exiting the loop.

• Binary strings can be tagged individually.

• The library files now support UTF-8 to GBK/2 conversion (and vice versa), infix for-
mula translation, string pattern matching, finite state machines, statistical functions
and enhanced command line parsing.

• The library files now support the full range of ANS Forth floating point words for
ZEN float.

• The preprocessor now supports string parsing with custom delimiters, macros within
macros and a string stack.

Bugfixes

• An annoying bug in the ANS float library file was fixed.

• Several minor bugs were fixed in assorted library files.

Developer

• Specific code can be executed after a failed ’WHILE’ just before exiting the loop.

• Binary strings can be tagged individually.

• The library files now support UTF-8 to GBK/2 conversion (and vice versa), infix for-
mula translation, string pattern matching, finite state machines, statistical functions
and enhanced command line parsing.

10A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 542

• The library files now support the full range of ANS Forth floating point words for
ZEN float.

• The library files dblmul.4th, mixed.4th, anscore.4th, files.4th, 2rotover.4th
and pickroll.4th were reorganized.

• Several double and floating point words were added.

• The message ”Wrong type” was added.

• The preprocessor now supports string parsing with custom delimiters, macros within
macros and a string stack.

• Several Makefiles were changed on request by packagers.

Documentation

• All documentation now reflects the functionality of the current version.

• Sections on Chinese character conversion, string pattern matching, statistical func-
tions, finite state machines, infix formula translation, command line parsing and
Makefiles were added.

• The sections on binary strings and complex control structures were expanded.

Hints

Porting your V3.61.1 programs to V3.61.2 shouldn’t be any problem. Most executables will
run correctly without recompilation. Source files will need no or just minor modifications.
There are three things to consider:

Wrong type

Some ’THROW’ signals have changed, although all standard ANS signals have remained
the same. If you explictly evaluate system signals in your program, you may want to recom-
pile it before use. Evaluating system signals by number instead of by symbol (throw.4th)
is considered bad practice.

Library reorganization

Some words have been moved to another library file, so you might have to change your
includes according to the following table:

Word v3.61.1 v3.61.2
2OVER 2rotover.4th anscore.4th
2ROT 2rotover.4th anscore.4th
?DUP anscore.4th pickroll.4th
D* dblmul.4th mixed.4th
UD* dblmul.4th mixed.4th
REWIND files.4th - builtin -

CHAPTER 26. CHANGE LOG 543

Although ”PICK” and ”ROLL” are fully compatible with the previous versions, the cur-
rent, recursive implementation is more compact and also includes ”?DUP”. In some cir-
cumstances certain programs may cease to function properly. In that case you can either:

• Rewrite the program, so ”PICK” or ”ROLL” are no longer required;

• Use the previous version of pickroll.4th.

The use of ”PICK”, ”ROLL” and ”?DUP” in newly created programs is discouraged.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’DONE’, ’TAG’, ’REWIND’
and ’>STRING’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed11)
ANS-Forth standard, except for porting purposes.

26.12 What’s new in version 3.61.1

Words

• The word ’SEEK’ has been changed.

• The words ’2NIP’ and ’[FORCE]’ have been added.

Functionality

• The library files now support a tiny database management system.

• The library files now support double number multiplication and division.

• The library files now support LATEX file generation.

• The library files now support the XCHAR wordset.

• ’SEEK’ can now be used to reposition the file to the end of the file.

Bugfixes

• Corrupted HX files are now handled properly.

• 4tsh now terminates gracefully when it cannot load the monitor.

• ZEN float is now 64bit compatible.

• If a file cannot be closed and throws an exception, it is labeled as such to prevent a
crash.

11A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 544

Developer

• The library files now support a tiny database management system.

• The library files now support double number multiplication and division.

• The library files now support LATEX file generation.

• The library files now support the XCHAR wordset.

• ’SEEK’ can now be used to reposition the file to the end of the file.

• A peephole optimizer was added.

• Automated the include file generation.

Documentation

• All documentation now reflects the functionality of the current version.

• Sections on debugging, databases, database sorting and LATEX file generation were
added.

• The section on optimization was partly rewritten.

Hints

Porting your V3.61.0 programs to V3.61.1 shouldn’t be any problem. All executables will
run without recompilation. Source files will need no or just minor modifications. There is
one thing to consider:

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’2NIP’ and ’[FORCE]’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed12)
ANS-Forth standard, except for porting purposes.

26.13 What’s new in version 3.61.0

Words

• The words ’DELETE-FILE’ and ’ENVIRON@’ have been added.
12A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 545

Functionality

• The library files now support writing OpenOffice, KOffice and Microsoft XML spread-
sheets.

• The library files now support several different sorting algorithms.

• The library files now support Portable Bitmap graphics and Turtle graphics.

• The library files now support the creation of floating point interpreters.

• The library files now support GTK-server.

• The library files now support ANS Forth compatible floating point I/O for ZEN float.

• Files can be deleted and environment variables can be queried.

• The maximum symbol length is increased to 23 characters.

Bugfixes

• Several bugs in the preprocessor PP4tH were fixed.

• Several minor bugs were fixed in assorted library files.

• A TurboC warning concerning certain cgen_4th() generated files was fixed.

Developer

• The library files now support writing OpenOffice, KOffice and Microsoft XML spread-
sheets.

• The library files now support several different sorting algorithms.

• The library files now support Portable Bitmap graphics and Turtle graphics.

• The library files now support the creation of floating point interpreters.

• The library files now support GTK-server.

• The library files now support ANS Forth compatible floating point I/O for ZEN float.

• The maximum symbol length is increased to 23 characters.

• toPAD() in exec_4th() will truncate any string that would overwrite the HOLD
area.

Documentation

• All documentation now reflects the functionality of the current version.

• A list of contributors has been added.

• Sections on writing spreadsheet files, using GTK-server, file deletion, graphics and
environment variables were added to the Primer.

• A section on packing several words in a single token was added to the Development
Guide.

CHAPTER 26. CHANGE LOG 546

Hints

Porting your V3.60.1 programs to V3.61.0 shouldn’t be any problem. Most of them will
only need recompilation. There are two things to consider:

Library reorganization

The xlswrite.4th library was renamed to msxls2-w.4th. The ”XLSopen” word
now returns a flag. This means if you have written any programs that use that library, you
will have to rewrite them slightly:

include lib/xlswrite.4th
s" mysheet.xls" XLSopen
23 XLS.

Has to be changed into:

include lib/msxls2-w.4th
s" mysheet.xls" XLSopen abort" Can’t open file"
23 XLS.

If you have used the ZEN floating point wordset in your programs you will have to add
an extra include file. Just add zenfpio.4th to the list of include files, right after
zenfloat.4th, e.g.:

include lib/zenfloat.4th
include lib/zenfsin.4th

Becomes:

include lib/zenfloat.4th
include lib/zenfpio.4th
include lib/zenfsin.4th

The reason for this change is that a set of fully ANS compatible floating point I/O words
has been made available. The file zentoflt.4th has been replaced by fpin.4th. If
you use ANS compatible floating point I/O, you cannot use standard ZEN floating point
I/O (zenfpio.4th) as well, e.g.:

include lib/zenfloat.4th
include lib/zentoflt.4th

Has to be changed it into:

include lib/zenfloat.4th
include lib/zenans.4th
include lib/fpin.4th
include lib/fpout.4th

Note the use of zenans.4th is mandatory with the use of ANS compatible floating point
I/O. If you still experience problems, you might want to consult chapter 25.3 to resolve
more complex dependency issues.

The word ”SIZE” from files.4th behaves slightly different now. Instead of -1 it now
returns ’(ERROR)’ on error, e.g.:

CHAPTER 26. CHANGE LOG 547

include lib/files.4th
s" doesntex.ist" size dup
-1 = abort" Cannot determine file size"

Becomes:

include lib/files.4th
s" doesntex.ist" size error?
abort" Cannot determine file size"

Which is not only more 4tH-like, but also much easier to understand.

If you have used ’>DOUBLE’, which is defined in todbl.4th, in one of your programs,
e.g.:

include lib/todbl.4th
0. s" -1234567890" >double

Then change it into:

include lib/todbl.4th
0. s" -1234567890" >dnumber

This is a tricky one, because your program will compile fine, but won’t run properly. The
new ’>DOUBLE’ has a behavior similar to ’>FLOAT’. ’S>DOUBLE’ will continue to
function properly, as will the double number version of ’>NUMBER’.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’DELETE-FILE’ and ’ENV-
IRON@’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed13)
ANS-Forth standard, except for porting purposes.

26.14 What’s new in version 3.60.1

Words

• The word ’AKA’ has been changed.

• The word ’FIELD:’ has been added.
13A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 548

Functionality

• The library files now support new TEA and ARC4 encryptions.

• The library files now support cell memory allocations.

• The library files now support several new string words, including Soundex conver-
sion.

• ’AKA’ now also allows aliasing of most built-in 4tH words.

• The preprocessor now supports variables, block files, BEGIN-STRUCTURE, END-
STRUCTURE and SYNONYM.

Bugfixes

• The trigonometric words of the integer math library will now work beyond the 0 - ∏

2
range.

• cmove() was made more solid.

Developer

• BSD pipes API is now supported.

• The RANGE() macro was added to exec_4th().

• The performance of ’REFILL’, ’FILL’, ’TYPE’ and ’ACCEPT’ was enhanced.

• The library files now support new TEA and ARC4 encryptions.

• The library files now support cell memory allocations.

• The library files now support several new string words, including Soundex conver-
sion.

• ’AKA’ now also allows aliasing of most built-in 4tH words.

• The preprocessor now supports variables, block files, BEGIN-STRUCTURE, END-
STRUCTURE and SYNONYM.

• Compilation options of ansmem.4th, compare.4th and interprt.4thwere
added or changed.

Documentation

• All documentation now reflects the functionality of the current version.

• A list of all 4tH library files and their descriptions was added.

• A section on card games was added to the tutorial.

Hints

Porting your V3.60.0 programs to V3.60.1 shouldn’t be any problem. All executables will
run without recompilation. Source files will need no or just minor modifications. There are
three things to consider:

CHAPTER 26. CHANGE LOG 549

COMPARE

Before V3.60.1 case sensitivity was toggled by changing the boolean value of the ignorecase
constant. This is now done by simply defining the casesensitive constant.

INTERPRET

Before V3.60.1 the interpretation of numbers was toggled by changing the boolean value of
the ignorenumbers constant. This is now done by simply defining the ignorenumbers
constant.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved word is ’FIELD:’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed14)
ANS-Forth standard, except for porting purposes.

26.15 What’s new in version 3.60.0

Words

• The words ’RANDOM’ and ’MAX-RAND’ have been removed. The word ’RSHIFT’
has been changed.

Functionality

• The library files now support several random number generators.

• The library files now support simple hashtables and associative arrays.

• The library files now support strpbrk() and strchr() like words.

• ’RSHIFT’ now performs a logical shift.

Bugfixes

• None.

Developer

• Version numbering was changed.

• The library files now support several random number generators.

• The library files now support simple hashtables and associative arrays.

14A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 550

• The library files now support strpbrk() and strchr() like words.

• ’RSHIFT’ now performs a logical shift.

• The compiler now supports tail call optimization.

• strtoc() is now called strtocell().

Documentation

• All documentation now reflects the functionality of the current version.

• A section on optimization and a chapter on uBasic were added.

Hints

Porting your V3.5d release 3 programs to V3.60.0 shouldn’t be any problem. Most of them
will only need recompilation. There are two things to consider:

Random numbers

Every source that uses the ’RANDOM’ or ’MAX-RAND’ word has to be changed slightly,
e.g.:

6 random * max-rand 1 [+] / 1+ . cr

Now becomes:

include lib/random.4th
randomize
6 random * max-rand 1 [+] / 1+ . cr

Note it is best to include ”RANDOMIZE” into any initialization word you already defined.
Programs using ”CHOOSE”15 are not affected.

Right shift

Programs depending on an arithmetic shift when using ’RSHIFT’ should be changed ac-
cordingly. Note that although most C compilers perform an arithmetic shift on signed
numbers, this is not standardized behavior16.

However, if your 4tH compiler’s ’2/’ performs an arithmetic shift, ’RSHIFT’ may be re-
placed by a series of ’2/’ calls, e.g.:

: arshift 0 ?do 2/ loop ;

But that doesn’t mean it will work on another platform or even another 4tH compiler on
the same platform compiled with a different C-compiler.

15Which is defined in choose.4th.
16See: http://en.wikipedia.org/wiki/Arithmetic_shift

CHAPTER 26. CHANGE LOG 551

26.16 What’s new in version 3.5d, release 3

Words

• The words ’[/]’ and ’[SIGN]’ have been added.

Functionality

• The preprocessor was expanded and now takes the DIR4TH environment variable
into account.

• The library files now support ANS Forth compatible versions of all floating point
input and output words.

Bugfixes

• None.

Developer

• The library files now support ANS Forth compatible versions of all floating point
input and output words.

• The library file getenv.4th was rewritten.

• The library file row.4th was changed.

Documentation

• All documentation now reflects the functionality of the current version.

• A chapter on library dependencies was added.

Hints

Porting your V3.5d release 2 programs to V3.5d release 3 isn’t a problem. All executables
will run without recompilation. Source files will need no or just minor modifications. There
are two things to consider:

Library reorganization

If you have used the ANS floating point wordset in your programs you will have to add
an extra include file. Just add ansfpio.4th to the list of include files, right after
ansfloat.4th, e.g.:

include lib/ansfloat.4th
include lib/fsinfcos.4th

Becomes:

CHAPTER 26. CHANGE LOG 552

include lib/ansfloat.4th
include lib/ansfpio.4th
include lib/fsinfcos.4th

The reason for this change is that a set of fully ANS compatible floating point I/O words
has been added. If you still experience problems, you might want to consult chapter 25.3
to resolve more complex dependency issues.

The row.4th library member was awkward to use and syntactically not very clean. This
has been fixed. The following snippet:

:this keyword does>
[’] skey= is key= 2 row
if cell+ @c execute else drop type then

;

Can now be expressed like this:

:this keyword does>
2 string-key row
if cell+ @c execute else drop type then

;

Numeric keys can be searched by using the num-keyword. Both num-key and string-key
are execution tokens, so you can still replace them with your own versions. The words
key=, nkey= and skey= are now private and cannot be called directly anymore.

The getenv.4th library member has been enhanced. Before it was up to you to decide
which OS your program was intended to support, e.g.:

256 env-buffer
/env-buffer string env-buffer
s" $PATH" env-buffer /env-buffer getenv

The getenv.4th library member now determines automatically at runtime which OS is
used. You only have to remove any prefixes or postfixes, e.g.:

256 env-buffer
/env-buffer string env-buffer
s" PATH" env-buffer /env-buffer getenv

No other changes are required.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’[/]’ and ’[SIGN]’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed17)
ANS-Forth standard, except for porting purposes.

17A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 553

26.17 What’s new in version 3.5d, release 2

Words

• None.

Functionality

• A preprocessor was added to the toolchain.

• The library version is shown during 4th startup.

Bugfixes

• A few bugs in the ANS floating point library were fixed.

Developer

• Another floating point library called ZEN float was added.

• REPRESENT is now supported.

• A preprocessor was added to the toolchain.

• The patch4th.4th script allows more complex modifications.

• 4tH can be compiled as a shared library under Linux.

• 4tsh was almost completely rewritten.

Documentation

• All documentation now reflects the functionality of the current version.

• A chapter on the preprocessor was added.

Hints

Porting your V3.5d programs to release 2 isn’t a problem. All executables will run without
recompilation. All sources will compile properly without modification.

This release is dedicated to my father.

26.18 What’s new in version 3.5d

Words

• The words ’BUFFER:’ and ’ERROR?’ have been added.

• The word ’OPEN’ has been changed.

• The word ’AS’ has been dropped.

CHAPTER 26. CHANGE LOG 554

Functionality

• The editor can now save text files.

Bugfixes

• A few bugs in the floating point library were fixed.

• The circular buffer library was rewritten.

Developer

• The library files now support a subset of the Forth Scientific Library.

• Some recent Forth200x submissions were added to the library.

• The license was changed from LGPL v2+ to LGPL v3.

Documentation

• All documentation now reflects the functionality of the current version.

• The Development Guide was expanded.

Hints

Porting your V3.5c release 3 programs to V3.5d shouldn’t be any problem. Most of them
will only need recompilation. There are three things to consider:

Changed words

Previously, ’OPEN’ returned zero on error. This was not according to the 4tH standard,
which uses ’(ERROR)’ to signal a problem. Although there were sound reasons at the time
to deviate from the standard (see section 26.27), this deficiency has been corrected in the
current version.

In order to facilitate the transition, the word ’ERROR?’ has been added. It converts the 4tH
convention to the ANS-Forth convention by adding an additional error flag. Consequently,
’ERROR?’ can also be used for other 4tH words that already return ’(ERROR)’, but its use
is not required and existing programs will continue to work correctly.

This is a typcal file opening construction in version 3.5c:

s" Hello.txt" input open
dup 0= abort" Cannot open file"

You can easily convert it to version 3.5d with ’ERROR?’:

s" Hello.txt" input open
error? abort" Cannot open file"

Note that the stackdiagrams of both constructions are exactly the same.

CHAPTER 26. CHANGE LOG 555

Dropped words

The word ’AS’ has been dropped since it seems very unlikely that this syntactic sugar will
ever be used again. Just replace ’AS’ with ’TO’.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’ERROR?’ and ’BUFFER:’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed18)
ANS-Forth standard, except for porting purposes.

26.19 What’s new in version 3.5c, release 3

Words

• None.

Functionality

• None.

Bugfixes

• A few bugs in the mixed numbers library were fixed.

Developer

• The library files now support most of the FLOAT and FLOAT EXT wordsets.

Documentation

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.5c release 2 programs to release 3 isn’t a problem. All executables will
run without recompilation. All sources will compile properly without modification.

26.20 What’s new in version 3.5c, release 2

Words

• None.
18A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 556

Functionality

• A default 4tH directory can be defined by setting an environment variable.

• Support for creating custom 4tH implementations.

• 4tsh is scriptable now.

Bugfixes

• None.

Developer

• The library files concerning ANS Core Extensions, table searching and interpretation
have been rewritten or replaced.

• A superfluous #define was removed from 4th.h.

Documentation

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.5c programs to release 2 shouldn’t be any problem. All executables will
run without recompilation. However, you might have to change a few source files in order
to make them compile properly.

Library reorganization

Some words have been moved to another library file, so you might have to change your
includes according to the following table:

Word v3.5c v3.5c, release 2
WITHIN anscext.4th ranges.4th
BETWEEN comus.4th ranges.4th
SAVE-INPUT anscext.4th evaluate.4th
RESTORE-INPUT anscext.4th evaluate.4th

Interpreter

The inclusion of interprt.4th has to be done at the very beginning of the program,
like all other include files. ”NotFound” now always uses the same stack diagram: it leaves
the address/count string on the stack that could not be interpreted. ”NotFound” is now a
deferred word with default behaviour, so defining it is optional. Either remove the definition
or change it from, e.g.:

: NotFound type ." is not defined" cr ;

CHAPTER 26. CHANGE LOG 557

To:

:noname type ." is not defined" cr ; is NotFound

The ”dictionary” table used to be mandatory. Change it from e.g.:

create dictionary

To:

create wordlist

After you’ve completely defined the table add this line:

wordlist to dictionary

Your program should compile and run correctly now.

Table search

Both find.4th and lookup.4th have been superseded by row.4th. Since ”ROW”
works slightly different, you might have to do some rewriting. Please consult the primer if
you’re unsure how. If you’re not willing to do that, there are two options:

1. Use the find.4th and lookup.4th from a previous version of 4th;

2. Use the following definitions:

: find
[’] skey= is key= >r row
if nip nip r> cells + @c true
else r> drop drop false
then

;

: lookup
[’] nkey= is key= >r row
if nip r> cells + @c true
else r> drop drop false
then

;

Reserved words

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed19)
ANS-Forth standard, except for porting purposes.

26.21 What’s new in version 3.5c

Words

• The words ’C,’ and ’OFFSET’ have been added.
19A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 558

Functionality

• Binary string constants can be defined.

Bugfixes

• None.

Developer

• MakeSymbol() has been added to comp_4th().

Documentation

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.5b, release 2 programs to V3.5c shouldn’t be any problem. Most of them
will only need recompilation. There is one thing to consider:

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’C,’ and ’OFFSET’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed20)
ANS-Forth standard, except for porting purposes.

26.22 What’s new in version 3.5b, release 2

Words

• Renamed ’FIELD’ to ’+FIELD’. The words ’[NEGATE]’, ’CHOP’ and ’/STRING’
have been added.

Functionality

• None.

Bugfixes

• The word ’->’ allocated slightly more memory than needed. This has been fixed.
20A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 559

Developer

• The function hgen_4th() has been removed from the API.

• The library files have been updated and expanded.

Documentation

• All documentation now reflects the functionality of the current version.

• A section on the 4tH shell (4tsh) has been added.

Hints

Porting your V3.5b programs to release 2 shouldn’t be any problem. All executables will
run without recompilation. However, you might have to change a few source files in order
to make them compile properly. There are two things to consider:

Renamed words

If you used ’FIELD’ in your programs, you’ll have to replace it by ’+FIELD’. No other
changes are necessary.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’[NEGATE]’, ’CHOP’ and
’/STRING’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed21)
ANS-Forth standard, except for porting purposes.

26.23 What’s new in version 3.5b

Words

• The words ’.|’ and ’SYNC’ have been added.

Functionality

• Output buffers can be flushed.

Bugfixes

• None.
21A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 560

Developer

• The CODE() and NEXT macros have been added to allow easy modification of
exec_4th().

• The library files now support most of the CORE and DOUBLE wordsets.

Documentation

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.5a release 2 programs to V3.5b shouldn’t be any problem. Most of them
will only need recompilation. There is one thing to consider:

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’.|’ and ’SYNC’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed22)
ANS-Forth standard, except for porting purposes.

26.24 What’s new in version 3.5a, release 2

Words

• Renamed ’SLEEP’ to ’PAUSE’. The word ’FILES’ has been added.

Functionality

• None.

Bugfixes

• A bad mode string disabled pipes in the Unix version. This has been fixed.

Developer

• None.

Documentation

• All documentation now reflects the functionality of the current version.
22A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 561

Hints

Porting your V3.5a programs to release 2 shouldn’t be any problem. All executables will
run without recompilation. However, you might have to change a few source files in order
to make them compile properly. There are two things to consider:

Renamed words

If you used ’SLEEP’ in your programs, you’ll have to replace it by ’PAUSE’. No other
changes are necessary.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved word is ’FILES’

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed23)
ANS-Forth standard, except for porting purposes.

26.25 What’s new in version 3.5a

Words

• The words ’WORD’, ’”’, ’TOKEN’, ’COPY’, ’TEXT’ and ’WAIT’ have been dis-
carded.

• The words ’NUMBER’, ’ARGS’, ’IS’, ’REPEAT’, ’AGAIN’ and ’UNTIL’ have
been changed.

• Renamed ’@” to ’@C’, ’SKIP’ to ’OMIT’ and ’RESULT’ to ’OUT’.

• The words ’@GOTO’, ’+CONSTANT’, ’SOURCE-ID’, ’CIN, ’COUT’, ’PARSE-
WORD’, ’IMMEDIATE’, ’NOT’, ’INCLUDE’, ’[UNDEFINED]’, ’4TH#’, ’SLEEP’,
’,”’, ’2DUP’, ’2DROP’, ’2SWAP’, ’2>R’, ’2R>’, ’S|’, ’,|’, ’+PLACE’, ’-ROT’, ’BOUNDS’,
’2R@’, ’R’@’, ’UNLOOP’, ’SOURCE’, ’SOURCE!’, ’DEFER@’, ’DEFER!’, ’>BODY’,
’SCONSTANT’, ’:THIS’, ’DOES>’, ’STRUCT’, ’END-STRUCT’, ’->’, ’FIELD’,
’ENUM’, ’SEEK’, ’TELL’, ’AKA’, ’ALIAS’ and ’HIDE’ have been added.

Functionality

• The execution of a 4tH program can be suspended.

• A suspended 4tH program can be saved and reloaded.

• A 4tH program can be embedded in a MS batch file.

• User defined words can be made private.

• User defined words can be aliased.
23A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-

tee member.

CHAPTER 26. CHANGE LOG 562

• User defined terminal input buffers are supported.

• Complete, ANS-Forth compatible redesign of all string handling words.

• Multiple WHILEs are supported with REPEAT, AGAIN and UNTIL.

• Support for structures and enumerations has been added.

• Files can now be opened in read/write mode.

• File pointers can be interrogated and repositioned.

• Limited DOES> support has been added.

• More ANS-Forth, COMUS and TOOLKIT words have been added.

Bugfixes

• Several small bugs in the editor were fixed.

• A small bug in ’FILL’ was fixed.

• A bug in hgen_4th.c that caused SEGFAULT was fixed.

• A security vulnerability in 4th.c was fixed.

Developer

• Several changes in exec_4th(), comp_4th(), save_4th() and load_4th()
to support suspension.

• The function inst_4th() has been renamed to fetch_4th().

• The function store_4th() has been added.

• The Hcode structure has been expanded with the members CellSeg, UnitSeg and
Offset.

• PAD has been converted to a circular buffer for temporary strings.

• Most of the string handling and all file functions in exec_4th() have been rewrit-
ten.

• The entire virtual machine was rewritten and its performance significantly improved.

• All internal 4tH variables are now located in a hidden area of the Integer Segment.

• The performance of ’MOVE’ has been significantly improved.

• The library files have been updated and significantly expanded.

Documentation

• All documentation now reflects the functionality of the current version.

• There is now one single manual.

CHAPTER 26. CHANGE LOG 563

Hints

Porting your V3.3d release 2 programs to V3.5a may require some effort. In previous
versions, string support was quite a mess (IMHO), requiring awkward words like ’COPY’.
Some words returned or expected an address, others an address/count pair. With version
3.5a string support was completely redesigned. Consequently, source files using strings or
arrays of string constants will have to be partially rewritten in order to make them compile
and run properly. There are several things to consider:

Strings

There has been a conversion to the format recommended by the ANS-Forth standard. All
strings are now represented by an address/count pair, with the exception of string vari-
ables and string addresses returned by ’@C’. For this purpose, ’WORD’ has been replaced
by ’PARSE-WORD’. ’NUMBER’ and ’ARGS’ now return an address/count pair. Parsed
strings are no longer copied to PAD, but remain in TIB and are not zero-terminated. How-
ever, since parsed strings are now represented by an address/count pair this should not be a
problem.

Most programs we examined used constructions like this:

[char] ; word count type
s" 567" drop number
1 args count my_variable place

Those can easily be converted to:

[char] ; parse-word type
s" 567" number
1 args my_variable place

As a rule of the thumb, we advise you to use ’COUNT’ only on string variables and string
addresses returned by ’@C’. You might find after a while, that these are the only situations
where ’COUNT’ is actually required. In all other situations, you use the count on the
stack. Special operators like ’2DUP’, ’2DROP’ and ’2SWAP’ have been added to make
manipulation of address/count pairs easier.

Please note that ’OPEN’ already required an address/count pair, but simply discarded the
count. In version 3.5a the count is required. If you didn’t program properly, this might
cause errors now. Well designed programs will continue to function properly.

We advise against the use of ’MOVE’ or ’CMOVE’ for moving strings. Most of these
constructions will continue to work, but some may fail. In any case, they are not portable.
Use ’PLACE’ and ’+PLACE’ wherever you can.

PAD

PAD has been converted into a circular string buffer. Because some routines directly inter-
face with their C counterparts, temporary zero-terminated strings are stored in PAD. When
the buffer overflows it wraps around, overwriting whatever is there. Some previously cor-
rectly running programs may corrupt the PAD this way. If this happens, you can solve this
by storing the overwritten string into a string variable. The reason for all this is that this
now works:

s" This is not overwritten" s" By this string" compare

Number representations are not clobbered unless you use extremely long number formats.

CHAPTER 26. CHANGE LOG 564

Arrays of string constants

Consider this construction:

16 string weekday

create weekdays
" Monday" ,
" Tuesday" ,
" Wednesday" ,
" Thursday" ,
" Friday" ,
" Saturday" ,
" Sunday" ,

weekdays 4 th @’ weekday copy count type cr

’@” returns an address in the String Segment. ’COPY’ is the only word in pre-3.5a versions
that can access the String Segment. It copies the string from the String Segment to an
address in the Character Segment and returns that address . In version 3.5a and up, ’@”
has been replaced by ’@C’. ’@C’ is a lot smarter. It copies the zero-terminated string from
the String Segment to PAD and returns that address. A ’COUNT’ is still needed, but since
all temporary strings in PAD are zero-terminated, this can safely be done:

create weekdays
," Monday"
," Tuesday"
," Wednesday"
," Thursday"
," Friday"
," Saturday"
," Sunday"

weekdays 4 th @c count type cr

Note that the string variable is no longer needed and the resulting code is much cleaner!
String constants are now declared by a simple ’,"’. ’”’ has been discarded. ’@C’ also
works for integer constants and behaves like ’@”.

Deferred words

Deferred words are now fully COMUS compatible. You have to change your programs
only slightly:

defer my-vector

: do-nothing ;
’ do-nothing is my-vector
my-vector execute

Just remove the ’EXECUTE’:

defer my-vector

: do-nothing ;
’ do-nothing is my-vector
my-vector

Please note that ’IS’ is no longer an alias for ’TO’. If you have used illegal constructions
like that, you’ll have to correct them.

CHAPTER 26. CHANGE LOG 565

Library files

Note the library files have been revised and expanded. Some words have been renamed
or placed into another file. Note that the toolbelt.4th and comus.4th library files
are primarily intented for porting purposes. The easy.4th library file is intended to port
4tH programs to other Forth compilers. Note that this only works for ANS-Forth compliant
programs.

Dropped words

’WAIT’ has been dropped and replaced by ’MS’. You’ll have to ’INCLUDE’ the library
file ansfacil.4th in order to use it. Note that this implementation is very crude and
may vary between 0 and +1999 milliseconds24.

’TOKEN’ has been replaced by ’PARSE’, which returns an address/count pair. ’WORD’
has been replaced by ’PARSE-WORD’, which returns an address/count pair. ’COPY’ has
been incorporated into ’@C’.

’TEXT’ has been dropped. If you treat a file as a text file, it will be handled as a text file.
Just remove ’TEXT’:

s" textfile.txt" input text + open

So now it reads:

s" textfile.txt" input open

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’@C’, ’OMIT’, ’OUT’,
’@GOTO’, ’+CONSTANT’, ’SOURCE-ID’, ’CIN, ’COUT’, ’PARSE-WORD’, ’IMME-
DIATE’, ’NOT’, ’INCLUDE’, ’[UNDEFINED]’, ’4TH#’, ’SLEEP’, ’,”’, ’2DUP’, ’2DROP’,
’2SWAP’, ’2>R’, ’2R>’, ’S|’, ’,|’, ’+PLACE’, ’-ROT’, ’BOUNDS’, ’2R@’, ’R’@’, ’UN-
LOOP’, ’SOURCE’, ’SOURCE!’, ’DEFER@’, ’DEFER!’, ’>BODY’, ’SCONSTANT’,
’:THIS’, ’DOES>’, ’STRUCT’, ’END-STRUCT’, ’->’, ’FIELD’, ’ENUM’, ’SEEK’, ’TELL’,
’AKA’, ’ALIAS’ and ’HIDE’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed25)
ANS-Forth standard, except for porting purposes.

26.26 What’s new in version 3.3d, release 2

Words

• The word ’C”’ has been discarded. The words ’[NEEDS’ and ’[DEFINED]’ have
been added.

24The ”Forth Programmers Handbook” states that ’MS’ should be at least the duration plus twice the resolution
of the system (which is one second in 4tH).

25A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 26. CHANGE LOG 566

Functionality

• Source files can be included at compile time.

• The existence of words in the dictionary can be checked at compile time.

• More COMUS words have been added.

• The 4tH program allows you to enter parameters in the menu.

• The Linux module ’binfmt_misc’ is supported.

Bugfixes

• None.

Developer

• Function open_4th() has been rewritten.

• The parser in comp_4th() has been changed significantly and is now much more
transparant.

• There is an extra option in the menu of 4th.c

Documentation

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.3d programs to release 2 shouldn’t be any problem. All executables will
run without recompilation. However, you might have to change a few source files in order
to make them compile properly. There are two things to consider:

Dropped words

If you used ’C”’ in your programs, you’ll have to replace it by ’”’. No other changes are
necessary.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’[NEEDS’ and ’[DEFINED]’

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list or ANS-Forth standard, except for
porting purposes.

CHAPTER 26. CHANGE LOG 567

26.27 What’s new in version 3.3d

Words

• The words ’FILE’ and ’TTY’ have been discarded. The words ’FILE’, ’AS’, ’USE’,
’DEFER’, ’IS’, ’STDIN’ and ’STDOUT’ have been added. The words ’INPUT’,
’OUTPUT’, ’OPEN’ and ’CLOSE’ have been changed.

Functionality

• Multiple files can be opened concurrently.

• More COMUS words have been added.

Bugfixes

• A segment violation was caused in 4th.c when an invalid sequence of commands was
issued. This has been fixed.

• Better errorhandling when a pipe cannot be opened.

Developer

• The file support in function exec_4th() has been rewritten.

• Added DoInitValue().

Documentation

• All documentation now reflects the functionality of the current version.

Hints

Porting your V3.3c programs to V3.3d shouldn’t be any problem. Most of them will only
require recompilation, except when files are manipulated. There are three things to con-
sider:

Using files

The new 4tH file handling module adds the concepts of streams and channels. You have
two channels, an input channel and an output channel. In (standard) 4tH you have eight
streams (you can increase this when you compile 4tH), two are already taken by the system
(stdin and stdout). At startup the stdin stream is connected to the input channel and the
stdout stream is connected to the output channel.

You can open additional streams by using the ’OPEN’ word:

OPEN (a n fmod -- handle)

E.g.

CHAPTER 26. CHANGE LOG 568

s" ls" input pipe + open

This is not a significant deviation from V3.3c in which ’OPEN’ returned only a flag. You
can still interpret the handle as a flag since ’OPEN’ returns zero when it failed.

To use the handle you only have to connect it to the appropriate channel. In V3.3c this was
done by using:

input file

In V3.3d, you use the word ’USE’. ’USE’ takes a handle and connects the stream to the
appropriate channel.

file ls
s" ls" input pipe + open dup as ls
0= abort" Cannot open pipe"

ls use

In V3.3c you had to close a file by closing the channel, while the stream was still connected:

s" ls" input pipe + open
0= abort" Cannot open pipe"

input file
input close

In V3.3d you have to close the stream:

file ls

s" ls" input pipe + open dup as ls
0= abort" Cannot open pipe"

ls use
ls close

The default stream is reconnected to the channel, even if another stream was currently
connected to that channel. We give you an example how 4tH now handles files in respect
to the previous version:

VERSION 3.3C

s" hello.txt" output text + open
0= abort" Cannot open file"
output file
." Hello world" cr
output close

VERSION 3.3D

file hello
s" hello.txt" output text + open dup as hello
0= abort" Cannot open file"
hello use
." Hello world" cr
hello close

I hope you can appreciate the extended possibilities of 4tH and the way we tried to minimize
breaking existing code.

CHAPTER 26. CHANGE LOG 569

Using ’INPUT’ and ’OUTPUT’

Two new constants have been added to 4tH: ’STDIN’ and ’STDOUT’. Before you could
use ’INPUT’ and ’OUTPUT’ as follows:

input file
output tty

Using ’INPUT’ and ’OUTPUT’ this way is depreciated and should be replaced by:

stdin use
stdout use

Please use ’INPUT’ and ’OUTPUT’ only as flags for OPEN.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’AS’, ’USE’, ’DEFER’, ’IS’,
’STDIN’ and ’STDOUT’

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

26.28 What’s new in version 3.3c

Words

• The word ’+UNDER’ has been discarded. The words ’PIPE’, ’PLACE’, ’TOKEN’,
’SKIP’, ’PARSE’, ’/CELL’, ’/CHAR’, ’ABORT”’, ’[ABORT]’ and ’[=]’ have been
added.

Functionality

• A complete mini-IDE has been added.

• Parsing has been enhanced significantly.

• The Unix version now supports pipes.

• More CORE words implemented.

• Some environmental dependancies can be checked at compiletime.

Bugfixes

• Reentry of several 4tH functions was seriously flawed, most notoriously in ’comp_4th()’.
This has been fixed.

CHAPTER 26. CHANGE LOG 570

Developer

• Several new functions have been added, most significantly in the area of C source
generation.

• The loading of sourcefiles is now done by open_4th(); fload() can still be used, but is
no longer supported.

• The function save_4th() has been optimized. HX files are up to 50% smaller com-
pared to those created by previous versions.

• The function dump_4th() has two extra arguments, allowing partial decompilation.

• The file support in function exec_4th() has been rewritten and now supports popen()
and pclose().

• The demonstration program 4th.c has been completely rewritten.

Documentation

• All documentation now reflects the functionality of the current version.

• A document describing a sample session in 4tH interactive mode has been added.

• Several documents have been merged.

Hints

Porting your V3.3a programs to V3.3c shouldn’t be any problem. Most of them will only
require recompilation. There are two things to consider:

Programs using ’+UNDER’

Which is no longer supported. If you have such programs, just add this definition at the
top:

: +UNDER ROT + SWAP ;

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’PIPE’, ’PLACE’, ’TOKEN’,
’PARSE’, ’SKIP’, ’/CELL’, ’/CHAR’, ’ABORT”’, ’[ABORT]’, and ’[=]’.

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

26.29 What’s new in version 3.3a

Words

• The words ’APPEND’, ’TEXT’, ’S"’, ’[*]’, ’[+]’, ’[NOT]’ and ’#!’ have been added.

• The word ’OPEN’ has been changed.

CHAPTER 26. CHANGE LOG 571

Functionality

• An output file can now be opened in "append" and "text" mode.

• A 4tH program can now be run from the shell.

• More CORE words implemented.

• Compiletime calculation is possible now.

Bugfixes

• When reallocation of the segments during compilation fails, resources are freed.

• When memory allocation of the header during the loading of an HX file fails, the file
is closed.

Developer

• Dropped the EasyC syntax.

• Added the proper ’int main()’ declarations.

• Modern prototypes, local include files and no stricmp() function are now the default
behaviour.

• Dropped stricmp() from the distribution and added MatchName() to comp_4th().

• Added CompileString().

Documentation

• All documentation now reflects the functionality of the current version.

• The Developers Guide has been enhanced.

Hints

Porting your V3.2e programs to V3.3a shouldn’t be any problem. Most of them will only
require recompilation. There are two things to consider.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’#!’, ’S"’, ’APPEND’, ’[*]’,
’[+]’, ’[NOT]’ and ’TEXT’.

CHAPTER 26. CHANGE LOG 572

Changed words

The word ’OPEN’ now takes an extra value from the stack. If you used an construction like
this:

64 string filename
" myfile.dat" filename copy
input open

Change it to this:

s" myfile.dat" input open

If you used a construction like this:

refill 0= if abort then
bl word
input open

Change it to this:

refill 0= if abort then
bl word count
input open

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

26.30 What’s new in version 3.2e

Words

• The words ’I”, ’R’, ’QUERY’, ’ENDIF’, ’END’, ’MINUS’, ’NOT’, ’ASCII’, ’2+’
and ’2-’ have been discarded.

• The words ’:NONAME’, ’?DO’, ’BLANK’, ’ERASE’, ’CMOVE>’, ’NIP’, ’TUCK’,
’+UNDER’ ’REFILL’, ’D>S’, ’RSHIFT’, ’CATCH’ and ’MAX-RAND’ have been
added.

• Renamed ’-TRAIL’ to ’-TRAILING’, ’STACK’ to ’STACK-CELLS’, ’#PAD’ to
’/PAD’, ’#TIB’ to ’/TIB’ and ’LIMIT’ to ’MAX-N’.

Functionality

• The Character Segment is now unsigned, so no more negative characters.

• Vectored execution has been enhanced.

• Better implementation of ’RECURSE’.

• Better ANS-Forth compatibility by adding some commonly used words.

• Compatibility with Forth-79 has been dropped.

CHAPTER 26. CHANGE LOG 573

Bugfixes

• load_4th() closes the file when memory allocation failed.

• An error in GetImmediate(), GetConstant() and GetWord() has been
fixed.

• DoRecurse() can now detect the use of ’RECURSE’ outside a colon definition.

Developer

• Complete redesign of the parser. The whole parser now consists of the functions:
ParseText(), ParseString() and ParseDirective(). Inline macros
are supported.

• MoveString() does not require any arguments anymore.

• A textmode has been added to accept().

• Removed and added several tokens.

• The names of all internal words are now pointers instead of sized arrays, which
means name can have any length now.

Documentation

• All documentation now reflects the functionality of the current version.

• The Developers Guide has been enhanced.

• The Porting Guide has been enhanced.

Hints

Porting your V3.1d programs to V3.2e shouldn’t be any problem. There are three things to
consider.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’:NONAME’, ’-TRAILING’,
’?DO’, ’BLANK’, ’ERASE’, ’CMOVE>’, ’NIP’, ’TUCK’, ’+UNDER’, ’REFILL’, ’D>S’,
’RSHIFT’, ’CATCH’, ’/PAD’, ’/TIB’, ’STACK-CELLS’, ’MAX-N’ and ’MAX-RAND’.
Most likely you have used these names for compatibility purposes, e.g.:

: rshift negate shift ;

In that case you can simply remove these definitions.

CHAPTER 26. CHANGE LOG 574

Dropped words

The Forth-79 words ’R’, ’2-’, ’2+’, ’QUERY’, ’ENDIF’, ’END’, ’MINUS’, ’NOT’, ’ASCII’
and ’I” are no longer supported. ’-TRAIL’, ’#PAD’, ’#TIB’, ’LIMIT’ and ’STACK’ have
been renamed. If you have programs that use these words then either modify them or add
the following definitions:

: 2+ 2 + ;
: 2- 2 - ;
: i’ r> r> r> dup >r rot rot >r >r ;
: r r> r> swap over >r >r ;
: query input tty refill 0= if abort then ;
: minus negate ;
: not invert ;
: -trail -trailing ;
: #pad /pad ;
: #tib /tib ;
: limit max-n ;
: stack stack-cells ;

Unfortunately, you still have to replace the following words by their ANS-Forth equivalent,
since there is no colon definition available for them:

CHANGE: TO:
ASCII CHAR, [CHAR]
END AGAIN
ENDIF THEN

Table 26.2: Forth-79 to ANS conversion

Unsigned characters

If a character with an ASCII value greater than 127 was fetched from the Character Seg-
ment, it was converted to a negative value. ’C@’ will now return a positive value. This
means that you can remove patches like these:

: c@’ c@ dup 0< if 256 + then ;

On the other hand, if you have programs that rely on this negative value (e.g. by storing
"-1" in a character), then you have to modify them.

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

26.31 What’s new in version 3.1d

Words

• The words ’AT’ and ’ALLOT’ have been discarded

• The words ’ARRAY’, ’TABLE’, ’.(’, ’ABORT’, ’S>D’, ’"’, ’RECURSE’, ’[IF]’,
’[THEN]’, ’ARGS’ and ’ARGN’ have been added.

CHAPTER 26. CHANGE LOG 575

Functionality

• Better ANS-Forth compatibility (thank you, Wil Baden)

• Commandline arguments are now supported

• Nested assertions are now supported

• Conditional compilation is now supported.

Bugfixes

• ASCII bug has been fixed

• Several bugs in ParseText() and ParseStrings() have been fixed.

Developer

• Added SkipSource(), DecodeSymbol() and DecodeLiteral()

• Added two more arguments to exec_4th()

• Added two more tokens to cmds_4th.h

• Moved <limits.h> to 4th.h

• Added an extra compilation option "LOCAL_H" for those who cannot access /usr/include.

Documentation

• All documentation now reflects the functionality of the current version

• A ’Porting Guide’ has been added

• A ’What’s New’ bulletin has been added

• The ’Developers Guide’ has been enhanced

• The ’Primer’ has been enhanced.

Hints

Porting your V3.1c programs to V3.1d shouldn’t be any problem. There are five things to
consider.

AT

’AT’ has been discarded. Simply replace all occurences of ’AT’ by ’STRING’. If you used
the ’CHARS’ keyword, you can leave right there since it doesn’t have any effect, except
when you are porting your program to Forth.

CHAPTER 26. CHANGE LOG 576

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’ARRAY’, ’TABLE’, ’.(’,
’ABORT’, ’S>D’, ’"’, ’RECURSE’, ’[IF]’, ’[THEN]’, ’ARGS’ and ’ARGN’.

Using ’VALUE’ with ’ALLOT’

If you ALLOTted any space to a VALUE, you should rewrite your code. Note that this is
bad practice anyway. Example:

10 value room 10 cells allot \ allotting space to a VALUE
20 to room \ changing ROOM
5 ’ room first + 4 th ! \ accessing allotted space

Change this to:

11 array room \ define an ARRAY
10 room 0 th ! \ init 1st element of ROOM
20 room 0 th ! \ change 1st element
5 room 4 th ! \ accessing allotted space

Using ’VARIABLE’ with ’ALLOT’

This should be common practice to define cell arrays. However, as Wil Baden pointed
out, this is not a common practice in ANS-Forth. Therefore, the word ’ARRAY’ has been
added, which can easily be implemented in both Forth-79 and ANS-Forth. All the programs
using the old syntax have to be modified, though. Example:

variable room 15 cells allot

Change this to:

16 array room

Special care must be taken of arrays that are sized using a constant, e.g. when the same
constant is used to check the range. Example:

15 constant size
variable room size cells allot

: room? \ is it a valid variable?
dup (n n)
size not and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit

then
;

Change this to:

16 constant size
size array room

: room? \ is it a valid variable?
dup (n n)
size 1- not and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit

then
;

CHAPTER 26. CHANGE LOG 577

ANS-Forth compatibility

Sometimes it proved to be impossible to port a program to ANS-Forth since some construc-
tions could not be implemented. There is no such thing as a ’state’ in 4tH, which means
that compilation- and interpretation semantics are completely the same, e.g.

c" This is a string" value addr
." String address has been stored in ADDR" cr

This is perfectly valid in 4tH, but cannot be ported in any way to ANS-Forth. With the new
version, you can write:

" This is a string" value addr
.(String address has been stored in ADDR) cr

So if you have a 4tH program which you wanted to port to ANS-Forth, but couldn’t, study
the Porting Guide and try again. Note that no change is required if you do not intend to
port your program to Forth. Apart from the modifications already mentioned you do not
have to change a single line.

Our apologies for any inconvenience caused. It is certainly not our policy to change the
syntax with every single version, but we found the arguments in favor of this change so
strong that we didn’t see any other way.

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

Part IV

Development guide

578

Chapter 27

Compiling the source

27.1 Introduction

4tH is primarily designed as a powerful and easy to use toolkit for developers. You can use
it "as is" and you’ve got a very flexible calculation-engine. You can tailor it to a specific
application and push it even further. Or you just might want to use one of the safest and
easiest Forth-alike environments ever created. These are all valid reasons and I will try to
address them all.

First, I will show you how to compile the example applications. They are far from useless.
In fact, you will have created a complete programming environment. Second, I will show
you how to create the 4tH library and how to use it. Third, I will explain to you how the
compiler works and how you can make simple additions to 4tH.

If you find any errors in this document please contact me by sending email to "The.Beez.-
speaks@gmail.com". You would be helping a lot of future 4tH users.

27.2 Recommended and preferred compilers

4tH is written in ANSI-C and K&R C and should be portable to any platform that supports
such a compiler. All memory-models are supported, although the usual restrictions apply.
Of course, it is impossible to test every single compiler on the market, but there are a
number of compilers that are known to work. Preferred compilers are Open Source and are
available for a number of platforms. When properly installed, the entire compilation can
be performed in two simple steps:

make

Then login as root and enter:

make install

That’s all. If the installation fails in the last stage, try:

make mostlyinstall

579

CHAPTER 27. COMPILING THE SOURCE 580

COMPILER URL PLATFORM LABEL

GCC 2.95 msvcrt http://downloads.activestate.com/pub/staff/gsar/gcc-2.95.2-msvcrt.zip Win32 Recommended

Cygwin http://www.cygwin.com/ Win32 Preferred

MinGW http://sourceforge.net/projects/mingw/ Win32 Preferred

Pelles C http://www.smorgasbordet.com/pellesc/ Win32 Recommended

LCC http://www.cs.virginia.edu/~lcc-win32/ Win32 Recommended

TCC http://fabrice.bellard.free.fr/tcc/ Win32 Recommended

Turbo C V2.01 http://bdn.borland.com/article/images/20841/tc201.zip DOS Recommended

DJGPP http://www.delorie.com/djgpp/ DOS Preferred

Table 27.1: List of compilers

Any documentation, library files or example programs must be installed manually. Recom-
mended compilers are free (as in beer) and are known to work1. It’s up to you to figure out
the correct installation procedure. Unlisted compilers may or may not work.

There is no such list for OS/X or Linux. Those platforms usually already come with an
Open Source GCC compiler.

27.3 Compiling 4th

First copy all files to any directory you like. Now make the latter directory your current
directory. The following commands are applicable to Linux, OS/X and other unices.

If you aren’t using an ANSI-C compiler add the "-DARCHAIC" switch. If you are work-
ing on a Unix platform add the "-DUNIX" switch. If it still fails to compile, add the
”-DBSD” switch as well. If it still fails to compile, add the ”-DNOPIPES” switch instead
of ”-DBSD”. You won’t have pipe support of course, but it will work. Finally, the ”-
DNOUNLINK” switch may be your last resort if you’re using a pure C89 or C99 ANSI-C
compiler without any POSIX support.

If you add the include-files to your own /usr/include directory, use the "-DUSRLIB4TH"
switch. Note that this isn’t a recommended practice.

If your compiler features a stricmp() function you want to use instead of 4tHs builtin
MatchName(), use the "-DSTRICMP" switch. These optional switches will be referred
to in the following examples as "$(CFLAGS)".

Unfortunately, not all C-compilers are created equal, so you have to check the documenta-
tion that came with your compiler. You have to check for three things:

1. First, the 4tH-toolkit assumes that all chars are signed. I know there are a few com-
pilers out there, that assume that chars are unsigned (like the RS/6000 and GNU
compilers). In most cases switches are available to correct that. Some K&R com-
pilers do not support the type "void". If so, you might have to add "#define void" to
4th.h.

2. Second, compilers on non-Unix platforms might use different or additional switches,
like those that determine the memory-model or 32bits or 64bits architectures.

3. Third, this documentation assumes you call your compiler with "cc". Borland com-
pilers are called with "bcc" or "tcc". Watcom compilers are called with "wcc". GNU
compilers are called with "gcc". Microsoft compilers are called with "cl" for some
obscure reason (C Language?).

1Note that only a subset of these are tested with each and every release, so your mileage may still vary.

CHAPTER 27. COMPILING THE SOURCE 581

The 4th program is a do-all compiler. It compiles the source, executes it and if you made a
programming error it will decompile whatever it could compile. You can also load existing
objects or save new objects. It takes at least two arguments, which are the command string
and the 4tH-program. In Linux, OS/X or other unices, entering:

make
su
make install

should do the trick. Most MS-DOS compilers contain a version of ‘make‘, but you probably
have to recreate the makefile. Otherwise, compile it with:

cc $(CFLAGS) -O -o 4th 4th.c open_4th.c comp_4th.c exec_4th.c
dump_4th.c load_4th.c save_4th.c errs_4th.c name_4th.c free_4th.c
cgen_4th.c str2cell.c

If your compiler does not support a command line interface, you have to include these files:

free_4th.c
errs_4th.c
name_4th.c
dump_4th.c
exec_4th.c
load_4th.c
save_4th.c
comp_4th.c
open_4th.c
cgen_4th.c
str2cell.c
4th.c

Finally, check if your compiler has a ”signed chars” flag. In GCC it’s called -fsigned-char.
In most Borland compilers this is the default2. Anyway, if your compiler has one - add it
to the command line options or to $(CFLAGS). It might run fine without, but better safe
than sorry.

Note that pp4th.c and 4tsh.c are compiled in more or less the same way. Just replace
4th.c with those files and repeat the compilation procedure.

27.4 Compiling the library

If you want to add the 4tH compiler to your own programs, I strongly advise you to create
a library. As a matter of fact, I will assume that you have created the library later on. The
library uses only a handful of functions, so it is feasible to create the library manually.
However, we advise you to use the Makefile3. Carefully check all macros. In Linux,
OS/X or other unices, entering:

make
su
make install

should do the trick. Most MS-DOS compilers contain a version of make, but you probably
have to recreate the Makefile. The library consists of 11 functions:

24tH was originally developed with Borland C compilers.
3See section 27.5.

CHAPTER 27. COMPILING THE SOURCE 582

comp_4th()
exec_4th()
dump_4th()
free_4th()
save_4th()
load_4th()
errs_4th[]
name_4th[]
open_4th()
cgen_4th()
str2cell()

You can compile each function manually by issuing the command:

cc $(CFLAGS) -O -c <function>.c

You’ll end up with 11 objectfiles. You can add these functions to a library by issuing:

ar r lib4th.a <function>.o

The resulting library must be moved to the /usr/lib directory. When using MS-DOS we
strongly advise you to create a library for each memory-model, like "4ths.lib" for a
small memory-model library, "4thl.lib" for a large memory-model library, etc. When
you compile a function for a particular memory-model you’ll have to add the memorymodel
switch. Then create a library by issuing this command for each function:

lib 4th<model>.lib + <function>.obj

Whether you use a makefile or create the library manually, you should end up with a work-
ing 4tH library. If you are unable to make a working makefile, write a script- or batchfile.
If you have to recreate the library, it will save you a lot of work.

27.5 Choosing Makefiles

There are several different Makefiles for different platforms. The default of the generic
package is Linux. If that one doesn’t work for you, you can resort to the following variants:

FILENAME DESCRIPTION

Makefile The default Makefile for your package
Makefile.LIN A Makefile for the Linux platform, will work for most

distributions and flavors
Makefile.UNX A very vanilla Makefile, most likely to work on a host of

different *nix platforms
Makefile.BSD A vanilla Makefile, targetted at BSD-like platforms like

HP-UX, NeXT, etc.
Makefile.COH A Makefile for the Coherent 4.2 platform
Makefile.OSX A Makefile for the Apple OS/X platform
Makefile.NAN A Makefile to cross compile for the Linux Ben Nanonote

platform
Makefile.W32 A Makefile (for cross compilation) using the MinGW

compiler for the MS-Windows 32-bit platform
Makefile.DOS A Makefile (for cross compilation) using the DJGPP

compiler for the MS-DOS platform

The easiest and most reliable way to activate the Makefile required is to delete or rename
the orginal and rename the Makefile of your choice to Makefile. Then issue:

CHAPTER 27. COMPILING THE SOURCE 583

make

And most likely you’ll get a functioning executable. If it doesn’t work read the Makefile
and the README file of your package for more details. Don’t forget to inform us if some-
thing doesn’t work as advertised or if you have any comments or experiences to share.

27.6 Shared library

If you’re working with 32-bit Linux, you can create shared 32-bit libraries very easily. Just
build the libraries with this switch:

make SHARED=1

If you get a message, you have to run ldconfig. Simply login as root and continue the
installation as follows:

su
make SHARED=1 libinstall

This will install the shared library. Now start ldconfig:

su
ldconfig

Now try again. It should work:

su
make SHARED=1 install

Or, if installation fails in one of the last stages:

su
make SHARED=1 mostlyinstall

If you want to compile against the shared library, you don’t have to a thing. Just type:

gcc -s -Wall -fsigned-char <program>.c -o <program> -l4th

This procedure might work on other GNU platforms too, but this has not been tested.

27.7 64-bit platforms

Although 4tH will work perfectly well on a 64-bit platform there may be some disadvan-
tages:

• HX or C files generated by this compiler may not portable to 32-bit platforms;

• Some 4tH library files may not work properly without some modifications.

CHAPTER 27. COMPILING THE SOURCE 584

If you encounter this problem and want to use 32-bit 4tH objects, a quick fix is to change
the size of a cell to a four byte datatype. The following procedure will usually work. Open
4th.h and change these lines:

#define CELL_MIN LONG_MIN
#define CELL_MAX LONG_MAX

typedef long cell;

To this:

#define CELL_MIN INT_MIN
#define CELL_MAX INT_MAX

typedef int cell;

Save 4th.h and compile as described in the previous sections. If you want a full 64-bit
4tH compiler, be aware that:

• You cannot compile 4tH as a shared library

• You have to regenerate the include files manually, unless you’re working with Linux.

Linux automatically recreates the include files each time you perform a compile. If you’re
working with a GNU toolset, you may try the Linux Makefile. If that doesn’t work or
isn’t an option in your particular situation you’ll have to perform the procedure listed in
section 27.8.

27.8 Regenerating the include files

If you compile the source on an incompatible platform, you will find the editor won’t work.
That’s not much of a problem, generating the correct source for your platform only takes a
few seconds. Just proceed as follows.

First, generate 4tH as usual and install it. The editor still won’t work, but that is not
important right now. Now go to the examples directory of your 4tH distribution and type:

make

After compilation has finished, move editor.h, zeditor.h, teditor.h, mon.h
and pp4th.h to the C source directory. Now compile 4tH again:

make clean
make

Run 4tH and check if the editor loads properly:

./4th

You should see something like this:

CHAPTER 27. COMPILING THE SOURCE 585

4tH library V3.64 - Copyright 1994,2012 J.L. Bezemer

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>e
Cannot open file OK
q

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

>q

If it doesn’t, try another C compiler. Yours may not be compatible4. If it does, you can
safely proceed with the installation:

su
make install

27.9 Optimizations

It really depends on your compiler. Some compilers allow optimizations up to level 3
(-O3), others won’t even produce a usable compilant with any optimization enabled. It
can even depend on the platform you’re compiling for. It is hard to give a general recom-
mendation, but try compiling 4tH without any optimization first, then crank optimization
gradually up until the compilant doesn’t work properly anymore or optimization doesn’t
give you any more speed or size advantages. You may have to do some benchmarking to
find this out5. There is also a program that allows you to test the virtual machine. All listed
preferred compilers allow the highest optimization level. The optimization level can be set
manually or can be adjusted in the Makefile. Consult your compiler documentation for
details.

27.10 GCC specific optimizations

Some people may wonder why 4tH doesn’t come with -fomit-frame-pointer en-
abled. Well, first because the use of this compilation option is highly debatable6 and sec-
ond, because it may have detrimental effects on some platforms. However, if you insist on
using it, you can - although we never found any convincing advantages in either size or
speed.

Using the -DUSEGCCGOTO option may give you a 15 - 25% speed boost - but on some
platforms it may also slow it down by the same amount. This compilation option enables a
GCC-specific language extension, which theoretically makes the VM a whole lot faster. It

4See table 27.1 for a list of compatible compilers.
54tH comes with a wide selection of benchmarking programs.
6http://timetobleed.com/gcc-optimization-flag-makes-your-64bit-binary-fatter-and-slower/

CHAPTER 27. COMPILING THE SOURCE 586

requires an extra file, named gcc_exec.h. This file is generated from cmds_4th.h by
a 4tH program, makegcch.4th.

If you ever want to make extensions to 4tH and you want to get the best performance under
GCC, you will have to regenerate it, since it is not regenerated automatically. Any working
4tH will do:

4th cxq makegcch.4th cmds_4th.h gcc_exec.h

If you want to use any of these options, you will have to edit the CFLAGS section of your
Makefile accordingly, e.g.:

CFLAGS= -DUNIX -DUSEGCCGOTO -fsigned-char -Wall -O3 -s

See section 27.5 for details. Note you really have to do some benchmarks here - otherwise
you may get the opposite of what you were aiming for.

27.11 Using the library

Before we dive into the depths of the API, we will tell you how to compile a program that
uses the 4tH library. If you are using an advanced MS-DOS or MS-Windows compiler this
may or may not apply to you. In that case we advise you to check your documentation. If
you are using a plain vanilla compiler this will usually work. Compile the program with:

cc -c <program>.c

When you use a non-Unix system, link the objectfile with the startup code and libraries
to create an executable program. The <model>.obj is the startup code for C-programs and
<model>.lib is the runtime-library.

link <model>.obj <program.obj>, <program>„ 4th<model>.lib <model>.lib

Unix developers just give the command:

cc <program>.c -o <program> -l4th

If you happen to use the GNU Compiler Collection (gcc), just issue:

gcc -s -Wall -fsigned-char <program>.c -o <program> -l4th

After you’ve built the library you can also issue these commands to (re)compile 4th. If you
happen to use a GNU based platform, you can configure make to work with 4tH. You just
have to create a small Makefile in your current working directory7:

7That is the directory where you are when you call 4tH and is usually pointed to by the environment variable
DIR4TH.

CHAPTER 27. COMPILING THE SOURCE 587

GNU Make - implicit rules for 4tH
Copyright 2006, 2009 Hans Bezemer
%.c : %.4th

4th cgq $< $@
%.c : %.hx

4th lgq $< $@
%.4th : %.4pp

pp4th -o $@ $<
CC=gcc
CFLAGS=-fsigned-char -Wall -O3 -s
LDLIBS=-l4th
LDFLAGS=-s

Note this is only an example, so you may have to change it for your system. Now copy
4th.h to the directory where the 4tH source is located and you’re done:

$ make examples/eliza
4th cgq examples/eliza.4th examples/eliza.c
gcc -fsigned-char -Wall -O3 -s -c examples/eliza.c -o examples/eliza.o
gcc -s examples/eliza.o -l4th -o examples/eliza
rm examples/eliza.c examples/eliza.o
$ examples/eliza
HI! I’M ELIZA. WHAT’S YOUR PROBLEM?
>

Isn’t that easy? You can also use this procedure to turn 4tH utilities like the preprocessor
into full fledged programs. In fact, the Makefile takes the preprocessor into account if
required:

$ make teonw
pp4th -o teonw.4th teonw.4pp
4th cgq teonw.4th teonw.c
gcc -fsigned-char -Wall -O3 -s -c -o teonw.o teonw.c
gcc -s teonw.o -l4th -o teonw
rm teonw.4th teonw.c teonw.o

27.12 Convert 4tH programs to native executables

If you want to convert a running 4tH program to a native executable, you’ll be much better
off if you installed the libraries (see section 27.11). However, if you didn’t, there is a quick
and dirty way to make an executable anyway. First, generate the C-source code for the
program:

4th cgq example.4th example.c

Now copy the following files from your 4tH package into a new directory:

1. 4th.h

2. cmds_4th.h

3. errs_4th.c

4. exec_4th.c

5. str2cell.c

Finally copy your example.c file to the same directory and you’re done. Of course it
depends which compiler you actually use, but this is probably pretty close:

CHAPTER 27. COMPILING THE SOURCE 588

cc $(CFLAGS) -o example exec_4th.c errs_4th.c str2cell.c example.c

Although it will run, it has not been optimized for neither speed nor size. You may also
need to add platform specific switches as specified in section 27.3. Consult your compiler
documentation for more information on this subject and read section 27.9.

Chapter 28

Using the 4tH API

28.1 Introduction

One of the design requirements of the 4tH library was that it had to be very easy to use.
We’ve seen many APIs that were impossible to use and put most of the burden on the
developer.

4tH takes a different direction. We’ve designed an API that almost exactly matches the
tasks you want to perform. Want to compile? Compile. Want to decompile? Decompile.
Want to save? Save. Just like that. No difficult to understand datatypes, no initialization,
no garbage collection, no checks.

The only error, you, the developer can make is fill up memory. Virtually all other errors are
caught by the API. E.g. 4tH will refuse to save or execute a 4tH-program when compilation
failed. Of course, if you manipulate 4tHs datastructures directly you can still bring it to its
knees, but I assume that is not what you want.

What most people tend to forget is that 4tH is first and foremost a library. The executables
that come with it are basically just examples:

pp4th A development system much like ordinary command line based compilers like
gcc.

4th A development system modeled after early versions of Turbo Pascal.

4tsh A multitasking shell that turns 4tH into a kind of operating system.

But a 4tH based C program can be much less elaborate as we will show you in the next
chapter.

28.2 A sample program

There are ten API-functions.

That’s really all! So if you want to compile a 4tH source, save it to disk, execute it and
finally discard it, you’ve virtually written the program.

H-code is nothing but a pointer to a structure. Even if you thought you never worked with
structures before, it’s as easy as working with files. We’ll show you.

When you want to use files you first have to include stdio.h, like:

589

CHAPTER 28. USING THE 4TH API 590

API FUNCTION

comp_4th() Loads and compiles a 4tH source to an H-code object
exec_4th() Executes an H-code object
dump_4th() Decompiles an H-code object
free_4th() Frees an H-code object from memory
save_4th() Saves an H-code object to an HX-file on disk
store_4th() Saves an H-code object to an HX-file in memory
load_4th() Loads an HX-file from disk and installs H-code
fetch_4th() Loads an HX-file from memory and installs H-code
open_4th() Creates a small 4tH program that loads a 4tH source
cgen_4th() Generates a standalone C source with embedded H-code

Table 28.1: API functions

#include <stdio.h>

If you want to use a single file for output, you’ve got to declare a file-pointer like:

FILE* Outfile;

Before you can use a file, you have to open it:

Outfile = fopen ("filename.ext", "w");

If the file cannot be opened, fopen() returns a NULL-pointer. You have to check that
before you can safely use the file:

if (Outfile == NULL) printf ("Unable to open file");
else fprintf (Outfile, "This is written to disk");

Finally, when you’re done, you have to close the file:

fclose (Outfile);

Working with the 4tH library is very similar. When you want to use the 4tH library you
write:

#include "4th.h"

When you use an H-code object (which is a compiled 4tH program), you declare a H-code
pointer:

Hcode* Program;

Before you can use the H-code pointer, we first got to compile a 4tH source. 4tH source
is simply a malloc()ed ASCIIZ string. That means that anything you can convert to a
string stored in dynamic memory can be used as 4tH source. That includes constant strings,
environment variables, lines read from a file, etc.

In this example we use the strdup() function to convert a constant string. We know that
not all runtime-libraries contain such a function, so if you want give it a try, here is the
source:

CHAPTER 28. USING THE 4TH API 591

char *strdup (char* str)
{

char *p;
p = calloc (strlen (str) + 1, sizeof (char));
if (p) strcpy (p, str);
return (p);

}

Now we can all create a 4tH source and compile it. This one will create the famous "Hello
world" program:

Program = comp_4th (strdup (".\" Hello world\" cr"));

Without any checking you can try to execute it:

exec_4th (Program, 0, NULL, 0);

The "0" means we do not want to transfer any variables or constants to the execution en-
vironment, but we’ll get to that later on. You could make a second call to exec_4th()
and see the program execute twice. The H-code is still in memory. In order to free it from
memory, we have to end our program with:

free_4th (Program);

We are finished now. The full program looks like this:

#include "4th.h"
#include <stdlib.h>

int main(int argc, char** argv)
{

Hcode* Program;
Program = comp_4th (strdup (".\" Hello world\" cr"));
exec_4th (Program, 0, NULL, 0);
free_4th (Program);
return (EXIT_SUCCESS);

}

Now compile the C-program and execute it. You should see that it prints "Hello world" on
the screen. Now, that wasn’t too hard, was it?

28.3 A first look at open_4th()

You probably don’t want to compile constant strings. Most certainly you want to create a
source-file and compile it. If you come to think of it, that could be the hardest part when
you want to make your own 4tH-compiler.

Don’t worry. We’ve created a function that handles just that: open_4th(). The function
creates a tiny 4tH program that tells comp_4th() which file to load. open_4th()
requires that filename as its sole argument.

If an error occurs (which is very rare), open_4th() returns a NULL pointer. If open_4th()
is successful it returns a char-pointer to the program in memory. You can feed the return-
value of open_4th() directly to comp_4th(). So, we’ve got to declare a char-pointer
for the return-value of open_4th() and call the function:

CHAPTER 28. USING THE 4TH API 592

char* source;

source = open_4th ("venture.4th");

No need to open or close files, comp_4th() will take care of that. You’re one step closer
to the creation of your own compiler.

28.4 A closer look at H-code

H-code is not just a simple pointer to some simple structure. In fact, it is more complex
than a file-pointer. It is comprised of several parts.

1. First, the header. The header contains all information about the actual program, e.g.
the number of variables, the size of allocated space, its status. The mere existence of
an H-code pointer doesn’t mean you actually got a program you can execute.

2. Second, the Code Segment. This contains the actual program. If you don’t have a
Code Segment, there is nothing to execute since you have no program. The Code
Segment is an array of words. A word consists of a token and an argument. Every
token matches a piece of compiled C in the interpreter. We’ll get to that later on.

3. Third, the String Segment. This segment only contains constant strings, defined by
e.g. S" , ," , .(and .".

4. Fourth, the Integer Segment. This segment contains the stacks and all writable inte-
ger data. It is only present when a program is sleeping (or hibernating, if you prefer).

5. Fifth, the Character Segment. This segment contains all writable character data. It is
only present when a program is sleeping;

6. Sixth, the Symbol Table. This segment translates all user-defined words to executable
code. It is only available during compilation - or when a ’[NAMES]’ directive has
been issued.

The first three parts are read-only to the 4tH-programmer. If you are smart, you consider
them to be read-only too. There is no need whatsoever to change anything here. The API
knows best.

28.5 A closer look at HX-code

S

t

r

i

n

g

S

e

g

m

e

n

t

I

n

t

e

g

e

r

S

e

g

m

e

n

t

C

o

d

e

S

e

g

m

e

n

t

C

h

a

r

a

c

t

e

r

S

e

g

m

e

n

t

Hcode header
*Hcode

S

y

m

b

o

l

T

a

b

l

e

Figure 28.1: Hcode structure

First of all, you have to understand how
numbers are stored in HX-code. There
are four different kinds of numbers in HX-
code:

1. Constants

2. Tiny numbers

3. Short numbers

4. Long numbers

CHAPTER 28. USING THE 4TH API 593

BIT MNEMONIC VALUE SIGNIFICANCE

0 HCSIGN 1 Negative number
1 HCBYTE 2 Tiny number
2 HCSHRT 4 Short number
3 HCZERO 8 0 or CELL_MIN
4 HCONE 16 1 or -1

Table 28.2: HX type-byte encoding

All numbers are preceded by a type-byte,
which depicts the kind of number that is
stored. The type-byte encoding is listed in
table 28.2.

When HCZERO or HCONE are set, there
won’t be any additional bytes. If the type-
byte contains 17 (which is 16 + 1) we’re
actually looking at -1. If the type-byte con-
tains 8, we’re looking at zero. The first
three bytes of any HX-file depict the length
in bytes of a tiny number, a short number
and a long number. Typically they contain
1, 2 and 4. That means if bit 1 is set, the type-byte contains a 2, which means only a single
byte will follow. If bit 2 is set, two bytes will follow and finally, if no bit is set four bytes
will follow.

The bytes following it will always depict a small-endian, positive number. Bit 0 is valid in
any combination and signals a negative number. Since CELL_MIN can differ depending
on the platform it is a constant, depicted by both bit 0 and bit 3 set, which is 1 + 8 (9).
HX-code contains several sections:

• The header

• The Code Segment

• The String Segment

• The Character Segment (optionally)

• The Integer Segment (optionally)

• The checksum

First, we have the header. The header contains certain information so 4tH can establish
its compatibility and create the required environment. The header contains the following
elements:

• The length of a tiny number (in bytes)

• The length of a short number (in bytes)

• The length of a long number (in bytes)

• The largest positive number a cell can contain (CELL_MAX)

• The version of 4tH (in hexadecimal)

CHAPTER 28. USING THE 4TH API 594

• The application byte (usually 0)

• The size of the Code Segment (in elements)

• The size of the String Segment (in characters)

• The offset of the Variable Area (>0 for sleeping VMs)

• The size of the Variable Area (in cells)

• The size of the Character Area (in characters)

The numbers are stored in the format, we described above. The Code Segment requires
some explanation. If a 4tH token does not require any arguments (e.g. ’CR’) no arguments
are stored. If it does (e.g. ’LITERAL’) the actual value is stored right after it in the number
format we have described above.

The Integer Segment and Character Segment are only stored when the HX-code contains a
sleeping VM. When saved, the Integer Segment is completely contained in the HX-code,
stack and all. All numbers are stored in the now familiar format. HX-code contains a
sleeping VM when the offset in the header is greater than 0. The offset is computed by
adding the number of 4tH system variables (both writable and non-writable) to the number
of C-variables that have been passed to exec_4th().

The checksum is the way 4tH checks the integrity of HX-code. Every time 4tH writes a
byte of HX-code, it is XORed with the previous byte. The byte resulting from the sum of
these operations is written last1. When 4tH reads back the HX-code the same operation is
performed, hence the values should be the same or some kind of corruption has crept in. If
that happens, 4tH will reject the HX-code read.

Let’s take a look at a real life example:

: hello ." Hello world!" cr ;
hello

When decompiled, it looks like this:

4tH message: No errors at word 5
Object size: 5 words
String size: 13 chars
Variables : 0 cells
Strings : 0 chars
Symbols : 1 names
Reliable : Yes

Addr| Opcode Operand Argument
0| branch 3 hello
1| ." 0 Hello world!
2| cr 0
3| exit 0
4| call 0 hello

And finally, this is the resulting HX-code:

01 Size of a tiny number

02 Size of a short number
1The same algorithm was used for the Sinclair ZX Spectrum tape handling routines.

CHAPTER 28. USING THE 4TH API 595

04 Size of a long number

00 Start of a long number

FF 1st byte long number

FF 2nd byte long number

FF 3rd byte long number

7F Long number: 7FFFFFFFh

04 Start of short number

64 1st byte of short number

03 Short number: 0364h

08 Constant: 00h

02 Start of tiny number

05 Tiny number: 05h

02 Start of tiny number

0D Tiny number: 0Dh

08 Constant: 00h

08 Constant: 00h

08 Constant: 00h

1D BRANCH

02 Start of tiny number

03 Tiny number: 03h

05 .”

08 Constant: 00h

02 CR

3F EXIT

47 CALL

08 Constant: 00h

48 H

65 e

6C l

6C l

6F o

20 <space>

77 w

CHAPTER 28. USING THE 4TH API 596

6F o

72 r

6C l

64 d

21 !

00 <null>

AE Checksum

Why this elaborate scheme? Well, for two reasons. First, it allows HX-code to be portable
across a wide range of platforms2. Second, it is very compact. If we would write out all
numbers in full, most space would be occupied by zeros. That would be a waste, especially
when embedding HX-files. The speed penalty is negligible.

28.6 A first look at comp_4th()

The function comp_4th() is one of the most complex and most important functions of
the API. It takes a source and compiles that to H-code. If you want to save the source,
copy it or reload it, since comp_4th() consumes it entirely. That is why source has to be
allocated in dynamic memory. On the other hand, it explains why compilation needs very
little memory.

If comp_4th() can’t compile anything, it returns just the header, containing all the in-
formation on what went wrong and where. If there is not enough memory to allocate even
the header it returns a NULL-pointer. If it could compile part of the code it returns what it
could compile. But that might not be everything and you need it all to get a program you
can execute.

Lucky for you, but the API can determine whether comp_4th() returned an executable
H-code or not. If exec_4th() doesn’t execute the program, it just couldn’t.

The comp_4th() function is just as smart. It can survive the NULL pointer you feed it.
When you read on, you’ll find out that the comp_4th() function is a toolkit by itself with
lots of tools to create your own 4tH words.

If we extend the example we started with open_4th(), we could continue like this. In
order to make an executable H-code we feed source to comp_4th() and get H-code in
return. We just need a pointer to store its address:

Hcode *Program;

So the entire 4tH-compiler now looks like:

char *source;
Hcode *Program;

source = open_4th ("venture.4th");
Program = comp_4th (source);

We assume you want to execute the program you’ve just compiled, so we’ll continue with
the interpreter-function called exec_4th().

2As long as the 7-bit ASCII characterset is supported. EBCDIC HX-files will not be portable for obvious
reasons.

CHAPTER 28. USING THE 4TH API 597

28.7 A first look at exec_4th()

The exec_4th() function is essentially very simple. It contains small pieces of C that
can be matched with the tokens in the Code Segment. The exec_4th() function executes
these small pieces of C until there are no more words left to execute or an error occurs.

Additionally, it creates two new segments, which are discarded when exec_4th() ter-
minates without hibernation. Each segment is essentially an array of a specific datatype.
The sizes of these segments are specified in the header of the H-code.

The Character Segment contains characters. First, the Terminal Input Buffer, abbreviated
to TIB. When you execute REFILL, this is the place where the string you typed is stored.
Second, the PAD. This is the place where exec_4th() stores temporary strings. Finally
the Allocation Area where strings, defined by STRING are allocated.

The Integer Segment contains signed 32 bit integers. First, the Stack Area. It contains both
the return stack and the data stack. The return stack grows downward and the data stack
grows upward. Second, the System Variable Area. The System Variable Area contains
three variables, HANDLER, HERE and HLD. They can only be accessed by 4tH itself.
Third, the Variable Area. The Variable Area contains four basic types of variables.

First, the environment variables. In standard 4tH there are five environment variables, HI,
FIRST, LAST, CIN and COUT. They are all read-only. Second, the predefined variables.
In standard 4tH there are five predefined variables, BASE, >IN, OUT and the variable pair
SOURCE. Later on, we’ll teach you how to add your own. Third, the application variables.
These are copies of C-variables or constants. Fourth, the user-defined variables. These
are defined by the application-programmer with VARIABLE, VALUE, DEFER, FILE or
ARRAY.

The exec_4th() function takes an H-code pointer and returns the current value of the
variable OUT when it exits. When an error occurs, exec_4th() returns always the
largest negative 32 (or 64) bit integer, which is also the default value of OUT. In order to
give you maximum control, you can also transfer string-arrays and C-variables or constants
to exec_4th().

C-variables have to be of type ’cell’. This type is predefined in the 4th.h headerfile. So
you can just write:

#include "4th.h"
cell february = 29;

You can mix constants or variables as you like. Just add the appropriate cast. You also have
to declare the number of variables or constants you transfer (in this case 12). Let’s say you
transfer the number of days of each month to exec_4th():

#include "4th.h"
#include <stdlib.h>

int main (int argc, char** argv)
{

cell february = 29;
cell Result;
Hcode *Program;
char *source;

source = open_4th ("months.4th");
Program = comp_4th (source);
Result = exec_4th (Program, 0, NULL, 12, (cell) 31,
february, (cell) 31, (cell) 30, (cell) 31, (cell) 30, (cell)

CHAPTER 28. USING THE 4TH API 598

31, (cell) 31, (cell) 30, (cell) 31, (cell) 30, (cell) 31);
return (EXIT_SUCCESS);

}

The application-programmer can use the ’APP’ variable to access all months:

12 0 do app i th ." days: " ? cr loop

Later, we’ll learn you how to assign names to those application-dependant variables. Note
that although ’Result’ contains the return-value of the months.4th program, the C-
program does absolutely nothing with it. In the next example we’ll show you how you
can use this value.

Take this C-program:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;
Hcode *Program;
char *source;

source = open_4th ("calc.4th");
Program = comp_4th (source);
Result = exec_4th (Program, 0, NULL, 2, (cell) 5, (cell) 7);
printf ("Result: %ld\n", (long) Result);
return (EXIT_SUCCESS);

}

This program compiles calc.4th and transfers ’5’ and ’7’ to exec_4th(). What is
returned in ’Result’ depends on what calc.4th does. Let’s take a look at calc.4th:

app 0 th @ app 1 th @ + out !

It fetches both variables, adds them and assigns the sum to OUT. Thus, when exec_4th()
terminates it returns the value of OUT. This value is assigned to ’Result’. Then, ’Result’ is
cast to ’long’ and displayed:

Result: 12

We haven’t used the other two arguments of exec_4th() yet. These are used to pass
string constants to your 4tH application. Most of you will use it to pass commandline
arguments to 4tH.

Let’s say we want to pass these arguments to 4tH in C-style. So "0 ARGS" is the name of
our 4tH-program. That means we have to skip the name of the C-program itself. The name
of our 4tH-program in in argv [1]. That also means we have to decrement argc, before
passing it to exec_4th():

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

CHAPTER 28. USING THE 4TH API 599

Hcode *Program;
char *source;

if (argc > 0) {
source = open_4th (argv [1]);
Program = comp_4th (source);
(void) exec_4th (Program, argc - 1, argv + 1, 0);
return (EXIT_SUCCESS);

}
return (EXIT_FAILURE);

}

Note that argv [1] is not the same as argv + 1! When we call our C-program with:

main args.4th hello here I am

argc will be 6. That means exec_4th() will get a stringarray with five strings (since we
discarded one). We can access these strings by:

argn 0> if argn 0 do i args type cr loop then

Which would print:

args.4th
hello
here
I
am

You do not have to pass argc and argv; other string arrays of the same type (**char or
*char[]) are okay too. Just don’t forget to pass the correct number of elements in the
string array.

So now you know how your H-code program can communicate with your C-program. You
can transfer any number of variables to the 4tH-environment and retrieve the result. You
can even pass commandline arguments to the 4tH-environment and use them inside your
application. In the next section you will be introduced to some other interesting properties
of the 4tH-environment.

28.8 A first look at free_4th()

Let’s take a look at this program:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;
Hcode *Program;
char *source;

source = open_4th ("calc.4th");
Program = comp_4th (source);
Result = exec_4th (Program, 0, NULL, 2, (cell) 5, (cell) 7);
printf ("Result: %ld\n", (long) Result);
Result = exec_4th (Program, 0, NULL, 2, (cell) 12, (cell) 9);
printf ("Result: %ld\n", (long) Result);
return (EXIT_SUCCESS);

}

CHAPTER 28. USING THE 4TH API 600

Essentially, it is the very same program we’ve seen in the previous section. But here the
calc.4th program is executed twice with different arguments. Can that be done without
recompiling the program? Yes! The pointer ’Program’ is still valid and points to the very
same 4tH program in memory. You can execute it any number of times without recompil-
ing. You can go even further:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;
char *source;
Hcode *Multiply;
Hcode *Subtract;

source = open_4th ("multiply.4th");
Multiply = comp_4th (source);
source = open_4th ("subtract.4th");
Subtract = comp_4th (source);

Result = exec_4th (Multiply, 0, NULL, 2, (cell) 7, (cell) 5);
printf ("Result: %ld\n", (long) Result);
Result = exec_4th (Subtract, 0, NULL, 2, (cell) 7, (cell) 5);
printf ("Result: %ld\n", (long) Result);
return (EXIT_SUCCESS);

}

The file multiply.4th contains:

app 0 th @ app 1 th @ * out !

The file subtract.4th contains:

app 0 th @ app 1 th @ - out !

So executing this C-program will give the following result:

Result: 35
Result: 2

And yes, both programs can be re-executed any number of times. But what if some 4tH
program has served his purpose? Does it have to remain in memory all the time? No.
Since it is located in dynamic memory it can be freed. Not with free(), since H-code is
too complex to be served with a simple function like free(). But a special function is
included in the API, which serves the same purpose:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;
char *source;
Hcode *Multiply;
Hcode *Subtract;

CHAPTER 28. USING THE 4TH API 601

source = open_4th ("multiply.4th");
Multiply = comp_4th (source);
source = open_4th ("subtract.4th");
Subtract = comp_4th (source);

Result = exec_4th (Multiply, 0, NULL, 2, (cell) 7, (cell) 5);
printf ("Result: %ld\n", (long) Result);

free_4th (Multiply);

Result = exec_4th (Subtract, 0, NULL, 2, (cell) 7, (cell) 5);
printf ("Result: %ld\n", (long) Result);
free_4th (Subtract);
return (EXIT_SUCCESS);

}

The function free_4th() takes an Hcode-pointer and frees all resources. There is really
nothing more to it. Remember that free_4th() doesn’t alter the pointer itself. It may
still contain a value, but of course using that value is asking for trouble. The API checks
quite a few things by itself, but that doesn’t mean you can start to write sloppy programs!

28.9 A first look at save_4th()

We’ve already seen that we can compile a 4tH-program and keep it in memory for as long
as we want. We can also discard it if we don’t need it anymore. But what if we want to
reuse the compilant later? Or if we want to distribute 4tH programs without revealing our
source-code?

You can do that easily. 4tH uses another main format which not only enables you to load
compiled programs, but also run them on a multitude of platforms. It is called the ’Hcode
eXecutable’ (HX-file) and it is fully portable across all platforms 4tH supports.

Saving a program is very easy too. You don’t even have to open or close files. Here is a
very simple compiler:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

char *source;
Hcode *Program;

if (argc == 3) {
source = open_4th (argv [1]);
Program = comp_4th (source);
save_4th (Program, argv [2]);

free_4th (Program);
return (EXIT_SUCCESS);

}
return (EXIT_FAILURE);

}

You just declare the input and the output file on the commandline and when no errors occur
an HX-file is saved to disk. The save_4th() function takes the Hcode pointer and the
filename you want to save it to. Note save_4th() supports hibernation too; just feed it
a sleeping virtual machine. That’s all!

CHAPTER 28. USING THE 4TH API 602

28.10 A first look at load_4th()

But you don’t just save compiled programs. You want to be able to reuse them too. There
is a special function that reads an HX-file and restores the H-code to its original form. This
API-function is easy to use too. Just feed it the name of the file and it returns a pointer to
the H-code. This is the listing of a simple HX-execute:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

Hcode *Program;
cell Result;

if (argc == 2) {
Program = load_4th (argv [1]);
Result = exec_4th (Program, 0, NULL, 0);
printf ("Result: %ld\n", (long) Result);
free_4th (Program);
return (EXIT_SUCCESS);

}
return (EXIT_FAILURE);

}

You just declare the HX-file on the commandline and when no errors occur it is executed.
Finally, it displays the result of the program.

28.11 A first look at error-trapping

If you are a professional programmer you might appreciate the ease of use of the 4tH
toolkit, but you have the feeling you don’t have any control. If that were the case, we would
feel the same way. In fact, you have all the control you’ll ever need. In the background,
4tH keeps track of everything that is happening.

We’ve already discussed the header of the H-code. All status-information is stored here.
And it’s all available. May be you’ll find it a little more complex and intimidating, but you
can easily master it. Let’s take a look at this piece of code:

Hcode *Program;

Program = comp_4th (strdup (".\" Hello world\" cr"));

This piece of code tries to compile the classic "Hello world" program. But did it compile?
If comp_4th() returned a NULL-pointer, you know there was not enough memory. But
like any other compiler, there are a million other things that can go wrong. Although other
API functions will refuse unreliable H-code, sometimes we want to check it ourselves and
take alternative action if necessary.

All information regarding the status is saved in the header. But if comp_4th() returns a
NULL-pointer there is no header. So we have to check that first:

Hcode *Program;

Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL) printf ("Not enough memory\n");

CHAPTER 28. USING THE 4TH API 603

If the program enters the ’else’ clause we know that a header exists. Now we need to check
the status. Did an error occur? There are two members in the header we can check. First,
’ErrNo’ which contains an error-code. If ’ErrNo’ contains ’0’, there were no errors:

Hcode *Program;

Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL)
printf ("Not enough memory\n");

else {
if (Program->ErrNo == 0)

(void) exec_4th (Program, 0, NULL, 0);
else

printf ("There were errors\n");
}

Note that the member ’ErrNo’ is closely linked to the H-code. That is hardly surprising
since it is part of the H-code! But we still don’t know which error occurred.

Fortunately, there is a predefined array of error-messages we can use. It is called errs_4th[]
and you can use it without declaring it explicitly, since 4th.h takes care of that. If you
have correctly built the library it will automatically be linked in:

Hcode *Program;

Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL)
printf ("Not enough memory\n");

else {
if (Program->ErrNo == 0)

(void) exec_4th (Program, 0, NULL, 0);
else

printf ("Error: %s\n", errs_4th [Program->ErrNo]);
}

Of course, checking error-codes by the number is not ideal from a maintenance point of
view. In 4th.h you’ll find a lot of #define-s describing these errors. The mnemonic
for ’no errors’ is ’M4NOERRS’, so we can slightly alter our program to:

Hcode *Program;

Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL)
printf ("Not enough memory\n");

else {
if (Program->ErrNo == M4NOERRS)

(void) exec_4th (Program, 0, NULL, 0);
else

printf ("Error: %s\n", errs_4th [Program->ErrNo]);
}

In the next section we’ll show how you can help the 4tH-programmer to pinpoint his errors
even more precisely.

28.12 A first look at dump_4th()

The function dump_4th() is essentially a decompiler. Let us show you a small part of a
program by Leo Brodie we converted to 4tH:

CHAPTER 28. USING THE 4TH API 604

16 CONSTANT #NAME
8 CONSTANT #EYES
16 CONSTANT #ME (length of fields)

#NAME STRING NAME
#EYES STRING EYES
#ME STRING ME (calculate values)

...

If you decompile the entire program you will get a listing, which consists of two parts. First
the header:

4tH message: No errors at word 69
Object size: 69 words
String size: 208 chars
Variables : 0 cells
Strings : 40 chars
Symbols : 9 names
Reliable : Yes

First it will present the current status of this Hcode program. The words are numbered and
we begin counting at zero. This means this program is okay, since word 68 is the very
last word. We can derive that information from the second field that lists that there are 69
words, numbered from 0 to 68. The third field tells us there are 208 characters stored in the
String Segment.

The next two fields tell us something about the runtime-environment. The total number of
strings we defined take up 40 bytes and we defined no variables. Finally, 4tH tells us this
piece of Hcode is reliable. That means it can be saved to disk or executed. If it had told us
the Hcode was not reliable, we could still have decompiled it. Otherwise it could get very
hard to pinpoint an error. Next is the decompiled program itself:

Addr| Opcode Operand Argument
0| branch 8 ENTER
1| over 0
2| over 0
3| literal 32
4| fill 0

...

As you will see, you can still tell what this program is all about. Since 4tH has no dictionary,
but uses a symbol-table, all lexical references are usually gone. There is no indication that
the first word was ever called ’ENTER’. In fact, if you would name them differently, it
would still compile to the very same Hcode. But there is a way around this, as we will see
later.

The numbers before the bar are the ’addresses’ of the words. Then it prints the name of the
compiled token, the ”opcode” or ”operator”. Finally the operand part of the word is printed
under ”Operand”.

Not all tokens have operands. ’OVER’ and ’FILL’ don’t need one. They either take their
arguments from the stack or don’t have any. But ’LITERAL’ and ’BRANCH’ do need them.
’LITERAL’ needs the value of the number it has to throw on the stack and ’BRANCH’
needs the address it has to branch to (in fact, it branches to the next token after the indicated
address). The interpreter "knows" which token has a valid argument and which ones it can
ignore.

CHAPTER 28. USING THE 4TH API 605

But you surely want to know how you can integrate this decompiler into your own pro-
grams. Like all other functions, it needs an Hcode-pointer. It also needs a device where
you can send the report to.

To give you maximum flexibility we used an open stream, so you can use the screen, a
printer or a file. A disadvantage is you have to open and close the file yourself when
applicable.

We also gave you the opportunity to do a partial listing. You can tell dump_4th()
what range you want to decompile. These parameters are protected too. If you feed
dump_4th() an invalid range it will try to figure out which range is most applicable.
This allows you to do a full listing with minimum effort by issuing a range from word 0 to
word -1.

A sample application may look like this:

FILE *ErrFile;
Hcode *Program;

/* other code */

if ((ErrFile = fopen ("error.lst", "w")) == NULL)
printf ("Cannot open file\n");

else {
dump_4th (Program, ErrFile, 0, -1);
if (fclose (ErrFile)

printf ("Error closing file\n");
}

If you want to print it to screen, you can use either ’stdout’ or ’stderr’. Note that ’stderr’
cannot be redirected easily under MS-DOS, so we’ll use ’stdout’ here:

Hcode *Program;

/* other code */

dump_4th (Program, stdout, 0, -1);

You can always provide a report when compiling or you can use error-checking to decide
whether you execute or save Hcode or print a report. This is the listing of a complete
compiler:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

char *source;
Hcode *Program;

if (argc == 2) {
source = open_4th (argv [1]);
Program = comp_4th (source);

if (Program == NULL)
printf ("Not enough memory\n");

else {
if (Program->ErrNo == M4NOERRS)

(void) exec_4th (Program, argc - 1, argv + 1, 0);
else dump_4th (Program, stdout, 0, -1);

CHAPTER 28. USING THE 4TH API 606

free_4th (Program);
return (EXIT_SUCCESS);

}
}
return (EXIT_FAILURE);

}

This program loads a source, compiles it and executes the resulting Hcode if no errors
occurred. It tells you when there is not enough memory and provides a decompiler-listing
on screen when a programming error was made. Pretty neat, huh?

Now, you have probably figured out that there has to be a way to produce a symbolic
decompile, because the label ”ENTER” is clearly shown in the decompilation. However,
you cannot select it when you invoke dump_4th(). As a matter of fact, comp_4th()
is the one who decides whether you can do a symbolic decompile. Usually, comp_4th()
discards the symboltable when it is done - unless the user decides otherwise. If he adds a
’[NAMES]’ directive to his source, comp_4th() will keep the symboltable as part of the
Hcode structure.

If dump_4th() detects an intact symboltable, it will act accordingly. The reason is sim-
ple: when does the average programmer require a symbolic decompile? When he is de-
veloping. So he adds the ’[NAMES]’ directive and no matter which tool he is using, he’ll
get a symbolic decompile. When he’s done, he either removes the directive or comments it
out.

And no, You can’t ”force” comp_4th.c() to keep the symbol table. If you really want
a symbolic decompile, your best best is to make your own version of open_4th() -
which isn’t too hard - and splice in the ’[NAMES]’ directive there. A similar trick is
used in pp4th, which uses the preprocessor to splice in the ’[NAMES]’ directive. Note
the symboltable is not saved in .hx files either - why should it. You can only get it if
comp_4th() is somewhere in the chain.

28.13 A first look at cgen_4th()

cgen_4th() allows you to create native standalone programs with minimal effort. It is
a lot like save_4th(). All you need is a Hcode object in memory and an open stream.
The stream will allow you to send the C program cgen_4th() generates to screen, file
or a printer. A sample application could look like this:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

Hcode *Program;
cell Result;
FILE *CFile;

if (argc == 2) {
if ((CFile = fopen ("myfile.c", "w")) != NULL) {

Program = load_4th (argv [1]);
cgen_4th (Program, CFile);
free_4th (Program);
fclose (CFile);
return (EXIT_SUCCESS);

}
}
return (EXIT_FAILURE);

}

CHAPTER 28. USING THE 4TH API 607

This program will load an HX file and send a complete C source to myfile.c. You can
compile it by issuing3:

cc myfile.c exec_4th.c errs_4th.c str2cell.c -o myfile

or, if you have the 4tH library installed by:

cc myfile.c -o myfile -l4th

Just like any other 4tH related C program. You will have a native executable for your
platform and nobody will ever know it’s actually a 4tH program. But there are even more
ways to use embedded 4tH as we will see.

28.14 Converting HX-files

With the 4tH program bin2h.4th you can convert HX-files to portable C-source. This
opens a whole new range of applications. cgen_4th() is a quick way to create stan-
dalone programs, but bin2h.4th allows you to embed highly compacted HX code into
your C program.

This is particularly useful when memory is tight, because you can load the HX code when
it is actually needed and discard it afterwards. Furthermore, you can have several HX code
snippets inside your C program, which is not possible when using cgen_4th().

On the downside, HX code is a little more difficult to handle. bin2h.4th just creates the
embedded code, not an entire program. You will have to write that yourself. Furthermore,
in order to use bin2h.4th you need to create an HX file first. Still, using bin2h.4th
is dead easy:

4th cxq bin2h.4th -n HelloWorld myprog.hx myprog.h

You might have noticed that the only thing you have to provide is the name of the HX file
(myprog.hx), the name of the include file (myprog.h) and the name of the variable in
which the embedded HX code is stored by using the -n option (HelloWorld). There is
also a -t option wich allows you to specify the type.

28.15 A first look at fetch_4th()

A typical bin2h.4th generated includefile looks like this:

static unit EmbeddedHX [] = {
’\x01’, ’\x02’, ’\x04’, ’\x00’, ’\xff’, ’\xff’, ’\xff’, ’\x7f’, ’\x04’,
’\x64’, ’\x03’, ’\x08’, ’\x02’, ’\x05’, ’\x02’, ’\x0d’, ’\x08’, ’\x08’,
’\x08’, ’\x1d’, ’\x02’, ’\x03’, ’\x05’, ’\x08’, ’\x02’, ’\x3f’, ’\x47’,
’\x08’, ’\x48’, ’\x65’, ’\x6c’, ’\x6c’, ’\x6f’, ’\x20’, ’\x77’, ’\x6f’,
’\x72’, ’\x6c’, ’\x64’, ’\x21’, ’\x00’, ’\xae’

};

Since it contains compiled code there is no need for functions like comp_4th(). How-
ever, HX code can not be fed to exec_4th() directly. It has to be loaded first. The
function load_4th() does this automatically. There is a function in the 4tH API to load
bytecode from memory, called fetch_4th(). Just pass the HX code pointer to it:

3See section 27.11.

CHAPTER 28. USING THE 4TH API 608

Hcode* Program;
Program = fetch_4th (HelloWorld);

Now the bytecode is installed and can be executed by exec_4th() in the usual way:

(void) exec_4th (Program, 0, NULL, 0);

In this case, it will simply print "Hello world!" to your screen.

28.16 A first look at store_4th()

And what if you don’t want to store bytecode on disk, but in memory? Well, you can do that
too. 4tH provides the function store_4th(), which takes a Hcode pointer, a pointer to a
buffer and the size of that buffer. It is very easy to use. Just create a sufficiently large buffer,
either dynamic or static, and load the Hcode. No need to worry about buffer overflow, when
properly used store_4th() will prevent such mishaps. It will even return the amount
of bytes it has written:

#include "4th.h"
#include <stdlib.h>

int main (int argc, char **argv)
{
Hcode *Object; /* Hcode object */
unit Buffer [1024]; /* memory allocated to bytecode */
char *Program; /* 4tH sourcecode */
size_t MySize; /* number of bytes written to memory */

Program = open_4th ("hello.4th"); /* create sourcecode */
Object = comp_4th (Program); /* compile and save the sourcecode */
MySize = store_4th (Object, Buffer, sizeof (Buffer));
printf ("%s, %ld bytes used\n", errs_4th [Object->ErrNo], MySize);
free_4th (Object); /* destroy the Hcode object */

Object = fetch_4th (Buffer); /* read the bytecode from ’Buffer’ */
exec_4th (Object, 0, NULL, 0); /* execute the Hcode object */
free_4th (Object); /* destroy the Hcode object again */
return (EXIT_SUCCESS); /* signal ’everything ok’ */

}

This program compiles some 4tH source, saves the HX code in a buffer and then discards
the original Hcode. Finally, the HX code is reloaded, run and discarded again. Note that
store_4th() supports hibernation, like its close brother save_4th(). When this
program is run it will display:

No errors, 42 bytes used
Hello world!

Needless to say that you can do very neat things with this function, like paging programs in
and out very quickly using very little memory, storing multiple programs in a single buffer,
etc. Use your imagination!

CHAPTER 28. USING THE 4TH API 609

28.17 Examples of embedded HX code

The include-files bin2h.4th generates contain global variables. You can either integrate
them in your sourcecode or include them, e.g:

#include <stdlib.h>
#include "4th.h

#include "hello.h"

or:

#include <stdlib.h>
#include "4th.h"

static unit EmbeddedHX [] = {
’\x01’, ’\x02’, ’\x04’, ’\x00’, ’\xff’, ’\xff’, ’\xff’, ’\x7f’, ’\x04’,
’\x64’, ’\x03’, ’\x08’, ’\x02’, ’\x05’, ’\x02’, ’\x0d’, ’\x08’, ’\x08’,
’\x08’, ’\x1d’, ’\x02’, ’\x03’, ’\x05’, ’\x08’, ’\x02’, ’\x3f’, ’\x47’,
’\x08’, ’\x48’, ’\x65’, ’\x6c’, ’\x6c’, ’\x6f’, ’\x20’, ’\x77’, ’\x6f’,
’\x72’, ’\x6c’, ’\x64’, ’\x21’, ’\x00’, ’\xae’

};

It’s really up to you. You can install and uninstall HX code as often as you want. You can
also have multiple instances of the HX code in memory if you need to. E.g. this is perfectly
valid:

#include <stdlib.h>
#include "4th.h"

static unit EmbeddedHX [] = {
’\x01’, ’\x02’, ’\x04’, ’\x00’, ’\xff’, ’\xff’, ’\xff’, ’\x7f’, ’\x04’,
’\x64’, ’\x03’, ’\x08’, ’\x02’, ’\x05’, ’\x02’, ’\x0d’, ’\x08’, ’\x08’,
’\x08’, ’\x1d’, ’\x02’, ’\x03’, ’\x05’, ’\x08’, ’\x02’, ’\x3f’, ’\x47’,
’\x08’, ’\x48’, ’\x65’, ’\x6c’, ’\x6c’, ’\x6f’, ’\x20’, ’\x77’, ’\x6f’,
’\x72’, ’\x6c’, ’\x64’, ’\x21’, ’\x00’, ’\xae’

};
int main (int argc, char** argv)
{

Hcode* Instance1;
Hcode* Instance2;

/* load two instances of HX code */
Instance1 = fetch_4th (HelloWorld);
Instance2 = fetch_4th (HelloWorld);

/* execute both instances */
(void) exec_4th (Instance1, 0, NULL, 0);
(void) exec_4th (Instance2, 0, NULL, 0);

/* free first instance */
free_4th (Instance1);

/* execute and free second instance */
(void) exec_4th (Instance2, 0, NULL, 0);
free_4th (Instance2);

/* reinstall first instance and execute */
Instance1 = fetch_4th (HelloWorld);
(void) exec_4th (Instance1, 0, NULL, 0);
free_4th (Instance1);

return (EXIT_SUCCESS);
}

The combination of different pieces of HX code is possible too. This code contains two
pieces of HX code. The first one adds up two numbers, the second one divides two numbers.
Both return the result of the calculation to the variable "Result":

CHAPTER 28. USING THE 4TH API 610

#include <stdlib.h>
#include <stdio.h>
#include "4th.h"

/* app dup @ swap cell+ @ + out ! */

static unit Addition [] = {
’\x01’, ’\x02’, ’\x04’, ’\x00’, ’\xff’, ’\xff’, ’\xff’, ’\x7f’, ’\x04’,
’\x64’, ’\x03’, ’\x08’, ’\x02’, ’\x09’, ’\x08’, ’\x08’, ’\x08’, ’\x08’,
’\x32’, ’\x02’, ’\x0a’, ’\x11’, ’\x07’, ’\x10’, ’\x33’, ’\x10’, ’\x07’,
’\x0b’, ’\x32’, ’\x02’, ’\x07’, ’\x08’, ’\xcb’

};

/* app dup @ swap cell+ @ / out ! */

static unit Division [] = {
’\x01’, ’\x02’, ’\x04’, ’\x00’, ’\xff’, ’\xff’, ’\xff’, ’\x7f’, ’\x04’,
’\x64’, ’\x03’, ’\x08’, ’\x02’, ’\x09’, ’\x08’, ’\x08’, ’\x08’, ’\x08’,
’\x32’, ’\x02’, ’\x0a’, ’\x11’, ’\x07’, ’\x10’, ’\x33’, ’\x10’, ’\x07’,
’\x0e’, ’\x32’, ’\x02’, ’\x07’, ’\x08’, ’\xce’

};

int main (int argc, char** argv)
{

Hcode* Instance;
cell Result;

/* load addition HX code */
Instance = fetch_4th (Addition);

/* execute: add 5 to 7 */
Result = exec_4th (Instance, 0, NULL, 2, (cell) 5, (cell) 7);

/* free instance */
free_4th (Instance);

/* load division HX code */
Instance = fetch_4th (Division);

/* execute: div Result by 6 */
Result = exec_4th (Instance, 0, NULL, 2, Result, (cell) 6);

/* free instance */
free_4th (Instance);

/* print Result and exit */
printf ("Result: %ld\n", (long) Result);
return (EXIT_SUCCESS);

}

There are no restrictions whatsoever to the use of the rest of the 4tH API, since fetch_4th()
returns an ordinary Hcode pointer. For instance, you can still use load_4th() to load
additional HX-files. Happy embedding!

28.18 Suspended execution

People are wondering how they can enable hibernation4. Well, you can’t. Only a 4tH pro-
grammer can do that by using the word ’PAUSE’. Normally, 4tH closes all files, releases the
runtime environment and exits. When ’PAUSE’ is encountered, 4tH creates a stackframe,
closes all files and exits. All API functions recognize a dormant VM and act accordingly, so
there is not much you can do. You can recognize a dormant VM by examining the ”Offset”
member of the Hcode structure. If is non-zero, you got a dormant VM at your hands:

Object->Offset

4Also referred to as ’hibernation’, ’sleeping VMs’ or ’dormant VMs’.

CHAPTER 28. USING THE 4TH API 611

Still, there is a lot you can do with a dormant VM as long as you have created special
provisions in your 4tH program. Take this very simple interpreter:

include lib/interprt.4th

\ The words supported by the interpreter
: bye ." ZZzzzz.." cr pause ." Waky, waky!" cr ;
: test ." Test successfully executed!" cr ;
: _+ + ;
: _- - ;
: _* * ;
: _/ / ;
: _.([char]) parse type ;
: _cr cr ;
: _. . ;

\ The dictionary of the interpreter
create wordlist
," bye" ’ bye ,
," test" ’ test ,
," +" ’ _+ ,
," -" ’ _- ,
," *" ’ _* ,
," /" ’ _/ ,
," .(" ’ _.(,
," cr" ’ _cr ,
," ." ’ _. ,
NULL ,

wordlist to dictionary

\ The interpreter itself
: go [’] interpret catch if ." Oops!" cr then ;
: prompt ." OK" cr refill 0= if abort then go ;
: script 1 args tib place 0 >in ! go bye ;
: run begin argn 2 = if script else prompt then again ;

run

Note you can only suspend this program. When you provide a commandline argument, it
will interpret it as a script and execute it. That is neat! Now take a look at this C program:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

#define HX "tiny.hx"

/*
This function starts an interactive session

*/

void Prompt (Hcode *Program)
{
puts ("Keyboard control enabled..\n");
(void) exec_4th (Program, 0, NULL, 0);
puts ("\nHost control enabled..");

}

/*
This function builds an argument list and starts a script

*/

void Script (Hcode *Program, char *script)

CHAPTER 28. USING THE 4TH API 612

{
char *(Args [3]); /* mimics argv[][] */

Args [0] = HX; /* the program name */
Args [1] = script; /* the script itself */
Args [2] = NULL; /* the list terminator */
puts ("Script control enabled..\n");
(void) exec_4th (Program, 2, Args, 0);
puts ("\nHost control enabled..");

}

/*
Host program, which calls the shots

*/

int main (int argc, char** argv)
{
Hcode *Program;
Program = load_4th (HX);
if (Program) /* if loading was successful */

{
Prompt (Program); /* interactive session */
Script (Program, ".(This is a test) cr test test test");
Prompt (Program); /* interactive session */
Script (Program, ".(Leaving an item on the stack) cr 23 45 +");
Prompt (Program); /* interactive session */

puts ("Host shutting down..");
free_4th (Program); /* free resources */

}

return (EXIT_SUCCESS);
}

There is a function that supplies arguments and executes a script and a function that does
not supply arguments and enters interactive mode. In main() we call these functions
alternately. It is a pretty mean program! You can allow a user to do what he wants and
when he relinguishes control, you can execute whatever you want from your C program. It
is so mean that even when the user enters something like:

11 13 * 4 + bye .(I still gotta do this!) cr

The part after ’BYE’ will still be executed before the interpreter starts executing a script.
Whatever is on the stack stays on the stack, no matter if it was left there by a script or an
interactive session. Now that is powerful! But there are more neat things you can do with
suspended execution. You can also use it to read or write 4tH data. That may seem a bit
tricky at first, but as a matter of fact it is very easy. Take a look at this example:

10 constant NUMCELLS \ array size
NUMCELLS array Xarray \ array to be exported
32 string Xstring \ string to be exported

: export out ! pause ; \ save literal and sleep

: run
Xarray export \ export Xarray
Xarray 10 bounds do i ? loop cr \ show array contents
s" This comes straight from 4tH!" Xstring place
Xstring export \ export Xstring
." Famous last words.." cr \ final message

;

run

CHAPTER 28. USING THE 4TH API 613

You probably remember that the contents of OUT are returned by exec_4th(), so what
”EXPORT” actually does is saving the address of a variable in 4tH’s ’OUT’ variable before
returning control to the C program. ”EXPORT” is called almost immediately in this exam-
ple. Obviously something has been done, since the contents of ’XARRAY’ are dumped.
Then a string variable is initialized and ”EXPORT” is called again. Finally a message is
printed. Doesn’t that make you wonder what the C program does?

#include "4th.h"
#include "cmds_4th.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MK_CP(a,b) ((a)->CellSeg + STACKSIZ + SYS4TH + (b))
#define MK_UP(a,b) ((a)->UnitSeg + (b))

#define NUMCELLS 10
#define HX "bulk.hx"

int main (int argc, char** argv)
{
cell Pointer;
cell Carray [] = { 0L, 10L, 20L, 30L, 40L, 50L, 60L, 70L, 80L, 90L };
Hcode *Program;
cell *p;
int x;

Program = load_4th (HX);
if (Program) /* if loading was successful */

{ /* fill the 4tH array */
Pointer = exec_4th (Program, 0, NULL, 0);
p = MK_CP (Program, Pointer);
for (x = 0; x < NUMCELLS; x++, p++) *p = Carray [x];

/* show array and setup string */
Pointer = exec_4th (Program, 0, NULL, 0);
puts (MK_UP (Program, Pointer));

/* show famous last words */
Pointer = exec_4th (Program, 0, NULL, 0);
free_4th (Program); /* free hcode */

}

return (EXIT_SUCCESS);
}

The first thing you notice are the two macros, MK_CP() and MK_UP(). They have been
defined to create pointers to the Integer Segment and the Character Segment. It is very easy:
just call 4tH from C and export your variable of choice with ”EXPORT”. In this program,
the value is stored in ’Pointer’. Note that it is essential that you know exactly what has
been returned: a CELL or a UNIT.

In this example, exec_4th() first returns a cell, so we have to call MK_CP() to convert
it to a pointer to a cell. After that we can transfer the contents of a C array to 4tH. The
second time exec_4th() returns a unit, so we’ll have to call MK_UP() to convert it to a
pointer to an unit. After that we can use the pointer to print the string. Then exec_4tH()
is called for the last time and a string is printed. Note that you don’t have to let 4tH finish.
You can call free_4th() any moment you want to.

That is still not enough for you? You’d like to see something even fancier? Well, what do
you think about this tiny cooperative multitasker:

#include "4th.h"
#include <stdlib.h>

CHAPTER 28. USING THE 4TH API 614

#define MAX_TASK 16

Hcode *Processes [MAX_TASK]; /* process slots */

/*
This routine adds a task to the process space. It returns the PID
if successful, CELL_MIN if not.

*/

cell task_4th (Hcode **Process, Hcode *Task)
{
cell x;

if (Task) /* if there is a task */
for (x = 0; x < MAX_TASK; x++) /* search all process slots */
if (Process [x] == NULL) /* if empty slot found */
{

Process [x] = Task; /* add the task */
return (x); /* and return success */

}

return (CELL_MIN); /* if not, return failure */
}

/*
This routine searches the process space for a given task. If found, it is
executed and the return value returned to the calling process. If not found,
it signals termination.

*/

cell wake_4th (Hcode **Process, cell task)
{
cell x, y;

for (x = task; x < MAX_TASK; x++) /* search slots beginning with task */
if (Process [x]) /* if it is an active process */
{ /* execute it */

y = exec_4th (Process [x], 0, NULL, 1, x);
/* if the process has terminated */

if (Process [x]->Offset == 0)
{ /* free the process */
free_4th (Process [x]); /* and set the pointer to NULL */
Process [x] = NULL;

}
/* return next process number */

return (y == CELL_MIN ? ++x : y);
}

/* signal no active processes found */
return (task == 0 ? CELL_MIN : MAX_TASK);

}

/*
This is the true multitasker. It keeps on looping through the processes until
it receives a kill signal from wake_4th().

*/

void multi_4th (Hcode **Process)
{
cell pid = 0L; /* process id */

while (pid >= 0L) /* seach all process slots */
{

pid = wake_4th (Process, pid); /* now wake this process */
if (pid >= MAX_TASK) pid = 0; /* and loop around */

CHAPTER 28. USING THE 4TH API 615

}
}

/*
Host program, which calls the shots

*/

int main (int argc, char** argv)
{
cell x;

/* set all slots to NULL */
for (x = 0; x < MAX_TASK; x++) Processes [x] = NULL;

/* now load two processes */
printf ("Process %ld installed\n", task_4th (Processes, load_4th ("1.hx")));
printf ("Process %ld installed\n", task_4th (Processes, load_4th ("2.hx")));

multi_4th (Processes); /* start the multitasker */
return (EXIT_SUCCESS); /* return success */

}

Since load_4th() returns a NULL pointer when it doesn’t succeed, it is safe to pass it
to task_4th(). Even if programs aren’t suited to do any multitasking, you can use this
program: they will just be executed consecutively. task_4th()will add a program to the
process list. wake_4th() will try to wake up a program beginning with the PID which is
passed to it. Note that the PID is passed to the 4tH program, so it can be queried. If ’OUT’
contains a valid PID, it will be the next process that the program will try to awaken. When
a process terminates, it is taken from the process list. When all processes have terminated,
wake_4th() returns CELL_MIN. Note that a program can terminate the multitasker by
returning a non-zero value. That’s as fancy as it gets, folks!

The String Segment and the Code Segment are read-only for a reason. Although you can
access them, we advise you not to attempt it. The same goes for the Stack Area and the
System Area. The interfaces we’ve provided here are a relatively safe way to exchange
information between 4tH and C, but if you make any errors your program might crash.
Therefore, it is a good idea to add exception handlers to critical sections of your 4tH pro-
gram.

28.19 Useful variables

We’ve already seen that dump_4th() can provide you with a lot of information about
Hcode. If you need this information, you don’t have to call dump_4th(). The dump_4th()
function simply uses the information that is already available. This small program shows
you how to obtain it:

Hcode *Program;

Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL)
printf ("Not enough memory\n");

else {
printf ("Error# : %u\n", Program->ErrNo);
printf ("Error at word: %d\n", Program->ErrLine);
printf ("Object size : %d\n", Program->CodeSiz);
printf ("String size : %u\n", Program->StringSiz);
printf ("Var. offset : %u\n", Program->Offset);
printf ("Variables : %u\n", Program->Variables);
printf ("Strings : %u\n", Program->Strings);

CHAPTER 28. USING THE 4TH API 616

printf ("Symbols : %u\n", Program->Symbols);
printf ("Reliable : %s\n", Program->Reliable ? "Yes" : "No");

}

The labels are kept the same as in dump_4th(), so if you need more information, read
that section again.

Chapter 29

Modifying 4tH

29.1 Introduction

A good scripting language must be easy extensible. We will cover the most common ex-
tensions. You will acquire in-depth knowledge of the inner workings of 4tH. All of 4tHs
functions are a toolkit in itself and can be put to your own use (especially comp_4th(),
which is 4tHs most complex function).

As we proceed, there will be more files to edit and the modifications will get more complex.
Be sure you mastered the previous extensions, before you get on with the more elaborate
ones. A good knowledge of C is required for most operations.

You will also note that several modules, e.g. the parser and the peephole optimizer, are
not covered by this manual. First, because by design they are usually not affected by any
changes to the language itself and second, they are quite complex - and consequently better
left alone unless you profoundly understand what you’re doing.

29.2 Understanding 4tHs versioning

4tHs version is made up of three components:

1. Major version; this indicates the 4tH architecture number. It is incremented only if a
new architecture is applied or when the minor version reaches ”99”.

2. Minor version; this indicates the 4tH bytecode number. It is incremented only if the
bytecode changes or when a significant feature is added to 4tH. It is reset after an
architecture change.

3. Release; this indicates the release number. It is incremented with every release within
a bytecode version and reset after a bytecode change.

The combination of major version and minor version is called the bytecode version. As
long as the bytecode version remains the same, the bytecode is guaranteed to work with all
releases within a bytecode version. A bytecode change happens in the following cases:

• A bytecode is added or removed;

• The bytecode numbering (order) is changed;

617

CHAPTER 29. MODIFYING 4TH 618

• The behavior of a bytecode changes significantly (e.g. different input- or output
parameters).

If you change the bytecode and fail to change the bytecode versioning you’re in fact dis-
abling one of the major security mechanisms of 4tH, since it is unable to determine the
compatibility of the bytecode. You may end up with a very unstable 4tH and some hard
to track bugs, so that is definitely not what you want. Versioning is controlled by two
#defines in cmds_4th.h:

/* header */
#define Version4th 0x364
#define App4th 0L

Version4th is the bytecode version. Usually, you want to leave that one alone in order
to see on which version of 4tH your modified 4tH is based. For that reason App4th was
added. Standard 4tH always comes with App4th set to zero. App4th sets the application
byte and is also part of an HX file1. If the application byte of an HX file differs from
the one of the virtual machine, the HX code is rejected. Note that the files generated by
cgen_4th() do not have any protection mechanism2, so the best thing is to regenerate
them with every compile.

In short, if you want to experiment with your own modified 4tH, be sure to change the
application byte when applicable.

29.3 A closer look at comp_4th()

As we already know, comp_4th() compiles source to H-code. First of all, we need to
have a source. This is a simple character array, which is pointed to by "Source". Then an
H-code header is created.

The header is initialized by InitObject(), which calls ParseText() to get the initial
size of the Code Segment. The initial size of the Code Segment is stored in the header-
member "CodeSiz".

ParseText() calls two other functions: ParseDirectives(), which picks out all
directives and calls ParseStrings() if need be, which parses the source for string-
arguments.

If ParseStrings() encounters a ’[NEEDS’ or ’INCLUDE’ directive, it will call DoNeeds(),
which will create enough room for the file to be included and read the actual file. If
DoNeeds() fails, it will set the ”ErrNo” member of the header accordingly and exit.
MakeRoom() just moves the last part of the source to the end of the reallocated space.
Since all variables are adjusted accordingly, ParseText() will pick up parsing after the
’[NEEDS’ or ’INCLUDE’ directive. It never knows the difference.

After parsing ParseText() returns the initial size of the Code Segment (the number of
words). The function ParseText() sets three important variables:

VARIABLE CONTENT

SourceStrings The number of source-words
SourceWords The size of the Code Segment
SourceSymbols The size of the symbol-table

Table 29.1: comp_4th() variables
1See section 28.5.
2see section 28.13.

CHAPTER 29. MODIFYING 4TH 619

It is imperative to know these numbers since the 4tH-environment has to size its resources.
No resizing is required until all compilation is done. All allocated resources should be
large enough to contain the resulting compilant, so extending these resources should never
be necessary. In the end, they are only shrunk to their actual sizes. Now we can start to
allocate the compiler-resources:

• Code Segment

• Symboltable

• Controlstack

This is done by simply calling AllocResource(). Note that it is not necessary to
allocate the String Segment. Strings remain in memory already allocated to the source and
are just shifted to the front.

Then compilation can begin. First, the variable "Cursor" is set to the beginning of the
source. Then every call to GetNextWord() sets the variable "CurrentWord" to point to
the next source-word. If there are no more source-words, "CurrentWord" is set to NULL
and compilation is terminated.

Now compilation really gets off. It is important to know that not all words are created
equal. There are five kinds of words:

• Immediate words

• Words

• Constants

• Symbols

• Numbers

So, there are five distinct functions which handle these words:

• Immediate words are compiled by GetImmediate()

• Words are compiled by GetWord()

• Constants are compiled by GetConstant()

• Symbols are compiled by GetSymbol()

• Numbers are compiled by comp_4th()

If the first four functions fail there is one more chance that this is a valid source-word: it
might be a number. So, the source-word is converted to a number in the current radix.
If this works, the number is compiled. If it doesn’t, it isn’t a valid source-word and the
member "ErrNo" is set.

Compiling is done by a single function called CompileWord(). You just provide the
token and its argument and CompileWord() takes care of the rest.

When all compiling is done, we can discard the symboltable and the controlstack. This
is done by calling the function FreeResource(). It is called by ReallocSegs(),
which shrinks the Code Segment and the String Segment to their actual sizes, and AbortCompile(),
which shuts the compiler down in case of an error.

CHAPTER 29. MODIFYING 4TH 620

If an error occurred before any compiling took place AbortCompile() also discards
the Code Segment and the String Segment, thus returning a bare H-code header. As you
already know, the error-code is stored in the member "ErrNo" of the H-code header.

If the error occurred after words have been compiled, this partial compilant is not discarded.
Instead the member "Reliable" is set to FALSE, indicating that the compilant cannot be run
or saved. It can be decompiled, thus enabling the user to track the error.

In the next sections we will take a closer look at the three main tables in comp_4th(),
which contain all of 4tHs built-in words.

29.4 Adding a constant

Adding a constant is very easy. You only have to update a single table in comp_4th().
The table with constants, which is embedded in GetConstant() has four members:

1. Length byte

2. Name

3. Type

4. Value

The length-byte is used to quickly scan the table. All words are skipped until it reaches the
constants with the same length. Then it starts to compare the names.

What happens then depends on the argument "mode". When it equals W_EXEC, the con-
stant is compiled (a literal with the value as argument). Otherwise, only the index in the
table is returned, pointing to the constant we just found. This enables mere searches in the
table. When a name isn’t found at all, it returns MISSING.

Say, we want to add a constant called "TWENTY". At least, we know its name: "TWENTY".
The name "TWENTY" is six characters long. And of course, we want to compile the num-
ber "20" each time it is referenced in the source. To make comp_4th() compile a number,
we need the token LITERAL. The four members are:

1. Length byte = 6

2. Name = "TWENTY"

3. Type = LITERAL

4. Value = 20

Since every constant is a signed 32 bits number, we add the modifier ’L’ to the "20". So the
complete line we have to add to the table reads:

{ 6, "TWENTY", LITERAL, 20L },

Now we have to insert this line into the table. Note that constants with the same length
have to be grouped together:

{ 5, "INPUT", LITERAL, F4_READ },
{ 6, "OUTPUT", LITERAL, F4_WRITE },
{ 6, "APPEND", LITERAL, F4_APPND },
{ 7, "(ERROR)", LITERAL, CELL_MIN },

CHAPTER 29. MODIFYING 4TH 621

We decide to put our constant behind "APPEND". Of course, we could have put it behind
"INPUT" or "OUTPUT" as well:

{ 5, "INPUT", LITERAL, F4_READ },
{ 6, "OUTPUT", LITERAL, F4_WRITE },
{ 6, "APPEND", LITERAL, F4_APPND },
{ 6, "TWENTY", LITERAL, 20L },
{ 7, "(ERROR)", LITERAL, CELL_MIN },

Now recompile 4tH and run this simple program:

twenty . cr

It should compile without errors and print "20". That’s all there is to it! Not to difficult to
begin with, huh?

29.5 Adding a word

Now for something a little more difficult. Let’s say we want to implement ’NIP’. Of course,
’NIP’ is already available, but if you compile this program:

1 2 nip

You will see that it actually compiles to:

Addr| Opcode Operand
0| literal 1
1| literal 2
2| swap 0
3| drop 0

So, ’NIP’ is actually expanded to ’SWAP’ and ’DROP’. That is because ’NIP’ can be
defined as:

: nip swap drop ; (n1 n2 -- n2)

It removes the number under the top of stack. We call this an inline macro, which we will
discuss later on. If you really want to try out ’NIP’ in the following example, you have to
remove a line from ImmedList[]:

{ 3, 0, 1, "NIP", "", DoNip },

Your compiler might complain about unused functions, but it will work.

Inline macros are not the only way to add ’NIP’ to 4tH. We can also implement ’NIP’ as
a word. Most words can be found in the function GetWord(). There is a single table,
which is laid out like the table of constants we encountered in the previous section, so:

1. Length byte = 3

2. Name = "NIP"

CHAPTER 29. MODIFYING 4TH 622

But instead of the value of the constant, we have to add something else. That something is
called the token. The tokens are defined in cmds_4th.h. Let’s have a look:

#define PAUSE 100
#define VECTOR 101
#define ENVIRON 102
#define PLITERAL 103
#define FSEEK 104
#define FTELL 105

/* ranges */
#define LastWord4th FTELL
#define LastMsg4th M4CABORT

Well, in fact you can place a new token anywhere, but then you have to renumber all other
tokens. The easiest way is to place it after the last token you defined, which in this case is
"FTELL". The token "FTELL" has the number "105". Well, the next number is "106" and
that is the number "NIP" is going to get. So we add:

#define PAUSE 100
#define VECTOR 101
#define ENVIRON 102
#define PLITERAL 103
#define FSEEK 104
#define FTELL 105
#define NIP 106

/* ranges */
#define LastWord4th FTELL
#define LastMsg4th M4CABORT

What part don’t you understand? But we’re not ready yet. If you look at the #define below
the entry we just made, you will see that it says that the last word in 4tH is "FTELL". That
is incorrect now. We’ve just added "NIP". Fixing it is very easy. Just change the line to:

#define LastWord4tH NIP

We’re done now with cmds_4th.h. Now we have change comp_4th.c, so that the
compiler can recognize and compile "NIP". Now we can complete the entry for GetWord():

1. Length byte = 3

2. Name = "NIP"

3. Token = NIP

So the complete entry reads:

{ 3, "NIP", NIP },

And like we did with our constant "TWENTY", we have to give it a place inside the ta-
ble between all other 3-letter words. We decided that pasting "NIP" between "USE" and
"SEEK" would be a good idea (but there are plenty of other places too):

{ 3, "HEX", HEX },
{ 3, "USE", USE },
{ 3, "NIP", NIP },
{ 4, "SEEK", FSEEK },
{ 4, "TELL", FTELL },
{ 3, "HEX", HEX },

Are we done now? No. The compiler will recognize and compile "NIP", but what does it
do? That behavior will have to be defined in exec_4th.c, but we’ll discuss that in the
next section.

CHAPTER 29. MODIFYING 4TH 623

29.6 A closer look at exec_4th()

Since 4tH has a segmented structure, there are special words for each segment, e.g. "C!"
for the Character Segment and "!" for the Variable Area. But when one wants a Virtual
Machine that checks every access, the parameters of these words need to be checked.

There are very few words that access the Variable Area, so these are checked within the
code for the token itself. Others, like the ones accessing the data stack, are used more
often. So, special functions were created that allow or check access to those areas. There
are thirteen functions you should know about. They form the basic API.

FUNCTION/MACRO DESCRIPTION

DPOP Gets an item from the data stack
DPUSH (cell) Puts an item on the data stack
DFREE (cell) Checks amount of free space on the data stack
DSIZE (cell) Checks the number of items on the data stack
DS (cell) Random acces item on data stack
RPOP Gets an item from the return stack
RPUSH (cell) Puts an item on the return stack
RFREE (cell) Checks amount of free space on the return stack
RSIZE (cell) Checks the number of items on the return stack
RS (cell) Random acces item on return stack
RANGE (cell, cell) Checks whether the range addr/count is within the

bounds of the Character Segment
unit fetch (cell) Gets a character from the Character Segment
void store (cell, unit) Puts a character in the Character Segment
cell toPAD (char*) Puts a string in the PAD
char* toCstring (cell, cell) Puts a addr/count string in the PAD

Table 29.2: exec_4th() basic API

We strongly recommend you use these functions when accessing any of these segments.
But you’ll probably need more than functions to create your code. What about variables?

Well, of course there is a host of variables you can use, but there are three variables that are
used more frequently. They are called "a", "b" and "c" and are of type cell. Now, what did
NIP do?

NIP (n1 n2 -- n2)

That means the first cell is taken from the data stack and saved, then the second cell is taken
from the data stack and dropped and finally the first cell is replaced on the data stack. Note
there need to be at least two items on the stack to make it work. Since there will be one
item less on the stack after the operation, we don’t need to check whether there is enough
space. So this will do the trick:

DSIZE (2);
a = DPOP;
DDROP;
DPUSH (a);

There is even a faster way to do it. This implementation uses the DS()macro which allows
direct access to the datastack:

CHAPTER 29. MODIFYING 4TH 624

DSIZE (2);
DS (2) = DS (1);
DDROP;

DS(1) equals ”Top of stack” and DS(2) equals ”Second of stack”. Note that the DS()
macro doesn’t adjust the stack pointer. That is where DDROP comes in. It discards the
superfluous item on the stack. Now we add a label and a "NEXT":

CODE (NIP): DSIZE (2);
DS (2) = DS (1);
DDROP;
NEXT;

Although this is slightly more difficult than the previous API, this implementation is much,
much faster. So, now we’re finally done! We can compile the whole thing and test our new
command:

2 3 NIP . cr

Can we? No, there is one more thing we have to do. Your source will compile OK and
execute OK, but it is nowhere to be found when we decompile it. Does that mean we have
to edit dump_4th()? Wrong again, but we will see that in the following section.

Before we leave, we’ll take a look at another word, OVER. This once differs from NIP,
since it leaves more items than it consumes. If we wouldn’t take any precautions, we might
run into serious trouble. So, what does OVER do?

OVER (n1 n2 -- n1 n2 n1)

’OVER’ requires two items and leaves three items on the stack. That means we need 3 - 2
= 1 extra item on the stack:

DSIZE (2);
DFREE (1);
a = DS (2);
DPUSH (a);

Note we must use DPUSH() to adjust the stack pointer. Of course, there are macros that
manipulate the return stack in a similar way. One tip: be careful with nesting macros, since
you might not get what you want.

Strings are quite another ballgame. In 4tH these are usually address/count strings and
consequently incompatible with C, since they are not terminated. Strings in the String
Segment are not accessible by a 4tH programmer at all. In order to solve these problems,
the PAD was created. The PAD is essentially a circular string buffer where temporary
strings are stored. The address and count are usually returned to the 4tH programmer
enabling him to manipulate these strings. At the same time you can be assured that they
are terminated and C-compatible.

There are two API functions which allow you to access the PAD, toPAD() and toCstring().
The first one allows you to copy a C string to the PAD. It puts the address on the stack and
returns the count. The second one allows you to copy an address/count string to the PAD.
It returns a pointer to a C string. In exec_4th() there is a C string pointer which you
can use, p. A little example: suppose there is an address/count string on the stack which
you need to access:

CHAPTER 29. MODIFYING 4TH 625

DSIZE (2);
a = DPOP;
b = DPOP;
p = toCstring (b, a);

Note that the count resides on the top of the stack and is popped first. The address comes
after that. You can use toPAD() to copy any C string to the PAD, e.g.

DFREE (2);
DPUSH (toPAD ("Hello world!"));

Note that toPAD() already left the address on the stack, so you only need to push the
count it returns.

29.7 A first look at name_4th()

May be name_4th.c looks like a function, but it definitely isn’t. It is a global array that
is as global as globals can get. You can refer to it in any program that uses the 4tH library
without defining it first. It contains the names of all the tokens, so when we decompile, the
tokens get a readable name:

#include "4th.h"
#include "cmds_4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

puts (name_4th [SWAP]);
return (EXIT_SUCCESS);

}

This program will print "swap". Yes, you can use the token-code as an index to this array.
We can’t make it any easier than that! Now you understand that we can’t do the same thing
for "NIP", since we didn’t add that one. In fact, any program trying it will either print
garbage or crash. Let’s take a look at the last few lines of name_4th[]:

"environ", "+literal", "seek", "tell"
};

Yeah, we’ve seen that before. All entries are ordered in the same way as in cmds_4th.h.
Since "NIP" was added at the end of cmds_4th.h, we have to do the very same thing
here. Don’t forget the comma after "TELL"

"environ", "+literal", "seek", "tell", "nip"
};

Now we are finally done. We can recompile the library (and the compiler) and we can use
"NIP" like any other 4tH word.

CHAPTER 29. MODIFYING 4TH 626

29.8 Extending the compiler

So far we’ve only added words that are directly compiled into a token/argument pair. If that
was the way all 4tH words worked, we would never have branches, variables or other things
that make up a language. In fact, you would never construct this complex architecture, since
there are easier ways to achieve the same functionality.

The secret lies in the last major function of comp_4th() we have discussed, which is
called GetImmediate(). When you look at it for the first time, it looks quite like
GetConstant() and GetWord(). The associated table ImmedList[] has a length-
byte and a name but instead of a token or a value the last field is a pointer to a function.

You’ll find these functions above GetImmediate() and they all start with Do..(). In
fact, they are the icing on the cake. They make 4tH a compiler, since they allow non-linear
compiling. That includes:

• Branching

• Comments

• Allocation of variables

• String handling

• Assertions

• Constants

If there is something you want to do that you cannot define in a single token/argument, this
is the place where you have to be. But before you are starting to make new functions, note
there are many functions that you can use.

E.g. when you want to compile a word, you don’t have to bother yourself with error-
checking or other 4tH-internals. Just make a call to CompileWord():

CompileWord (NIP, 0);

Extending the compiler is quite easy. We will illustrate that by using a very simple example.
We have some compiler-words that handle the radix at compile time. They are:

[BINARY]
[OCTAL]
[DECIMAL]
[HEX]

Now we want to add a new one called "[SEXTAL]", which sets the radix to six. The radix
at compile-time is handled by a single variable called "Base". First we have to make a
function, which sets "Base". We call it DoSextal(). Note that this function cannot
receive or return any values, like all Do..() functions:

#ifndef ARCHAIC
static void DoSextal (void)

#else
static void DoSextal ()

#endif

{
Base = 6;

}

CHAPTER 29. MODIFYING 4TH 627

BRANCHING
MarkLink() Adds a link to the controlstack
MakeLink() Makes a back-link
PairLink() Retrieves a link from the controlstack
CompileMark() Compiles a token and adds a link to the controlstack

SYMBOLTABLE
AddSymbol() Adds a symbol to the symboltable
MakeSymbol() Adds the current word as a symbol to the symboltable
GetSymbol() Retrieves an entry from the symboltable

PARSING
GetNextWord() Gets next word in the source
DecodeSymbol() Decodes a symbol from source
DecodeLiteral() Gets a compiled literal expression
DecodeOperand() Gets a compiled expression
DecodeWord() Gets a name from source
DecodeName() Gets a previously delared name from source
SkipSource() Discards all source between two labels

COMPILING
CompileWord() Compiles a token and its argument
InlineWords() Compiles a sequence of tokens without arguments

STRINGS
MoveString() Moves a string inside the String Segment
CompileString() Compiles a token and its associated string

Table 29.3: comp_4th() basic API

Just place it anywhere before ImmedList[] and you’re safe. Now we have to make it
work. Like the other Get..() functions, there is a table called ImmedList[] which
drives this behaviour, so let’s get started:

1. Length byte = 8

2. Symboltable entries = 03

3. Additional tokens = -14

4. Delimiter = ""5

5. Name = "[SEXTAL]"

6. Function = DoSextal

Now let’s update that table:

{ 7, 0, -1, "ALIGNED", "", DoDummy },
{ 7, 0, 0, "RECURSE", "", DoRecurse },
{ 8, 0, -1, "[SEXTAL]", "", DoSextal },
{ 8, 1, -3, "CONSTANT", "", DoConstant },
{ 8, 1, -2, "VARIABLE", "", DoVariable },

You’re done now! Recompile the program and "[SEXTAL]" has become a part of 4tH.
Note that not all words within ImmedList[] can be defined that easily. If special tokens
are required, you might have to edit other files as well.

3See section 29.22
4See section 29.15
5See section 29.17

CHAPTER 29. MODIFYING 4TH 628

29.9 Making aliases

Sometimes you need two different names that do the same thing. Well-known examples
are "CHAR" and "[CHAR]" or "I" and "R@". How can this be done?

In fact, it is very simple. Think about it. 4tHs vocabulary is stored in tables. These tables
link a name with some kind of behavior. So we have to make two different names that are
linked to the same thing. Take a look at this excerpt of ImmedList[]:

{ 5, 0, -1, "ALIGN", "", DoDummy },
{ 5, 0, -1, "CELLS", "", DoDummy },
{ 5, 0, -1, "CHARS", "", DoDummy },
{ 5, 1, -2, "TABLE", "", DoCreate },
{ 6, 1, -2, "CREATE", "", DoCreate },
{ 6, 0, -1, "[THEN]", "", DoDummy },

You might have noticed a few aliases.

WORD COMPILED BY

[THEN], ALIGN, CELLS, CHARS DoDummy()
TABLE, CREATE DoCreate()

Table 29.4: Examples of aliases

That means that if you write your 4tH program you can choose between "TABLE" and
"CREATE". It doesn’t matter, it will compile to the same thing. But we have to add to that
some aliases are created because in Forth they do have different meanings, like "[CHAR]"
and "CHAR". Read the glossary for details.

We will show you another example. This one comes from GetWord():

{ 5, "CHAR+", INC },
{ 5, "CHAR-", DEC },
{ 5, "CELL+", INC },
{ 5, "CELL-", DEC },

You see that "CHAR+" and "CELL+" do two very different things. At least in Forth. Within
4tH the smallest addressunit is always an element of that particular segment, thus one. So
in 4tH these words are aliases and will compile to the very same code.

29.10 Giving a name to an application variable

We already learned that you can transfer variables to 4tH:

Result = exec_4th (Program, 0, NULL, 12, (cell) 31, february,
(cell) 31, (cell) 30, (cell) 31, (cell) 30, (cell) 31, (cell) 31,
(cell) 30, (cell) 31, (cell) 30, (cell) 31);

These kind of variables are called "application variables". Of course, you don’t have to use
the same variables every time you call exec_4th(), but if you do it may be a good idea
to give them a significant name. That makes it a lot easier for a 4tH application programmer
to reference your variables. Like everything in 4tH, that is very easy too.

If we take a look at cmds_4th.h you will see a C-constant named "VAR4TH". This
constant has two functions. First, it shows how many internal 4tH variables there are.
Second, it is an index to the first application variable, so ’APP’ is defined as "VAR4TH".
That means that:

CHAPTER 29. MODIFYING 4TH 629

app 0 th

Is the very first application variable and:

app 1 th

Is the second application variable. You can do the same. Let’s say you have three applica-
tion variables, which contain the document-number, the page-number and the line-number.
You’d like to call them "&DOC", "&PAGE" and "&LINE". The ampersands are not really
necessary, but we add them in order to identify the application specific words. To make it
work you have to call exec_4th() by:

Result = exec_4th (Program, 0, NULL, 3, (cell) Doc, (cell) Page,
(cell) Line);

Now these are the mappings.

C VARIABLE 4TH EXPRESSION

Doc app 0 th
Page app 1 th
Line app 2 th

Table 29.5: Mapping between 4tH and C variables

Now all we have to do is add constants that are equivalent to these addresses. As we’ve
seen before, we can do that by modifying comp_4th(). That is GetConstant() to be
exact:

{ 4, "&DOC", LITERAL, VAR4TH+0 },
{ 5, "&PAGE", LITERAL, VAR4TH+1 },
{ 5, "&LINE", LITERAL, VAR4TH+2 },

That’s all! You can now refer to these variables with their proper names.

C VARIABLE 4TH EXPRESSION 4TH VARIABLE

Doc app 0 th &doc
Page app 1 th &page
Line app 2 th &line

Table 29.6: Mapping between 4tH and C variable names

Note that if you use this technique you are bound to calling exec_4th() with these
arguments in this order! Failure to do so may cause unpredictable results (but no crashes
of course).

29.11 Adding new variables

In standard 4tH there are five environment variables, HI, FIRST, LAST, CIN and COUT.
There are also five predefined variables, ’>IN’, ’BASE’, ’OUT and the variable pair ’SOURCE’.
These variables are initialized by exec_4th(), so their initial value should be known by
then.

Adding new variables is not difficult. We’re going to make a variable that contains 4tHs
release number, called "VERSION". First take a look at cmds_4th.h. It contains a
#define called "VAR4TH":

CHAPTER 29. MODIFYING 4TH 630

/* variables and environs */
#define SYS4TH 3
#define VAR4TH 10
#define ENV4TH 5

Now remember that number behind "VAR4TH". You will need it later. Then increment it:

/* variables and environs */
#define SYS4TH 3
#define VAR4TH 11
#define ENV4TH 5

If you would have preferred to make ’VERSION’ an environment, you should also have
incremented "ENV4TH". But we assume you’ll allow the variable to be overwritten. Now
add a symbolic value for the variable. Just append it to the list and increment the number:

#define VBASE 5
#define VIN 6
#define VOUT 7
#define VTIB 8
#define VTIBS 9
#define VVERS 10

Or if you prefer it to make an environment variable, add it to the environment variable list:

#define VHI 0
#define VFIRST 1
#define VLAST 2
#define VCIN 3
#define VCOUT 4
#define VVERS 5

#define VBASE 6
#define VIN 7
#define VOUT 8
#define VTIB 9
#define VTIBS 10

That’s all. Now save cmds_4th.h and load comp_4th() in your editor. This stage
is very much like adding a name to an application variable. We simply define a constant
that contains the address of our new internal variable. You will remember how we add a
constant. Right, we add an entry to the GetConstant() table:

{ 7, "VERSION", LITERAL, VVERS },

Making it an environment variable is very easy too: just replace the ’LITERAL’ token by
an ’ENVIRON’ token:

{ 7, "VERSION", ENVIRON, VVERS },

All we need to do now is to initialize the variable in exec_4th(). Since it is a variable,
it resides in the Variable Area of the Integer Segment. The Integer Segment is just a large
array of unsigned longs.

The pointer "Stack" points to the beginning of the Integer Segment, which is also the be-
ginning of the Stack Area. The pointer "Vars" points to the area that is assigned to 4tHs
variables. Our constant "VERSION" is an index to that array, so the expression "Vars
[VVERS]" is a valid reference to our "VERSION" variable.

However, this indexed way of referencing is slower than a pointer. Therefore, we have
created pointers that reference these frequently used variables:

CHAPTER 29. MODIFYING 4TH 631

cell *In; /* equivalent of forth >IN */
cell *Result; /* return value for apps */

Base = &(Vars [VBASE]); /* assign pointer to BASE */
In = &(Vars [VIN]); /* assign pointer to >IN */

You might have noticed the absence of "Base". Well, since it is referenced elsewhere as
well, this is a global variable. But don’t worry, there is no need to reference "VERSION"
globally. So, we need to define a pointer to a cell, assign it to "Vars [3]" and initialize it:

Vars [VVERS] = Version4th; /* initialize it */

That is all! Any questions? Where does "Version4th" come from? It is defined in cmds_4th.h.
Anybody else? Next subject, please.

29.12 Resizing the 4tH environment

You might come up with a situation that the stack isn’t big enough. Or that you want to
give your programmers deeper nesting. Or that 512 characters isn’t just good enough for
temporary storage.

Relax! All these things can be changed with very little effort. And after that, you just need
to recompile 4tH like we’ve done before.

There is a single file you need to edit, cmds_4th.h. You will find several easy to change
#defines there.

/* compiler */
#define LINKSIZ 64
#define SYMLEN 16

/* interpreter */
#define STACKSIZ 512
#define TIBSIZ 256
#define PADSIZ 512
#define DOTSIZ 64
#define MAXDEVS 8
#define PIPEWAIT 102400L

You already know "VAR4TH", since we discussed that one earlier in this document. Right,
it determines the number of internal variables! "LINKSIZ" determines the nesting depth.
Nesting depth has to do with the number of nested branches, e.g.

IF
IF

IF
THEN

THEN
THEN

Each ’IF’ puts its address and a reference (I’m an IF) on the flow control stack. Each
’THEN’ takes an entry off the flow control stack and takes the appropriate action. So, in
the current version of 4tH you can nest upto 128 consecutive conditionals, before you get
an error. You may increase or decrease that number.

"SYMLEN" is the maximum length of any name you define, e.g. a colon-definition, a con-
stant, a variable. The default is 24, which is enough to define a name like "multiplications".

CHAPTER 29. MODIFYING 4TH 632

You can define a longer name, but only the first twenty-three characters will be significant.
You can increase the maximum number of significant characters, but beware: this can take
up a lot of memory!

"STACKSIZ" is the combined size of both data and return stack. This size will do for most
applications, since it allows you a combination of high usage of the data stack and low
usage of the return stack or vice versa. You might encounter a situation where recursion
forces you to resize the Stack Area. Decreasing is possible too, of course, but at your own
risk.

"TIBSIZ" is the size of the Terminal Input Buffer used by ’REFILL’. If you need ’REFILL’
to accept longer lines than 256 characters and you don’t want to allocate your own buffer,
resize it.

"PADSIZ" is the size of the scratch PAD, used to store temporary strings. A part of the
PAD is reserved to numbers. The size of this area is determined by "DOTSIZ". The rest of
PAD (PADSIZ - DOTSIZ) is a circular string buffer. A bigger PAD will allow you to store
longer temporary strings that survive longer before getting overwritten.

"MAXDEVS" is the maximum number of I/O devices that 4tH can manage. Note that two
of them (STDIN, STDOUT) are already in use, so you can open up to six additional devices
concurrently. Finally, " PIPEWAIT" is discussed in detail in the next section.

You will find there are other defines here too. Please, do not change them. That just doesn’t
work. In fact, 4tH just won’t work properly anymore.

29.13 Tuning pipe failure detection

Pipes in 4tH are opened by the popen() function. This has one big disadvantage. Al-
though popen() is able to detect a failed fork(), it is unable to detect whether the
program was successfully started or not. E.g. if the program cannot be found in the path
the pipe fails, although popen() has already reported it was successful. In some cases
this can have serious consequences.

After careful study we decided to monitor the process for a while and then report success or
failure. The default value works very well on most modern systems, but with some systems
it may be neccesary to adjust it. This is the case when you experience one of the following
symptoms:

• Opening a pipe is slow; there is a long delay before 4tH reports the pipe is success-
fully opened.

• 4tH reports that the pipe was successfully opened, but most of the time this was not
the case.

In that case, you have to adjust a #define in ”cmds_4th.h”. That is a lot easier than you
might think. We’ve developed a small program to do that. It should be portable across most
Unixes:

#include <stdio.h>
#include <limits.h>
#include <sys/wait.h>
#include <stdlib.h>
#include <unistd.h>

long TimeBadPipe (void)
{

CHAPTER 29. MODIFYING 4TH 633

FILE *p; /* filepointer to pipe */
long x; /* simple counter */
int s = 0; /* status of child */

p = popen ("nosuchprogram", "r"); /* perform a normal popen() */
for (x = 0; x < INT_MAX && s == 0; x++) waitpid (-1, &s, WNOHANG);
pclose (p); /* close the pipe */
return (x); /* return the count */

}

int main (int argc, char **argv)
{
int x; /* simple counter */
int now; /* return of TimeBadPipe() */
int sofar = 0; /* highest count */
int total = 0; /* total of all counts */

/* warn the user */
puts ("Doing 1000 iterations, wait..");
puts ("(This is going to be messy..)");
sleep (5); /* allow him to read the message */

for (x = 0; x < 1000; x++) {
now = TimeBadPipe (); /* time a bad pipe */
if (now > sofar) sofar = now; /* adjust sofar */
total += now; /* add to total */

}
/* show the results */

printf ("\nAverage : %d\n", total / 1000);
printf ("Maximum : %d\n", sofar);
return (EXIT_SUCCESS);

}

If you run it, it will print something like this:

Doing 1000 iterations, wait..
(This is going to be messy..)
sh: nosuchprogram: command not found
sh: nosuchprogram: command not found
...
sh: nosuchprogram: command not found
sh: nosuchprogram: command not found
Average : 8685
Maximum : 41235

This means that on average the process had to be checked 8685 times, but at no occasion
a process died after it had been checked 41235 times. Run it several times, so you will
get a good impression of how your particular system behaves. Ignore extremely high and
extremely low values. Then take the highest value that pops up several times and change
”cmds_4th.h” appropriately:

#define PIPEWAIT 49152L

Note we rounded the value a little (we’re a binary kind of guy) and it doesn’t have to be
exact. Now you can safely use pipes on your system and the result returned will assure you
that the pipe was actually successful opened and ready for use.

If this still doesn’t work, you may have to adjust this #define manually: decrease it if
opening a pipe is slow, increase it if 4tH incorrectly reports a successfully opened pipe. If
you use MS-DOS, just forget all this. We don’t provide any pipes there.

CHAPTER 29. MODIFYING 4TH 634

29.14 Adding new error messages

Adding new messages is quite simple. It requires not much more than adding a #define
and adding a string. You might have noticed that every 4tH message has a mnemonic.
Although this is not required, it makes it much easier to read and thus maintain your code.

This mnemonic is no longer than eight characters, all uppercase and begins with "M4"
(which stands for Message 4tH). Let’s say you’ve added the ANS-Forth floating point
wordset and you want to add the error message "Floating point exception". We’ll do it
the easy way and just append the message at the end of the table.

First we have to come up with a mnemonic. We decide to use "M4FLOATE". Now we start
up our favorite editor and load 4th.h. Then we look for the table with error mnemonics:

#define M4NOSTR 24
#define M4NULSTR 25
#define M4DUPNAM 26
#define M4CABORT 27

Now we simply add "M4FLOATE" to the end of the table. Since the last message had code
27, we give our message code 28:

#define M4NOSTR 24
#define M4NULSTR 25
#define M4DUPNAM 26
#define M4CABORT 27
#define M4FLOATE 28

We can now save 4th.h. Now we have to add the message itself. That is done by adding
it to errs_4th.c. That file just contains an array of messages. Note that the messages
are listed in order of their codes:

"Unterminated string",
"Null string",
"Duplicate name",
"Compilation aborted"

};

If you change that order, your compiler might display the right errorcode, but the wrong
error message. Since our mnemonic comes last, our message comes last:

"Unterminated string",
"Null string",
"Duplicate name",
"Compilation aborted"
"Floating point exception"

};

Don’t forget adding a comma after the last message! If you don’t your compiler will cer-
tainly complain about that. Are we done now. No, not quite yet. The ’THROW’ routine
wants to know which codes are exceptions generated by the system and which one are gen-
erated by the user. Why? Because user exceptions do not have messages attached to them!
We can change that in cmds_4th.h.

/* ranges */
#define LastWord4th FTELL
#define LastMsg4th M4CABORT

CHAPTER 29. MODIFYING 4TH 635

Now it still points to the "duplicate name" error. We simply change "LastMsg4th" to our
mnemonic:

/* ranges */
#define LastWord4th FTELL
#define LastMsg4th M4FLOATE

We’re done now! Note that this final step is not necessary when you insert messages.
Instead, you will have to renumber the table in 4th.h. No two mnemonics may ever share
the same error code, remember that! If you don’t keep the mnemonics, the errorcodes
and the messages properly synchronized you may get some pretty strange error messages.
Which is less than helpful.

29.15 Sizing the Code Segment

By default 4tH assumes a 1:1 relationship between a word in source and a compiled word
(in the Code Segment). When ParseText() is called it will count the number of words
in the source. This number is later used to size the initial Code Segment. This 1:1 relation-
ship is not so strange as it may seem at first, e.g.:

BL DROP

Will compile to:

Addr| Opcode Operand

0| literal 32
1| drop 0

Two words in source, two compiled words. But there are exceptions too,

e.g.:

BL ,

Will compile to:

[0] , (32)

That is because ’,’ does not compile to anything, but changes the previously compiled literal
to an constant array element. Note that ’,’ is an immediate word. In fact, all exceptions to
this 1:1 relationship rule are immediate words! The vast majority of 4tH words obey this
’one on one’ rule:

• All numbers and constants compile to literals

• All ordinary words compile to a word without argument

• All symbols compile to a word with argument

CHAPTER 29. MODIFYING 4TH 636

In a previous chapter we’ve created an immediate word called "[SEXTAL]". When you
take a closer look, you will see that it just changes the base; it doesn’t compile to anything.
Still, without the proper argument 4tH assumes it will compile a token and reserves space
in the Code Segment.

Can you prevent this? Yes, you can. There is a member in the table of ImmedList[]
which allows you to signal 4tH that it shouldn’t reserve space in the Code Segment for
"[SEXTAL]". The first field indicates the length of the keyword, the third indicates the
correction 4tH should make to the sizing of the Code Segment when this keyword is en-
countered, the fourth is the keyword itself and the last one is the C function that compiles
the word. The second and the fifth field will be discussed later.

{ 8, 1, -2, "VARIABLE", "", DoVariable },
{ 8, 0, -1, "[ASSERT]", "", DoAssert },
{ 8, 0, -1, "[BINARY]", "", DoBinary },
{ 9, 0, -1, "[DECIMAL]", "", DoDecimal },

Now, the correction we want to make is that 4tH should allocate one word less in the Code
Segment, since "[SEXTAL]" does not compile to anything. One less means "-1". We can
now change the table accordingly:

{ 8, 1, -2, "VARIABLE", "", DoVariable },
{ 8, 0, -1, "[ASSERT]", "", DoAssert },
{ 8, 0, -1, "[BINARY]", "", DoBinary },
{ 8, 0, -1, "[SEXTAL]", "", DoSextal },
{ 9, 0, -1, "[DECIMAL]", "", DoDecimal },

That’s all. We’ll give to a few more examples.

E.g. ’VARIABLE’ does not compile to anything either; it just reserves space in the Variable
Area. But ’VARIABLE’ always comes with a name, which doesn’t compile to anything
either. So we should decrease the the number of words in the Code Segment by two!

’CONSTANT’ not only requires a name, but consumes a previously compiled literal as
well. Initially this literal allocates space in the Code Segment, but it is gone after ’CON-
STANT’ has been compiled. So we decrease the number of words in the Code Segment by
three!

’VALUE’ is even more complicated. You can write something like:

10 value ten

But this will compile to:

Addr| Opcode Operand Argument

0| literal 10
1| to 0 ten

’VALUE’ does not consume the previously compiled literal! But the name does not com-
pile to anything. ’VALUE’ takes a value from the Data Stack at run time, while ’CON-
STANT’, ’STRING’ and ’ARRAY’ take a previously compiled literal at compile time. If
you don’t believe us, check the glossary.

’VALUE’ itself compiles to something, the literal is undisturbed, only the name vanishes.
That means only one word less, thus "-1".

CHAPTER 29. MODIFYING 4TH 637

29.16 Adding inline macros

We’ve already seen how we can add new words to 4tH. We add a token and write the
runtime. But this approach has a few disadvantages. First, the number of tokens is limited.
You can use them, but once you run out of them, that’s it. Second, writing a runtime is a
little complex if you only have limited knowledge of C.

You can add as many inline macros as you want. From a user point of view there is not much
difference between an ordinary 4tH word and an inline macro. The word is recognized by
the compiler and works as expected.

Inline macros are simply sequences of existing tokens. As we’ve seen before, ’NIP’ is
implemented as an inline macro, so this source:

1 2 nip drop

Will compile to:

Addr| Opcode Operand Argument
0| literal 1
1| literal 2
2| swap 0
3| drop 0
4| drop 0

There are disadvantages to inline macros as well. Every time you use ’NIP’ it will expand
to two words, so your Hcode will become a little bigger. We recommend to limit inline
macros to three words. Second, an implementation using inline macros will make the
compiler less compact compared to an implementation using tokens.

On the other hand, you only need to change the compiler when you use an inline macro.
No changes to the interpreter or the decompiler will be necessary. Existing HX files will
still run, although some 4tH sources will need modification.

Let’s go to business. How can we implement an inline macro. Let’s take ’NIP’. First we
have to make an entry in the ImmedList[] table.

{ 2, 1, -1, "TO", "", DoValue },
{ 2, 1, -1, "IS", "", DoIs },
{ 2, 1, -1, "AS", "", DoValue },
{ 2, 0, 0, "IF", "", DoIf },
{ 2, 0, 0, "DO", "", DoDo },
{ 2, 0, 0, "->", "", DoDummy },
{ 3, 0, 1, "2R>", "", DoTwoRGet },
{ 3, 0, 1, "2>R", "", DoTwoRPut },
{ 3, 0, 3, "2R@", "", DoTwoRCopy },

Since ’NIP’ is defined by:

: nip swap drop ;

It will compile to:

swap (0)
drop (0)

CHAPTER 29. MODIFYING 4TH 638

Which is one token more than the parser would expect. So the value of the fourth field
is "1". But this will only reserve space for ’NIP’. The word won’t be recognized by the
compiler yet. In order to do that we have to make a word that compiles the tokens for
’NIP’. You can only do that with an "immediate" word:

#ifndef ARCHAIC
static void DoNip (void)

#else
static void DoNip ()

#endif

{
CompileWord (SWAP, 0L);
CompileWord (DROP, 0L);

}

This will compile ’SWAP’ and ’DROP’ into the compilant. Now we have to make an entry
in ImmedList[] to link this function to the name "NIP":

{ 2, 1, -1, "TO", "", DoValue },
{ 2, 1, -1, "IS", "", DoIs },
{ 2, 1, -1, "AS", "", DoValue },
{ 2, 0, 0, "IF", "", DoIf },
{ 2, 0, 0, "DO", "", DoDo },
{ 2, 0, 0, "->", "", DoDummy },
{ 3, 0, 1, "2R>", "", DoTwoRGet },
{ 3, 0, 1, "2>R", "", DoTwoRPut },
{ 3, 0, 3, "2R@", "", DoTwoRCopy },
{ 3, 0, 1, "NIP", "", DoNip },

That’s all! Since ’NIP’ uses existing tokens, the compiler can handle it all by itself. There
is no need to write runtime code or define tokens. All the burden is put on the compiler.

29.17 Adding string words

We’ve already seen that some words in 4tH have a name attached to them, like ’STRING’,
’CREATE’ or ’VARIABLE’. Since all these names are delimited by whitespace (like any
other 4tH word), there is no need for special code.

Some words have special strings attached to them, like ’."’, ’(’ or ’\’. These string are not
delimited by whitespace, so they need special treatment. It’s even more complex: each
word has a different delimiter. ’."’ is delimited by ’"’, ’(’ is delimited by ’)’, and ’\’ is
delimited by an end-of-line marker.

In this section we’re going to explain how we added ’."’, since it’s the most complex string
word. Other string words like ’(’ are handled by the compiler only.

The first step to adding a string word is letting the compiler know, what delimiter is used.
We do that by modifying ImmedList[]:

{ 2, 0, -2, "#!", EOL, DoComment },
{ 2, 0, -1, ",\"", "\"", DoCommaQuote },
{ 2, 0, -1, ",|", "|", DoCommaQuote },
{ 2, 0, -1, ".\"", "\"", DoDotQuote },
{ 2, 0, -1, ".(", ")", DoDotQuote },
{ 2, 0, 1, ">=", "", DoGreaterEqual },
{ 2, 0, 1, "<=", "", DoLessEqual },
{ 2, 0, -1, "S\"", "\"", DoSQuote },
{ 2, 0, -1, "S|", "|", DoSQuote },

CHAPTER 29. MODIFYING 4TH 639

The fifth field tells the parser whether this word requires a special delimiter. Yes, ’."’ is
delimited by ’"’, so we enter a quote in the fifth field. If you enter an empty string, the
parser assumes the word isn’t a string word at all.

Now, what will the parser do when it encounters ’."’? It will find an entry in ImmedList[]
for ’."’ and see that this is a string word. Then it will make a call to ParseString() to
find the delimiter and flag everything in between as a word. Which means that if you call
GetNextWord(), you will get the entire string and not just the next word, e.g.:

: hello ." Hello world" cr ;

Will be parsed as:

GetNextWord (): :
GetNextWord (): hello
GetNextWord (): ."
GetNextWord (): Hello world
GetNextWord (): cr
GetNextWord (): ;

You will notice that there are some words that are delimited by a ”bell” character (”\a”6

when escaped), e.g. ’CHAR’. Why is that? It signals that the next word is delimited by
whitespace.

But isn’t every word delimited by whitespace? Yes, it is. But note that every word, which is
parsed by ParseText() is also checked by ParseDirectives(). So this expression
would cause problems:

CHAR (

After ’CHAR’ is parsed by ParseText(), ’(’ follows and is recognized by ParseDirectives()
to be the start of a comment. To prevent this, we let the string following ’CHAR’ be parsed
by ParseString(). By the time ParseText() regains control, the character follow-
ing ’CHAR’ is already parsed and can cause no more problems.

But why don’t we feed it the WHITE macro instead of a ”bell” character? Well, because
ParseText() would stop at the first occurrence of the specified delimiter. That works
fine for ’ABORT"’ and friends, but it wouldn’t allow for more than one single space be-
tween ’CHAR’ and the actual character it requires. Think of it - it’s exactly the same reason
you can’t embed ”double quote” characters within an ’ABORT"’ or ’S"’ word.

The ”bell” character puts ParseText() in a special mode, so it will still scan for a
whitespace delimited token, but discard any leading whitespace.

In short, if an expression like:

word (

or

word \
6The reason that’s it’s an escaped ”bell” character is because it’s widely supported - even by pre-C89 compilers

- and it’s unlikely to be part of a delimiter somewhere else or cause any other problems or side effects.

CHAPTER 29. MODIFYING 4TH 640

is valid, let it be parsed by ParseString() by making an ”bell” character entry in the
delimiter field of the ImmedList[] table. If not, don’t.

Next, we have to develop a word that compiles ’."’. Now, how can we compile ’."’? First,
we have to get the string and move it to the String Segment. We can do that by calling
GetNextWord() manually, but then we have to check for NULL-pointers. It is much
easier to call DecodeWord() which sets the ErrNo member automatically when an error
occurs.

DecodeWord() takes one argument, which is the error code it should set the ErrNo
member to. It returns TRUE if GetNextWord() was called successfully. "CurrentWord"
now points to the string after ’."’.

Then we have to move the string to the String Segment. MoveString() does just that.
It expects "CurrentWord" to point to the string that has to be moved. It returns a number.
We’ll need that when we design the runtime code.

There is no token or combination of tokens for printing strings. So this one will need a
token of its own. We’ll call it "PRINT" for the time being. Now, we got all components.

• The string can be parsed

• We can move it to the String Segment

• We can compile a token and an argument

This is the code for DoDotQuote():

#ifndef ARCHAIC
static void DoDotQuote (void)

#else
static void DoDotQuote ()

#endif
{
CompileString (PRINT);

}

We aren’t done yet. We still have to link the string ’."’ to this routine by adding an entry to
ImmedList[]:

{ 2, 0, -1, ",\"", "\"", DoCommaQuote },
{ 2, 0, -1, ",|", "|", DoCommaQuote },
{ 2, 0, -1, ".\"", "\"", DoDotQuote },
{ 2, 0, -1, ".(", ")", DoDotQuote },

Now we can save comp_4th() and get on with the next file. Remember, we still got to
add a token. As you will probably know, we do that in cmds_4th.h:

#define NOOP 0
#define CELLD 0
#define EXECUTE 1
#define CR 2
#define SPACES 3
#define EMIT 4
#define PRINT 5
#define DOT 6
#define FETCH 7

And of course, we have to add a name to name_4th.c, so it can be decompiled properly:

CHAPTER 29. MODIFYING 4TH 641

char *name_4th [] = {
",", "execute", "cr", "spaces", "emit", ".\"",

Are we done yet? Not by a long shot. We have created a word with an argument, which is
the offset of the string in the String Segment. That requires some special techniques. But
we’ll go into that in the next section.

29.18 Adding words with arguments

The very first thing you have to do is to make sure that your code can be saved and loaded
again. Words that only consist of a token are saved without the argument. That reduces
the size of the HX file. If you want to save the argument you have to add a line to both
load_4th() and save_4th():

case (LITERAL):
case (PRINT):
case (BRANCH):
case (BRANCH0):

Now we have to add code to exec_4th() in order to execute ’."’. The first problem
we encounter is: how do we access the argument? Accessing an argument is quite an
expression:

Object->CodeSeg [Object->ErrLine].Value

In which:

OBJECT = Hcode pointer

CODESEG = Member of Hcode, pointing to the Code Segment

ERRLINE = Member of Hcode, pointing to the current word

VALUE = Member of word, holding the argument

In plain English it means: give me the argument of the currently executed word in the Code
Segment. But we can also make our lives a lot easier by using this macro:

OPERAND

But this is only half the problem. How can we access the String Segment where the string-
constant is stored? We made a pretty table on that subject.

DATATYPE EXPRESSION TYPE

String Object->StringSeg [{cell}] char
String Object->StringSeg + {cell} char*
Character Object->UnitSeg [{cell}] char
Character Object->UnitSeg + {cell} char*
Variable Vars [Object->Offset + {cell}] cell
Code Object->CodeSeg [{cell}] dict
Symbol Object->SymTable [{cell}] symb

Table 29.7: Accessing 4tH data from C

CHAPTER 29. MODIFYING 4TH 642

Most of the time it is more convenient to use functions to access those segments instead of
addressing them directly:

AREA FETCH STORE

Data Stack DPOP DPUSH (value)
Return Stack RPOP RPUSH (value)
Character Segment fetch (location) store (location, char)

Table 29.8: exec_4th() data access API

You might consider using other functions too if certain datatypes are accessed more fre-
quently.

Back to ’."’. We have to access the String Segment for this one. Since all output is chan-
nelled through emit(), we have to convert the string to "units", which are unsigned char-
acters. We could use the expression "Object->StringSeg [{arg}]", but that would be slower
than pointer access on most systems. We decide to use "p", which is a temporary string-
pointer:

case (PRINT): for (p = Object->StringSeg + (unsigned) OPERAND; *p; p++)
emit ((unit) *p);

break;

We assign "p" to a pointer to the string (Object->StringSeg + {cell}). We check
for null-characters (*p). If it is not a null-character, we ’EMIT’ it (emit (*p)) and
advance the pointer (p++) before entering the loop again.

Now we are done. Let’s do something more complicated now, like adding conditionals.

29.19 Packing several words into one token

Depending on the version, you got about 150 free tokens. Some developers think that
equals the number of words they can add. But that’s not true. You can pack several words
into one token - if you know how. Note every token has an argument. You can use that one
to distinguish between several words. Here is how. Let’s assume you’ve defined the token
MULTI in cmds_4th.h. In that token, we’re gonna pack ’SWAP’, ’DROP’ and ’OVER’.
First we have to change the compiler accordingly. Go to the ConstList [] table and
add these entries:

{ 4, "SWAP", MULTI, 0L },
{ 4, "DROP", MULTI, 1L },
{ 4, "OVER", MULTI, 2L },

That wasn’t too hard, wasn’t it? Now we have to add MULTI to exec_4th():

CODE (MULTI) switch (OPERAND)
{ /* this is SWAP */

case (0L): DSIZE (2); a = DS (1);
DS (1) = DS (2); DS (2) = a;
break; /* this is DROP */

case (1L): DSIZE (1); DDROP; break;
case (2L): DSIZE (2); DFREE (1); a = DS (2);

DPUSH (a); break;
default : throw (M4BADOBJ); break;

} /* error if unknown */
NEXT;

CHAPTER 29. MODIFYING 4TH 643

So what have we done here? First we have set up an entry for MULTI. Then, depending
on the value of the argument, we decide whether we have to execute ’SWAP’, ’DROP’ or
’OVER’. If the argument of MULTI has another value, we throw an error, since this should
not have happened.

Of course, you could use the full range of a cell, packing millions of words into a single
token. But there are several disadvantages to that approach. First, the runtime has to make
another decision, which takes up valuable execution time. Second, it isn’t that clear when
you decompile the program what MULTI actually does. Remember that dump_4th()
only displays the name ”multi” and the associated argument. That’s it! Third, the parameter
takes extra space, making your HX executable a bit larger.

Needless to say, but you shouldn’t implement this example in 4tH verbatim. It’s - well - just
an example. In real life, you would have to add the appropriate entries to name_4th.c,
save_4th.c and load_4th.c as described in section 29.18.

29.20 Adding conditionals

Basically, there are ten branch-instructions in 4tH:

1. BRANCH, which unconditionally branches to an address in the Code Segment.

2. 0BRANCH, which branches to an address if the Code Segment if the top of the
Data Stack is zero.

3. CALL, which unconditionally branches to an address in the Code Segment, throw-
ing its origin on the Return Stack.

4. EXIT, which unconditionally branches to an address in the Code Segment, which is
taken from the top of the Return Stack.

5. VECTOR, which unconditionally branches to an address in the Code Segment,
which is taken from the contents of a variable, throwing its origin on the Return
Stack.

6. EXECUTE, which unconditionally branches to an address in the Code Segment,
which is taken from the top of the Data Stack, throwing its origin on the Return
Stack.

7. CATCH, which unconditionally branches to an address in the Code Segment, which
is taken from the top of the Data Stack, throwing the data stack pointer, the previous
handler and its origin on the Return Stack.

8. LOOP, which branches to an address in the Code Segment if the top of the Return
Stack is less than value below it.

9. +LOOP, which branches to an address in the Code Segment if the top of the Return
Stack plus the top of the Data Stack is not equal to the value below the top of the
Return Stack.

10. ?DO, which branches to an address in the Code Segment if the top of the Return
Stack plus the top of the Data Stack is equal to the value below the top of the Return
Stack.

CHAPTER 29. MODIFYING 4TH 644

The first four are the most common and the most useful ones. Together, they control your
entire program. But how do they know where to branch to? There is no instruction like
’BRANCH’. And where is ’DO’?

Well, ’DO’ doesn’t do any branching. It just puts the loop parameters on the Return stack.
And as for ’BRANCH’, this is how it works:

IF something ELSE other thing THEN

This is an expression we are very familiar with. We pronounce it as:

"If TOS is non-zero then something is executed."

This is not entirely true. In fact, it is:

"If TOS is zero then branch after ’ELSE’"

Which in effect results in the execution of "something". But when "something" has ex-
ecuted, it has to branch after the "other thing". Unconditionally, that is. ’THEN’ does
nothing, except serve as a marker for the branch. It doesn’t have to compile to anything.

So this little piece to code will compile to:

Addr| Opcode Operand

0| 0branch 2
1| ...
2| branch 3
3| ...
4| ...

You see that ’IF’ compiles to a ’0BRANCH’ instruction, ’ELSE’ to a ’BRANCH’ instruc-
tion and ’THEN’ to nothing! If you have a closer look you might assume that 4tH will
branch to instruction [2] and then branch directly to instruction [3]. This is not quite what
was intended.

What a ’BRANCH’ instruction actually does is setting the instruction counter to a specific
value. Then, like after every instruction, the instruction counter is incremented. Why make
exceptions? That only slows the interpreter down. Let’s take a look at this piece of code:

10 dup if 1+ else . then cr

This will compile into:

Addr| Opcode Operand Argument

0| literal 10
1| dup 0
2| 0branch 4
3| +literal 1
4| branch 5
5| . 0
6| cr 0

CHAPTER 29. MODIFYING 4TH 645

Now how does this execute. We will show you by giving the value of the instruction pointer
before execution, after execution and after the automatic increment.

INSTRUCTION# INSTRUCTION BEFORE AFTER INCREMENT

[0] literal [0] [0] [1]
[1] dup [1] [1] [2]
[2] 0branch [2] [2] [3]
[3] 1+ [3] [3] [4]
[4] branch [4] [5] [6]
[6] cr [6] [6] [7]

Table 29.9: Example execution plan

You see that ’0BRANCH’ has no effect when the top of the Data Stack is non-zero. And
while ’BRANCH’ sets the instruction pointer to "5", it will resume execution at location
"6".

If you compile this little piece of code by hand and start compiling from the beginning, you
will also see that you can’t fill in the destination until it has been compiled. So how does
4tH do that?

4tH has a small stack (Control Stack) where it stores these addresses. So when it encounters
an ’IF’ or ’ELSE’ or ’THEN’ instruction, it stores its current address there. What would
have happened during the compile of the previous program:

• ’IF’ is encountered. It compiles a ’0BRANCH’ instruction and stores ’2’ on the
Control Stack.

• ’ELSE’ is encountered. It compiles a ’BRANCH’ instruction, takes ’2’ from the
Control Stack and changes the argument of the ’0BRANCH’ word to its own address,
which is ’4’. It stores ’4’ on the Control Stack again.

• ’THEN’ is encountered. It takes ’4’ from the Control Stack and changes the argument
of the ’BRANCH’ word to address of the last compiled word, which is ’5’.

But this example was correct. What would have happened if we had written something
like:

5 0 : test begin 1 dup if ; while . then dup dup repeat

To prevent the compiler from accepting these kind of constructions, a reference is added.
This reference tells the compiler what conditional was put on the stack. If the reference
isn’t correct, the compiler will throw an exception. There are five predefined references,
but you may add your own.

There are three functions which handle conditionals:

FUNCTION DESCRIPTION

MarkLink Throws an address on the stack
PairLink Gets an address from the stack
MakeLink Makes a "backlink"

Table 29.10: Branch resolving API

CHAPTER 29. MODIFYING 4TH 646

They all take a reference as argument. All address calculation and errorchecking is done
by these functions. Let’s get to business and retrace our steps when we added ’BEGIN..
WHILE.. REPEAT’.

All conditionals are "immediate" words. So they have to be added to ImmedList[].
That also means, that each word has its own function. Let’s design the one for ’BEGIN’.
’BEGIN’ is just a marker, which means we have little more to do than to save the address
on the stack:

#ifndef ARCHAIC
static void DoBegin (void)

#else
static void DoBegin ()

#endif

{
MarkLink (R_BEGIN);

}

Yes, that’s all. Just call MakeLink() with the proper reference! Just make sure, you’ve
compiled everything you wanted to compile. Jumps resolved by MarkLink() will in
effect always continue from the word that will be compiled next, although it seems they
jump to the word compiled last.

Now we have to make ’WHILE’. ’WHILE’ executes a piece of code when the top of the
DataStack is non-zero. Which means it jumps to ’REPEAT’ when the top of the DataStack
is zero. Sounds like a ’0BRANCH’ instruction to us. Note, that ’BEGIN’ doesn’t play any
part whatsoever here!

Because the address it has to jump to isn’t known yet (we haven’t encountered ’REPEAT’,
we can only compile the ’0BRANCH’ instruction with an arbitrary address. But ’REPEAT’
will have to know the address in order to make a backlink, so we have to throw it on the
stack:

#ifndef ARCHAIC
static void DoWhile (void)

#else
static void DoWhile ()

#endif

{
CompileMark (BRANCH0, R_WHILE);

}

Note that CompileMark() is equivalent to:

CompileWord (BRANCH0, 0L);
MarkLink (R_WHILE);

Now we come to ’REPEAT’. It has a lot of things to do. First, it has to compile a
’BRANCH’ instruction in order to get back to ’BEGIN’. Second, it will have to resolve
the backlink from ’WHILE’.

In a way, ’REPEAT’ has an advantage over ’WHILE’. It doesn’t have to compile an arbi-
trary address, since it is already on the control stack. It has been provided by ’BEGIN’. It
can retrieve that address by calling PairLink() with the proper reference:

CompileWord (BRANCH, PairLink (R_BEGIN));

CHAPTER 29. MODIFYING 4TH 647

But there is a problem. MakeLink() should always make a link to the last compiled
word. And we can’t compile the ’BRANCH’ instruction first, because of the "WHILE"
reference on the top of the controlstack!

So we have to resolve the ’WHILE’ backlink first. For that purpose, MakeLink() has
an extra argument. Usually, MakeLink() is called with "LASTW", which means it will
jump to the word compiled last. Then the instruction counter will be incremented and the
interpreter will continue from there.

In order to compile ’REPEAT’, we have to make a backlink that points to the word compiled
next. So, this statement is inserted before CompileWord():

MakeLink (R_WHILE, NEXTW);
CompileWord (BRANCH, PairLink (R_BEGIN));

And what if we had made a "BEGIN..AGAIN" or a "BEGIN..UNTIL" loop? Well, in
any case we would have to branch back to ’BEGIN’. ’UNTIL’ conditionally and ’AGAIN’
unconditionally. The address of ’BEGIN’ would have already been on the control stack, so
a single statement could have taken care of it:

CompileWord (0BRANCH, PairLink (R_BEGIN));
CompileWord (BRANCH, PairLink (R_BEGIN));

Actually, since 4tH supports multiple ’WHILE’s the problem is a little more complex.
’REPEAT’ must resolve all ’WHILE’s on the control stack before it can even think of com-
piling a ’BRANCH’ instruction. We’ve already seen that the only difference between an
’AGAIN’ and an ’UNTIL’ is the branch instruction which is compiled. So in 4tH ’RE-
PEAT’, ’UNTIL’ and ’AGAIN’ are handled in a similar way:

#ifndef ARCHAIC
static void CompileAgain (unit AgainToken)

#else
static void CompileAgain (AgainToken) unit AgainToken;

#endif
{
while ((ToCS > 0) && (ControlStack [ToCS - 1].Mark == R_WHILE))

MakeLink (R_WHILE, NEXTW);
CompileWord (AgainToken, PairLink (R_BEGIN));

}

As long as the control stack is not empty and there is a ’WHILE’ reference on top of the
control stack, backlinks are made. Finally, the branch instruction is compiled, which jumps
back to ’BEGIN’. ’REPEAT’ can now be reduced to:

CompileAgain (BRANCH);

Note that a colon definition also uses the control stack. This reference is resolved by ’;’,
which compiles ’EXIT’ and creates a backlink. The ’BRANCH’ instruction will prevent
the interpreter from entering the definition. At the same time, ’:’ creates a symbol. We’ll
go into that in the next section.

If you want to create your own branch instructions, you’ll have to define their behaviour in
exec_4th(). If the argument of the token contains the address you want to jump to in
the end, you’ll have to define it like this:

JUMP (OPERAND);

CHAPTER 29. MODIFYING 4TH 648

That is pretty easy. This macro changes the Program Counter, which is part of the Hcode
header:

Object->ErrLine

Of course, we’ve defined a macro for that:

PROGCOUNT

If the address you want to jump to is issued by the user, you probably want to check whether
it is a valid execution token. Just use the macro XT():

DSIZE (1);
a = DPOP;
XT (a);
JUMP (a);

Consequently, leaving the current Program Counter value on the return stack is pretty easy
too:

RFREE (1);
RPUSH (PROGCOUNT);

I think that covers it all, don’t you?

29.21 Extending the I/O subsystem

The 4tH I/O system is entirely built upon the buffered C streams7 concept. That means ev-
ery device that can be assigned to a FILE* and accessed through fgetc() and fputc()
can be integrated into the 4tH I/O system. If can open a device with fopen() and close
it with fclose(), you’re done, it’s already supported. If not, you have to design two
functions that take the same parameters and return the same values as fopen() and
fclose(). If you can’t you can probably still use those devices within 4tH, but you
can’t integrate them into the I/O system.

If you have defined these functions, you’ll have to make changes to OpenStream() in
exec_4th(). ’Mode’ is the sum of all file access methods, e.g.

s" ls" input pipe + open

This definition contains two file access methods, INPUT and PIPE. You can find these
values in cmds_4th.h. INPUT equals 1 and PIPE equals 8. That makes 9 and that is what
ends up in the ’Mode’ parameter of OpenStream(). However, if one would allow all
possible combinations of all file access methods some would surely make little sense. That
is why ’Mode’ is filtered by Mapping[]. You will find that element 9 of Mapping[]8

contains the value 5. That number corresponds to element 5 in Modelist[], which lists
the correct file access method (which is still 9, of course) and the mode parameter for
fopen(). OpenStream() continues by initializing the members of the Stream[]
structure.

7See: http://www.aquaphoenix.com/ref/gnu_c_library/libc_118.html
8We start counting at 0.

CHAPTER 29. MODIFYING 4TH 649

MEMBER FUNCTION

Mode Uniform file access method
Device FILE pointer to opened device
Connect Function pointer to fopen() like function
Disconnect Function pointer to fclose() like function

Table 29.11: Members of Stream[] structure

When this is done, it uses the Connect() member to open the device. After that, every-
thing is completely transparent to the programmer.

If you want to add a new device, you probably want to signal which type of device you’re
using. In order to do that, you must first add a #define to the ’file modes’ section in
cmds_4th.h. Each new file access method has exactly twice the value of the previous one,
which means that the first one you define would have to be 16. Then you have to figure
out which modes are actually supported. Can your device be opened in read-write mode?
Does appending make sense? You add those ’ideal’ states to ModeList[]. Then map
all possible combinations of all file access methods to the ’ideal’ states in ModeList[]
using Mapping[] conversion table. Every additional file access method doubles the size
of Mapping[], so beware!

MACRO FUNCTION THROW
DEV(n) Aborts if n is not a device M4BADDEV
UDEV(n) Aborts if n is not opened by the user M4BADDEV
ODEV(n) Aborts if n is not opened M4IOERR
SDEV(n) Aborts if n is a pipe M4BADDEV

Table 29.12: Device status macros

If you want to check a device in exec_4th(), there are several macros you can use. They
all take the value returned by OpenStream() as parameter.

29.22 Using the symbol table

The symboltable is a way to dynamically add words to the vocabulary of 4tH. All other
words are hard-coded into the compiler. If you want to add any, you have change the entire
compiler and make a new executable. We’ve seen that before.

Without the symboltable there wouldn’t be any strings, tables, variables or even colon-
definitions. May be you think that such a powerful feature must be hard to work with. No,
it isn’t!

The only thing you have to tell the symboltable is "hey, if that word comes along, compile
this token and this argument into the object". That’s all. There are three functions that
control the symbol-table:

FUNCTION DESCRIPTION

AddSymbol() Adds a symbol to the symboltable
MakeSymbol() Makes a symbol of the current word
GetSymbol() Searches the symboltable
SearchDictionary() Searches the entire dictionary

Table 29.13: Symboltable API

CHAPTER 29. MODIFYING 4TH 650

You can forget about the GetSymbol(). You will hardly ever need it. Let’s see how it
works. We’ll continue with ’:’:

if (DecodeWord (M4NODECL))
{
AddSymbol (CALL, Object->ErrLine, CurrentWord);
CompileMark (BRANCH, R_COLON);

}

First it uses DecodeWord() to set "CurrentWord" to the next word in the source, which
is the name of the definition. Then it adds a symbol to the symboltable. Hey, shouldn’t we
compile a word first?

No. The member "ErrLine" of an Hcode header always points to the next available word
in the Code Segment. That is the place where we will compile our ’BRANCH’ instruction.
When the instruction pointer is set to that location, it will be automatically incremented and
get inside the definition. So that is okay.

The token we’ll use to branch inside that definition is not ’BRANCH’ or ’0BRANCH’, but
’CALL’. ’CALL’ throws the address of its own location on the Return Stack. When the
definition is done, ’EXIT’ takes that address off the Return Stack and jumps backs.

AddSymbol() adds an entry to the symboltable. No, you don’t need to check the sym-
boltable when you add a symbol. AddSymbol() does that for you and sets the member
"ErrNo" when needed.

Finally, a ’BRANCH’ token is compiled with a dummy argument. It will be solved later
with a backlink, marked by MarkLink(). Now, how does it actually work? We’ll give
you an example. Take this small program:

: hello’s 0 do ." Hello " loop cr ;
20 hello’s 10 hello’s

When the ’:’ is reached by the compiler, it hasn’t compiled a thing, so "ErrLine" still
points to the first word in the Code Segment (0). DecodeWord() is called, so "Cur-
rentWord" points to "HELLO’S". Then a symbol is added to the symboltable by calling
AddSymbol(). The entry looks like this:

HELLO’S -> CALL (0)

That means that every time the name "HELLO’S" is found in the source, the word "CALL
(0)" will be compiled. See for yourself:

Addr| Opcode Operand Argument

0| branch 6 hello’s
1| literal 0
2| do 4
3| ." 0 Hello
4| loop 2
5| cr 0
6| exit 0
7| literal 20
8| call 0 hello’s
9| literal 10
10| call 0 hello’s

CHAPTER 29. MODIFYING 4TH 651

Basically, that is all you need to know about the symboltable. Yes, you can search it
yourself, but why should you? It is done automatically for you. But if you really want to
know: you do it by calling GetSymbol().

All you need is the name of the symbol you’re looking for and what you want the compiler
to do when i finds it. E.g. if you were looking for "HELLO’S" and didn’t want to compile
it, you’d have to write:

int x = GetSymbol ("HELLO\’S", W_SEARCH);

GetSymbol() returns the index of "HELLO’S" in the symboltable. You can use this
index to access the symboltable, called "SymTable":

printf ("%d, %ld, %s\n", (int) SymTable [x].Token,
(long) SymTable [x].Value, SymTable [x].Name);

Which prints the token, the argument and the name of the symbol. If the name isn’t listed
GetSymbol() returns "MISSING":

if ((x = GetSymbol ("HELLO\’S", W_SEARCH)) == MISSING)
printf ("Not found\n");

If you search the symboltable in order to compile a word, you only have to tell:

int x = GetSymbol ("HELLO\’S", W_EXEC);

This will not only return the index, but compile the word as well. Note that this function
can only search the symboltable. It cannot look for other words. These words have their
own function, but basically work the same:

CLASS FUNCTION

Immediate words GetImmediate()
Simple words GetWord()
Constants GetConstant()

Table 29.14: Table search API

They will return an index as well, but that will be of little use since the tables they search are
private and cannot be accessed outside the function. SearchDictionary() combines
all these functions (including GetSymbol()) but will only return a boolean to indicate
that that the word was found. It is the most common way to access these lower level
functions.

If you decide to add your own words that use the symboltable, you have to make an entry in
ImmedList[]. Let’s say you want to add a word, which defines a floating point number,
e.g.:

float fp_number

Now we have to let 4tH know that for each "FLOAT" a symboltable entry has to be reserved:

{ 5, 1, -2, "FLOAT", "", DoFloat },

Yes, that is where that famous second field is for! It tells 4tH how many symboltable entries
it has to reserve for a specific immediate word.

CHAPTER 29. MODIFYING 4TH 652

29.23 Using variables and datatypes

We’re slowly entering the area where extensions are becoming projects on its own. You
should be able to make the most common extensions yourself now. What we have ahead is
just for the interested reader of someone who want to add a completely new wordset.

We’re going to explain you how 4tH handles strings and other datatypes. Variables (any
variable!) are not created during compilation. That means no space is reserved. 4tH only
monitors how much space has been allocated to each datatype. This information is saved
in the header.

At the moment there are only two basic datatypes: characters (Character Segment) and
32 bit signed integers (Integer Segment). You’ll find the size of these segments in the
Hcode members "Variables" and "Strings". The Character Segment and Integer Segment
are created when a Hcode program is executed and discarded when the Hcode program is
terminated.

So the only thing the compiler has to do is keep track of the sizes of the segments and
assign pointers to variables. This is quite easy. When an Hcode header is initialized by
InitObject(), both "Variables" and "Strings" are set to zero. Then it parses this decla-
ration:

variable one

As a consequence, DoVariable() is called:

if (DecodeWord (M4NODECL))
AddSymbol (VARIABLE, Object->Variables++, CurrentWord);

It calls DecodeWord(), so "CurrentWord" now points to "ONE". "Variables" is still zero.
If DecodeWord()was called successfully, it just adds a symbol by calling AddSymbol(),
which looks like this:

ONE -> VARIABLE (0)

After that "Variables" is incremented, so it now holds the value "1". It doesn’t matter,
what comes next: "ONE" will always compile to "VARIABLE(0)". The next variable will
compile to "VARIABLE(1)". Unless it is an array:

10 array list

The "10" is compiled as a literal. Then the compiler encounters "ARRAY", so DoArray()
is called:

cell val = DecodeSymbol ();

if (! Object->ErrNo) {
AddSymbol (VARIABLE, (cell) Object->Variables, CurrentWord);
Object->Variables += (unsigned) val;

}

First it calls DecodeSymbol(), which does two things:

1. It calls DecodeWord(), so "CurrentWord" now points to "LIST".

CHAPTER 29. MODIFYING 4TH 653

2. It removes the previously compiled literal (by decrementing the member "ErrLine")
and returns it.

Now "val" holds the value "10". If no error occurred, DoArray()will call AddSymbol().
There an entry is created that looks like this:

LIST -> VARIABLE (1)

So every time the name "LIST" is encountered a ’VARIABLE’ token will be compiled
with argument "1". Finally, the number of variables is incremented by "val", so the mem-
ber "Variables" now holds "11". This means that 10 variables have been added, which is
correct.

It works about the same for ’STRING’, only we compile a literal value here. Why? Because
the system areas in the Character Segment are fixed. In the Variable Area there are also the
application variables and 4tH cannot know at compile time how many there will be at
runtime.

We could have placed the variables right after the system variables, but that would have
made it much more difficult to add names to your application variables. But now we have
to resolve what ’VARIABLE’ has to do at runtime. So we have to edit exec_4th().

Well, the only thing it has to do is calculate its address in the Variable Area. There is a
member in the header that holds the offset of the user variables inside the Variable Area.
The only thing we have to do is to add the operand to it and push the result:

DPUSH (Object->Offset + OPERAND);

Since the next word takes the address of the Data Stack there is no real difference with a
literal. The changes you want to use the address of a variable as a literal expression are
quite remote.

There are two macros that check the status of a variable. VAR(n) checks whether n is
a variable at all. UVAR (n) checks whether n is a writable variable. When any of these
macros fail, M4BADVAR will be thrown. n is the value that VARIABLE leaves on the stack.

Of course, if you want to add an entirely new datatype, you have lots of work to do, but
you can use the same tools as we have used. We have to stress that you use a separate
segment for each datatype. That keeps 4tH simple and it won’t take more memory than
other implementations.

Note that if you want to create constants for a certain datatype you have to work out a
scheme to load and save them. If this scheme depends on a certain, non-portable encoding,
you won’t be able to use the resulting .HX files on different platforms.

29.24 Other tools

We have known assertions since version 3.1c and conditional compilation since version
3.1d. Both conditionally skip source between two markers. And they can be nested. That
sounds like quite a challenge, but it isn’t. In fact, there is only one simple routine that
handles it.

If we encounter a situation where source has to be skipped, we just call SkipSource().
In case of conditional compilation, the source that we have to skip is between the markers
’[IF]’ and ’[THEN]’.

CHAPTER 29. MODIFYING 4TH 654

First, we call DecodeLiteral(). This function gets the argument part of the previ-
ously compiled literal and removes that literal from the compilant (actually, the member
"ErrLine" is decremented, so it will be overwritten):

cell val = DecodeLiteral ();
if (! Object->ErrNo) if (! val) SkipSource ("[IF]", "[THEN]");

Then SkipSource() is called with the argument "[IF]" and "[THEN]". It will handle
everything, including any nested markers. Note that "CurrentWord" still has to point to the
"[IF]" that triggered the action.

29.25 Patching 4tH

We’re getting at the end of the story here. There is one topic left we want to discuss with
you.

It is a drag when you have made some nice extensions to 4tH and you have to reapply them
each time a new version of 4tH is released. However, there is a solution. 4tH comes with
a program called patch4th.4th which can help you. The only thing you have to do is
to create a 4tH patch file. It consists of six parts, which all have to appear in the order
presented to you here. If a section is not applicable, leave it blank.

29.25.1 Tokens

The first part are the tokens or the instructions of the virtual machine, if you prefer. Every
entry consists of three fields, delimited by a tilde9:

1. The first field is the C constant of the token, as it appears in cmds_4th.h (see
29.5);

2. The second field indicates whether the token needs a parameter (see 29.18);

3. The third field is the mnemonic, as used in name_4th.c (see 29.7).

So a sample entry might look like:

[tokens]
NIP~no~"nip"

To terminate this section, add an empty line.

29.25.2 Words

The second part are the words you actually use in a 4tH program. As you will know by now,
a word can compile to zero or more tokens. Every entry consists of eight fields, delimited
by a tilde:

1. The first field is the name of the word as you will use it in a 4tH program;

9A tilde is rarely used by 4tH, so that seemed a good choice. If you prefer another delimiter, you have to
change the source of patch4th.4th.

CHAPTER 29. MODIFYING 4TH 655

2. The second field is the token it will compile to;

3. The third field contains the type of word, constant, immediate or word;

4. The fourth field is the fixed parameter of a constant;

5. The fifth field is the number of symbol entries it will need;

6. The sixth field is the source correction that will be applied;

7. The seventh field is the delimiter it uses;

8. The eighth field is the C function which handles the immediate word.

A simple word requires fields 1, 2 and 3. A constant requires fields 1, 2, 3 and 4. An
immediate word requires 1, 3, 5, 6, 7 and 8. If a field is not applicable for a certain type
it will not matter what you enter there. See section 29.3 for more information. A sample
entry might look like:

[words]
BIRTHDAY~LITERAL~constant~19600902L~0~0~~
BINARY~RADIX~constant~2L~0~0~~
NIP~NIP~word~~0~0~~
[SEXTAL]~~immediate~~0~-1~""~DoSextal

To terminate this section, add an empty line.

29.25.3 The virtual machine

These sections are copied verbatim - including indententation - into exec_4th.c. The
first section are the additional #include directives you might need. These are located in
the [vm.include] section:

[vm.include]
#include <sys/stat.h>

You terminate this section by directly continuing with the next section, [vm.globals].
This contains any global variables you use in the virtual machine, e.g. Sleeping. They
will appear right before the prototype of the throw() function:

[vm.include]
#include <sys/stat.h>
[vm.globals]
static unsigned MyGlobal;

You terminate this section by directly continuing with the next section, [vm.io]. This
contains the I/O functions emit() and Accept() if you want to replace the ones that
exec_4th() provides. If you want to keep the standard I/O functions, leave it completely
blank, not even an empty line, e.g.:

[vm.include]
#include <sys/stat.h>
[vm.globals]
static unsigned MyGlobal;
[vm.io]
[vm.support]

CHAPTER 29. MODIFYING 4TH 656

You terminate this section by directly continuing with the next section, [vm.support].
This contains any support functions for the virtual machine, e.g. OpenStream(). They
will appear right before the main exec_4th() function:

[vm.include]
#include <sys/stat.h>
[vm.globals]
static unsigned MyGlobal;
[vm.io]
[vm.support]
/*
Custom support functions

*/

You terminate this section by directly continuing with the next section, [vm.vars]. This
contains any additional local variables of the exec_4th() function, e.g. VarMax, which
will be added to the local variable list:

[vm.include]
#include <sys/stat.h>
[vm.globals]
static unsigned MyGlobal;
[vm.io]
[vm.support]
/*
Custom support functions

*/
[vm.vars]
time_t MyLocal;

You terminate this section by directly continuing with the next section, [vm.extension].
This contains the actual C code which will be copied into the main loop of exec_4th():

[vm.include]
#include <sys/stat.h>
[vm.globals]
static unsigned MyGlobal;
[vm.io]
[vm.support]
/*
Custom support functions

*/
[vm.vars]
time_t MyLocal;

[vm.extension]
CODE (NIP) DSIZE (2);

DS (2) = DS (1);
DDROP;
NEXT;

You terminate this section by directly continuing with the next section.

29.25.4 Immediate words

This section contains the C functions that are executed when immediate words are compiled
(see 29.3 and 29.8). They will be inserted verbatim just before ImmedList[]:

CHAPTER 29. MODIFYING 4TH 657

[vm.include]
#include <sys/stat.h>
[vm.globals]
static unsigned MyGlobal;
[vm.io]
[vm.support]
/*
Custom support functions

*/
[vm.vars]
time_t MyLocal;

[vm.extension]
CODE (NIP) DSIZE (2);

DS (2) = DS (1);
DDROP;
NEXT;

[immediate.words]
#ifndef ARCHAIC

static void DoSextal (void)
#else

static void DoSextal ()
#endif
{

Base = 6;
}

You don’t have to explicitly terminate this section.

29.25.5 Applying the patches

Make a subdirectory, copy the original cmds_4th.h, comp_4th.c, exec_4th.c,
name_4th.c, save_4th.c and load_4th.c sources into it and rename them to
.txt. They will serve as templates for your custom 4tH sources. In this example we will
assume your custom patchfile and the compiled patch4th.4th are also located there,
but that is not required. When you make a directory listing you will see the following files:

cmds_4th.txt
comp_4th.txt
exec_4th.txt
name_4th.txt
save_4th.txt
load_4th.txt
mypatch.txt
patch4th.hx

Now run it:

4th lxq patch4th.hx mypatch.txt

When everything is alright, you will see the following messages:

Opening mypatch.txt
.. 1 tokens read
.. 4 words read
Processing cmds_4th.txt
.. done
Processing save_4th.txt
.. done
Processing load_4th.txt
.. done

CHAPTER 29. MODIFYING 4TH 658

Processing name_4th.txt
.. done
Processing exec_4th.txt
.. done
Processing comp_4th.txt
.. done
Closing mypatch.txt
.. done

When you list the directory again, you will see that new cmds_4th.h, comp_4th.c,
exec_4th.c, name_4th.c, save_4th.c and load_4th.c sources have been cre-
ated.

29.25.6 Error messages

Usage: patch4th patch-file Issue a patchfile on the commandline

Bad boolean ”yes” or ”no” was expected in this field

Bad datatype ”word”, ”constant” or ”immediate” was expected in this
field

Bad number A number was expected in this field

Cannot find [tokens] A [tokens] section was expected in the patchfile

Cannot find [words] A [words] section was expected in the patchfile

Cannot find [vm.include] A [vm.include] section was expected in the patch-
file

Cannot find [vm.support] A [vm.support] section was expected in the patch-
file

Too many tokens Too many tokens were defined in the patchfile

Cannot find /* ranges */ Corrupted cmds_4th.txt file

Cannot find NOOP token Corrupted cmds_4th.txt file

Cannot find LastWord4th Corrupted cmds_4th.txt file

Cannot open <file>.h|c Could not create a source file

Cannot open <file>.txt Could not find a template file

DOCUMENT ENDS HERE

Copyright 1997, 2022 J.L. Bezemer

	What's new
	I Getting Started
	Overview
	Introduction
	History
	Applications
	Architecture
	The 4tH language
	H-code
	H-code compiler
	Error handling
	Interfacing with C

	Installation Guide
	About this package
	Example code
	Main program
	Unix package
	Linux package
	MS-DOS package
	MS-Windows package

	Setting up your working directory
	Now what?
	Pedigree
	Contributors
	Questions
	4tH website
	4tH Google group
	Newsgroup

	A guided tour
	4tH interactive
	Starting up 4tH
	Running a program
	Starting an editing session
	Writing your first 4tH program
	A more complex program
	Advanced features
	Suspending a program
	Calculator mode
	Epilogue

	Frequently asked questions

	II Primer
	Introduction
	4tH fundamentals
	Making calculations without parentheses
	Manipulating the stack
	Deep stack manipulators
	Passing arguments to functions
	Making your own words
	Adding comment
	Text-format of 4tH source
	Displaying string literals
	Creating variables
	Using variables
	Built-in variables
	What is a cell?
	What is a literal expression?
	Declaring arrays of numbers
	Using arrays of numbers
	Copying arrays of numbers
	Declaring and using constants
	Built-in constants
	Using booleans
	IF-ELSE constructs
	FOR-NEXT constructs
	WHILE-DO constructs
	REPEAT-UNTIL constructs
	Infinite loops
	Including source files
	Getting a number from the keyboard

	4tH arrays
	Aligning numbers
	Creating arrays of constants
	Using arrays of constants
	Using values
	Creating string variables
	What is an address?
	String literals
	String constants
	Initializing string variables
	Initializing a NULL string variable
	Getting the length of a string variable
	Printing a string variable
	Copying a string variable
	The string terminator
	Slicing strings
	Appending strings
	Comparing strings
	Finding a substring
	Replacing substrings
	Deleting substrings
	Removing trailing spaces
	Removing leading spaces
	Upper and lower case
	String literals and string variables
	Printing individual characters
	Distinguishing characters
	Getting ASCII values
	Printing spaces
	Fetching individual characters
	Storing individual characters
	Getting a string from the keyboard

	Character Segment
	The Character Segment
	What is the TIB?
	What is the PAD?
	How do I use TIB and PAD?
	Simple parsing
	Converting a string to a number
	Controlling the radix
	Pictured numeric output
	printf() like formatting
	Converting a number to a string
	Aborting a program
	Opening a file
	Reading and writing from/to a file
	Closing a file
	Writing text-files
	Reading text-files
	Reading long lines
	Reading binary files
	Writing binary files
	Reading and writing block files
	Parsing textfiles
	Parsing binary files
	Parsing comma-delimited files
	Parsing fixed-width text files
	Advanced parsing
	scanf() like parsing
	Specifying the width
	Return values

	Appending to existing files
	Using pipes
	Opening a file in read/write mode
	Using random access files
	The layout of the I/O system
	Using a printer
	The layout of the Character Segment

	Integer Segment and Code Segment
	The Code Segment
	The address of a colon-definition
	Vectored execution
	Execution tokens
	The Integer Segment
	A portable way to access application variables
	Returning a result to the host program
	Using commandline arguments
	The layout of the Variable Area
	The stacks
	Saving temporary values
	The Return Stack and the DO..LOOP
	Other Return Stack manipulations
	Altering the flow with the Return Stack
	Leaving a colon-definition
	The layout of the Stack Area
	Booleans and numbers
	Using ' with other names
	Deleting files
	Querying environment variables
	What is not implemented
	Known bugs and limitations

	Advanced programming
	Compiletime calculations
	Conditional compilation
	Checking the environment at compiletime
	Checking a definition at compiletime
	Exceptions
	Enumerations
	Forward declarations
	Deferred words
	Trampoline
	Which one should you use?

	Recursion
	Private declarations
	Aliases
	Changing behavior of data
	Multidimensional arrays
	Binary string constants
	Binary string variables
	Records and structures
	Unions
	Complex control structures
	Alternative branch- and loop constructs
	CASE-OF constructs
	Optimization
	Static variable pointers
	Assertions
	Breakpoints
	Debugging
	Running 4tH programs from the Unix shell
	Embedding 4tH programs in a batch file

	Standard libraries
	Adding your own library
	Adding templates
	Parsing the command line
	Mixing character and number data
	Dynamic memory allocation
	Using two heaps
	Tweaking dynamic memory
	Garbage collection
	Dynamic strings
	Dynamic arrays
	Random access
	Sequential access

	Application stacks
	Local variables
	Random numbers
	Sorting
	Bitfields
	Bit arrays
	Associative arrays (using hash tables)
	Associative arrays (using binary trees)
	Lookup tables with integer keys
	Lookup tables with string keys
	Lookup tables with multiple keys
	Lookup tables with duplicate keys
	Binary search tables
	Dynamic binary search tables
	Fixed point calculation
	Fractions

	Double numbers
	Floating point numbers (unified stack)
	Floating point numbers (separate stack)
	Floating point functions
	Floating point configurations
	Forth Scientific Library
	Statistical functions
	Numerical integration

	Special libraries
	Infix formula translationArticle written and contributed by David Johnson.
	Evaluating infix formulas at runtimeArticle written and contributed by David Johnson.
	Converting infix formulasArticle written and contributed by David Johnson.
	Interpreters
	Menus
	Finite state machinesPart of this section is based on an article in Forthwrite UK by Jenny Brien.
	Virtual memory
	Triple numbers
	Timers
	Time & date
	Tokenizing strings
	Regular expressionsPart of this text is derived from http://http://misc.yarinareth.net/regex.html by Dorothea Salo under the ''Creative Commons Attribution 3.0 United States License''.
	String pattern matching
	Wildcard pattern matching
	Escape characters
	Internationalization
	Chinese characters
	Sequences
	Managing INI files
	Extract, transform and load
	Writing spreadsheet files
	Writing other tabular formats
	Writing LaTeX files
	Writing RTF files
	Writing HTML files
	Converting to XML and HTML
	Databases
	Indexing a database
	Binding the indexes
	Connecting to the WWW
	Speech synthesis
	GUI applications
	Card games

	Graphics libraries
	Portable bitmap graphics
	More lines
	Circles, ellipses and arcs
	Filling shapes
	Turtle graphics
	Annotating portable bitmap images
	Color palettes
	Viewing and modifying bitmap images
	3D plotting
	3D turtle graphics

	Preprocessor libraries
	Introduction
	Stack instructions
	Coroutines
	Interpretation
	Closures
	Object orientation
	Encapsulation
	Subtype polymorphism
	Inheritance
	Using curly braces
	Lazy initialization
	Forward declaration of classes
	Determining the type and size of an object
	Namespace pollution
	Design patterns

	This is the end

	III Reference guide
	Glossary
	Editor manual
	Introduction
	Selecting a screen and input of text
	Line editing
	Line editing commands
	Screen editing commands
	Cursor control and string editing
	Commands to position the cursor
	String editing commands
	Saving and exiting
	Calculator mode

	Shell manual
	Introduction
	Loading and saving
	Task management
	Scripting
	Stack, I/O and arithmetic

	Preprocessor manual
	Introduction
	Macros
	Back quoted strings
	Registers
	Parsing strings
	The string stack
	Phony variables
	Branching and looping
	Functions

	Invocation (script)
	Options

	Invocation (executable)
	Options

	Preprocessor commands
	Error messages
	Known bugs and limitations
	Preprocessor libraries

	uBasic manual
	Introduction
	Statements
	Functions
	Error messages
	System messages

	TopITSM manual
	Introduction
	Classes

	Requirements
	Installing TopITSM
	Using TopITSM
	Help
	Calculator
	TopITSM documents
	TopITSM views
	Generating documents
	Error handling

	Backup and restore
	Backup
	Restore
	Changing node properties

	ANS Forth statement
	ANS-Forth Label
	Unsupported CORE words
	Supported ANS Forth word sets
	Core Extensions word set
	Block Extensions word set
	Double number word set
	Double number Extensions word set
	Facility Extensions word set
	File-Access word set
	File-Access Extensions word set
	Floating-Point word set
	Floating-Point Extensions word set
	Programming-Tools word set
	Programming-Tools Extensions word set
	String word set
	XCHAR word set
	XCHAR Extensions word set

	Porting guide
	Introduction
	General guidelines
	Differences between 4tH and ANS-Forth
	Strings
	Double numbers
	Booleans
	CREATE..DOES>
	HERE
	2>R and 2R>
	Interpretation and compilation mode
	BEGIN..WHILE..REPEAT
	DO..LOOP
	I/O

	Easy 4tH
	Enabling the String Space
	The structure of Easy 4tH

	The preprocessor
	Converting ANS-Forth programs to 4tH

	Errors guide
	How to use this manual
	Interpreter (exec_4th)
	Compiler (comp_4th)
	Loader (load_4th)
	Saver (save_4th)

	4tH library
	4tH library files
	FOOS classes
	Library dependencies

	Change log
	What's new in version 3.64.0
	What's new in version 3.62.5
	What's new in version 3.62.4
	What's new in version 3.62.3
	What's new in version 3.62.2
	What's new in version 3.62.1
	What's new in version 3.62.0
	What's new in version 3.61.5
	What's new in version 3.61.4
	What's new in version 3.61.3
	What's new in version 3.61.2
	What's new in version 3.61.1
	What's new in version 3.61.0
	What's new in version 3.60.1
	What's new in version 3.60.0
	What's new in version 3.5d, release 3
	What's new in version 3.5d, release 2
	What's new in version 3.5d
	What's new in version 3.5c, release 3
	What's new in version 3.5c, release 2
	What's new in version 3.5c
	What's new in version 3.5b, release 2
	What's new in version 3.5b
	What's new in version 3.5a, release 2
	What's new in version 3.5a
	What's new in version 3.3d, release 2
	What's new in version 3.3d
	What's new in version 3.3c
	What's new in version 3.3a
	What's new in version 3.2e
	What's new in version 3.1d

	IV Development guide
	Compiling the source
	Introduction
	Recommended and preferred compilers
	Compiling 4th
	Compiling the library
	Choosing Makefiles
	Shared library
	64-bit platforms
	Regenerating the include files
	Optimizations
	GCC specific optimizations
	Using the library
	Convert 4tH programs to native executables

	Using the 4tH API
	Introduction
	A sample program
	A first look at open_4th()
	A closer look at H-code
	A closer look at HX-code
	A first look at comp_4th()
	A first look at exec_4th()
	A first look at free_4th()
	A first look at save_4th()
	A first look at load_4th()
	A first look at error-trapping
	A first look at dump_4th()
	A first look at cgen_4th()
	Converting HX-files
	A first look at fetch_4th()
	A first look at store_4th()
	Examples of embedded HX code
	Suspended execution
	Useful variables

	Modifying 4tH
	Introduction
	Understanding 4tHs versioning
	A closer look at comp_4th()
	Adding a constant
	Adding a word
	A closer look at exec_4th()
	A first look at name_4th()
	Extending the compiler
	Making aliases
	Giving a name to an application variable
	Adding new variables
	Resizing the 4tH environment
	Tuning pipe failure detection
	Adding new error messages
	Sizing the Code Segment
	Adding inline macros
	Adding string words
	Adding words with arguments
	Packing several words into one token
	Adding conditionals
	Extending the I/O subsystem
	Using the symbol table
	Using variables and datatypes
	Other tools
	Patching 4tH
	Tokens
	Words
	The virtual machine
	Immediate words
	Applying the patches
	Error messages

