
SWI-Prolog Semantic Web Library 3.0

Jan Wielemaker
University of Amsterdam/VU University Amsterdam

The Netherlands
E-mail: J.Wielemaker@vu.nl

July 10, 2018

Abstract

This document describes the SWI-Prolog semweb package. The core of this package is an
efficient main-memory based RDF store that is tightly connected to Prolog. Additional libraries
provide reading and writing RDF/XML and Turtle data, caching loaded RDF documents and
persistent storage. This package is the core of a ready-to-run platform for developing Semantic
Web applications named ClioPatria, which is distributed seperately. The SWI-Prolog RDF store
is amoung the most memory efficient main-memory stores for RDF1

Version 3 of the RDF library enhances concurrent use of the library by allowing for lock-
free reading and writing using short-held locks. It provides Prolog compatible logical update
view on the triple store and isolation using transactions and jargonsnapshots. This version of the
library provides near real-time modification and querying of RDF graphs, making it particularly
interesting for handling streaming RDF and graph manipulation tasks.

1http://cliopatria.swi-prolog.org/help/source/doc/home/vnc/prolog/src/
ClioPatria/web/help/memusage.txt

1

http://cliopatria.swi-prolog.org
http://cliopatria.swi-prolog.org/help/source/doc/home/vnc/prolog/src/ClioPatria/web/help/memusage.txt
http://cliopatria.swi-prolog.org/help/source/doc/home/vnc/prolog/src/ClioPatria/web/help/memusage.txt

Contents

1 Introduction 4

2 Scalability 4

3 Two RDF APIs 5
3.1 library(semweb/rdf11): The RDF database . 5

3.1.1 Query the RDF database . 5
3.1.2 Enumerating and testing objects . 8
3.1.3 RDF literals . 10
3.1.4 Accessing RDF graphs . 11
3.1.5 Modifying the RDF store . 11
3.1.6 Accessing RDF collections . 11
3.1.7 library(semweb/rdf11 containers): RDF 1.1 Containers 12

3.2 library(semweb/rdf db): The RDF database . 13
3.2.1 Query the RDF database . 14
3.2.2 Enumerating objects . 16
3.2.3 Modifying the RDF database . 17
3.2.4 Update view, transactions and snapshots . 18
3.2.5 Type checking predicates . 19
3.2.6 Loading and saving to file . 19
3.2.7 Graph manipulation . 23
3.2.8 Literal matching and indexing . 24
3.2.9 Predicate properties . 25
3.2.10 Prefix Handling . 26
3.2.11 Miscellaneous predicates . 29
3.2.12 Memory management considerations . 31

3.3 Monitoring the database . 33
3.4 Issues with rdf db . 34

4 Plugin modules for rdf db 35
4.1 Hooks into the RDF library . 35
4.2 library(semweb/rdf zlib plugin): Reading compressed RDF 36
4.3 library(semweb/rdf http plugin): Reading RDF from a HTTP server 36
4.4 library(semweb/rdf cache): Cache RDF triples . 36
4.5 library(semweb/rdf litindex): Indexing words in literals 37

4.5.1 Literal maps: Creating additional indices on literals 38
4.6 library(semweb/rdf persistency): Providing persistent storage 40

4.6.1 Enriching the journals . 41

5 library(semweb/turtle): Turtle: Terse RDF Triple Language 43

6 library(semweb/rdf ntriples): Process files in the RDF N-Triples format 46

7 library(semweb/rdfa): Extract RDF from an HTML or XML DOM 48

2

8 library(semweb/rdfs): RDFS related queries 49
8.1 Hierarchy and class-individual relations . 49
8.2 Collections and Containers . 50

9 Managing RDF input files 50
9.1 The Manifest file . 50

9.1.1 Support for the VoID and VANN vocabularies 52
9.1.2 Finding manifest files . 52

9.2 Usage scenarios . 53
9.2.1 Referencing resources . 54

9.3 Putting it all together . 55
9.4 Example: A metadata file for W3C WordNet . 56

10 library(semweb/sparql client): SPARQL client library 58

11 library(semweb/rdf compare): Compare RDF graphs 60

12 library(semweb/rdf portray): Portray RDF resources 60

13 Related packages 61

14 Version 3 release notes 61

3

1 Introduction

The core of the SWI-Prolog package semweb is an efficient main-memory RDF store written in C
that is tightly integrated with Prolog. It provides a fully logical predicate rdf/3 to query the RDF
store efficiently by using multiple (currently 9) indexes. In addition, SWI-Prolog provides libraries for
reading and writing XML/RDF and Turtle and a library that provides persistency using a combination
of efficient binary snapshots and journals.

Below, we describe a few usage scenarios that guides the current design of this Prolog-based RDF
store.

Application prototyping platform Bundled with ClioPatria, the store is an efficient platform for
prototyping a wide range of semantic web applications. Prolog, connected to the main-memory based
store is a productive platform for writing application logic that can be made available through the
SPARQL endpoint of ClioPatria, using an application specific API (typically based on JSON or XML)
or as an HTML based end-user application. Prolog is more versatile than SPARQL, allows composing
of the logic from small building blocks and does not suffer from the Object-relational impedance
mismatch.

Data integration The SWI-Prolog store is optimized for entailment on the
rdfs:subPropertyOf relation. The rdfs:subPropertyOf relation is crucial for inte-
grating data from multiple sources while preserving the original richness of the sources because
integration can be achieved by defining the native properties as sub-properties of properties from a
unifying schema such as Dublin Core.

Dynamic data This RDF store is one of the few stores that is primarily based on backward rea-
soning. The big advantage of backward reasoning is that it can much easier deal with changes to the
database because it does not have to take care of propagating the consequences. Backward reason-
ing reduces storage requirements. The price is more reasoning during querying. In many scenarios
the extra reasoning using a main memory will outperform the fetching the precomputed results from
external storage.

Prototyping reasoning systems Reasoning systems, not necessarily limited to entailment reason-
ing, can be prototyped efficiently on the Prolog based store. This includes ‘what-if’ reasoning, which
is supported by snapshot and transaction isolation. These features, together with the concurrent load-
ing capabilities, make the platform well equiped to collect relevant data from large external stores for
intensive reasoning. Finally, the TIPC package can be used to create networks of cooperating RDF
based agents.

Streaming RDF Transactions, snapshots, concurrent modifications and the database monitoring
facilities (see rdf monitor/2) make the platform well suited for prototyping systems that deal
with streaming RDF data.

2 Scalability

Depending on the OS and further application restrictions, the SWI-Prolog RDF stores scales to about
15 million triples on 32-bit hardware. On 64-bit hardware, the scalability is limited by the amount of

4

http://cliopatria.swi-prolog.org
http://www.swi-prolog.org/pldoc/package/tipc.html

physical memory, allowing for approximately 4 million triples per gigabyte. The other limiting factor
for practical use is the time required to load data and/or restore the database from the persistent file
backup. Performance depends highly on hardware, concurrent performance and whether or not the
data is spread over multiple (named) graphs that can be loaded in parallel. Restoring over 20 million
triples per minute is feasible on medium hardware (Intel i7/2600 running Ubuntu 12.10).

3 Two RDF APIs

The current ‘semweb’ package provides two sets of interface predicates. The original set is described
in section 3.2. The new API is described in section 3.1. The original API was designed when RDF
was not yet standardised and did not yet support data types and language indicators. The new API is
designed from the RDF 1.1 specification, introducing consistent naming and access to literals using
the value space. The new API is currently defined on top of the old API, so both APIs can be mixed
in a single application.

3.1 library(semweb/rdf11): The RDF database

The library(semweb/rdf11) provides a new interface to the SWI-Prolog RDF database based
on the RDF 1.1 specification.

3.1.1 Query the RDF database

rdf(?S, ?P, ?O) [nondet]

rdf(?S, ?P, ?O, ?G) [nondet]

True if an RDF triple <S,P,O> exists, optionally in the graph G. The object O is either a
resource (atom) or one of the terms listed below. The described types apply for the case
where O is unbound. If O is instantiated it is converted according to the rules described with
rdf assert/3.

Triples consist of the following three terms:

• Blank nodes are encoded by atoms that start with ‘ :‘.

• IRIs appear in two notations:

– Full IRIs are encoded by atoms that do not start with ‘ :‘. Specifically, an IRI term is
not required to follow the IRI standard grammar.

– Abbreviated IRI notation that allows IRI prefix aliases that are registered by
rdf register prefix/[2,3] to be used. Their notation is Alias:Local, where Alias
and Local are atoms. Each abbreviated IRI is expanded by the system to a full IRI.

• Literals appear in two notations:

– String@Lang A language-tagged string, where String is a Prolog string and Lang is
an atom.

– ValueˆˆType A type qualified literal. For unknown types, Value is a Prolog string. If
type is known, the Prolog representations from the table below are used.

5

Datatype IRI Prolog term
xsd:float float
xsd:double float
xsd:decimal float (1)
xsd:integer integer
XSD integer sub-types integer
xsd:boolean true or false
xsd:date date(Y,M,D)
xsd:dateTime date_time(Y,M,D,HH,MM,SS) (2,3)
xsd:gDay integer
xsd:gMonth integer
xsd:gMonthDay month_day(M,D)
xsd:gYear integer
xsd:gYearMonth year_month(Y,M)
xsd:time time(HH,MM,SS) (2)

Notes:

(1) The current implementation of xsd:decimal values as floats is formally incor-
rect. Future versions of SWI-Prolog may introduce decimal as a subtype of rational.

(2) SS fields denote the number of seconds. This can either be an integer or a float.

(3) The date_time structure can have a 7th field that denotes the timezone offset
in seconds as an integer.

In addition, a ground object value is translated into a properly typed RDF literal using
rdf canonical literal/2.

There is a fine distinction in how duplicate statements are handled in rdf/[3,4]: backtracking
over rdf/3 will never return duplicate triples that appear in multiple graphs. rdf/4 will
return such duplicate triples, because their graph term differs.

Arguments
S is the subject term. It is either a blank node or IRI.
P is the predicate term. It is always an IRI.
O is the object term. It is either a literal, a blank node or IRI (ex-

cept for true and false that denote the values of datatype XSD
boolean).

G is the graph term. It is always an IRI.

See also
- Triple pattern querying
- xsd number string/2 and xsd time string/3 are used to convert between lexical
representations and Prolog terms.

rdf has(?S, ?P, ?O) [nondet]

rdf has(?S, ?P, ?O, -RealP) [nondet]

Similar to rdf/3 and rdf/4, but P matches all predicates that are defined as an
rdfs:subPropertyOf of P. This predicate also recognises the predicate properties inverse_of
and symmetric. See rdf set predicate/2.

6

http://www.w3.org/TR/sparql11-query/#sparqlTriplePatterns

rdf reachable(?S, +P, ?O) [nondet]

rdf reachable(?S, +P, ?O, +MaxD, -D) [nondet]

True when O can be reached from S using the transitive closure of P. The predicate uses (the
internals of) rdf has/3 and thus matches both rdfs:subPropertyOf and the inverse_of
and symmetric predicate properties. The version rdf reachable/5 maximizes the steps
considered and returns the number of steps taken.

If both S and O are given, these predicates are semidet. The number of steps D is minimal
because the implementation uses breath first search.

Constraints on literal values

{}(+Where) [semidet]

rdf where(+Where) [semidet]

Formulate constraints on RDF terms, notably literals. These are intended to be used as
illustrated below. RDF constraints are pure: they may be placed before, after or inside a graph
pattern and, provided the code contains no commit operations (!, ->), the semantics of the goal
remains the same. Preferably, constraints are placed before the graph pattern as they often help
the RDF database to exploit its literal indexes. In the example below, the database can choose
between using the subject and/or predicate hash or the ordered literal table.

{ Date >= "2000-01-01"ˆˆxsd:date },
rdf(S, P, Date)

The following constraints are currently defined:

> , >= , == , =< , <
The comparison operators are defined between numbers (of any recognised type), typed
literals of the same type and langStrings of the same language.

prefix(String, Pattern)

substring(String, Pattern)

word(String, Pattern)

like(String, Pattern)

icase(String, Pattern)
Text matching operators that act on both typed literals and langStrings.

lang matches(Term, Pattern)
Demands a full RDF term (Text@Lang) or a plain Lang term to match the language
pattern Pattern.

The predicates rdf where/1 and {}/1 are identical. The rdf where/1 variant is provided
to avoid ambiguity in applications where {}/1 is used for other purposes. Note that it is also
possible to write rdf11:{...}.

7

3.1.2 Enumerating and testing objects

Enumerating objects by role

rdf subject(?S) [nondet]

True when S is a currently known subject, i.e. it appears in the subject position of some visible
triple. The predicate is semidet if S is ground.

rdf predicate(?P) [nondet]

True when P is a currently known predicate, i.e. it appears in the predicate position of some
visible triple. The predicate is semidet if P is ground.

rdf object(?O) [nondet]

True when O is a currently known object, i.e. it appeasr in the object position of some visible
triple. If Term is ground, it is pre-processed as the object argument of rdf assert/3 and
the predicate is semidet.

rdf node(?T) [nondet]

True when T appears in the subject or object position of a known triple, i.e., is a node in the
RDF graph.

rdf graph(?Graph) [nondet]

True when Graph is an existing graph.

Enumerating objects by type

rdf literal(?Term) [nondet]

True if Term is a known literal. If Term is ground, it is pre-processed as the object argument of
rdf assert/3 and the predicate is semidet.

rdf bnode(?BNode) [nondet]

True if BNode is a currently known blank node. The predicate is semidet if BNode is ground.

rdf iri(?IRI) [nondet]

True if IRI is a current IRI. The predicate is semidet if IRI is ground.

rdf name(?Name) [nondet]

True if Name is a current IRI or literal. The predicate is semidet if Name is ground.

rdf term(?Term) [nondet]

True if Term appears in the RDF database. Term is either an iri, literal or blank node and
may appear in any position of any triple. If Term is ground, it is pre-processed as the object
argument of rdf assert/3 and the predicate is semidet.

Testing objects types

rdf is iri(@IRI) [semidet]

True if IRI is an RDF IRI term.

For performance reasons, this does not check for compliance to the syntax defined in RFC 3987.
This checks whether the term is (1) an atom and (2) not a blank node identifier.

Success of this goal does not imply that the IRI is present in the database (see rdf iri/1 for
that).

8

http://www.ietf.org/rfc/rfc3987.txt

rdf is bnode(@Term) [semidet]

True if Term is an RDF blank node identifier.

A blank node is represented by an atom that starts with _:.

Success of this goal does not imply that the blank node is present in the database (see
rdf bnode/1 for that).

For backwards compatibility, atoms that are represented with an atom that starts with __ are
also considered to be a blank node.

rdf is literal(@Term) [semidet]

True if Term is an RDF literal term.

An RDF literal term is of the form ‘String@LanguageTag or ValueˆˆDatatype‘.

Success of this goal does not imply that the literal is well-formed or that it is present in the
database (see rdf literal/1 for that).

rdf is name(@Term) [semidet]

True if Term is an RDF Name, i.e., an IRI or literal.

Success of this goal does not imply that the name is well-formed or that it is present in the
database (see rdf name/1) for that).

rdf is object(@Term) [semidet]

True if Term can appear in the object position of a triple.

Success of this goal does not imply that the object term in well-formed or that it is present in
the database (see rdf object/1) for that).

Since any RDF term can appear in the object position, this is equaivalent to rdf is term/1.

rdf is predicate(@Term) [semidet]

True if Term can appear in the predicate position of a triple.

Success of this goal does not imply that the predicate term is present in the database (see
rdf predicate/1) for that).

Since only IRIs can appear in the predicate position, this is equivalent to rdf is iri/1.

rdf is subject(@Term) [semidet]

True if Term can appear in the subject position of a triple.

Only blank nodes and IRIs can appear in the subject position.

Success of this goal does not imply that the subject term is present in the database (see
rdf subject/1) for that).

Since blank nodes are represented by atoms that start with ‘ :‘ and an IRIs are atoms as well,
this is equivalent to atom(Term).

rdf is term(@Term) [semidet]

True if Term can be used as an RDF term, i.e., if Term is either an IRI, a blank node or an RDF
literal.

Success of this goal does not imply that the RDF term is present in the database (see
rdf term/1) for that).

9

3.1.3 RDF literals

rdf canonical literal(++In, -Literal) [det]

Transform a relaxed literal specification as allowed for rdf assert/3 into its canonical
form. The following Prolog terms are translated:

Prolog Term Datatype IRI
float xsd:double
integer xsd:integer
string xsd:string
true or false xsd:boolean
date(Y,M,D) xsd:date
date_time(Y,M,D,HH,MM,SS) xsd:dateTime
date_time(Y,M,D,HH,MM,SS,TZ) xsd:dateTime
month_day(M,D) xsd:gMonthDay
year_month(Y,M) xsd:gYearMonth
time(HH,MM,SS) xsd:time

For example:

?- rdf_canonical_literal(42, X).
X = 42ˆˆ’http://www.w3.org/2001/XMLSchema#integer’.

rdf lexical form(++Literal, -Lexical:compound) [det]

True when Lexical is the lexical form for the literal Literal. Lexical is of one of the forms
below. The ntriples serialization is obtained by transforming String into a proper ntriples string
using double quotes and escaping where needed and turning Type into a proper IRI reference.

• StringˆˆType
• String@Lang

rdf compare(-Diff, +Left, +Right) [det]

True if the RDF terms Left and Right are ordered according to the comparison operator Diff.
The ordering is defines as:

• Literal < BNode < IRI

• For literals

– Numeric < non-numeric
– Numeric literals are ordered by value. If both are equal, floats are ordered before

integers.
– Other data types are ordered lexicographically.

• BNodes and IRIs are ordered lexicographically.

Note that this ordering is a complete ordering of RDF terms that is consistent with the partial
ordering defined by SPARQL.

Arguments

Diff is one of <, = or >

10

3.1.4 Accessing RDF graphs

rdf default graph(-Graph) [det]

rdf default graph(-Old, +New) [det]

Query/set the notion of the default graph. The notion of the default graph is local to a thread.
Threads created inherit the default graph from their creator. See set prolog flag/2.

3.1.5 Modifying the RDF store

rdf assert(+S, +P, +O) [det]

rdf assert(+S, +P, +O, +G) [det]

Assert a new triple. If O is a literal, certain Prolog terms are translated to typed RDF literals.
These conversions are described with rdf canonical literal/2.

If a type is provided using ValueˆˆType syntax, additional conversions are performed. All
types accept either an atom or Prolog string holding a valid RDF lexical value for the type and
xsd:float and xsd:double accept a Prolog integer.

rdf retractall(?S, ?P, ?O) [nondet]

rdf retractall(?S, ?P, ?O, ?G) [nondet]

Remove all matching triples from the database. Matching is performed using the same rules as
rdf/3. The call does not instantiate any of its arguments.

rdf create bnode(–BNode)
Create a new BNode. A blank node is an atom starting with _:. Blank nodes generated by this
predicate are of the form _:genid followed by a unique integer.

3.1.6 Accessing RDF collections

The following predicates are utilities to access RDF 1.1 collections. A collection is a linked list created
from rdf:first and rdf:next triples, ending in rdf:nil.

rdf last(+RDFList, -Last) [det]

True when Last is the last element of RDFList. Note that if the last cell has multiple rdf:first
triples, this predicate becomes nondet.

rdf list(?RDFTerm) [semidet]

True if RDFTerm is a proper RDF list. This implies that every node in the list has an
rdf:first and rdf:rest property and the list ends in rdf:nil.

If RDFTerm is unbound, RDFTerm is bound to each maximal RDF list. An RDF list is maximal
if there is no triple rdf(_, rdf:rest, RDFList).

rdf list(+RDFList, -PrologList) [det]

True when PrologList represents the rdf:first objects for all cells in RDFList. Note that this can
be non-deterministic if cells have multiple rdf:first or rdf:rest triples.

rdf length(+RDFList, -Length:nonneg) [nondet]

True when Length is the number of cells in RDFList. Note that a list cell may have multiple
rdf:rest triples, which makes this predicate non-deterministic. This predicate does not check
whether the list cells have associated values (rdf:first). The list must end in rdf:nil.

11

rdf member(?Member, +RDFList) [nondet]

True when Member is a member of RDFList

rdf nth0(?Index, +RDFList, ?X) [nondet]

rdf nth1(?Index, +RDFList, ?X) [nondet]

True when X is the Index-th element (0-based or 1-based) of RDFList. This predicate is
deterministic if Index is given and the list has no multiple rdf:first or rdf:rest values.

rdf assert list(+PrologList, ?RDFList) [det]

rdf assert list(+PrologList, ?RDFList, +Graph) [det]

Create an RDF list from the given Prolog List. PrologList must be a proper Prolog list and all
members of the list must be acceptable as object for rdf assert/3. If RDFList is unbound
and PrologList is not empty, rdf create bnode/1 is used to create RDFList.

rdf retract list(+RDFList) [det]

Retract the rdf:first, rdf:rest and rdf:type=rdf:’List’ triples from all nodes reachable through
rdf:rest. Note that other triples that exist on the nodes are left untouched.

3.1.7 library(semweb/rdf11 containers): RDF 1.1 Containers

author
- Wouter Beek
- Jan Wielemaker

version 2016/01
See also http://www.w3.org/TR/2014/REC-rdf-schema-20140225/#ch_

containervocab

Compatibility RDF 1.1

Implementation of the conventional human interpretation of RDF 1.1 containers.
RDF containers are open enumeration structures as opposed to RDF collections or RDF lists which

are closed enumeration structures. The same resource may appear in a container more than once. A
container may be contained in itself.

rdf alt(+Alt, ?Default, ?Others) [nondet]

True when Alt is an instance of rdf:Alt with first member Default and remaining members
Others.

Notice that this construct adds no machine-processable semantics but is conventionally used to
indicate to a human reader that the numerical ordering of the container membership properties
of Container is intended to only be relevant in distinguishing between the first and all non-first
members.

Default denotes the default option to take when choosing one of the alternatives container in
Container. Others denotes the non-default options that can be chosen from.

rdf assert alt(?Alt, +Default, +Others:list) [det]

rdf assert alt(?Alt, +Default, +Others:list, +Graph) [det]

Create an rdf:Alt with the given Default and Others. Default and the members of Others must
be valid object terms for rdf assert/3.

12

http://www.w3.org/TR/2014/REC-rdf-schema-20140225/#ch_containervocab
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/#ch_containervocab

rdf bag(+Bag, -List:list) [nondet]

True when Bag is an rdf:Bag and set is the set values related through container membership
properties to Bag.

Notice that this construct adds no machine-processable semantics but is conventionally used to
indicate to a human reader that the numerical ordering of the container membership properties
of Container is intended to not be significant.

rdf assert bag(?Bag, +Set:list) [det]

rdf assert bag(?Bag, +Set:list, +Graph) [det]

Create an rdf:Bag from the given set of values. The members of Set must be valid object terms
for rdf assert/3.

rdf seq(+Seq, -List:list) [nondet]

True when Seq is an instance of rdf:Seq and List is a list of associated values, ordered according
to the container membership property used.

Notice that this construct adds no machine-processable semantics but is conventionally used to
indicate to a human reader that the numerical ordering of the container membership properties
of Container is intended to be significant.

rdf assert seq(?Seq, +List) [det]

rdf assert seq(?Seq, +List, +Graph) [det]

rdfs container(+Container, -List) [nondet]

True when List is the list of objects attached to Container using a container membership prop-
erty (rdf: 0, rdf: 1, ...). If multiple objects are connected to the Container using the same
membership property, this predicate selects one value non-deterministically.

rdfs container membership property(?Property) [nondet]

True when Property is a container membership property (rdf: 1, rdf: 2, ...).

rdfs container membership property(?Property, ?Number:nonneg) [nondet]

True when Property is the Nth container membership property.

Success of this goal does not imply that Property is present in the database.

rdfs member(?Elem, ?Container) [nondet]

True if rdf(Container, P, Elem) is true and P is a container membership property.

rdfs nth0(?N, ?Container, ?Elem) [nondet]

True if rdf(Container, P, Elem) is true and P is the N-th (0-based) container mem-
bership property.

3.2 library(semweb/rdf db): The RDF database

The central module of the RDF infrastructure is library(semweb/rdf_db). It provides storage
and indexed querying of RDF triples. RDF data is stored as quintuples. The first three elements denote
the RDF triple. The extra Graph and Line elements provide information about the origin of the triple.

The actual storage is provided by the foreign language (C) module. Using a dedicated C-based
implementation we can reduced memory usage and improve indexing capabilities, for example by

13

providing a dedicated index to support entailment over rdfs:subPropertyOf. Currently the
following indexes are provided (S=subject, P=predicate, O=object, G=graph):

• S, P, O, SP, PO, SPO, G, SG, PG

• Predicates connect by rdfs:subPropertyOf are combined in a predicate cloud. The system
causes multiple predicates in the cloud to share the same hash. The cloud maintains a 2-
dimensional array that expresses the closure of all rdfs:subPropertyOf relations. This index
supports rdf has/3 to query a property and all its children efficiently.

• Additional indexes for predicates, resources and graphs allow enumerating these objects without
duplicates. For example, using rdf resource/1 we enumerate all resources in the database
only once, while enumeration using e.g., (rdf(R,_,_);rdf(_,_,R)) normally produces
many duplicate answers.

• Literal Objects are combined in a skip list after case normalization. This pro-
vides for efficient case-insensitive search, prefix and range search. The plugin library
library(semweb/litindex) provides indexed search on tokens inside literals.

3.2.1 Query the RDF database

rdf(?Subject, ?Predicate, ?Object) [nondet]

Elementary query for triples. Subject and Predicate are atoms representing the fully qualified
URL of the resource. Object is either an atom representing a resource or literal(Value)
if the object is a literal value. If a value of the form NameSpaceID:LocalName is provided it is
expanded to a ground atom using expand goal/2. This implies you can use this construct in
compiled code without paying a performance penalty. Literal values take one of the following
forms:

Atom
If the value is a simple atom it is the textual representation of a string literal without
explicit type or language qualifier.

lang(LangID, Atom)
Atom represents the text of a string literal qualified with the given language.

type(TypeID, Value)
Used for attributes qualified using the rdf:datatype TypeID. The Value is either
the textual representation or a natural Prolog representation. See the option con-
vert typed literal(:Convertor) of the parser. The storage layer provides efficient handling
of atoms, integers (64-bit) and floats (native C-doubles). All other data is represented as a
Prolog record.

For literal querying purposes, Object can be of the form literal(+Query, -Value),
where Query is one of the terms below. If the Query takes a literal argument and the value has
a numeric type numerical comparison is performed.

plain(+Text)
Perform exact match and demand the language or type qualifiers to match. This query is
fully indexed.

14

icase(+Text)
Perform a full but case-insensitive match. This query is fully indexed.

exact(+Text)
Same as icase(Text). Backward compatibility.

substring(+Text)
Match any literal that contains Text as a case-insensitive substring. The query is not
indexed on Object.

word(+Text)
Match any literal that contains Text delimited by a non alpha-numeric character, the start
or end of the string. The query is not indexed on Object.

prefix(+Text)
Match any literal that starts with Text. This call is intended for completion. The query is
indexed using the skip list of literals.

ge(+Literal)
Match any literal that is equal or larger then Literal in the ordered set of literals.

gt(+Literal)
Match any literal that is larger then Literal in the ordered set of literals.

eq(+Literal)
Match any literal that is equal to Literal in the ordered set of literals.

le(+Literal)
Match any literal that is equal or smaller then Literal in the ordered set of literals.

lt(+Literal)
Match any literal that is smaller then Literal in the ordered set of literals.

between(+Literal1, +Literal2)
Match any literal that is between Literal1 and Literal2 in the ordered set of literals. This
may include both Literal1 and Literal2.

like(+Pattern)
Match any literal that matches Pattern case insensitively, where the ‘*’ character in Pattern
matches zero or more characters.

Backtracking never returns duplicate triples. Duplicates can be retrieved using rdf/4. The
predicate rdf/3 raises a type-error if called with improper arguments. If rdf/3 is called
with a term literal(_) as Subject or Predicate object it fails silently. This allows for graph
matching goals like rdf(S,P,O),rdf(O,P2,O2) to proceed without errors.

rdf(?Subject, ?Predicate, ?Object, ?Source) [nondet]

As rdf/3 but in addition query the graph to which the triple belongs. Unlike rdf/3, this
predicate does not remove duplicates from the result set.

Arguments
Source is a term Graph:Line. If Source is instatiated, passing an atom is

the same as passing Atom: .

rdf has(?Subject, +Predicate, ?Object) [nondet]

Succeeds if the triple rdf(Subject, Predicate, Object) is true exploit-
ing the rdfs:subPropertyOf predicate as well as inverse predicates declared using
rdf set predicate/2 with the inverse_of property.

15

rdf has(?Subject, +Predicate, ?Object, -RealPredicate) [nondet]

Same as rdf has/3, but RealPredicate is unified to the actual predicate that makes this
relation true. RealPredicate must be Predicate or an rdfs:subPropertyOf Predicate. If an
inverse match is found, RealPredicate is the term inverse_of(Pred).

rdf reachable(?Subject, +Predicate, ?Object) [nondet]

Is true if Object can be reached from Subject following the transitive predicate Predicate or
a sub-property thereof, while repecting the symetric(true) or inverse_of(P2)
properties.

If used with either Subject or Object unbound, it first returns the origin, followed by the reach-
able nodes in breath-first search-order. The implementation internally looks one solution ahead
and succeeds deterministically on the last solution. This predicate never generates the same
node twice and is robust against cycles in the transitive relation.

With all arguments instantiated, it succeeds deterministically if a path can be found from Subject
to Object. Searching starts at Subject, assuming the branching factor is normally lower. A call
with both Subject and Object unbound raises an instantiation error. The following example
generates all subclasses of rdfs:Resource:

?- rdf_reachable(X, rdfs:subClassOf, rdfs:’Resource’).
X = ’http://www.w3.org/2000/01/rdf-schema#Resource’ ;
X = ’http://www.w3.org/2000/01/rdf-schema#Class’ ;
X = ’http://www.w3.org/1999/02/22-rdf-syntax-ns#Property’ ;
...

rdf reachable(?Subject, +Predicate, ?Object, +MaxD, -D) [nondet]

Same as rdf reachable/3, but in addition, MaxD limits the number of edges expanded
and D is unified with the ‘distance’ between Subject and Object. Distance 0 means Subject
and Object are the same resource. MaxD can be the constant infinite to impose no
distance-limit.

3.2.2 Enumerating objects

The predicates below enumerate the basic objects of the RDF store. Most of these predicates also
enumerate objects that are not associated to any currently visible triple. Objects are retained as long
as they are visible in active queries or snapshots. After that, some are reclaimed by the RDF garbage
collector, while others are never reclaimed.

rdf subject(?Resource) [nondet]

True if Resource appears as a subject. This query respects the visibility rules implied by the
logical update view.

See also rdf resource/1.

rdf resource(?Resource) [nondet]

True when Resource is a resource used as a subject or object in a triple.

This predicate is primarily intended as a way to process all resources without processing re-
sources twice. The user must be aware that some of the returned resources may not appear in
any visible triple.

16

rdf current predicate(?Predicate) [nondet]

True when Predicate is a currently known predicate. Predicates are created if a triples is created
that uses this predicate or a property of the predicate is set using rdf set predicate/2.
The predicate may (no longer) have triples associated with it.

Note that resources that have rdf:type rdf:Property are not automatically included in
the result-set of this predicate, while all resources that appear as the second argument of a triple
are included.

See also rdf predicate property/2.

rdf current literal(-Literal) [nondet]

True when Literal is a currently known literal. Enumerates each unique literal exactly once.
Note that it is possible that the literal only appears in already deleted triples. Deleted triples
may be locked due to active queries, transactions or snapshots or may not yet be reclaimed by
the garbage collector.

rdf graph(?Graph) [nondet]

True when Graph is an existing graph.

rdf current ns(:Prefix, ?URI) [nondet] deprecated
. Use rdf current prefix/2.

3.2.3 Modifying the RDF database

The predicates below modify the RDF store directly. In addition, data may be loaded using
rdf load/2 or by restoring a persistent database using rdf attach db/2. Modifications fol-
low the Prolog logical update view semantics, which implies that modifications remain invisible to
already running queries. Further isolation can be achieved using rdf transaction/3.

rdf assert(+Subject, +Predicate, +Object) [det]

Assert a new triple into the database. This is equivalent to rdf assert/4 using Graph user.
Subject and Predicate are resources. Object is either a resource or a term literal(Value).
See rdf/3 for an explanation of Value for typed and language qualified literals. All arguments
are subject to name-space expansion. Complete duplicates (including the same graph and ‘line’
and with a compatible ‘lifespan’) are not added to the database.

rdf assert(+Subject, +Predicate, +Object, +Graph) [det]

As rdf assert/3, adding the predicate to the indicated named graph.

Arguments
Graph is either the name of a graph (an atom) or a term Graph:Line, where

Line is an integer that denotes a line number.

rdf retractall(?Subject, ?Predicate, ?Object) [det]

Remove all matching triples from the database. As rdf retractall/4 using an unbound
graph.

rdf retractall(?Subject, ?Predicate, ?Object, ?Graph) [det]

As rdf retractall/3, also matching Graph. This is particulary useful to remove all
triples coming from a loaded file. See also rdf unload/1.

17

rdf update(+Subject, +Predicate, +Object, +Action) [det]

Replaces one of the three fields on the matching triples depending on Action:

subject(Resource)
Changes the first field of the triple.

predicate(Resource)
Changes the second field of the triple.

object(Object)
Changes the last field of the triple to the given resource or literal(Value).

graph(Graph)
Moves the triple from its current named graph to Graph.

rdf update(+Subject, +Predicate, +Object, +Graph, +Action) [det]

As rdf update/4 but allows for specifying the graph.

3.2.4 Update view, transactions and snapshots

The update semantics of the RDF database follows the conventional Prolog logical update view. In
addition, the RDF database supports transactions and snapshots.

rdf transaction(:Goal) [semidet]

Same as rdf_transaction(Goal, user, []). See rdf transaction/3.

rdf transaction(:Goal, +Id) [semidet]

Same as rdf_transaction(Goal, Id, []). See rdf transaction/3.

rdf transaction(:Goal, +Id, +Options) [semidet]

Run Goal in an RDF transaction. Compared to the ACID model, RDF transactions have the
following properties:

1. Modifications inside the transactions become all atomically visible to the outside world if
Goal succeeds or remain invisible if Goal fails or throws an exception. I.e., the atomicy
property is fully supported.

2. Consistency is not guaranteed. Later versions may implement consistency constraints that
will be checked serialized just before the actual commit of a transaction.

3. Concurrently executing transactions do not infuence each other. I.e., the isolation property
is fully supported.

4. Durability can be activated by loading library(semweb/rdf_persistency).

Processed options are:

snapshot(+Snapshot)
Execute Goal using the state of the RDF store as stored in Snapshot. See
rdf snapshot/1. Snapshot can also be the atom true, which implies that an
anonymous snapshot is created at the current state of the store. Modifications due to
executing Goal are only visible to Goal.

18

rdf snapshot(-Snapshot) [det]

Take a snapshot of the current state of the RDF store. Later, goals may be executed in the
context of the database at this moment using rdf transaction/3 with the snapshot
option. A snapshot created outside a transaction exists until it is deleted. Snapshots taken
inside a transaction can only be used inside this transaction.

rdf delete snapshot(+Snapshot) [det]

Delete a snapshot as obtained from rdf snapshot/1. After this call, resources used for
maintaining the snapshot become subject to garbage collection.

rdf active transaction(?Id) [nondet]

True if Id is the identifier of a transaction in the context of which this call is executed. If
Id is not instantiated, backtracking yields transaction identifiers starting with the innermost
nested transaction. Transaction identifier terms are not copied, need not be ground and can be
instantiated during the transaction.

rdf current snapshot(?Term) [nondet]

True when Term is a currently known snapshot.

bug Enumeration of snapshots is slow.

3.2.5 Type checking predicates

rdf is resource(@Term) [semidet]

True if Term is an RDF resource. Note that this is merely a type-test; it does not mean this
resource is involved in any triple. Blank nodes are also considered resources.

See also rdf is bnode/1

rdf is bnode(+Id)
Tests if a resource is a blank node (i.e. is an anonymous resource). A blank node is represented
as an atom that starts with _:. For backward compatibility reason, __ is also considered to be
a blank node.

See also rdf bnode/1.

rdf is literal(@Term) [semidet]

True if Term is an RDF literal object. Currently only checks for groundness and the literal
functor.

3.2.6 Loading and saving to file

The RDF library can read and write triples in RDF/XML and a proprietary binary format. There is a
plugin interface defined to support additional formats. The library(semweb/turtle) uses this
plugin API to support loading Turtle files using rdf load/2.

rdf load(+FileOrList) [det]

Same as rdf_load(FileOrList, []). See rdf load/2.

rdf load(+FileOrList, :Options) [det]

Load RDF data. Options provides additional processing options. Defined options are:

19

blank nodes(+ShareMode)
How to handle equivalent blank nodes. If share (default), equivalent blank nodes are
shared in the same resource.

base uri(+URI)
URI that is used for rdf:about=”” and other RDF constructs that are relative to the base
uri. Default is the source URL.

concurrent(+Jobs)
If FileOrList is a list of files, process the input files using Jobs threads concurrently.
Default is the mininum of the number of cores and the number of inputs. Higher values
can be useful when loading inputs from (slow) network connections. Using 1 (one) does
not use separate worker threads.

format(+Format)
Specify the source format explicitly. Normally this is deduced from the filename extension
or the mime-type. The core library understands the formats xml (RDF/XML) and triples
(internal quick load and cache format). Plugins, such as library(semweb/turtle)
extend the set of recognised extensions.

graph(?Graph)
Named graph in which to load the data. It is not allowed to load two sources into the
same named graph. If Graph is unbound, it is unified to the graph into which the data is
loaded. The default graph is a =file://= URL when loading a file or, if the specification is
a URL, its normalized version without the optional #fragment.

if(Condition)
When to load the file. One of true, changed (default) or not_loaded.

modified(-Modified)
Unify Modified with one of not_modified, cached(File),
last_modified(Stamp) or unknown.

cache(Bool)
If false, do not use or create a cache file.

register namespaces(Bool)
If true (default false), register xmlns namespace declarations or Turtle @prefix
prefixes using rdf register prefix/3 if there is no conflict.

silent(+Bool)
If true, the message reporting completion is printed using level silent. Otherwise the
level is informational. See also print message/2.

prefixes(-Prefixes)
Returns the prefixes defined in the source data file as a list of pairs.

Other options are forwarded to process rdf/3. By default, rdf load/2 only loads
RDF/XML from files. It can be extended to load data from other formats and locations us-
ing plugins. The full set of plugins relevant to support different formats and locations is below:

:- use_module(library(semweb/turtle)). % Turtle and TriG
:- use_module(library(semweb/rdf_ntriples)).
:- use_module(library(semweb/rdf_zlib_plugin)).

20

:- use_module(library(semweb/rdf_http_plugin)).
:- use_module(library(http/http_ssl_plugin)).

See also rdf db:rdf open hook/3, library(semweb/rdf_persistency) and
library(semweb/rdf_cache)

rdf unload(+Source) [det]

Identify the graph loaded from Source and use rdf unload graph/1 to erase this graph.

deprecated For compatibility, this predicate also accepts a graph name instead of a source specifica-
tion. Please update your code to use rdf unload graph/1.

rdf save(+Out) [det]

Same as rdf_save(Out, []). See rdf save/2 for details.

rdf save(+Out, :Options) [det]

Write RDF data as RDF/XML. Options is a list of one or more of the following options:

graph(+Graph)
Save only triples associated to the given named Graph.

anon(Bool)
If false (default true) do not save blank nodes that do not appear (indirectly) as object of a
named resource.

base uri(URI)
BaseURI used. If present, all URIs that can be represented relative to this base are written
using their shorthand. See also write_xml_base option

convert typed literal(:Convertor)
Call Convertor(-Type, -Content, +RDFObject), providing the opposite for the con-
vert typed literal option of the RDF parser.

document language(+Lang)
Initial xml:lang saved with rdf:RDF element

encoding(Encoding)
Encoding for the output. Either utf8 or iso latin 1

inline(+Bool)
If true (default false), inline resources when encountered for the first time. Normally,
only bnodes are handled this way.

namespaces(+List)
Explicitely specify saved namespace declarations. See rdf save header/2 option
namespaces for details.

sorted(+Boolean)
If true (default false), emit subjects sorted on the full URI. Useful to make file
comparison easier.

write xml base(Bool)
If false, do not include the xml:base declaration that is written normally when using
the base_uri option.

21

xml attributes(+Bool)
If false (default true), never use xml attributes to save plain literal attributes, i.e.,
always used an XML element as in <name>Joe</name>.

Arguments
Out Location to save the data. This can also be a file-url

(file://path) or a stream wrapped in a term stream(Out).

See also rdf save db/1

rdf make
Reload all loaded files that have been modified since the last time they were loaded.

Partial save Sometimes it is necessary to make more arbitrary selections of material to be saved or
exchange RDF descriptions over an open network link. The predicates in this section provide for this.
Character encoding issues are derived from the encoding of the Stream, providing support for utf8,
iso_latin_1 and ascii.

rdf save header(+Fd, +Options)
Save XML document header, doctype and open the RDF environment. This predicate also sets
up the namespace notation.

Save an RDF header, with the XML header, DOCTYPE, ENTITY and opening the rdf:RDF
element with appropriate namespace declarations. It uses the primitives from section 3.5 to
generate the required namespaces and desired short-name. Options is one of:

graph(+URI)
Only search for namespaces used in triples that belong to the given named graph.

namespaces(+List)
Where List is a list of namespace abbreviations. With this option, the expensive search for
all namespaces that may be used by your data is omitted. The namespaces rdf and rdfs
are added to the provided List. If a namespace is not declared, the resource is emitted in
non-abreviated form.

rdf save footer(Out:stream) [det]

Finish XML generation and write the document footer.

See also rdf save header/2, rdf save subject/3.

rdf save subject(+Out, +Subject:resource, +Options) [det]

Save the triples associated to Subject to Out. Options:

graph(+Graph)
Only save properties from Graph.

base uri(+URI)

convert typed literal(:Goal)

22

document language(+XMLLang)

See also rdf save/2 for a description of these options.

Fast loading and saving Loading and saving RDF format is relatively slow. For this reason
we designed a binary format that is more compact, avoids the complications of the RDF parser
and avoids repetitive lookup of (URL) identifiers. Especially the speed improvement of about
25 times is worth-while when loading large databases. These predicates are used for caching by
rdf load/2 under certain conditions as well as for maintaining persistent snapshots of the database
using library(semweb/rdf_persistency).

rdf save db(+File) [det]

rdf save db(+File, +Graph) [det]

Save triples into File in a quick-to-load binary format. If Graph is supplied only triples
flagged to originate from that database are added. Files created this way can be loaded using
rdf load db/1.

rdf load db(+File) [det]

Load triples from a file created using rdf save db/2.

3.2.7 Graph manipulation

Many RDF stores turned triples into quadruples. This store is no exception, initially using the 4th
argument to store the filename from which the triple was loaded. Currently, the 4th argument is the
RDF named graph. A named graph maintains some properties, notably to track origin, changes and
modified state.

rdf create graph(+Graph) [det]

Create an RDF graph without triples. Succeeds silently if the graph already exists.

rdf unload graph(+Graph) [det]

Remove Graph from the RDF store. Succeeds silently if the named graph does not exist.

rdf graph property(?Graph, ?Property) [nondet]

True when Property is a property of Graph. Defined properties are:

hash(Hash)
Hash is the (MD5-)hash for the content of Graph.

modified(Boolean)
True if the graph is modified since it was loaded or rdf set graph/2 was called with
modified(false).

source(Source)
The graph is loaded from the Source (a URL)

source last modified(?Time)
Time is the last-modified timestamp of Source at the moment that the graph was loaded
from Source.

23

triples(Count)
True when Count is the number of triples in Graph.

Additional graph properties can be added by defining rules for the multifile predicate
property of graph/2. Currently, the following extensions are defined:

• library(semweb/rdf_persistency)
persistent(Boolean)

Boolean is true if the graph is persistent.

rdf set graph(+Graph, +Property) [det]

Set properties of Graph. Defined properties are:

modified(false)
Set the modified state of Graph to false.

3.2.8 Literal matching and indexing

Literal values are ordered and indexed using a skip list The aim of this index is threefold.

• Unlike hash-tables, binary trees allow for efficient prefix and range matching. Prefix matching
is useful in interactive applications to provide feedback while typing such as auto-completion.

• Having a table of unique literals we generate creation and destruction events (see
rdf monitor/2). These events can be used to maintain additional indexing on literals, such
as ‘by word’. See library(semweb/litindex).

As string literal matching is most frequently used for searching purposes, the match is executed
case-insensitive and after removal of diacritics. Case matching and diacritics removal is based on
Unicode character properties and independent from the current locale. Case conversion is based on
the ‘simple uppercase mapping’ defined by Unicode and diacritic removal on the ‘decomposition
type’. The approach is lightweight, but somewhat simpleminded for some languages. The tables are
generated for Unicode characters upto 0x7fff. For more information, please check the source-code of
the mapping-table generator unicode_map.pl available in the sources of this package.

Currently the total order of literals is first based on the type of literal using the ordering numeric <
string < term Numeric values (integer and float) are ordered by value, integers preceed floats if they
represent the same value. strings are sorted alphabetically after case-mapping and diacritic removal
as described above. If they match equal, uppercase preceeds lowercase and diacritics are ordered on
their unicode value. If they still compare equal literals without any qualifier preceeds literals with a
type qualifier which preceeds literals with a language qualifier. Same qualifiers (both type or both
language) are sorted alphabetically.

The ordered tree is used for indexed execution of literal(prefix(Prefix), Literal)
as well as literal(like(Like), Literal) if Like does not start with a ‘*’. Note that results
of queries that use the tree index are returned in alphabetical order.

24

3.2.9 Predicate properties

The predicates below form an experimental interface to provide more reasoning inside the kernel of
the rdb db engine. Note that symetric, inverse_of and transitive are not yet supported
by the rest of the engine. Alo note that there is no relation to defined RDF properties. Properties that
have no triples are not reported by this predicate, while predicates that are involved in triples do not
need to be defined as an instance of rdf:Property.

rdf set predicate(+Predicate, +Property) [det]

Define a property of the predicate. This predicate currently supports the following properties:

symmetric(+Boolean)
Set/unset the predicate as being symmetric. Using symmetric(true) is the same as
inverse_of(Predicate), i.e., creating a predicate that is the inverse of itself.

transitive(+Boolean)
Sets the transitive property.

inverse of(+Predicate2)
Define Predicate as the inverse of Predicate2. An inverse relation is deleted using
inverse_of([]).

The transitive property is currently not used. The symmetric and inverse_of prop-
erties are considered by rdf has/3,4 and rdf reachable/3.

To be done Maintain these properties based on OWL triples.

rdf predicate property(?Predicate, ?Property)
Query properties of a defined predicate. Currently defined properties are given below.

symmetric(Bool)
True if the predicate is defined to be symetric. I.e., {A} P {B} implies {B} P {A}.
Setting symmetric is equivalent to inverse_of(Self).

inverse of(Inverse)
True if this predicate is the inverse of Inverse. This property is used by rdf has/3,
rdf has/4, rdf reachable/3 and rdf reachable/5.

transitive(Bool)
True if this predicate is transitive. This predicate is currently not used. It might be used to
make rdf has/3 imply rdf reachable/3 for transitive predicates.

triples(Triples)
Unify Triples with the number of existing triples using this predicate as second argument.
Reporting the number of triples is intended to support query optimization.

rdf subject branch factor(-Float)
Unify Float with the average number of triples associated with each unique value for the
subject-side of this relation. If there are no triples the value 0.0 is returned. This value is
cached with the predicate and recomputed only after substantial changes to the triple set
associated to this relation. This property is intended for path optimalisation when solving
conjunctions of rdf/3 goals.

25

rdf object branch factor(-Float)
Unify Float with the average number of triples associated with each unique value for the
object-side of this relation. In addition to the comments with the subject branch factor
property, uniqueness of the object value is computed from the hash key rather than the
actual values.

rdfs subject branch factor(-Float)
Same as rdf_subject_branch_factor, but also considering triples of ‘subProp-
ertyOf’ this relation. See also rdf has/3.

rdfs object branch factor(-Float)
Same as rdf_object_branch_factor, but also considering triples of ‘subProper-
tyOf’ this relation. See also rdf has/3.

See also rdf set predicate/2.

3.2.10 Prefix Handling

Prolog code often contains references to constant resources with a known prefix (also known as XML
namespaces). For example, http://www.w3.org/2000/01/rdf-schema#Class refers to
the most general notion of an RDFS class. Readability and maintability concerns require for abstrac-
tion here. The RDF database maintains a table of known prefixes. This table can be queried using
rdf current ns/2 and can be extended using rdf register ns/3. The prefix database is
used to expand prefix:local terms that appear as arguments to calls which are known to accept
a resource. This expansion is achieved by Prolog preprocessor using expand goal/2.

rdf current prefix(:Alias, ?URI) [nondet]

Query predefined prefixes and prefixes defined with rdf register prefix/2 and local
prefixes defined with rdf prefix/2. If Alias is unbound and one URI is the prefix of
another, the longest is returned first. This allows turning a resource into a prefix/local couple
using the simple enumeration below. See rdf global id/2.

rdf_current_prefix(Prefix, Expansion),
atom_concat(Expansion, Local, URI),

rdf register prefix(+Prefix, +URI) [det]

rdf register prefix(+Prefix, +URI, +Options) [det]

Register Prefix as an abbreviation for URI. Options:

force(Boolean)
If true, Replace existing namespace alias. Please note that replacing a namespace is
dangerous as namespaces affect preprocessing. Make sure all code that depends on a
namespace is compiled after changing the registration.

keep(Boolean)
If true and Alias is already defined, keep the original binding for Prefix and succeed
silently.

Without options, an attempt to redefine an alias raises a permission error.

Predefined prefixes are:

26

Alias IRI prefix
dc http://purl.org/dc/elements/1.1/
dcterms http://purl.org/dc/terms/
eor http://dublincore.org/2000/03/13/eor#
foaf http://xmlns.com/foaf/0.1/
owl http://www.w3.org/2002/07/owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
serql http://www.openrdf.org/schema/serql#
skos http://www.w3.org/2004/02/skos/core#
void http://rdfs.org/ns/void#
xsd http://www.w3.org/2001/XMLSchema#

Explicit expansion is achieved using the predicates below. The predicate rdf equal/2 performs
this expansion at compile time, while the other predicates do it at runtime.

rdf equal(?Resource1, ?Resource2)
Simple equality test to exploit goal-expansion

rdf global id(?IRISpec, :IRI) [semidet]

Convert between Prefix:Local and full IRI (an atom). If IRISpec is an atom, it is simply unified
with IRI. This predicate fails silently if IRI is an RDF literal.

Note that this predicate is a meta-predicate on its output argument. This is necessary to get the
module context while the first argument may be of the form (:)/2. The above mode description
is correct, but should be interpreted as (?,?).

Errors existence_error(rdf_prefix, Prefix)
See also

- rdf equal/2 provides a compile time alternative
- The rdf meta/1 directive asks for compile time expansion of arguments.

bug Error handling is incomplete. In its current implementation the same code is used for compile-
time expansion and to facilitate runtime conversion and checking. These use cases have different
requirements.

rdf global object(+Object, :GlobalObject) [semidet]

rdf global object(-Object, :GlobalObject) [semidet]

Same as rdf global id/2, but intended for dealing with the object part of a triple, in
particular the type for typed literals. Note that the predicate is a meta-predicate on the output
argument. This is necessary to get the module context while the first argument may be of the
form (:)/2.

Errors existence_error(rdf_prefix, Prefix)

rdf global term(+TermIn, :GlobalTerm) [det]

Performs rdf global id/2 on predixed IRIs and rdf global object/2 on RDF liter-
als, by recursively analysing the term. Note that the predicate is a meta-predicate on the output
argument. This is necessary to get the module context while the first argument may be of the
form (:)/2.

Terms of the form Prefix:Local that appear in TermIn for which Prefix is not defined are
not replaced. Unlike rdf global id/2 and rdf global object/2, no error is raised.

27

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://dublincore.org/2000/03/13/eor#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.openrdf.org/schema/serql#
http://www.w3.org/2004/02/skos/core#
http://rdfs.org/ns/void#
http://www.w3.org/2001/XMLSchema#

Namespace handling for custom predicates If we implement a new predicate based on one of the
predicates of the semweb libraries that expands namespaces, namespace expansion is not automat-
ically available to it. Consider the following code computing the number of distinct objects for a
certain property on a certain object.

cardinality(S, P, C) :-
(setof(O, rdf_has(S, P, O), Os)
-> length(Os, C)
; C = 0
).

Now assume we want to write labels/2 that returns the number of distict labels of a resource:

labels(S, C) :-
cardinality(S, rdfs:label, C).

This code will not work because rdfs:label is not expanded at compile time. To make this
work, we need to add an rdf meta/1 declaration.

:- rdf_meta
cardinality(r,r,-).

[rdf meta/1]

The example below defines the rule concept/1.

:- use_module(library(semweb/rdf_db)). % for rdf_meta
:- use_module(library(semweb/rdfs)). % for rdfs_individual_of

:- rdf_meta
concept(r).

%% concept(?C) is nondet.
%
% True if C is a concept.

concept(C) :-
rdfs_individual_of(C, skos:’Concept’).

In addition to expanding calls, rdf meta/1 also causes expansion of clause heads for predicates
that match a declaration. This is typically used write Prolog statements about resources. The following
example produces three clauses with expanded (single-atom) arguments:

:- use_module(library(semweb/rdf_db)).

:- rdf_meta

28

label_predicate(r).

label_predicate(rdfs:label).
label_predicate(skos:prefLabel).
label_predicate(skos:altLabel).

3.2.11 Miscellaneous predicates

This section describes the remaining predicates of the library(semweb/rdf_db) module.

rdf bnode(-Id)
Generate a unique anonymous identifier for a subject.

rdf source location(+Subject, -Location) [nondet]

True when triples for Subject are loaded from Location.

Arguments

Location is a term File:Line.

rdf generation(-Generation) [det]

True when Generation is the current generation of the database. Each modification to the
database increments the generation. It can be used to check the validity of cached results
deduced from the database. Committing a non-empty transaction increments the generation by
one.

When inside a transaction, Generation is unified to a term TransactionStartGen + InsideTrans-
actionGen. E.g., 4+3 means that the transaction was started at generation 4 of the global
database and we have created 3 new generations inside the transaction. Note that this choice of
representation allows for comparing generations using Prolog arithmetic. Comparing a genera-
tion in one transaction with a generation in another transaction is meaningless.

rdf estimate complexity(?Subject, ?Predicate, ?Object, -Complexity)
Return the number of alternatives as indicated by the database internal hashed indexing. This is
a rough measure for the number of alternatives we can expect for an rdf has/3 call using the
given three arguments. When called with three variables, the total number of triples is returned.
This estimate is used in query optimisation. See also rdf predicate property/2 and
rdf statistics/1 for additional information to help optimizers.

rdf statistics(?KeyValue) [nondet]

Obtain statistics on the RDF database. Defined statistics are:

graphs(-Count)
Number of named graphs

triples(-Count)
Total number of triples in the database. This is the number of asserted triples minus
the number of retracted ones. The number of visible triples in a particular context may
be different due to visibility rules defined by the logical update view and transaction
isolation.

29

resources(-Count)
Number of resources that appear as subject or object in a triple. See rdf resource/1.

properties(-Count)
Number of current predicates. See rdf current predicate/1.

literals(-Count)
Number of current literals. See rdf current literal/1.

gc(GCCount, ReclaimedTriples, ReindexedTriples, Time)
Information about the garbage collector.

searched nodes(-Count)
Number of nodes expanded by rdf reachable/3 and rdf reachable/5.

lookup(rdf(S,P,O,G), Count)
Number of queries that have been performed for this particular instantiation pattern. Each
of S,P,O,G is either + or -. Fails in case the number of performed queries is zero.

hash quality(rdf(S,P,O,G), Buckets, Quality, PendingResize)
Statistics on the index for this pattern. Indices are created lazily on the first relevant query.

triples by graph(Graph, Count)
This statistics is produced for each named graph. See triples for the interpretation of
this value.

rdf match label(+How, +Pattern, +Label) [semidet]

True if Label matches Pattern according to How. How is one of icase, substring, word,
prefix or like. For backward compatibility, exact is a synonym for icase.

lang matches(+Lang, +Pattern) [semidet]

True if Lang matches Pattern. This implements XML language matching conform RFC 4647.
Both Lang and Pattern are dash-separated strings of identifiers or (for Pattern) the wildcart *.
Identifiers are matched case-insensitive and a * matches any number of identifiers. A short
pattern is the same as *.

lang equal(+Lang1, +Lang2) [semidet]

True if two RFC language specifiers denote the same language

See also lang matches/2.

rdf reset db
Remove all triples from the RDF database and reset all its statistics.

bug This predicate checks for active queries, but this check is not properly synchronized and therefore
the use of this predicate is unsafe in multi-threaded contexts. It is mainly used to run functionality
tests that need to start with an empty database.

rdf version(-Version) [det]

True when Version is the numerical version-id of this library. The version is computed as

Major*10000 + Minor*100 + Patch.

30

3.2.12 Memory management considerations

Storing RDF triples in main memory provides much better performance than using external databases.
Unfortunately, although memory is fairly cheap these days, main memory is severely limited when
compared to disks. Memory usage breaks down to the following categories. Rough estimates of the
memory usage is given for 64-bit systems. 32-bit system use slightly more than half these amounts.

• Actually storing the triples. A triple is stored in a C struct of 144 bytes. This struct both holds
the quintuple, some bookkeeping information and the 10 next-pointers for the (max) to hash
tables.

• The bucket array for the hashes. Each bucket maintains a head, and tail pointer, as well as a
count for the number of entries. The bucket array is allocated if a particular index is created,
which implies the first query that requires the index. Each bucket requires 24 bytes.

Bucket arrays are resized if necessary. Old triples remain at their original location. This im-
plies that a query may need to scan multiple buckets. The garbage collector may relocate old
indexed triples. It does so by copying the old triple. The old triple is later reclaimed by GC.
Reindexed triples will be reused, but many reindexed triples may result in a significant memory
fragmentation.

• Resources are maintained in a seperate table to support rdf resource/1. A resources re-
quires approximately 32 bytes.

• Identical literals are shared (see rdf current literal/1) and stored in a skip list. A
literal requires approximately 40 bytes, excluding the atom used for the lexical representation.

• Resources are stored in the Prolog atom-table. Atoms with the average length of a resource
require approximately 88 bytes.

The hash parameters can be controlled with rdf set/1. Applications that are tight on memory
and for which the query characteristics are more or less known can optimize performance and memory
by fixing the hash-tables. By fixing the hash-tables we can tailor them to the frequent query patterns,
we avoid the need for to check multiple hash buckets (see above) and we avoid memory fragmentation
due to optimizing triples for resized hashes.

set_hash_parameters :-
rdf_set(hash(s, size, 1048576)),
rdf_set(hash(p, size, 1024)),
rdf_set(hash(sp, size, 2097152)),
rdf_set(hash(o, size, 1048576)),
rdf_set(hash(po, size, 2097152)),
rdf_set(hash(spo, size, 2097152)),
rdf_set(hash(g, size, 1024)),
rdf_set(hash(sg, size, 1048576)),
rdf_set(hash(pg, size, 2048)).

rdf set(+Term) [det]

Set properties of the RDF store. Currently defines:

31

hash(+Hash, +Parameter, +Value)
Set properties for a triple index. Hash is one of s, p, sp, o, po, spo, g, sg or pg.
Parameter is one of:

size
Value defines the number of entries in the hash-table. Value is rounded down to a
power of 2. After setting the size explicitly, auto-sizing for this table is disabled.
Setting the size smaller than the current size results in a permission_error
exception.

average chain len
Set maximum average collision number for the hash.

optimize threshold
Related to resizing hash-tables. If 0, all triples are moved to the new size by the
garbage collector. If more then zero, those of the last Value resize steps remain
at their current location. Leaving cells at their current location reduces memory
fragmentation and slows down access.

The garbage collector The RDF store has a garbage collector that runs in a separate thread named
= rdf GC=. The garbage collector removes the following objects:

• Triples that have died before the the generation of last still active query.

• Entailment matrices for rdfs:subPropertyOf relations that are related to old queries.

In addition, the garbage collector reindexes triples associated to the hash-tables before the ta-
ble was resized. The most recent resize operation leads to the largest number of triples that re-
quire reindexing, while the oldest resize operation causes the largest slowdown. The parameter
optimize_threshold controlled by rdf set/1 can be used to determine the number of most
recent resize operations for which triples will not be reindexed. The default is 2.

Normally, the garbage collector does it job in the background at a low priority. The predicate
rdf gc/0 can be used to reclaim all garbage and optimize all indexes.

Warming up the database The RDF store performs many operations lazily or in background
threads. For maximum performance, perform the following steps:

• Load all the data without doing queries or retracting data in between. This avoids creating the
indexes and therefore the need to resize them.

• Perform each of the indexed queries. The following call performs this. Note that it is irrelevant
whether or not the query succeeds.

warm_indexes :-
ignore(rdf(s, _, _)),
ignore(rdf(_, p, _)),
ignore(rdf(_, _, o)),
ignore(rdf(s, p, _)),
ignore(rdf(_, p, o)),
ignore(rdf(s, p, o)),

32

ignore(rdf(_, _, _, g)),
ignore(rdf(s, _, _, g)),
ignore(rdf(_, p, _, g)).

• Duplicate adminstration is initialized in the background after the first call that returns a
significant amount of duplicates. Creating the adminstration can be forced by calling
rdf update duplicates/0.

Predicates:

rdf gc [det]

Run the RDF-DB garbage collector until no garbage is left and all tables are fully optimized.
Under normal operation a seperate thread with identifier = rdf GC= performs garbage
collection as long as it is considered ‘useful’.

Using rdf gc/0 should only be needed to ensure a fully clean database for analysis purposes
such as leak detection.

rdf update duplicates [det]

Update the duplicate administration of the RDF store. This marks every triple that is poten-
tionally a duplicate of another as duplicate. Being potentially a duplicate means that subject,
predicate and object are equivalent and the life-times of the two triples overlap.

The duplicates marks are used to reduce the administrative load of avoiding duplicate answers.
Normally, the duplicates are marked using a background thread that is started on the first query
that produces a substantial amount of duplicates.

3.3 Monitoring the database

The predicate rdf monitor/2 allows registrations of call-backs with the RDF store. These
call-backs are typically used to keep other databases in sync with the RDF store. For example,
library(semweb/rdf persistency) monitors the RDF store for maintaining a persistent
copy in a set of files and library(semweb/rdf litindex) uses added and deleted literal val-
ues to maintain a fulltext index of literals.

rdf monitor(:Goal, +Mask)
Goal is called for modifications of the database. It is called with a single argument that describes
the modification. Defined events are:

assert(+S, +P, +O, +DB)
A triple has been asserted.

retract(+S, +P, +O, +DB)
A triple has been deleted.

update(+S, +P, +O, +DB, +Action)
A triple has been updated.

new literal(+Literal)
A new literal has been created. Literal is the argument of literal(Arg) of the triple’s
object. This event is introduced in version 2.5.0 of this library.

33

old literal(+Literal)
The literal Literal is no longer used by any triple.

transaction(+BeginOrEnd, +Id)
Mark begin or end of the commit of a transaction started by rdf transaction/2.
BeginOrEnd is begin(Nesting) or end(Nesting). Nesting expresses the nesting level
of transactions, starting at ‘0’ for a toplevel transaction. Id is the second argument of
rdf transaction/2. The following transaction Ids are pre-defined by the library:

parse(Id)
A file is loaded using rdf load/2. Id is one of file(Path) or stream(Stream).

unload(DB)
All triples with source DB are being unloaded using rdf unload/1.

reset
Issued by rdf reset db/0.

load(+BeginOrEnd, +Spec)
Mark begin or end of rdf load db/1 or load through rdf load/2 from a cached
file. Spec is currently defined as file(Path).

rehash(+BeginOrEnd)
Marks begin/end of a re-hash due to required re-indexing or garbage collection.

Mask is a list of events this monitor is interested in. Default (empty list) is to report all events.
Otherwise each element is of the form +Event or -Event to include or exclude monitoring for
certain events. The event-names are the functor names of the events described above. The
special name all refers to all events and assert(load) to assert events originating from
rdf load db/1. As loading triples using rdf load db/1 is very fast, monitoring this
at the triple level may seriously harm performance.

This predicate is intended to maintain derived data, such as a journal, information for undo,
additional indexing in literals, etc. There is no way to remove registered monitors. If this
is required one should register a monitor that maintains a dynamic list of subscribers like the
XPCE broadcast library. A second subscription of the same hook predicate only re-assignes the
mask.

The monitor hooks are called in the order of registration and in the same thread that issued the
database manipulation. To process all changes in one thread they should be send to a thread
message queue. For all updating events, the monitor is called while the calling thread has a
write lock on the RDF store. This implies that these events are processed strickly synchronous,
even if modifications originate from multiple threads. In particular, the transaction begin,
. . . updates . . . end sequence is never interleaved with other events. Same for load and
parse.

3.4 Issues with rdf db

This RDF low-level module has been created after two year experimenting with a plain Prolog based
module and a brief evaluation of a second generation pure Prolog implementation. The aim was to be
able to handle upto about 5 million triples on standard (notebook) hardware and deal efficiently with
subPropertyOf which was identified as a crucial feature of RDFS to realise fusion of different
data-sets.

The following issues are identified and not solved in suitable manner.

34

subPropertyOf of subPropertyOf is not supported.

Equivalence Similar to subPropertyOf, it is likely to be profitable to handle resource identity
efficient. The current system has no support for it.

4 Plugin modules for rdf db

The rdf db module provides several hooks for extending its functionality. Database updates can be
monitored and acted upon through the features described in section 3.3. The predicate rdf load/2
can be hooked to deal with different formats such as rdfturtle, different input sources (e.g. http) and
different strategies for caching results.

4.1 Hooks into the RDF library

The hooks below are used to add new RDF file formats and sources from which to load data to the
library. They are used by the modules described below and distributed with the package. Please
examine the source-code if you want to add new formats or locations.

library(semweb/turtle) Load files in the Turtle format. See section ??.

library(semweb/rdf zlib plugin) Load gzip compressed files transparently. See sec-
tion 4.2.

library(semweb/rdf http plugin) Load RDF documents from HTTP servers. See sec-
tion 4.3.

library(http/http ssl plugin) May be combined with
library(semweb/rdf http plugin) to load RDF from HTTPS servers.

library(semweb/rdf persistency) Provide persistent backup of the triple store.

library(semweb/rdf cache) Provide caching RDF sources using fast load/safe files to
speedup restarting an application.

rdf db:rdf open hook(+Input, -Stream, -Format)
Open an input. Input is one of file(+Name), stream(+Stream) or url(Protocol, URL).
If this hook succeeds, the RDF will be read from Stream using rdf load stream/3.
Otherwise the default open functionality for file and stream are used.

rdf db:rdf load stream(+Format, +Stream, +Options)
Actually load the RDF from Stream into the RDF database. Format describes the format and is
produced either by rdf input info/3 or rdf file type/2.

rdf db:rdf input info(+Input, -Modified, -Format)
Gather information on Input. Modified is the last modification time of the source as a
POSIX time-stamp (see time file/2). Format is the RDF format of the file. See
rdf file type/2 for details. It is allowed to leave the output variables unbound.
Ultimately the default modified time is ‘0’ and the format is assumed to be xml.

35

rdf db:rdf file type(?Extension, ?Format)
True if Format is the default RDF file format for files with the given extension. Extension is
lowercase and without a ’.’. E.g. owl. Format is either a built-in format (xml or triples) or
a format understood by the rdf load stream/3 hook.

rdf db:url protocol(?Protocol)
True if Protocol is a URL protocol recognised by rdf load/2.

4.2 library(semweb/rdf zlib plugin): Reading compressed RDF

This module uses the zlib library to load compressed files on the fly. The extension of the file
must be .gz. The file format is deduced by the extension after stripping the .gz extension. E.g.
rdf load(’file.rdf.gz’).

4.3 library(semweb/rdf http plugin): Reading RDF from a HTTP server

This module allows for rdf load(’http://...’). It exploits the library
http/http open.pl. The format of the URL is determined from the mime-type re-
turned by the server if this is one of text/rdf+xml, application/x-turtle or
application/turtle. As RDF mime-types are not yet widely supported, the plugin uses
the extension of the URL if the claimed mime-type is not one of the above. In addition, it recognises
text/html and application/xhtml+xml, scanning the XML content for embedded RDF.

4.4 library(semweb/rdf cache): Cache RDF triples

The library library(semweb/rdf_cache) defines the caching strategy for triples sources.
When using large RDF sources, caching triples greatly speedup loading RDF documents. The cache
library implements two caching strategies that are controlled by rdf set cache options/1.

Local caching This approach applies to files only. Triples are cached in a sub-directory of the
directory holding the source. This directory is called .cache (_cache on Windows). If the cache
option create_local_directory is true, a cache directory is created if posible.

Global caching This approach applies to all sources, except for unnamed streams. Triples are
cached in directory defined by the cache option global_directory.

When loading an RDF file, the system scans the configured cache files unless cache(false) is
specified as option to rdf load/2 or caching is disabled. If caching is enabled but no cache exists,
the system will try to create a cache file. First it will try to do this locally. On failure it will try to
configured global cache.

rdf set cache options(+Options)
Change the cache policy. Provided options are:

• enabled(Boolean) If true, caching is enabled.

• local_directory(Name). Plain name of local directory. Default .cache
(_cache on Windows).

• create_local_directory(Bool) If true, try to create local cache directories

• global_directory(Dir) Writeable directory for storing cached parsed files.

36

• create_global_directory(Bool) If true, try to create the global cache direc-
tory.

rdf cache file(+URL, +ReadWrite, -File) [semidet]

File is the cache file for URL. If ReadWrite is read, it returns the name of an existing file. If
write it returns where a new cache file can be overwritten or created.

4.5 library(semweb/rdf litindex): Indexing words in literals

The library semweb/rdf litindex.pl exploits the primitives of section 4.5.1 and the NLP pack-
age to provide indexing on words inside literal constants. It also allows for fuzzy matching using
stemming and ‘sounds-like’ based on the double metaphone algorithm of the NLP package.

rdf find literals(+Spec, -ListOfLiterals)
Find literals (without type or language specification) that satisfy Spec. The required indices are
created as needed and kept up-to-date using hooks registered with rdf monitor/2. Numer-
ical indexing is currently limited to integers in the range ±230 (±262on64 − bitplatforms).
Spec is defined as:

and(Spec1, Spec2)
Intersection of both specifications.

or(Spec1, Spec2)
Union of both specifications.

not(Spec)
Negation of Spec. After translation of the full specification to Disjunctive Normal Form
(DNF), negations are only allowed inside a conjunction with at least one positive literal.

case(Word)
Matches all literals containing the word Word, doing the match case insensitive and after
removing diacritics.

stem(Like)
Matches all literals containing at least one word that has the same stem as Like using the
Porter stem algorithm. See NLP package for details.

sounds(Like)
Matches all literals containing at least one word that ‘sounds like’ Like using the double
metaphone algorithm. See NLP package for details.

prefix(Prefix)
Matches all literals containing at least one word that starts with Prefix, discarding diacrit-
ics and case.

between(Low, High)
Matches all literals containing an integer token in the range Low..High, including the
boundaries.

ge(Low)
Matches all literals containing an integer token with value Low or higher.

le(High)
Matches all literals containing an integer token with value High or lower.

37

Token
Matches all literals containing the given token. See tokenize atom/2 of the NLP
package for details.

rdf token expansions(+Spec, -Expansions)
Uses the same database as rdf find literals/2 to find possible expansions of Spec,
i.e. which words ‘sound like’, ‘have prefix’, etc. Spec is a compound expression as in
rdf find literals/2. Expansions is unified to a list of terms sounds(Like, Words),
stem(Like, Words) or prefix(Prefix, Words). On compound expressions, only combinations
that provide literals are returned. Below is an example after loading the ULAN2 database
and showing all words that sounds like ‘rembrandt’ and appear together in a literal with the
word ‘Rijn’. Finding this result from the 228,710 literals contained in ULAN requires 0.54
milliseconds (AMD 1600+).

?- rdf_token_expansions(and(’Rijn’, sounds(rembrandt)), L).

L = [sounds(rembrandt, [’Rambrandt’, ’Reimbrant’, ’Rembradt’,
’Rembrand’, ’Rembrandt’, ’Rembrandtsz’,
’Rembrant’, ’Rembrants’, ’Rijmbrand’])]

Here is another example, illustrating handling of diacritics:

?- rdf_token_expansions(case(cafe), L).

L = [case(cafe, [cafe, café])]

rdf tokenize literal(+Literal, -Tokens)
Tokenize a literal, returning a list of atoms and integers in the range
−1073741824 . . . 1073741823. As tokenization is in general domain and task-dependent this
predicate first calls the hook rdf litindex:tokenization(Literal, -Tokens). On failure
it calls tokenize atom/2 from the NLP package and deletes the following: atoms of length
1, floats, integers that are out of range and the english words and, an, or, of, on, in, this
and the. Deletion first calls the hook rdf litindex:exclude from index(token, X).
This hook is called as follows:

no_index_token(X) :-
exclude_from_index(token, X), !.

no_index_token(X) :-
...

4.5.1 Literal maps: Creating additional indices on literals

‘Literal maps’ provide a relation between literal values, intended to create additional indexes on liter-
als. The current implementation can only deal with integers and atoms (string literals). A literal map
maintains an ordered set of keys. The ordering uses the same rules as described in section 4.5. Each

2Unified List of Artist Names from the Getty Foundation.

38

key is associated with an ordered set of values. Literal map objects can be shared between threads,
using a locking strategy that allows for multiple concurrent readers.

Typically, this module is used together with rdf monitor/2 on the channals new literal
and old literal to maintain an index of words that appear in a literal. Further abstraction using
Porter stemming or Metaphone can be used to create additional search indices. These can map either
directly to the literal values, or indirectly to the plain word-map. The SWI-Prolog NLP package
provides complimentary building blocks, such as a tokenizer, Porter stem and Double Metaphone.

rdf new literal map(-Map)
Create a new literal map, returning an opaque handle.

rdf destroy literal map(+Map)
Destroy a literal map. After this call, further use of the Map handle is illegal. Additional
synchronisation is needed if maps that are shared between threads are destroyed to guarantee
the handle is no longer used. In some scenarios rdf reset literal map/1 provides a
safe alternative.

rdf reset literal map(+Map)
Delete all content from the literal map.

rdf insert literal map(+Map, +Key, +Value)
Add a relation between Key and Value to the map. If this relation already exists no action is
performed.

rdf insert literal map(+Map, +Key, +Value, -KeyCount)
As rdf insert literal map/3. In addition, if Key is a new key in Map, unify KeyCount
with the number of keys in Map. This serves two purposes. Derived maps, such as the stem
and metaphone maps need to know about new keys and it avoids additional foreign calls for
doing the progress in rdf_litindex.pl.

rdf delete literal map(+Map, +Key)
Delete Key and all associated values from the map. Succeeds always.

rdf delete literal map(+Map, +Key, +Value)
Delete the association between Key and Value from the map. Succeeds always.

rdf find literal map(+Map, +KeyList, -ValueList) [det]

Unify ValueList with an ordered set of values associated to all keys from KeyList. Each key
in KeyList is either an atom, an integer or a term not(Key). If not-terms are provided, there
must be at least one positive keywords. The negations are tested after establishing the positive
matches.

rdf keys in literal map(+Map, +Spec, -Answer)
Realises various queries on the key-set:

all
Unify Answer with an ordered list of all keys.

key(+Key)
Succeeds if Key is a key in the map and unify Answer with the number of values associated
with the key. This provides a fast test of existence without fetching the possibly large
associated value set as with rdf find literal map/3.

39

prefix(+Prefix)
Unify Answer with an ordered set of all keys that have the given prefix. Prefix must be an
atom. This call is intended for auto-completion in user interfaces.

ge(+Min)
Unify Answer with all keys that are larger or equal to the integer Min.

le(+Max)
Unify Answer with all keys that are smaller or equal to the integer Max.

between(+Min, +Max)
Unify Answer with all keys between Min and Max (including).

rdf statistics literal map(+Map, +Key(-Arg...))
Query some statistics of the map. Provides keys are:

size(-Keys, -Relations)
Unify Keys with the total key-count of the index and Relation with the total Key-Value
count.

4.6 library(semweb/rdf persistency): Providing persistent storage

The semweb/rdf persistency provides reliable persistent storage for the RDF data. The store
uses a directory with files for each source (see rdf source/1) present in the database. Each source
is represented by two files, one in binary format (see rdf save db/2) representing the base state
and one represented as Prolog terms representing the changes made since the base state. The latter is
called the journal.

rdf attach db(+Directory, +Options)
Attach Directory as the persistent database. If Directory does not exist it is created. Otherwise
all sources defined in the directory are loaded into the RDF database. Loading a source means
loading the base state (if any) and replaying the journal (if any). The current implementation
does not synchronise triples that are in the store before attaching a database. They are not
removed from the database, nor added to the presistent store. Different merging options may
be supported through the Options argument later. Currently defined options are:

concurrency(+PosInt)
Number of threads used to reload databased and journals from the files in Directory.
Default is the number of physical CPUs determined by the Prolog flag cpu count or 1
(one) on systems where this number is unknown. See also concurrent/3.

max open journals(+PosInt)
The library maintains a pool of open journal files. This option specifies the size of this
pool. The default is 10. Raising the option can make sense if many writes occur on many
different named graphs. The value can be lowered for scenarios where write operations
are very infrequent.

silent(Boolean)
If true, supress loading messages from rdf attach db/2.

log nested transactions(Boolean)
If true, nested log transactions are added to the journal information. By default
(false), no log-term is added for nested transactions.

40

The database is locked against concurrent access using a file lock in Directory. An attempt to
attach to a locked database raises a permission error exception. The error context con-
tains a term rdf locked(Args), where args is a list containing time(Stamp) and pid(PID).
The error can be caught by the application. Otherwise it prints:

ERROR: No permission to lock rdf_db ‘/home/jan/src/pl/packages/semweb/DB’
ERROR: locked at Wed Jun 27 15:37:35 2007 by process id 1748

rdf detach db
Detaches the persistent store. No triples are removed from the RDF triple store.

rdf current db(-Directory)
Unify Directory with the current database directory. Fails if no persistent database is attached.

rdf persistency(+DB, +Bool)
Change presistency of named database (4th argument of rdf/4). By default all databases are
presistent. Using false, the journal and snapshot for the database are deleted and further
changes to triples associated with DB are not recorded. If Bool is true a snapshot is created
for the current state and further modifications are monitored. Switching persistency does not
affect the triples in the in-memory RDF database.

rdf flush journals(+Options)
Flush dirty journals. With the option min size(KB) only journals larger than KB Kbytes are
merged with the base state. Flushing a journal takes the following steps, ensuring a stable state
can be recovered at any moment.

1. Save the current database in a new file using the extension .new.

2. On success, delete the journal

3. On success, atomically move the .new file over the base state.

Note that journals are not merged automatically for two reasons. First of all, some applications
may decide never to merge as the journal contains a complete changelog of the database. Sec-
ond, merging large databases can be slow and the application may wish to schedule such actions
at quiet times or scheduled maintenance periods.

4.6.1 Enriching the journals

The above predicates suffice for most applications. The predicates in this section provide access to the
journal files and the base state files and are intented to provide additional services, such as reasoning
about the journals, loaded files, etc.3

Using rdf transaction(Goal, log(Message)), we can add additional records to enrich the
journal of affected databases with Term and some additional bookkeeping information. Such a trans-
action adds a term begin(Id, Nest, Time, Message) before the change operations on each affected
database and end(Id, Nest, Affected) after the change operations. Here is an example call and content
of the journal file mydb.jrn. A full explanation of the terms that appear in the journal is in the
description of rdf journal file/2.

3A library rdf history is under development exploiting these features supporting wiki style editing of RDF.

41

?- rdf_transaction(rdf_assert(s,p,o,mydb), log(by(jan))).

start([time(1183540570)]).
begin(1, 0, 1183540570.36, by(jan)).
assert(s, p, o).
end(1, 0, []).
end([time(1183540578)]).

Using rdf transaction(Goal, log(Message, DB)), where DB is an atom denoting a (possibly
empty) named graph, the system guarantees that a non-empty transaction will leave a possibly empty
transaction record in DB. This feature assumes named graphs are named after the user making the
changes. If a user action does not affect the user’s graph, such as deleting a triple from another graph,
we still find record of all actions performed by some user in the journal of that user.

rdf journal file(?DB, ?JournalFile)
True if File is the absolute file name of an existing named graph DB. A journal file contains a
sequence of Prolog terms of the following format.4

start(Attributes)
Journal has been opened. Currently Attributes contains a term time(Stamp).

end(Attributes)
Journal was closed. Currently Attributes contains a term time(Stamp).

assert(Subject, Predicate, Object)
A triple {Subject, Predicate, Object} was added to the database.

assert(Subject, Predicate, Object, Line)
A triple {Subject, Predicate, Object} was added to the database with given Line context.

retract(Subject, Predicate, Object)
A triple {Subject, Predicate, Object} was deleted from the database. Note that an
rdf retractall/3 call can retract multiple triples. Each of them have a record in the
journal. This allows for ‘undo’.

retract(Subject, Predicate, Object, Line)
Same as above, for a triple with associated line info.

update(Subject, Predicate, Object, Action)
See rdf update/4.

begin(Id, Nest, Time, Message)
Added before the changes in each database affected by a transaction with transaction
identifier log(Message). Id is an integer counting the logged transactions to this
database. Numbers are increasing and designed for binary search within the journal
file. Nest is the nesting level, where ‘0’ is a toplevel transaction. Time is a time-stamp,
currently using float notation with two fractional digits. Message is the term provided by
the user as argument of the log(Message) transaction.

4Future versions of this library may use an XML based language neutral format.

42

end(Id, Nest, Others)
Added after the changes in each database affected by a transaction with transaction iden-
tifier log(Message). Id and Nest match the begin-term. Others gives a list of other
databases affected by this transaction and the Id of these records. The terms in this list
have the format DB:Id.

rdf db to file(?DB, ?FileBase)
Convert between DB (see rdf source/1) and file base-file used for storing information on
this database. The full file is located in the directory described by rdf current db/1 and
has the extension .trp for the base state and .jrn for the journal.

5 library(semweb/turtle): Turtle: Terse RDF Triple Language
See also http://www.w3.org/TR/turtle/ (used W3C Recommendation 25 February 2014)

This module implements the Turtle language for representing the RDF triple model as defined by
Dave Beckett from the Institute for Learning and Research Technology University of Bristol and later
standardized by the W3C RDF working group.

This module acts as a plugin to rdf load/2, for processing files with one of the extensions
.ttl or .n3.

rdf read turtle(+Input, -Triples, +Options)
Read a stream or file into a set of triples or quadruples (if faced with TriG input) of the format

rdf(Subject, Predicate, Object [, Graph])

The representation is consistent with the SWI-Prolog RDF/XML and ntriples parsers. Provided
options are:

base uri(+BaseURI)
Initial base URI. Defaults to file://<file> for loading files.

anon prefix(+Prefix)
Blank nodes are generated as <Prefix>1, <Prefix>2, etc. If Prefix is not an atom blank
nodes are generated as node(1), node(2), ...

format(+Format)
One of auto (default), turtle or trig. The auto mode switches to TriG format of
there is a { before the first triple. Finally, of the format is explicitly stated as turtle
and the file appears to be a TriG file, a warning is printed and the data is loaded while
ignoring the graphs.

resources(URIorIRI)
Officially, Turtle resources are IRIs. Quite a few applications however send URIs. By
default we do URI->IRI mapping because this rarely causes errors. To force strictly
conforming mode, pass iri.

prefixes(-Pairs)
Return encountered prefix declarations as a list of Alias-URI

43

http://www.w3.org/TR/turtle/

namespaces(-Pairs)
Same as prefixes(Pairs). Compatibility to rdf load/2.

base used(-Base)
Base URI used for processing the data. Unified to [] if there is no base-uri.

on error(+ErrorMode)
In warning (default), print the error and continue parsing the remainder of the file. If
error, abort with an exception on the first error encountered.

error count(-Count)
If on_error(warning) is active, this option cane be used to retrieve the number of
generated errors.

Arguments
Input is one of stream(Stream), atom(Atom), a http, https

or file url or a filename specification as accepted by
absolute file name/3.

rdf load turtle(+Input, -Triples, +Options) deprecated
Use rdf read turtle/3

rdf process turtle(+Input, :OnObject, +Options) [det]

Streaming Turtle parser. The predicate rdf process turtle/3 processes Turtle data
from Input, calling OnObject with a list of triples for every Turtle statement found in Input.
OnObject is called as below, where ListOfTriples is a list of rdf(S,P,O) terms for a normal
Turtle file or rdf(S,P,O,G) terms if the GRAPH keyword is used to associate a set of triples
in the document with a particular graph. The Graph argument provides the default graph for
storing the triples and Line is the line number where the statement started.

call(OnObject, ListOfTriples, Graph:Line)

This predicate supports the same Options as rdf load turtle/3.

Errors encountered are sent to print message/2, after which the parser tries to recover and
parse the remainder of the data.

See also This predicate is normally used by load rdf/2 for processing RDF data.

rdf db:rdf load stream(+Format, +Stream, :Options) [multifile]

(Turtle clauses)

rdf save ntriples(+Spec, :Options) [det]

Save RDF using ntriples format. The ntriples format is a subset of Turtle, writing each triple
fully qualified on its own line.

rdf save canonical trig(+Spec, :Options) [det]

Save triples in a canonical format. See rdf save canonical turtle/2 foir details.

rdf save trig(+Spec, :Options) [det]

Save multiple RDF graphs into a TriG file. Options are the same as for rdf save turtle/2.
rdf save trig/2 ignores the graph(+Graph) option and instead processes one addi-
tional option:

44

graphs(+ListOfGraphs)
List of graphs to save. When omitted, all graphs in the RDF store are stored in the TriG
file.

rdf save canonical turtle(+Spec, :Options) [det]

Save triples in a canonical format. This is the same as rdf save turtle/2, but using
different defaults. In particular:

• encoding(utf8),
• indent(0),
• tab_distance(0),
• subject_white_lines(1),
• align_prefixes(false),
• user_prefixes(false)
• comment(false),
• group(false),
• single_line_bnodes(true)

To be done Work in progress. Notably blank-node handling is incomplete.

rdf save turtle(+Out, :Options) [det]

Save an RDF graph as Turtle. Options processed are:

a(+Boolean)
If true (default), use a for the predicate rdf:type. Otherwise use the full resource.

align prefixes(+Boolean)
Nicely align the @prefix declarations

base(+Base)
Save relative to the given Base

canonize numbers(+Boolean)
If true (default false), emit numeric datatypes using Prolog’s write to achieve canon-
ical output.

comment(+Boolean)
It true (default), write some informative comments between the output segments

encoding(+Encoding)
Encoding used for the output stream. Default is UTF-8.

expand(:Goal)
Query an alternative graph-representation. See below.

indent(+Column)
Indentation for ; -lists. ‘0’ does not indent, but writes on the same line. Default is 8.

graph(+Graph)
Save only the named graph

group(+Boolean)
If true (default), using P-O and O-grouping.

45

inline bnodes(+Boolean)
if true (default), inline bnodes that are used once.

abbreviate literals(+Boolean)
if true (default), omit the type if allowed by turtle.

only known prefixes(+Boolean)
Only use prefix notation for known prefixes. Without, some documents produce huge
amounts of prefixes.

prefixes(+List)
If provided, uses exactly these prefixes. List is a list of prefix specifications,
where each specification is either a term Prefix - URI or a prefix that is known to
rdf current prefix/2.

silent(+Boolean)
If true (default false), do not print the final informational message.

single line bnodes(+Bool)
If true (default false), write [...] and (...) on a single line.

subject white lines(+Count)
Extra white lines to insert between statements about a different subject. Default is 1.

tab distance(+Tab)
Distance between tab-stops. ‘0’ forces the library to use only spaces for layout. Default
is 8.

user prefixes(+Boolean)
If true (default), use prefixes from rdf current prefix/2.

The option expand allows for serializing alternative graph representations. It is called through
call/5, where the first argument is the expand-option, followed by S,P,O,G. G is the graph-
option (which is by default a variable). This notably allows for writing RDF graphs represented
as rdf(S,P,O) using the following code fragment:

triple_in(RDF, S,P,O,_G) :-
member(rdf(S,P,O), RDF).

...,
rdf_save_turtle(Out, [expand(triple_in(RDF))]),

Arguments
Out is one of stream(Stream), a stream handle, a file-URL or an

atom that denotes a filename.

6 library(semweb/rdf ntriples): Process files in the RDF N-Triples for-
mat

See also http://www.w3.org/TR/n-triples/

To be done Sync with RDF 1.1. specification.

46

http://www.w3.org/TR/n-triples/

The library(semweb/rdf_ntriples) provides a fast reader for the RDF N-Triples
and N-Quads format. N-Triples is a simple format, originally used to support the W3C RDF
test suites. The current format has been extended and is a subset of the Turtle format (see
library(semweb/turtle)).

The API of this library is almost identical to library(semweb/turtle). This module pro-
vides a plugin into rdf load/2, making this predicate support the format ntriples and nquads.

read ntriple(+Stream, -Triple) [det]

Read the next triple from Stream as Triple. Stream must have UTF-8 encoding.

Arguments
Triple is a term triple(Subject,Predicate,Object). Argu-

ments follow the normal conventions of the RDF libraries. NodeID
elements are mapped to node(Id). If end-of-file is reached,
Triple is unified with end_of_file.

Errors syntax_error(Message) on syntax errors

read nquad(+Stream, -Quad) [det]

Read the next quad from Stream as Quad. Stream must have UTF-8 encoding.

Arguments
Quad is a term quad(Subject,Predicate,Object,Graph).

Arguments follow the normal conventions of the RDF libraries.
NodeID elements are mapped to node(Id). If end-of-file is
reached, Quad is unified with end_of_file.

Errors syntax_error(Message) on syntax errors

read ntuple(+Stream, -Tuple) [det]

Read the next triple or quad from Stream as Tuple. Tuple is one of the terms below. See
read ntriple/2 and read nquad/2 for details.

• triple(Subject,Predicate,Object)
• quad(Subject,Predicate,Object,Graph).

rdf read ntriples(+Input, -Triples, +Options) [det]

rdf read nquads(+Input, -Quads, +Options) [det]

True when Triples/Quads is a list of triples/quads from Input. Options:

anon prefix(+AtomOrNode)
Prefix nodeIDs with this atom. If AtomOrNode is the term node(_), bnodes are returned
as node(Id).

base uri(+Atom)
Defines the default anon prefix as :<baseuri>

on error(Action)
One of warning (default) or error

47

error count(-Count)
If on_error is warning, unify Count with th number of errors.

graph(+Graph)
For rdf read nquads/3, this defines the graph associated to triples loaded from the
input. For rdf read ntriples/3 this opion is ignored.

Arguments
Triples is a list of rdf(Subject, Predicate, Object)
Quads is a list of rdf(Subject, Predicate, Object, Graph)

rdf process ntriples(+Input, :CallBack, +Options)
Call-back interface, compatible with the other triple readers. In addition to the options from
rdf read ntriples/3, this processes the option graph(Graph).

Arguments
CallBack is called as call(CallBack, Triples, Graph), where

Triples is a list holding a single rdf(S,P,O) triple. Graph is
passed from the graph option and unbound if this option is omit-
ted.

rdf db:rdf load stream(+Format, +Stream, :Options) [semidet,multifile]

Plugin rule that supports loading the ntriples and nquads formats.

rdf db:rdf file type(+Extension, -Format) [multifile]

Bind the ntriples reader to files with the extensions nt, ntriples and nquads.

7 library(semweb/rdfa): Extract RDF from an HTML or XML DOM
See also

- http://www.w3.org/TR/2013/REC-rdfa-core-20130822/
- http://www.w3.org/TR/html-rdfa/

This module implements extraction of RDFa triples from parsed XML or HTML documents. It has
two interfaces: read rdfa/3 to read triples from some input (stream, file, URL) and xml rdfa/3
to extract triples from an HTML or XML document that is already parsed with load html/3 or
load xml/3.

read rdfa(+Input, -Triples, +Options) [det]

True when Triples is a list of rdf(S,P,O) triples extracted from Input. Input is either a
stream, a file name, a URL referencing a file name or a URL that is valid for http open/3.
Options are passed to open/4, http open/3 and xml rdfa/3. If no base is provided in
Options, a base is deduced from Input.

xml rdfa(+DOM, -RDF, +Options)
True when RDF is a list of rdf(S,P,O) terms extracted from DOM according to the RDFa
specification. Options processed:

base(+BaseURI)
URI to use for ”. Normally set to the document URI.

48

http://www.w3.org/TR/2013/REC-rdfa-core-20130822/
http://www.w3.org/TR/html-rdfa/

anon prefix(+AnnonPrefix)
Prefix for blank nodes.

lang(+Lang)
Default for lang

vocab(+Vocab)
Default for vocab

markup(+Markup)
Markup language processed (xhtml, xml, ...)

rdf db:rdf load stream(+Format, +Stream, :Options) [multifile]

Register library(semweb/rdfa) as loader for HTML RDFa files.

To be done Which options need to be forwarded to read rdfa/3?

8 library(semweb/rdfs): RDFS related queries

The semweb/rdfs library adds interpretation of the triple store in terms of concepts from RDF-
Schema (RDFS). There are two ways to provide support for more high level languages in RDF. One
is to view such languages as a set of entailment rules. In this model the rdfs library would provide a
predicate rdfs/3 providing the same functionality as rdf/3 on union of the raw graph and triples
that can be derived by applying the RDFS entailment rules.

Alternatively, RDFS provides a view on the RDF store in terms of individuals, classes, properties,
etc., and we can provide predicates that query the database with this view in mind. This is the approach
taken in the semweb/rdfs.pl library, providing calls like rdfs individual of(?Resource,
?Class).5

8.1 Hierarchy and class-individual relations

The predicates in this section explore the rdfs:subPropertyOf, rdfs:subClassOf and
rdf:type relations. Note that the most fundamental of these, rdfs:subPropertyOf, is also
used by rdf has/[3,4].

rdfs subproperty of(?SubProperty, ?Property)
True if SubProperty is equal to Property or Property can be reached from SubProperty fol-
lowing the rdfs:subPropertyOf relation. It can be used to test as well as generate
sub-properties or super-properties. Note that the commonly used semantics of this predicate is
wired into rdf has/[3,4].6.7

rdfs subclass of(?SubClass, ?Class)
True if SubClass is equal to Class or Class can be reached from SubClass following the
rdfs:subClassOf relation. It can be used to test as well as generate sub-classes or
super-classes.8.

5The SeRQL language is based on querying the deductive closure of the triple set. The SWI-Prolog SeRQL library
provides entailment modules that take the approach outlined above.

6BUG: The current implementation cannot deal with cycles
7BUG: The current implementation cannot deal with predicates that are an rdfs:subPropertyOf of

rdfs:subPropertyOf, such as owl:samePropertyAs.
8BUG: The current implementation cannot deal with cycles

49

rdfs class property(+Class, ?Property)
True if the domain of Property includes Class. Used to generate all properties that apply to a
class.

rdfs individual of(?Resource, ?Class)
True if Resource is an indivisual of Class. This implies Resource has an rdf:type property
that refers to Class or a sub-class thereof. Can be used to test, generate classes Resource
belongs to or generate individuals described by Class.

8.2 Collections and Containers

The RDF construct rdf:parseType=Collection constructs a list using the rdf:first and
rdf:next relations.

rdfs member(?Resource, +Set)
Test or generate the members of Set. Set is either an individual of rdf:List or
rdfs:Container.

rdfs list to prolog list(+Set, -List)
Convert Set, which must be an individual of rdf:List into a Prolog list of objects.

rdfs assert list(+List, -Resource)
Equivalent to rdfs assert list/3 using DB = user.

rdfs assert list(+List, -Resource, +DB)
If List is a list of resources, create an RDF list Resource that reflects these resources. Resource
and the sublist resources are generated with rdf bnode/1. The new triples are associated
with the database DB.

9 Managing RDF input files

Complex projects require RDF resources from many locations and typically wish to load these in
different combinations. For example loading a small subset of the data for debugging purposes or load
a different set of files for experimentation. The library semweb/rdf library.pl manages sets of
RDF files spread over different locations, including file and network locations. The original version of
this library supported metadata about collections of RDF sources in an RDF file called Manifest. The
current version supports both the VoID format and the original format. VoID files (typically named
void.ttl) can use elements from the RDF Manifest vocabulary to support features that are not
supported by VoID.

9.1 The Manifest file

A manifest file is an RDF file, often in Turtle format, that provides meta-data about RDF re-
sources. Often, a manifest will describe RDF files in the current directory, but it can also de-
scribe RDF resources at arbitrary URL locations. The RDF schema for RDF library meta-data
can be found in rdf_library.ttl. The namespace for the RDF library format is defined as
http://www.swi-prolog.org/rdf/library/ and abbreviated as lib.

The schema defines three root classes: lib:Namespace, lib:Ontology and lib:Virtual, which we
describe below.

50

http://www.w3.org/TR/void/
http://www.w3.org/TeamSubmission/turtle/
http://www.swi-prolog.org/rdf/library/

lib:Ontology
This is a subclass of owl:Ontology. It has two subclasses, lib:Schema and lib:Instances. These
three classes are currently processed equally. The following properties are recognised on
lib:Ontology:

dc:title
Title of the ontology. Displayed by rdf list library/0.

owl:versionInfo
Version of the ontology. Displayed by rdf list library/0.

owl:imports
Ontologies imported. If rdf load library/2 is used to load this ontology, the on-
tologies referenced here are loaded as well. There are two subProperties: lib:schema and
lib:instances with the obvious meaning.

lib:source
Defines the named graph into which the resource is loaded. If this ends in a /, the base-
name of each loaded file is appended to the given source. Defaults to the URL the RDF is
loaded from.

lib:baseURI
Defines the base for processing the RDF data. If not provided this defaults to the named
graph, which in turn defaults to the URL the RDF is loaded from.

lib:Virtual
Virtual ontologies do not refer to an RDF resource themselves. They only import other re-
sources. For example the W3C WordNet manifest defines wn-basic and wn-full as virtual
resources. The lib:Virtual resource is used as a second rdf:type:

<wn-basic>
a lib:Ontology ;
a lib:Virtual ;
...

lib:CloudNode
Used by ClioPatria to combine this ontology and all data it imports into a node in the automati-
cally generated datacloud.

lib:Namespace
Defines a URL to be a namespace. The definition provides the preferred mnemonic and can
be referenced in the lib:providesNamespace and lib:usesNamespace properties. The
rdf load library/2 predicates registers encountered namespace mnemonics with rdf-db
using rdf register ns/2. Typically namespace declarations use @prefix declarations.
E.g.

@prefix lib: <http://www.swi-prolog.org/rdf/library/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

[a lib:Namespace ;

51

lib:mnemonic "rdfs" ;
lib:namespace rdfs:

] .

9.1.1 Support for the VoID and VANN vocabularies

The VoID aims at resolving the same problem as the Manifest files described here. In addition, the
VANN vocabulary provides the information about preferred namepaces prefixes. The RDF library
manager can deal with VoID files. The following relations apply:

• VoID Dataset and Linkset are similar to lib:Ontology, but a VoID resource is always
Virtual. I.e., the VoID URI itself never refers to an RDF document.

• The owl:imports and its lib specializations are replaced by void:subset (referring to
another VoID dataset) and void:dataDump (referring to a concrete document).

• A description of the dataset is given using dcterms:description rather than
rdfs:comment

• The RDF library recognises lib:source, lib:baseURI and lib:Cloudnode, which
have no equivalent in VoID.

• The RDF library recognises vann:preferredNamespacePrefix and
vann:preferredNamespaceUri as alternatives to its proprietary way for defining
prefixes. The domain of these predicates is unclear. The library recognises them regardless
of the domain. Note that the range of vann:preferredNamespaceUri is a literal. A
disadvantage of that is that the Turtle prefix declaration cannot be reused.

Currently, the RDF metadata is not stored in the RDF database. It is processed by low-level
primitives that do not perform RDFS reasoning. In particular, this means that rdfs:supPropertyOf and
rdfs:subClassOf cannot be used to specialise the RDF meta vocabulary.

9.1.2 Finding manifest files

The initial metadata file(s) are loaded into the system using rdf attach library/1.

rdf attach library(+FileOrDirectory)
Load meta-data on RDF repositories from FileOrDirectory. If the argument is a directory,
this directory is processed recursively and each for each directory, a file named void.ttl,
Manifest.ttl or Manifest.rdf is loaded (in this order of preference).

Declared namespaces are added to the rdf-db namespace list. Encountered ontologies are added
to a private database of rdf_list_library.pl. Each ontology is given an identifier, de-
rived from the basename of the URL without the extension. This, using the declaration below,
the identifier of the declared ontology is wn-basic.

<wn-basic>
a void:Dataset ;
dcterms:title "Basic WordNet" ;
...

52

http://www.w3.org/TR/void/
http://vocab.org/vann/

rdf list library
List the available resources in the library. Currently only lists resources that have a dcterms:title
property. See section 9.2 for an example.

It is possible for the initial set of manifests to refer to RDF files that are not covered by a manifest.
If such a reference is encountered while loading or listing a library, the library manager will look for
a manifest file in the directory holding the referenced RDF file and load this manifest. If a manifest is
found that covers the referenced file, the directives found in the manifest will be followed. Otherwise
the RDF resource is simply loaded using the current defaults.

Further exploration of the library is achieved using rdf list library/1 or
rdf list library/2:

rdf list library(+Id)
Same as rdf list library(Id, []).

rdf list library(+Id, +Options)
Lists the resources that will be loaded if Id is handed to rdf load library/2. See
rdf attach library/1 for how ontology identifiers are generated. In addition it checks
the existence of each resource to help debugging library dependencies. Before doing its work,
rdf list library/2 reloads manifests that have changed since they were loaded the last
time. For HTTP resources it uses the HEAD method to verify existence and last modification
time of resources.

rdf load library(+Id, +Options)
Load the given library. First rdf load library/2 will establish what resources need to be
loaded and whether all resources exist. Than it will load the resources.

9.2 Usage scenarios

Typically, a project will use a single file using the same format as a manifest file that
defines alternative configurations that can be loaded. This file is loaded at program
startup using rdf attach library/1. Users can now list the available libraries using
rdf list library/0 and rdf list library/1:

1 ?- rdf_list_library.
ec-core-vocabularies E-Culture core vocabularies
ec-all-vocabularies All E-Culture vocabularies
ec-hacks Specific hacks
ec-mappings E-Culture ontology mappings
ec-core-collections E-Culture core collections
ec-all-collections E-Culture all collections
ec-medium E-Culture medium sized data (artchive+aria)
ec-all E-Culture all data

Now we can list a specific category using rdf list library/1. Note this loads two additional
manifests referenced by resources encountered in ec-mappings. If a resource does not exist is is
flagged using [NOT FOUND].

53

2 ?- rdf_list_library(’ec-mappings’).
% Loaded RDF manifest /home/jan/src/eculture/vocabularies/mappings/Manifest.ttl
% Loaded RDF manifest /home/jan/src/eculture/collections/aul/Manifest.ttl
<file:///home/jan/src/eculture/src/server/ec-mappings>
. <file:///home/jan/src/eculture/vocabularies/mappings/mappings>
. . <file:///home/jan/src/eculture/vocabularies/mappings/interface>
. . . file:///home/jan/src/eculture/vocabularies/mappings/interface_class_mapping.ttl
. . . file:///home/jan/src/eculture/vocabularies/mappings/interface_property_mapping.ttl
. . <file:///home/jan/src/eculture/vocabularies/mappings/properties>
. . . file:///home/jan/src/eculture/vocabularies/mappings/ethnographic_property_mapping.ttl
. . . file:///home/jan/src/eculture/vocabularies/mappings/eculture_properties.ttl
. . . file:///home/jan/src/eculture/vocabularies/mappings/eculture_property_semantics.ttl
. . <file:///home/jan/src/eculture/vocabularies/mappings/situations>
. . . file:///home/jan/src/eculture/vocabularies/mappings/eculture_situations.ttl
. <file:///home/jan/src/eculture/collections/aul/aul>
. . file:///home/jan/src/eculture/collections/aul/aul.rdfs
. . file:///home/jan/src/eculture/collections/aul/aul.rdf
. . file:///home/jan/src/eculture/collections/aul/aul9styles.rdf
. . file:///home/jan/src/eculture/collections/aul/extractedperiods.rdf
. . file:///home/jan/src/eculture/collections/aul/manual-periods.rdf

9.2.1 Referencing resources

Resources and manifests are located either on the local filesystem or on a network resource. The initial
manifest can also be loaded from a file or a URL. This defines the initial base URL of the document.
The base URL can be overruled using the Turtle @base directive. Other documents can be referenced
relative to this base URL by exploiting Turtle’s URI expansion rules. Turtle resources can be specified
in three ways, as absolute URLs (e.g. <http://www.example.com/rdf/ontology.rdf¿),
as relative URL to the base (e.g. <../rdf/ontology.rdf¿) or following a prefix (e.g. pre-
fix:ontology).

The prefix notation is powerful as we can define multiple of them and define resources relative to
them. Unfortunately, prefixes can only be defined as absolute URLs or URLs relative to the base URL.
Notably, they cannot be defined relative to other prefixes. In addition, a prefix can only be followed
by a Qname, which excludes . and /.

Easily relocatable manifests must define all resources relative to the base URL. Relocation is
automatic if the manifest remains in the same hierarchy as the resources it references. If the manifest
is copied elsewhere (i.e. for creating a local version) it can use @base to refer to the resource hierarchy.
We can point to directories holding manifest files using @prefix declarations. There, we can reference
Virtual resources using prefix:name. Here is an example, were we first give some line from the initial
manifest followed by the definition of the virtual RDFS resource.

@base <http://gollem.science.uva.nl/e-culture/rdf/> .

@prefix base: <base_ontologies/> .

54

<ec-core-vocabularies>
a lib:Ontology ;
a lib:Virtual ;
dc:title "E-Culture core vocabularies" ;
owl:imports

base:rdfs ,
base:owl ,
base:dc ,
base:vra ,
...

<rdfs>
a lib:Schema ;
a lib:Virtual ;
rdfs:comment "RDF Schema" ;
lib:source rdfs: ;
lib:schema <rdfs.rdfs> .

9.3 Putting it all together

In this section we provide skeleton code for filling the RDF database from a password protected HTTP
repository. The first line loads the application. Next we include modules that enable us to manage the
RDF library, RDF database caching and HTTP connections. Then we setup the HTTP authentication,
enable caching of processed RDF files and load the initial manifest. Finally load data/0 loads all
our RDF data.

:- use_module(server).

:- use_module(library(http/http_open)).
:- use_module(library(semweb/rdf_library)).
:- use_module(library(semweb/rdf_cache)).

:- http_set_authorization(’http://www.example.org/rdf’,
basic(john, secret)).

:- rdf_set_cache_options([global_directory(’RDF-Cache’),
create_global_directory(true)

]).

:- rdf_attach_library(’http://www.example.org/rdf/Manifest.ttl’).

%% load_data
%
% Load our RDF data

55

load_data :-
rdf_load_library(’all’).

9.4 Example: A metadata file for W3C WordNet

The VoID metadata below allows for loading WordNet in the two predefined versions using one of

?- rdf_load_library(’wn-basic’, []).
?- rdf_load_library(’wn-full’, []).

@prefix void: <http://rdfs.org/ns/void#> .
@prefix vann: <http://purl.org/vocab/vann/> .
@prefix lib: <http://www.swi-prolog.org/rdf/library/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix wn20s: <http://www.w3.org/2006/03/wn/wn20/schema/> .
@prefix wn20i: <http://www.w3.org/2006/03/wn/wn20/instances/> .

[vann:preferredNamespacePrefix "wn20i" ;
vann:preferredNamespaceUri "http://www.w3.org/2006/03/wn/wn20/instances/"

] .

[vann:preferredNamespacePrefix "wn20s" ;
vann:preferredNamespaceUri "http://www.w3.org/2006/03/wn/wn20/schema/"

] .

<wn20-common>
a void:Dataset ;
dc:description "Common files between full and basic version" ;
lib:source wn20i: ;
void:dataDump

<wordnet-attribute.rdf.gz> ,
<wordnet-causes.rdf.gz> ,
<wordnet-classifiedby.rdf.gz> ,
<wordnet-entailment.rdf.gz> ,
<wordnet-glossary.rdf.gz> ,
<wordnet-hyponym.rdf.gz> ,
<wordnet-membermeronym.rdf.gz> ,
<wordnet-partmeronym.rdf.gz> ,
<wordnet-sameverbgroupas.rdf.gz> ,
<wordnet-similarity.rdf.gz> ,

56

<wordnet-synset.rdf.gz> ,
<wordnet-substancemeronym.rdf.gz> ,
<wordnet-senselabels.rdf.gz> .

<wn20-skos>
a void:Dataset ;
void:subset <wnskosmap> ;
void:dataDump <wnSkosInScheme.ttl.gz> .

<wnskosmap>
a lib:Schema ;
lib:source wn20s: ;
void:dataDump

<wnskosmap.rdfs> .

<wnbasic-schema>
a void:Dataset ;
lib:source wn20s: ;
void:dataDump

<wnbasic.rdfs> .

<wn20-basic>
a void:Dataset ;
a lib:CloudNode ;
dc:title "Basic WordNet" ;
dc:description "Light version of W3C WordNet" ;
owl:versionInfo "2.0" ;
lib:source wn20i: ;
void:subset

<wnbasic-schema> ,
<wn20-skos> ,
<wn20-common> .

<wnfull-schema>
a void:Dataset ;
lib:source wn20s: ;
void:dataDump

<wnfull.rdfs> .

<wn20-full>
a void:Dataset ;
a lib:CloudNode ;
dc:title "Full WordNet" ;
dc:description "Full version of W3C WordNet" ;
owl:versionInfo "2.0" ;
lib:source wn20i: ;
void:subset

57

<wnfull-schema> ,
<wn20-skos> ,
<wn20-common> ;

void:dataDump
<wordnet-antonym.rdf.gz> ,
<wordnet-derivationallyrelated.rdf.gz> ,
<wordnet-participleof.rdf.gz> ,
<wordnet-pertainsto.rdf.gz> ,
<wordnet-seealso.rdf.gz> ,
<wordnet-wordsensesandwords.rdf.gz> ,
<wordnet-frame.rdf.gz> .

10 library(semweb/sparql client): SPARQL client library

This module provides a SPARQL client. For example:

?- sparql_query(’select * where { ?x rdfs:label "Amsterdam" }’, Row,
[host(’dbpedia.org’), path(’/sparql/’)]).

Row = row(’http://www.ontologyportal.org/WordNet#WN30-108949737’) ;
false.

Or, querying a local server using an ASK query:

?- sparql_query(’ask { owl:Class rdfs:label "Class" }’, Row,
[host(’localhost’), port(3020), path(’/sparql/’)]).

Row = true.

HTTPS servers are supported using the scheme(https) option:

?- sparql_query(’select * where { ?x rdfs:label "Amsterdam"@nl }’,
Row,
[scheme(https),

host(’query.wikidata.org’),
path(’/sparql’)

]).

sparql query(+Query, -Result, +Options) [nondet]

Execute a SPARQL query on an HTTP SPARQL endpoint. Query is an atom that denotes the
query. Result is unified to a term rdf(S,P,O) for CONSTRUCT and DESCRIBE queries,
row(...) for SELECT queries and true or false for ASK queries. Options are

Variables that are unbound in SPARQL (e.g., due to SPARQL optional clauses), are bound in
Prolog to the atom ’$null$’.

58

endpoint(+URL)
May be used as alternative to Scheme, Host, Port and Path to specify the endpoint in a
single option.

host(+Host)

port(+Port)

path(+Path)

scheme(+Scheme)
The above four options set the location of the server.

search(+ListOfParams)
Provide additional query parameters, such as the graph.

variable names(-ListOfNames)
Unifies ListOfNames with a list of atoms that describe the names of the variables in a
SELECT query.

Remaining options are passed to http open/3. The defaults for Host, Port and Path can be
set using sparql set server/1. The initial default for port is 80 and path is /sparql/.

For example, the ClioPatria server understands the parameter entailment. The code below
queries for all triples using rdfs entailment.

?- sparql_query(’select * where { ?s ?p ?o }’,
Row,
[search([entailment=rdfs])
]).

sparql set server(+OptionOrList)
Set sparql server default options. Provided defaults are: host, port and repository. For example:

sparql_set_server([host(localhost),
port(8080)
path(world)

])

The default for port is 80 and path is /sparql/.

sparql read xml result(+Input, -Result)
Specs from http://www.w3.org/TR/rdf-sparql-XMLres/. The returned Result
term is of the format:

select(VarNames, Rows)
Where VarNames is a term v(Name, ...) and Rows is a list of row(....) contain-
ing the column values in the same order as the variable names.

59

http://www.w3.org/TR/rdf-sparql-XMLres/.

ask(Bool)
Where Bool is either true or false

sparql read json result(+Input, -Result) [det]

The returned Result term is of the format:

select(VarNames, Rows)
Where VarNames is a term v(Name, ...) and Rows is a list of row(....) contain-
ing the column values in the same order as the variable names.

ask(Bool)
Where Bool is either true or false

See also http://www.w3.org/TR/rdf-sparql-json-res/

11 library(semweb/rdf compare): Compare RDF graphs

This library provides predicates that compare RDF graphs. The current version only provides one
predicate: rdf equal graphs/3 verifies that two graphs are identical after proper labeling of the
blank nodes.

Future versions of this library may contain more advanced operations, such as diffing two graphs.

rdf equal graphs(+GraphA, +GraphB, -Substition) [semidet]

True if GraphA and GraphB are the same under Substition. Substition is a list of BNodeA =
BNodeB, where BNodeA is a blank node that appears in GraphA and BNodeB is a blank node
that appears in GraphB.

Arguments
GraphA is a list of rdf(S,P,O) terms
GraphB is a list of rdf(S,P,O) terms
Substition is a list if NodeA = NodeB terms.

To be done The current implementation is rather naive. After dealing with the subgraphs that contain
no bnodes, it performs a fully non-deterministic substitution.

12 library(semweb/rdf portray): Portray RDF resources
To be done

- Define alternate predicate to use for providing a comment
- Use rdf:type if there is no meaningful label?
- Smarter guess whether or not the local identifier might be meaningful to the user without a comment.
I.e. does it look ‘word-like’?

This module defines rules for user:portray/1 to help tracing and debugging RDF resources
by printing them in a more concise representation and optionally adding comment from the label field
to help the user interpreting the URL. The main predicates are:

• rdf portray as/1 defines the overall style

60

http://www.w3.org/TR/rdf-sparql-json-res/

• rdf portray lang/1 selects languages for extracting label comments

rdf portray as(+Style) [det]

Set the style used to portray resources. Style is one of:

prefix:id Write as NS:ID, compatible with what can be handed to the rdf predicates. This
is the default.

writeq Use quoted write of the full resource.

prefix:label Write namespace followed by the label. This format cannot be handed to
rdf/3 and friends, but can be useful if resource-names are meaningless identifiers.

prefix:id=label This combines prefix:id with prefix:label, providing both human read-
able output and output that can be pasted into the commandline.

rdf portray lang(+Lang) [det]

If Lang is a list, set the list or preferred languages. If it is a single atom, push this language as
the most preferred language.

13 Related packages

The core infrastructure for storing and querying RDF is provided by this package, which is distributed
as a core package with SWI-Prolog. ClioPatria provides a comprehensive server infrastructure on
top of the semweb and http packages. ClioPatria provides a SPARQL 1.1 endpoint, linked open data
(LOD) support, user management, a web interface and an extension infrastructure for programming
(semantic) web applications.

Thea provides access to OWL ontologies at the level of the abstract syntax. Can interact with
external DL reasoner using DIG.

14 Version 3 release notes

RDF-DB version 3 is a major redesign of the SWI-Prolog RDF infrastructure. Nevertheles, version 3
is almost perfectly upward compatible with version 2. Below are some issues to take into consideration
when upgrading.

Version 2 did not allow for modifications while read operations were in progress, for example due
to an open choice point. As a consequence, operations that both queried and modified the database
had to be wrapped in a transaction or the modifications had to be buffered as Prolog data structures.
In both cases, the RDF store was not modified during the query phase. In version 3, modifications are
allowed while read operations are in progress and follow the Prolog logical update view semantics.
This is different from using a transaction in version 2, where the view for all read operations was
frozen at the start of the transaction. In version 3, every read operation sees the store frozen at the
moment that the operation was started.

We illustrate the difference by writing a forwards entailment rule that adds a sibling relation. In
version 2, we could perform this operation using one of the following:

61

http://cliopatria.swi-prolog.org
http://www.semanticweb.gr/TheaOWLLib/

add_siblings_1 :-
findall(S-O,

(rdf(S, f:parent, P),
rdf(O, f:parent, P),
S \== O

),
Pairs),

forall(member(S-O, Pairs), rdf_assert(S,f:sibling,O)).

add_siblings_2 :-
rdf_transaction(

forall((rdf(S, f:parent, P),
rdf(O, f:parent, P),
S \== O

),
rdf_assert(S, f:sibling, O))).

In version 3, we can write this in the natural Prolog style below. In itself, this may not seem a big
advantage because wrapping such operations in a transaction is often a good style anyway. The story
changes with more complicated constrol structures that combine iterations with steps that depend on
triples asserted in previous steps. Such scenarios can be programmed naturally in the current version.

add_siblings_3 :-
forall((rdf(S, f:parent, P),

rdf(O, f:parent, P),
S \== O

),
rdf_assert(S, f:sibling, O)).

In version 3, code that combines queries with modification has the same semantics whether executed
inside or outside a transaction. This property makes reusing such predicates predictable.

rdf statistics/2 Various statistics have been renamed or changed:

• sources is renamed into graphs
• triples by file is renamed into triples by graph

• gc has additional arguments
• core is removed.

rdf generation/1 Generations inside a transaction are represented as BaseGenera-
tion+TransactionGeneration, where BaseGeneration is the global generation where the
transaction started and TransactionGeneration expresses the generation within the transaction.
Counting generation has changed as well. In particular, comitting a transaction steps the
generation only by one.

62

rdf current ns/1, rdf register ns/2, rdf register ns/3 These predicates
are renamed into rdf current prefix/1, rdf register prefix/2,
rdf register prefix/3. The old predicates are still available as deprecated predi-
cates.

rdf unload/1 now only accepts a source location and deletes the associated graph using
rdf unload graph/1.

Acknowledgements

This research was supported by the following projects: MIA and MultimediaN project
(www.multimedian.nl) funded through the BSIK programme of the Dutch Government, the FP-6
project HOPS of the European Commission, the COMBINE project supported by the ONR Global
NICOP grant N62909-11-1-7060 and the Dutch national program COMMIT.

63

Index
{}/1, 7

ClioPatria, 61
Collection

parseType, 50
compressed data, 36
concurrent/3, 40

dc:title, 51

gz
format, 36

gzip, 36

http/http open.pl library, 36

lang equal/2, 30
lang matches/2, 30
lib:baseURI, 51
lib:CloudNode, 51
lib:Namespace, 51
lib:Ontology, 51
lib:source, 51
lib:Virtual, 51
library(http/http ssl plugin) library, 35
library(semweb/rdf cache) library, 35
library(semweb/rdf http plugin) library, 35
library(semweb/rdf litindex) library, 33
library(semweb/rdf persistency) library, 33, 35
library(semweb/rdf zlib plugin) library, 35
library(semweb/turtle) library, 35
load data/0, 55

OWL2, 61
owl:imports, 51
owl:versionInfo, 51

parseType
Collection, 50

Persistent store, 40

RDF-Schema, 49
rdf/3, 4, 5, 14, 49
rdf/4, 5, 15, 41
rdf active transaction/1, 19
rdf alt/3, 12

rdf assert/3, 11, 17
rdf assert/4, 11, 17
rdf assert alt/3, 12
rdf assert alt/4, 12
rdf assert bag/2, 13
rdf assert bag/3, 13
rdf assert list/2, 12
rdf assert list/3, 12
rdf assert seq/2, 13
rdf assert seq/3, 13
rdf attach db/2, 40
rdf attach library/1, 52, 53
rdf bag/2, 13
rdf bnode/1, 8, 29, 50
rdf cache file/3, 37
rdf canonical literal/2, 10
rdf compare/3, 10
rdf create bnode/1, 11
rdf create graph/1, 23
rdf current db/1, 41, 43
rdf current literal/1, 17
rdf current ns/2, 17
rdf current predicate/1, 17
rdf current prefix/1, 63
rdf current prefix/2, 26
rdf current snapshot/1, 19
rdf db library, 35
rdf db/rdf file type, 48
rdf db/rdf load stream, 44, 48, 49
rdf db:rdf file type/2, 36
rdf db:rdf input info/3, 35
rdf db:rdf load stream/3, 35
rdf db:rdf open hook/3, 35
rdf db:url protocol/1, 36
rdf db to file/2, 43
rdf default graph/1, 11
rdf default graph/2, 11
rdf delete literal map/2, 39
rdf delete snapshot/1, 19
rdf destroy literal map/1, 39
rdf detach db/0, 41
rdf equal/2, 27
rdf equal graphs/3, 60
rdf estimate complexity/4, 29

64

rdf file type/2, 35
rdf find literal map/3, 39
rdf find literals/2, 37, 38
rdf flush journals/1, 41
rdf gc/0, 33
rdf generation/1, 29
rdf global id/2, 27
rdf global object/2, 27
rdf global term/2, 27
rdf graph/1, 8, 17
rdf graph property/2, 23
rdf has/3, 6, 15
rdf has/4, 6, 16
rdf has/[3

4], 49
rdf history library, 41
rdf input info/3, 35
rdf insert literal map/3, 39
rdf insert literal map/4, 39
rdf iri/1, 8
rdf is bnode/1, 9, 19
rdf is iri/1, 8
rdf is literal/1, 9, 19
rdf is name/1, 9
rdf is object/1, 9
rdf is predicate/1, 9
rdf is resource/1, 19
rdf is subject/1, 9
rdf is term/1, 9
rdf journal file/2, 41, 42
rdf keys in literal map/3, 39
rdf last/2, 11
rdf length/2, 11
rdf lexical form/2, 10
rdf list/1, 11
rdf list/2, 11
rdf list library/0, 51, 53
rdf list library/1, 53
rdf list library/2, 53
rdf literal/1, 8
rdf load/1, 19
rdf load/2, 19, 34–36
rdf load db/1, 23, 34
rdf load library/2, 51, 53
rdf load stream/3, 35, 36
rdf load turtle/3, 44
rdf make/0, 22

rdf match label/3, 30
rdf member/2, 12
rdf monitor/2, 4, 33, 37, 39
rdf name/1, 8
rdf new literal map/1, 39
rdf node/1, 8
rdf nth0/3, 12
rdf nth1/3, 12
rdf object/1, 8
rdf persistency/2, 41
rdf portray as/1, 61
rdf portray lang/1, 61
rdf predicate/1, 8
rdf predicate property/2, 25
rdf process ntriples/3, 48
rdf process turtle/3, 44
rdf reachable/3, 7, 16
rdf reachable/5, 7, 16
rdf read nquads/3, 47
rdf read ntriples/3, 47
rdf read turtle/3, 43
rdf register ns/2, 51, 63
rdf register ns/3, 63
rdf register prefix/2, 26, 63
rdf register prefix/3, 26, 63
rdf reset db/0, 30, 34
rdf reset literal map/1, 39
rdf resource/1, 16
rdf retract list/1, 12
rdf retractall/3, 11, 17, 42
rdf retractall/4, 11, 17
rdf save/1, 21
rdf save/2, 21
rdf save canonical trig/2, 44
rdf save canonical turtle/2, 45
rdf save db/1, 23
rdf save db/2, 23, 40
rdf save footer/1, 22
rdf save header/2, 22
rdf save ntriples/2, 44
rdf save subject/3, 22
rdf save trig/2, 44
rdf save turtle/2, 45
rdf seq/2, 13
rdf set/1, 31
rdf set cache options/1, 36
rdf set graph/2, 24

65

rdf set predicate/2, 25
rdf snapshot/1, 19
rdf source/1, 40, 43
rdf source location/2, 29
rdf statistics/1, 29
rdf statistics literal map/2, 40
rdf subject/1, 8, 16
rdf term/1, 8
rdf token expansions/2, 38
rdf tokenize literal/2, 38
rdf transaction/1, 18
rdf transaction/2, 18, 34
rdf transaction/3, 18
rdf unload/1, 21, 34
rdf unload graph/1, 23, 63
rdf update/4, 18, 42
rdf update/5, 18
rdf update duplicates/0, 33
rdf version/1, 30
rdf where/1, 7
rdfs assert list/2, 50
rdfs assert list/3, 50
rdfs class property/2, 50
rdfs container/2, 13
rdfs container membership property/1, 13
rdfs container membership property/2, 13
rdfs individual of/2, 50
rdfs list to prolog list/2, 50
rdfs member/2, 13, 50
rdfs nth0/3, 13
rdfs subclass of/2, 49
rdfs subproperty of/2, 49
read nquad/2, 47
read ntriple/2, 47
read ntuple/2, 47
read rdfa/3, 48

semweb/rdf library.pl library, 50
semweb/rdf litindex.pl library, 37
semweb/rdf persistency library, 40
semweb/rdfs library, 49
semweb/rdfs.p library, 49
SPARQL, 61
sparql query/3, 58
sparql read json result/2, 60
sparql read xml result/2, 59
sparql set server/1, 59

Thea, 61
time file/2, 35
tokenize atom/2, 38

xhtml, 36
xml rdfa/3, 48

zlib library, 36

66

	Introduction
	Scalability
	Two RDF APIs
	library(semweb/rdf11): The RDF database
	Query the RDF database
	Enumerating and testing objects
	RDF literals
	Accessing RDF graphs
	Modifying the RDF store
	Accessing RDF collections
	library(semweb/rdf11_containers): RDF 1.1 Containers

	library(semweb/rdf_db): The RDF database
	Query the RDF database
	Enumerating objects
	Modifying the RDF database
	Update view, transactions and snapshots
	Type checking predicates
	Loading and saving to file
	Graph manipulation
	Literal matching and indexing
	Predicate properties
	Prefix Handling
	Miscellaneous predicates
	Memory management considerations

	Monitoring the database
	Issues with rdf_db

	Plugin modules for rdf_db
	Hooks into the RDF library
	library(semweb/rdf_zlib_plugin): Reading compressed RDF
	library(semweb/rdf_http_plugin): Reading RDF from a HTTP server
	library(semweb/rdf_cache): Cache RDF triples
	library(semweb/rdf_litindex): Indexing words in literals
	Literal maps: Creating additional indices on literals

	library(semweb/rdf_persistency): Providing persistent storage
	Enriching the journals

	library(semweb/turtle): Turtle: Terse RDF Triple Language
	library(semweb/rdf_ntriples): Process files in the RDF N-Triples format
	library(semweb/rdfa): Extract RDF from an HTML or XML DOM
	library(semweb/rdfs): RDFS related queries
	Hierarchy and class-individual relations
	Collections and Containers

	Managing RDF input files
	The Manifest file
	Support for the VoID and VANN vocabularies
	Finding manifest files

	Usage scenarios
	Referencing resources

	Putting it all together
	Example: A metadata file for W3C WordNet

	library(semweb/sparql_client): SPARQL client library
	library(semweb/rdf_compare): Compare RDF graphs
	library(semweb/rdf_portray): Portray RDF resources
	Related packages
	Version 3 release notes

