
SWI-Prolog Regular Expression library

Jan Wielemaker
VU University Amsterdam

The Netherlands
E-mail: J.Wielemaker@vu.nl

December 21, 2017

Abstract

The library pcre provides access to Perl Compatible Regular Expressions.

1

Contents

1 Motivation 3

2 library(pcre): Perl compatible regular expression matching for SWI-Prolog 3

2

1 Motivation

The core facility for string matching in Prolog is provided by DCG (Definite Clause Grammars).
Using DCGs is typically more verbose but gives reuse, modularity, readability and mixing with ar-
bitrary Prolog code in return. Supporting regular expressions has some advantages: (1) in simple
cases the terse specification of a regular expression is more comfortable, (2) many programmers are
familar with them and (3) regular expressions are part of domain specific languages one may wish to
implement in Prolog, e.g., SPARQL.

There are roughly three options for adding regular expressions to Prolog. One is to simply inter-
pret them in Prolog. Given Prolog’s unification and backtracking facilities this is remarkable simple
and performs quite reasonable. Still, the implementing all facilities of modern regular expression en-
gines requires significant effort. Alternatively, we can compile them into DCGs. This brings terse
expressions to DCGs while staying in the same framework. The disadvantage is that regular expres-
sions become programs that are hard to reclaim, making this approach less attractive for applications
that potentially execute many different regular expressions. The final option is to wrap an existing
regular expression engine. This provides access to a robust implementation for which we only have
to document the Prolog binding. That is the option taken by library pcre.

2 library(pcre): Perl compatible regular expression matching for SWI-
Prolog

See also ‘man pcre‘ for details.

This module provides an interface to the PCRE (Perl Compatible Regular Expression) library.
This Prolog interface provides an almost comprehensive wrapper around PCRE.

Regular expressions are created from a pattern and options and represented as a SWI-Prolog blob.
This implies they are subject to (atom) garbage collection. Compiled regular expressions can safely
be used in multiple threads. Most predicates accept both an explicitly compiled regular expression, a
pattern or a term Pattern/Flags. In the latter two cases a regular expression blob is created and stored
in a cache. The cache can be cleared using re flush/0.

re match(+Regex, +String) [semidet]

re match(+Regex, +String, +Options) [semidet]

Succeeds if String matches Regex. For example:

?- re_match("ˆneedle"/i, "Needle in a haystack").
true.

Options:

anchored(Bool)
If true, match only at the first position

bol(Bool)
Subject string is the beginning of a line (default false)

3

http://www.pcre.org/

bsr(Mode)
If anycrlf, \R only matches CR, LF or CRLF. If unicode, \R matches all Unicode
line endings. Subject string is the end of a line (default false)

empty(Bool)
An empty string is a valid match (default true)

empty atstart(Bool)
An empty string at the start of the subject is a valid match (default true)

eol(Bool)
Subject string is the end of a line (default false)

newline(Mode)
If any, recognize any Unicode newline sequence, if anycrlf, recognize CR, LF, and
CRLF as newline sequences, if cr, recognize CR, if lf, recognize LF and finally if
crlf recognize CRLF as newline.

start(+From)
Start at the given character index

Arguments
Regex is the output of re compile/3, a pattern or a term Pattern/Flags,

where Pattern is an atom or string. The defined flags and there
related option for re compile/3 are below.

• x: extended(true)
• i: caseless(true)
• m: multiline(true)
• s: dotall(true)
• a: capture_type(atom)
• r: capture_type(range)
• t: capture_type(term)

re matchsub(+Regex, +String, -Sub:dict, +Options) [semidet]

Match String against Regex. On success, Sub is a dict containing integer keys for the numbered
capture group and atom keys for the named capture groups. The associated value is determined
by the capture_type(Type) option passed to re compile/3, may be specified using
flags if Regex is of the form Pattern/Flags and may be specified at the level of individual
captures using a naming convention for the caption name. See re compile/3 for details.

The example below exploits the typed groups to parse a date specification:

?- re_matchsub("(?<date> (?<year_I>(?:\\d\\d)?\\d\\d) -
(?<month_I>\\d\\d) - (?<day_I>\\d\\d))"/e,
"2017-04-20", Sub, []).

Sub = re_match{0:"2017-04-20", date:"2017-04-20",
day:20, month:4, year:2017}.

4

re foldl(:Goal, +Regex, +String, ?V0, ?V, +Options) [semidet]

Fold all matches of Regex on String. Each match is represented by a dict as specified for
re matchsub/4. V0 and V are related using a sequence of invocations of Goal as illustrated
below.

call(Goal, Dict1, V0, V1),
call(Goal, Dict2, V1, V2),
...
call(Goal, Dictn, Vn, V).

This predicate is used to implement re split/4 and re replace/4. For example, we can
count all matches of a Regex on String using this code:

re_match_count(Regex, String, Count) :-
re_foldl(increment, Regex, String, 0, Count, []).

increment(_Match, V0, V1) :-
V1 is V0+1.

After which we can query

?- re_match_count("a", "aap", X).
X = 2.

re split(+Pattern, +String, -Split:list) [det]

re split(+Pattern, +String, -Split:list, +Options) [det]

Split String using the regular expression Pattern. Split is a list of strings holding alternating
matches of Pattern and skipped parts of the String, starting with a skipped part. The Split lists
ends with a string of the content of String after the last match. If Pattern does not appear in
String, Split is a list holding a copy of String. This implies the number of elements in Split is
always odd. For example:

?- re_split("a+", "abaac", Split, []).
Split = ["","a","b","aa","c"].
?- re_split(":\\s*"/n, "Age: 33", Split, []).
Split = [’Age’, ’: ’, 33].

Arguments
Pattern is the pattern text, optionally follows by /Flags. Similar to

re matchsub/4, the final output type can be controlled by a
flag a (atom), s (string, default) or n (number if possible, atom
otherwise).

re replace(+Pattern, +With, +String, -NewString)
Replace matches of the regular expression Pattern in String with With. With may reference

5

captured substrings using \N or $Name. Both N and Name may be written as {N} and {Name}
to avoid ambiguities.

Arguments
Pattern is the pattern text, optionally follows by /Flags. Flags may in-

clude g, replacing all occurences of Pattern. In addition, similar
to re matchsub/4, the final output type can be controlled by a
flag a (atom) or s (string, default).

re compile(+Pattern, -Regex, +Options) [det]

Compiles Pattern to a Regex blob of type regex (see blob/2). Defined Options are defined
below. Please consult the PCRE documentation for details.

anchored(Bool)
Force pattern anchoring

bsr(Mode)
If anycrlf, \R only matches CR, LF or CRLF. If unicode, \R matches all Unicode
line endings.

caseless(Bool)
If true, do caseless matching.

dollar endonly(Bool)
If true, $ not to match newline at end

dotall(Bool)
If true, . matches anything including NL

dupnames(Bool)
If true, allow duplicate names for subpatterns

extended(Bool)
If true, ignore white space and # comments

extra(Bool)
If true, PCRE extra features (not much use currently)

firstline(Bool)
If true, force matching to be before newline

compat(With)
If javascript, JavaScript compatibility

multiline(Bool)
If true, ˆ and $ match newlines within data

newline(Mode)
If any, recognize any Unicode newline sequence, if anycrlf (default), recognize CR,
LF, and CRLF as newline sequences, if cr, recognize CR, if lf, recognize LF and finally
if crlf recognize CRLF as newline.

ucp(Bool)
If true, use Unicode properties for \d, \w, etc.

ungreedy(Bool)
If true, invert greediness of quantifiers

6

In addition to the options above that directly map to pcre flags the following options are pro-
cessed:

optimize(Bool)
If true, study the regular expression.

capture type(+Type)
How to return the matched part of the input and possibly captured groups in there. Possible
values are:

string
Return the captured string as a string (default).

atom
Return the captured string as an atom.

range
Return the captured string as a pair Start-Length. Note the we use Start-Length‘
rather than the more conventional Start-End to allow for immediate use with
sub atom/5 and sub string/5.

term
Parse the captured string as a Prolog term. This is notably practical if you capture a
number.

The capture_type specifies the default for this pattern. The interface supports a different
type for each named group using the syntax (?<name_T>...), where T is one of S (string), A
(atom), I (integer), F (float), N (number), T (term) and R (range). In the current implementation
I, F and N are synonyms for T. Future versions may act different if the parsed value is not of
the requested numeric type.

re flush
Clean pattern and replacement caches.

To be done Flush automatically if the cache becomes too large.

re config(+Term)
Extract configuration information from the pcre library. Term is of the form Name(Value).
Name is derived from the PCRE_CONFIG_* constant after removing =PCRE CONFIG = and
mapping the name to lower case, e.g. utf8, unicode_properties, etc. Value is either a
Prolog boolean, integer or atom.

Finally, the functionality of pcre_version() is available using the configuration name
version.

See also ‘man pcreapi‘ for details

7

Index
pcre library, 1, 3

re compile/3, 6
re config/1, 7
re flush/0, 7
re foldl/6, 4
re match/2, 3
re match/3, 3
re matchsub/4, 4
re replace/4, 5
re split/3, 5
re split/4, 5

8

	Motivation
	library(pcre): Perl compatible regular expression matching for SWI-Prolog

