
Paxos – a SWI-Prolog replicating key-value store

Jeffrey Rosenwald and Jan Wielemaker
CWI, Amsterdam
The Netherlands

E-mail: J.Wielemaker@cwi.nl

July 10, 2018

Abstract

This package provides the library paxos.pl that implements a replicating key-value store of
Prolog terms on top of SWI-Prolog broadcast libraries and its TIPC or UDP based extension
that allow broadcasting outside the process using networking.

1



Contents

1 paxos.pl: A Replicated Data Store 3

2



1 paxos.pl: A Replicated Data Store
author Jeffrey Rosenwald (JeffRose@acm.org)
See also tipc_broadcast.pl, udp_broadcast.pl
license BSD-2

This module provides a replicated data store that is coordinated using a variation on Lamport’s
Paxos concensus protocol. The original method is described in his paper entitled, ”The Part-time
Parliament”, which was published in 1998. The algorithm is tolerant of non-Byzantine failure. That is
late or lost delivery or reply, but not senseless delivery or reply. The present algorithm takes advantage
of the convenience offered by multicast to the quorum’s membership, who can remain anonymous and
who can come and go as they please without effecting Liveness or Safety properties.

Paxos’ quorum is a set of one or more attentive members, whose processes respond to queries
within some known time limit (< 20ms), which includes roundtrip delivery delay. This property is
easy to satisfy given that every coordinator is necessarily a member of the quorum as well, and a
quorum of one is permitted. An inattentive member (e.g. one whose actions are late or lost) is deemed
to be ”not-present” for the purposes of the present transaction and consistency cannot be assured for
that member. As long as there is at least one attentive member of the quorum, then persistence of the
database is assured.

Each member maintains a ledger of terms along with information about when they were originally
recorded. The member’s ledger is deterministic. That is to say that there can only be one entry per
functor/arity combination. No member will accept a new term proposal that has a line number that is
equal-to or lower-than the one that is already recorded in the ledger.

Paxos is a three-phase protocol:

1: A coordinator first prepares the quorum for a new proposal by broadcasting a proposed
term. The quorum responds by returning the last known line number for that functor/arity
combination that is recorded in their respective ledgers.

2: The coordinator selects the highest line number it receives, increments it by one, and
then asks the quorum to finally accept the new term with the new line number. The
quorum checks their respective ledgers once again and if there is still no other ledger entry
for that functor/arity combination that is equal-to or higher than the specified line, then
each member records the term in the ledger at the specified line. The member indicates
consent by returning the specified line number back to the coordinator. If consent is
withheld by a member, then the member returns a nack instead. The coordinator requires
unanimous consent. If it isn’t achieved then the proposal fails and the coordinator must
start over from the beginning.

3: Finally, the coordinator concludes the successful negotiation by broadcasting the
agreement to the quorum in the form of a paxos(changed(Key,Value) event. This
is the only event that should be of interest to user programs.

For practical reasons, we rely on the partially synchronous behavior (e.g. limited upper time
bound for replies) of broadcast request/1 over TIPC to ensure Progress. Perhaps more impor-
tantly, we rely on the fact that the TIPC broadcast listener state machine guarantees the atomicity of
broadcast request/1 at the process level, thus obviating the need for external mutual exclusion
mechanisms.

3



Note that this algorithm does not guarantee the rightness of the value proposed. It only guarantees
that if successful, the value proposed is identical for all attentive members of the quorum.

paxos initialize(+Options) [det]

Initialize this Prolog process as a paxos node. The initialization requires an initialized and
configured TIPC, UDP or other broadcast protocol. Calling this initialization may be omitted,
in which case the equivant of paxos_initialize([]) is executed lazily as part of the
first paxos operation. Defined options:

node(?NodeID)
When instantiated, this node rejoins the network with the given node id. A fixed node
idea should be used if the node is configured for persistency and causes the new node
to receive updates for keys that have been created or modified since the node left the
network. If NodeID is a variable it is unified with the discovered NodeID.
NodeID must be a small non-negative integer as these identifiers are used in bitmaps.

paxos set(+Term) [semidet]

Equivalent to paxos_key(Term,Key), pasox_set(Key,Term). I.e., Term is a ground
compound term and its key is the name/arity pair. This version provides compatibility with
older versions of this library.

paxos set(+Key, +Value) [semidet]

paxos set(+Key, +Value, +Options) [semidet]

negotiates to have Key-Value recorded in the ledger for each of the quorum’s members.
This predicate succeeds if the quorum unanimously accepts the proposed term. If no such
entry exists in the Paxon’s ledger, then one is silently created. paxos set/1 will retry the
transaction several times (default: 20) before failing. Failure is rare and is usually the result
of a collision of two or more writers writing to the same term at precisely the same time. On
failure, it may be useful to wait some random period of time, and then retry the transaction. By
specifying a retry count of zero, paxos set/2 will succeed iff the first ballot succeeds.

On success, paxos set/1 will also broadcast the term paxos(changed(Key,Value), to
the quorum.

Options processed:

retry(Retries)
is a non-negative integer specifying the number of retries that will be performed before a
set is abandoned. Defaults to the setting max_sets (20).

timeout(+Seconds)
Max time to wait for the forum to reply. Defaults to the setting response_timeout
(0.020, 20ms).

Arguments

Term is a compound that may have unbound variables.

To be done If the Value is already current, should we simply do nothing?

4



paxos get(?Term) [semidet]

Equivalent to paxos_key(Term,Key), pasox_get(Key,Term). I.e., Term is a com-
pound term and its key is the name/arity pair. This version provides compatibility with older
versions of this library.

paxos get(+Key, +Value) [semidet]

paxos get(+Key, +Value, +Options) [semidet]

unifies Term with the entry retrieved from the Paxon’s ledger. If no such entry exists in the
member’s local cache, then the quorum is asked to provide a value, which is verified for
consistency. An implied paxos set/1 follows. This predicate succeeds if a term with the
same functor and arity exists in the Paxon’s ledger, and fails otherwise.

Options processed:

retry(Retries)
is a non-negative integer specifying the number of retries that will be performed before a
set is abandoned. Defaults to the setting max_gets (5).

timeout(+Seconds)
Max time to wait for the forum to reply. Defaults to the setting response_timeout
(0.020, 20ms).

Arguments
Term is a compound. Any unbound variables are unified with those pro-

vided in the ledger entry.

paxos replicate key(+Nodes:bitmap, ?Key, +Options) [det]

Replicate a Key to Nodes. If Key is unbound, a random key is selected.

timeout(+Seconds)
Max time to wait for the forum to reply. Defaults to the setting response_timeout
(0.020, 20ms).

paxos on change(?Term, :Goal) [det]

paxos on change(?Key, ?Value, :Goal) [det]

executes the specified Goal when Key changes. paxos on change/2 listens for
paxos(changed(Key,Value) notifications for Key, which are emitted as the result of
successful paxos set/3 transactions. When one is received for Key, then Goal is executed
in a separate thread of execution.

Arguments
Term is a compound, identical to that used for paxos get/1.
Goal is one of:

• a callable atom or term, or

• the atom ignore, which causes monitoring for Term to be
discontinued.

5



Index
broadcast library, 1

paxos get/1, 5
paxos get/2, 5
paxos get/3, 5
paxos initialize/1, 4
paxos on change/2, 5
paxos on change/3, 5
paxos replicate key/3, 5
paxos set/1, 4
paxos set/2, 4
paxos set/3, 4

6


	paxos.pl: A Replicated Data Store

