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Chapter 1

Introduction

cvodes [26] is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALge-
braic equation Solvers [16]. This suite consists of cvode, kinsol and ida, and variants of these with
sensitivity analysis capabilities. cvodes is a solver for stiff and nonstiff initial value problems (IVPs)
for systems of ordinary differential equation (ODEs). In addition to solving stiff and nonstiff ODE
systems, cvodes has sensitivity analysis capabilities, using either the forward or the adjoint methods.

1.1 Historical background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that
were previously written at LLNL are vode [1] and vodpk [3]. vode is a general-purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
vode is very similar to the well known solver lsode [24]. vodpk is a variant of vode that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
vodpk is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [2]. The
capabilities of both vode and vodpk were combined in the C-language package cvode [8, 9].

At present, cvodes contains three Krylov methods that can be used in conjuction with Newton
iteration: the GMRES (Generalized Minimal RESidual) [25], Bi-CGStab (Bi-Conjugate Gradient Sta-
bilized) [28], and TFQMR (Transpose-Free Quasi-Minimal Residual) linear iterative methods [11]. As
Krylov methods, these require almost no matrix storage for solving the Newton equations as compared
to direct methods. However, the algorithms allow for a user-supplied preconditioner matrix, and for
most problems preconditioning is essential for an efficient solution. For very large stiff ODE systems,
the Krylov methods are preferable over direct linear solver methods, and are often the only feasible
choice. Among the three Krylov methods in cvodes, we recommend GMRES as the best overall
choice. However, users are encouraged to compare all three, especially if encountering convergence
failures with GMRES. Bi-CGFStab and TFQMR have an advantage in storage requirements, in that
the number of workspace vectors they require is fixed, while that number for GMRES depends on the
desired Krylov subspace size.

In the process of translating the vode and vodpk algorithms into C, the overall cvode organiza-
tion has changed considerably. One key feature of the cvode organization is that the linear system
solvers comprise a layer of code modules that is separated from the integration algorithm, thus allow-
ing for easy modification and expansion of the linear solver array. A second key feature is a separate
module devoted to vector operations; this facilitated the extension to multiprosessor environments
with only a minimal impact on the rest of the solver, resulting in pvode [5], the parallel variant of
cvode.

cvodes is written with a functionality that is a superset of that of the pair cvode/pvode.
Sensitivity analysis capabilities, both forward and adjoint, have been added to the main integrator.



2 Introduction

Enabling forward sensititivity computations in cvodes will result in the code integrating the so-
called sensitivity equations simultaneously with the original IVP, yielding both the solution and its
sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when
the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called
adjoint equations backward in time. cvodes provides the infrastructure needed to integrate any
final-condition ODE dependent on the solution of the original IVP (in particular the adjoint system).

Development of cvodes was concurrent with a redesign of the vector operations module across the
sundials suite. The key feature of the new nvector module is that it is written in terms of abstract
vector operations with the actual vector functions attached by a particular implementation (such as
serial or parallel) of nvector. This allows writing the sundials solvers in a manner independent of
the actual nvector implementation (which can be user-supplied), as well as allowing more than one
nvector module to be linked into an executable file.

There were several motivations for choosing the C language for cvode, and later for cvodes.
First, a general movement away from Fortran and toward C in scientific computing was and still is
apparent. Second, the pointer, structure, and dynamic memory allocation features in C are extremely
useful in software of this complexity. Finally, we prefer C over C++ for cvodes because of the wider
availability of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing
the solver to applications written in extended Fortran.

1.2 Changes from previous versions

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, respec-
tively. In a minor change to the user interface, the type of the index which in CVODES was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.
A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,

the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the **Free function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions cvRcheck1/cvRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the t location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS USE GENERIC MATH,
so that the parameter GENERIC MATH LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features related to the integration of ODE IVP problems were added in this release: (a) a
new linear solver module, based on Blas and Lapack for both dense and banded matrices, and (b) an
option to specify which direction of zero-crossing is to be monitored while performing rootfinding.

This version also includes several new features related to sensitivity analysis, among which are: (a)
support for integration of quadrature equations depending on both the states and forward sensitivity
(and thus support for forward sensitivity analysis of quadrature equations), (b) support for simulta-
neous integration of multiple backward problems based on the same underlying ODE (e.g., for use in
an forward-over-adjoint method for computing second order derivative information), (c) support for
backward integration of ODEs and quadratures depending on both forward states and sensitivities
(e.g., for use in computing second-order derivative information), and (d) support for reinitialization
of the adjoint module.
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The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new Lapack-based ones, were also organized
into a direct family); (b) maintaining a single pointer to user data, optionally specified through a Set-
type function; (c) a general streamlining of the preconditioner modules distributed with the solver.
Moreover, the prototypes of all functions related to integration of backward problems were modified
to support the simultaneous integration of multiple problems. All backward problems defined by the
user are internally managed through a linked list and identified in the user interface through a unique
identifier.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

In the adjoint solver module, the following two bugs were fixed: in CVodeF the solver was sometimes
incorrectly taking an additional step before returning control to the user (in CV NORMAL mode) thus
leading to a failure in the interpolated output function; in CVodeB, while searching for the current check
point, the solver was sometimes reaching outside the integration interval resulting in a segmentation
fault.

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

cvspbcg and cvsptfqmr modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (spbcg) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (sptfqmr)
linear solver modules, respectively (for details see Chapter 4). At the same time, function type names
for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-
vector and preconditioner setup and solve functions.

A new interpolation method was added to the cvodes adjoint module. The function CVadjMalloc

has an additional argument which can be used to select the desired interpolation scheme.
The deallocation functions now take as arguments the address of the respective memory block

pointer.
To reduce the possibility of conflicts, the names of all header files have been changed by adding

unique prefixes (cvodes and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

A minor bug was fixed in the interpolation functions of the adjoint cvodes module.

Changes in v2.2.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.
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Changes in v2.1.2

A bug was fixed in the CVode function that was potentially leading to erroneous behaviour of the
rootfinding procedure on the integration first step.

Changes in v2.1.1

This cvodes release includes bug fixes related to forward sensitivity computations (possible loss of
accuray on a BDF order increase and incorrect logic in testing user-supplied absolute tolerances). In
addition, we have added the option of activating and deactivating forward sensitivity calculations on
successive cvodes runs without memory allocation/deallocation.

Other changes in this minor sundials release affect the build system.

Changes in v2.1.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, cvodes now provides
a set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §4.5.6 and §4.5.8.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians,
preconditioner information, and sensitivity right hand sides) were simplified by reducing the number
of arguments. The same information that was previously accessible through such arguments can now
be obtained through Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of cvodes (and all of sundials) has been completely redesigned and is now based on
a configure script.

1.3 Reading this user guide

This user guide is a combination of general usage instructions. Specific example programs are pro-
vided as a separate document. We expect that some readers will want to concentrate on the general
instructions, while others will refer mostly to the examples.

There are different possible levels of usage of cvodes. The most casual user, with an IVP problem
only, can get by with reading §2.1, then Chapter 4 through §4.5.5 only, and looking at examples in [27].
In addition, to solve a forward sensitivity problem the user should read §2.6, followed by Chapter 5
through §5.2.4 only, and look at examples in [27].

In a different direction, a more advanced user with an IVP problem may want to (a) use a package
preconditioner (§4.8), (b) supply his/her own Jacobian or preconditioner routines (§4.6), (c) do mul-
tiple runs of problems of the same size (§4.5.9), (d) supply a new nvector module (Chapter 7), or
even (e) supply a different linear solver module (§3.2). An advanced user with a forward sensitivity
problem may also want to (a) provide his/her own sensitivity equations right-hand side routine (§5.3),
(b) perform multiple runs with the same number of sensitivity parameters (§5.2.1), or (c) extract addi-
tional diagnostic information (§5.2.4). A user with an adjoint sensitivity problem needs to understand
the IVP solution approach at the desired level and also go through §2.7 for a short mathematical
description of the adjoint approach, Chapter 6 for the usage of the adjoint module in cvodes, and
the examples in [27].

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by cvodes for
the solution of initial value problems for systems of ODEs, continue with short descriptions of
preconditioning (§2.2), stability limit detection (§2.3), and rootfinding (§2.4), and conclude with
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an overview of the mathematical aspects of sensitivity analysis, both forward (§2.6) and adjoint
(§2.7).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the cvodes solver (§3.2).

• Chapter 4 is the main usage document for cvodes for simulation applications. It includes a
complete description of the user interface for the integration of ODE initial value problems.
Readers that are not interested in using cvodes for sensitivity analysis can then skip the next
two chapters.

• Chapter 5 describes the usage of cvodes for forward sensitivity analysis as an extension of its
IVP integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

• Chapter 6 describes the usage of cvodes for adjoint sensitivity analysis. We begin by describing
the cvodes checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

• Chapter 7 gives a brief overview of the generic nvector module shared amongst the various
components of sundials, as well as details on the two nvector implementations provided with
sundials: a serial implementation (§7.1) and a parallel implementation based on MPI (§7.2).

• Chapter 8 describes the specifications of linear solver modules as supplied by the user.

• Chapter 9 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, in the appendices, we provide detailed instructions for the installation of cvodes, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from cvodes functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
Program listings and identifiers (such as CVodeInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as cvdense, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin. !





Chapter 2

Mathematical Considerations

cvodes solves ODE initial value problems (IVPs) in real N -space, which we write in the abstract
form

ẏ = f(t, y) , y(t0) = y0 , (2.1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the independent variable,
and usually this is time, it certainly need not be. cvodes solves both stiff and non-stiff systems.
Roughly speaking, stiffness is characterized by the presence of at least one rapidly damped mode,
whose time constant is small compared to the time scale of the solution itself.

Additionally, if (2.1) depends on some parameters p ∈ RNp , i.e.

ẏ = f(t, y, p)

y(t0) = y0(p) ,
(2.2)

cvodes can also compute first order derivative information, performing either forward sensitivity
analysis or adjoint sensitivity analysis. In the first case, cvodes computes the sensitivities of the
solution with respect to the parameters p, while in the second case, cvodes computes the gradient of
a derived function with respect to the parameters p.

2.1 IVP solution

The methods used in cvodes are variable-order, variable-step multistep methods, based on formulas
of the form

K1
∑

i=0

αn,iy
n−i + hn

K2
∑

i=0

βn,iẏ
n−i = 0 . (2.3)

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step size. The user
of cvodes must appropriately choose one of two multistep methods. For non-stiff problems, cvodes

includes the Adams-Moulton formulas , characterized by K1 = 1 and K2 = q above, where the order q
varies between 1 and 12. For stiff problems, cvodes includes the Backward Differentiation Formulas
(BDF) in so-called fixed-leading coefficient (FLC) form, given by K1 = q and K2 = 0, with order q
varying between 1 and 5. The coefficients are uniquely determined by the method type, its order, the
recent history of the step sizes, and the normalization αn,0 = −1. See [4] and [20].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0f(tn, yn)− an = 0 , (2.4)

where an ≡
∑

i>0(αn,iy
n−i + hnβn,iẏ

n−i), must be solved (approximately) at each integration step.
For this, cvodes offers the choice of either functional iteration, suitable only for non-stiff systems,
and various versions of Newton iteration. Functional iteration, given by

yn(m+1) = hnβn,0f(tn, yn(m)) + an ,
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involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

M [yn(m+1) − yn(m)] = −G(yn(m)) , (2.5)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (2.6)

The initial guess for the iteration is a predicted value yn(0) computed explicitly from the available
history data.

For the solution of the linear systems within the Newton corrections, cvodes provides several
choices, including the option of an user-supplied linear solver module. The linear solver modules
distributed with sundials are organized in two families, a direct family comprising direct linear
solvers for dense or banded matrices and a spils family comprising scaled preconditioned iterative
(Krylov) linear solvers. In addition, cvodes also provides a linear solver module which only uses a
diagonal approximation of the Jacobian matrix. The methods offered through these modules are as
follows:

• dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial version only),

• band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial version only),

• a diagonal approximate Jacobian solver,

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

• spbcg, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver, or

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and any of the preconditioned Krylov methods (spgmr, spbcg, or sptfqmr) yields a powerful tool
because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear)
iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [2]. Note that the direct linear solvers (dense and band) can only
be used with serial vector representations.

In the process of controlling errors at various levels, cvodes uses a weighted root-mean-square
norm, denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi|+ atoli] . (2.7)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, diagonal), the iteration is a modified Newton iteration
since the iteration matrix M is fixed throughout the nonlinear iterations. However, for any of the
Krylov methods, it is an Inexact Newton iteration, in which M is applied in a matrix-free manner,
with matrix-vector products Jv obtained by either difference quotients or a user-supplied routine. The
matrix M (for the direct solvers) or preconditioner matrix P (Krylov cases) is updated as infrequently
as possible to balance the high costs of matrix operations against other costs. Specifically, this matrix
update occurs when:

• starting the problem,

• more than 20 steps have been taken since the last update,
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• the value γ̄ of γ at the last update satisfies |γ/γ̄ − 1| > 0.3,

• a non-fatal convergence failure just occurred, or

• an error test failure just occurred.

When forced by a convergence failure, an update of M or P may involve a reevaluation of J (in M)
or of Jacobian data (in P ) if Jacobian error was the likely cause of the failure. More generally, the
decision is made to reevaluate J (or instruct the user to reevaluate Jacobian data in P ) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,

• a convergence failure occurred with an outdated matrix, and the value γ̄ (γ at the last update)
satisfies |γ/γ̄ − 1| < 0.2, or

• a convergence failure occurred that forced a reduction of the step size.

The stopping test for the Newton iteration is related to the subsequent local error test, with the
goal of keeping the nonlinear iteration errors from interfering with local error control. As described
below, the final computed value yn(m) will have to satisfy a local error test ‖yn(m)−yn(0)‖ ≤ ǫ. Letting
yn denote the exact solution of (2.4), we want to ensure that the iteration error yn − yn(m) is small
relative to ǫ, specifically that it is less than 0.1ǫ. (The safety factor 0.1 can be changed by the user.)
For this, we also estimate the linear convergence rate constant R as follows. We initialize R to 1, and
reset R = 1 when M or P is updated. After computing a correction δm = yn(m)−yn(m−1), we update
R if m > 1 as

R← max{0.3R, ‖δm‖/‖δm−1‖} .
Now we use the estimate

‖yn − yn(m)‖ ≈ ‖yn(m+1) − yn(m)‖ ≈ R‖yn(m) − yn(m−1)‖ = R‖δm‖ .

Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ǫ .

We allow at most 3 iterations, but this limit can be changed by the user. We also declare the iteration
diverged if any ‖δm‖/‖δm−1‖ > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace hn by hn/4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.

When a Krylov method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector δm is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 · (0.1ǫ).

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or
approximated by difference quotients, at the user’s option. In the latter case, we use the usual
approximation

Jij = [fi(t, y + σjej)− fi(t, y)]/σj .

The increments σj are given by

σj = max
{√

U |yj |, σ0/Wj

}

,

where U is the unit roundoff, σ0 is a dimensionless value, and Wj is the error weight defined in (2.7).
In the dense case, this scheme requires N evaluations of f , one for each column of J . In the band
case, the columns of J are computed in groups by the Curtis-Powell-Reid algorithm, with the number
of f evaluations equal to the bandwidth.
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In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,
with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Jv = [f(t, y + σv)− f(t, y)]/σ . (2.8)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of cvodes, that makes it an ODE “solver” rather than just an ODE method, is

its control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order q and step size h, satisfies an
asymptotic relation

LTE = Chq+1y(q+1) + O(hq+2)

for some constant C, under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor yn(0). These are combined to get a relation

LTE = C ′[yn − yn(0)] + O(hq+2) .

The local error test is simply ‖LTE‖ ≤ 1. Using the above, it is performed on the predictor-corrector
difference ∆n ≡ yn(m) − yn(0) (with yn(m) the final iterate computed), and takes the form

‖∆n‖ ≤ ǫ ≡ 1/|C ′| .

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h′ is computed based on the asymptotic behavior of the local error, namely by the equation

(h′/h)q+1‖∆n‖ = ǫ/6 .

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order q is reset to 1 (if q > 1), or the step is restarted from scratch (if q = 1). The
ratio h′/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, cvodes returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, cvodes periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1, but the order
is varied dynamically after that. The basic idea is to pick the order q for which a polynomial of order
q best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change is made to the step size or
order. At the current order q, selecting a new step size is done exactly as when the error test fails,
giving a tentative step size ratio

h′/h = (ǫ/6‖∆n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q + 1 steps at order q, and then we consider only orders
q′ = q − 1 (if q > 1) or q′ = q + 1 (if q < 5). The local truncation error at order q′ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q′),
behaves asymptotically as hq′+1. With safety factors of 1/6 and 1/10 respectively, these ratios are:

h′/h = [1/6‖LTE(q − 1)‖]1/q ≡ ηq−1

and
h′/h = [1/10‖LTE(q + 1)‖]1/(q+2) ≡ ηq+1 .

The new order and step size are then set according to

η = max{ηq−1, ηq, ηq+1} , h′ = ηh ,

with q′ set to the index achieving the above maximum. However, if we find that η < 1.5, we do not
bother with the change. Also, h′/h is always limited to 10, except on the first step, when it is limited
to 104.
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The various algorithmic features of cvodes described above, as inherited from vode and vodpk,
are documented in [1, 3, 15]. They are also summarized in [16].

Normally, cvodes takes steps until a user-defined output value t = tout is overtaken, and then
it computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force cvodes not to integrate
past a given stopping point t = tstop.

2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.4), cvodes makes repeated use
of a linear solver to solve linear systems of the form Mx = −r, where x is a correction vector
and r is a residual vector. If this linear system solve is done with one of the scaled preconditioned
iterative linear solvers, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Ax = b can be
preconditioned on the left, as (P−1A)x = P−1b; on the right, as (AP−1)Px = b; or on both sides, as
(P−1

L AP−1
R )PRx = P−1

L b. The Krylov method is then applied to a system with the matrix P−1A, or
AP−1, or P−1

L AP−1
R , instead of A. In order to improve the convergence of the Krylov iteration, the

preconditioner matrix P , or the product PLPR in the last case, should in some sense approximate the
system matrix A. Yet at the same time, in order to be cost-effective, the matrix P , or matrices PL and
PR, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff between
rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for
example, see [2] for an extensive study of preconditioners for reaction-transport systems).

The cvodes solver allow for preconditioning either side, or on both sides, although we know of no
situation where preconditioning on both sides is clearly superior to preconditioning on one side only
(with the product PLPR). Moreover, for a given preconditioner matrix, the merits of left vs. right
preconditioning are unclear in general, and the user should experiment with both choices. Performance
will differ because the inverse of the left preconditioner is included in the linear system residual whose
norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is the product
of two matrices, we recommend that preconditioning be done either on the left only or the right only,
rather than using one factor on each side.

Typical preconditioners used with cvodes are based on approximations to the system Jacobian,
J = ∂f/∂y. Since the Newton iteration matrix involved is M = I − γJ , any approximation J̄ to
J yields a matrix that is of potential use as a preconditioner, namely P = I − γJ̄ . Because the
Krylov iteration occurs within a Newton iteration and further also within a time integration, and
since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical feature(s) of the system. We
have found that the combination of a preconditioner with the Newton-Krylov iteration, using even
a fairly poor approximation to the Jacobian, can be surprisingly superior to using the same matrix
without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-Krylov
method with no preconditioning.

2.3 BDF stability limit detection

cvodes includes an algorithm, stald (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods in certain situations, as
described below.

When the BDF option is selected, cvodes uses Backward Differentiation Formula methods of
orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant
λ in the open left half-plane the method is unconditionally stable (for any step size) for the standard
scalar model problem ẏ = λy. For an ODE system, this means that, roughly speaking, as long as all
modes in the system are stable, the method is also stable for any choice of step size, at least in the
sense of a local linear stability analysis.
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At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case,
in order for the method to be stable at step size h on the scalar model problem, the product hλ must
lie within a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue λ of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents hλ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations since the oscillation generally must
be followed by the solver, but this requires step sizes (h ∼ 1/ν, where ν is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/ν. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The stald algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [13]. The
algorithm supplements (but differs greatly from) the existing algorithms in cvodes for choosing step
size and order based on estimated local truncation errors. The stald algorithm works directly with
history data that is readily available in cvodes. If it concludes that the step size is in fact stability-
limited, it dictates a reduction in the method order regardless of the outcome of the error-based
algorithm. The stald algorithm has been tested in combination with the vode solver on linear
advection-dominated advection-diffusion problems [14], where it works well. The implementation in
cvodes has been successfully tested on linear and nonlinear advection-diffusion problems, among
others.

This stability limit detection option adds some computational overhead to the cvodes solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a cvodes solution with this option turned off appears to take an
inordinately large number of steps for orders between 3 and 5 for no apparent reason in terms of the
solution time scale, then there is a good chance that step sizes are being limited by stability, and that
turning on the option will improve efficiency.

2.4 Rootfinding

The cvodes solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (2.1), cvodes can also find the roots of a set of user-defined
functions gi(t, y) that depend both on t and on the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the t axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of gi(t, y(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by cvodes. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and
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then (when a sign change is found) to hone in on the root(s) with a modified secant method [12]. In
addition, each time g is computed, cvodes checks to see if gi(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any gi is found at a point t, cvodes computes g at t + δ for a
small increment δ, slightly further in the direction of integration, and if any gi(t+δ) = 0 also, cvodes

stops and reports an error. This way, each time cvodes takes a time step, it is guaranteed that the
values of all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, cvodes has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that
thi is further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn,
the end of the time step last taken, or the next requested output time tout if this comes sooner. The
endpoint tlo is either tn−1, the last output time tout (if this occurred within the last step), or the last
root location (if a root was just located within this step), possibly adjusted slightly toward tn if an
exact zero was found. The algorithm checks gi at thi for zeros and for sign changes in (tlo, thi). If
no sign changes were found, then either a root is reported (if some gi(thi) = 0) or we proceed to the
next time interval (starting at thi). If one or more sign changes were found, then a loop is entered to
locate the root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is
reset to tmid according to which subinterval is found to include the sign change. If there is none in
(tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ ,
and then the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α is a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs. high,
i.e., toward tlo vs. toward thi) in which the sign change was found in the previous two passes. If
the two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.

2.5 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.7) it is of interest to compute integral quantities of the form

z(t) =

∫ t

t0

q(τ, y(τ), p) dτ . (2.9)

The most effective approach to compute z(t) is to extend the original problem with the additional
ODEs (obtained by applying Leibnitz’s differentiation rule):

ż = q(t, y, p) , z(t0) = 0 . (2.10)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to cvodes the extended ODE system
(2.2)+(2.9). However, in the context of an implicit integration solver, this approach is not desirable
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since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this ex-
tended ODE. Moreover, since the additional states z do not enter the right-hand side of the ODE
(2.9) and therefore the right-hand side of the extended ODE system, it is much more efficient to treat
the ODE system (2.9) separately from the original system (2.2) by “taking out” the additional states
z from the nonlinear system (2.4) that must be solved in the correction step of the LMM. Instead,
“corrected” values zn are computed explicitly as

zn = − 1

αn,0

(

hnβn,0q(tn, yn, p) + hn

K2
∑

i=1

βn,iż
n−i +

K1
∑

i=1

αn,iz
n−i

)

,

once the new approximation yn is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding

relative and absolute tolerances must be provided.

2.6 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the ODEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector si(t) =
∂y(t)/∂pi and satisfies the following forward sensitivity equations (or sensitivity equations for short):

ṡi =
∂f

∂y
si +

∂f

∂pi
, si(t0) =

∂y0(p)

∂pi
, (2.11)

obtained by applying the chain rule of differentiation to the original ODEs (2.2).
When performing forward sensitivity analysis, cvodes carries out the time integration of the

combined system, (2.2) and (2.11), by viewing it as an ODE system of size N(Ns + 1), where Ns

is the number of model parameters pi, with respect to which sensitivities are desired (Ns ≤ Np).
However, major improvements in efficiency can be made by taking advantage of the special form of
the sensitivity equations as linearizations of the original ODEs. In particular, for stiff systems, for
which cvodes employs a Newton iteration, the original ODE system and all sensitivity systems share
the same Jacobian matrix, and therefore the same iteration matrix M in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected for
the original ODEs and, if Newton iteration was selected, the same linear solver is used in the correction
phase for both state and sensitivity variables. In addition, cvodes offers the option of including (full
error control) or excluding (partial error control) the sensitivity variables from the local error test.

2.6.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined ODE and sensitivity system for the vector ŷ = [y, s1, . . . , sNs

].

• Staggered Direct

In this approach [7], the nonlinear system (2.4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables at the new step are found by directly solving (2.11)
after the (BDF or Adams) discretization is used to eliminate ṡi. Although the system matrix
of the above linear system is based on exactly the same information as the matrix M in (2.6),
it must be updated and factored at every step of the integration, in contrast to an evalutaion
of M which is updated only occasionally. For problems with many parameters (relative to the
problem size), the staggered direct method can outperform the methods described below [21].
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However, the computational cost associated with matrix updates and factorizations makes this
method unattractive for problems with many more states than parameters (such as those arising
from semidiscretization of PDEs) and is therefore not implemented in cvodes.

• Simultaneous Corrector

In this method [22], the discretization is applied simultaneously to both the original equations
(2.2) and the sensitivity systems (2.11) resulting in the following nonlinear system

Ĝ(ŷn) ≡ ŷn − hnβn,0f̂(tn, ŷn)− ân = 0 ,

where f̂ = [f(t, y, p), . . . , (∂f/∂y)(t, y, p)si + (∂f/∂pi)(t, y, p), . . .], and ân is comprised of the
terms in the discretization that depend on the solution at previous integration steps. This
combined nonlinear system can be solved using a modified Newton method as in (2.5) by solving
the corrector equation

M̂ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (2.12)

at each iteration, where

M̂ =















M
−γJ1 M
−γJ2 0 M

...
...

. . .
. . .

−γJNs
0 . . . 0 M















,

M is defined as in (2.6), and Ji = (∂/∂y) [(∂f/∂y)si + (∂f/∂pi)]. It can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of M̂ in the
corrector equation (2.12). This results in a decoupling that allows the reuse of M without
additional matrix factorizations. However, the products (∂f/∂y)si and the vectors ∂f/∂pi must
still be reevaluated at each step of the iterative process (2.12) to update the sensitivity portions
of the residual Ĝ.

• Staggered corrector

In this approach [10], as in the staggered direct method, the nonlinear system (2.4) is solved
first using the Newton iteration (2.5). Then a separate Newton iteration is used to solve the
sensitivity system (2.11):

M [s
n(m+1)
i − s

n(m)
i ] =

−
[

s
n(m)
i − γ

(

∂f

∂y
(tn, yn, p)s

n(m)
i +

∂f

∂pi
(tn, yn, p)

)

− ai,n

]

, (2.13)

where ai,n =
∑

j>0(αn,js
n−j
i + hnβn,j ṡ

n−j
i ). In other words, a modified Newton iteration is

used to solve a linear system. In this approach, the vectors ∂f/∂pi need be updated only
once per integration step, after the state correction phase (2.5) has converged. Note also that
Jacobian-related data can be reused at all iterations (2.13) to evaluate the products (∂f/∂y)si.

cvodes implements the simultaneous corrector method and two flavors of the staggered corrector
method which differ only if the sensitivity variables are included in the error control test. In the
full error control case, the first variant of the staggered corrector method requires the convergence of
the iterations (2.13) for all Ns sensitivity systems and then performs the error test on the sensitivity
variables. The second variant of the method will perform the error test for each sensitivity vector
si, (i = 1, 2, . . . , Ns) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors si fails a
convergence or error test.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix M on a vector and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.13) will theoretically converge after one iteration.
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2.6.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, cvodes provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector si will have units of [y]/[pi]. With this, the absolute tolerance for the j-th
component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the absolute tolerances for
the state variables and p̄ is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
si with weights based on si be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities s̄i = |p̄i|si with weights based on the state variables (the scaled sensitivities s̄i being
dimensionally consistent with the state variables). However, this choice of tolerances for the si may
be a poor one, and the user of cvodes can provide different values as an option.

2.6.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.11): an-
alytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). cvodes provides all the software hooks for implementing interfaces to au-
tomatic differentiation (AD) or complex-step approximation; future versions will include a generic
interface to AD-generated functions. At the present time, besides the option for analytical sen-
sitivity right-hand sides (user-provided), cvodes can evaluate these quantities using various finite
difference-based approximations to evaluate the terms (∂f/∂y)si and (∂f/∂pi), or using directional
derivatives to evaluate [(∂f/∂y)si + (∂f/∂pi)]. As is typical for finite differences, the proper choice of
perturbations is a delicate matter. cvodes takes into account several problem-related features: the
relative ODE error tolerance rtol, the machine unit roundoff U , the scale factor p̄i, and the weighted
root-mean-square norm of the sensitivity vector si.

Using central finite differences as an example, the two terms (∂f/∂y)si and ∂f/∂pi in the right-
hand side of (2.11) can be evaluated either separately:

∂f

∂y
si ≈

f(t, y + σysi, p)− f(t, y − σysi, p)

2σy
, (2.14)

∂f

∂pi
≈ f(t, y, p + σiei)− f(t, y, p− σiei)

2σi
, (2.14’)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)
,

or simultaneously:

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + σsi, p + σei)− f(t, y − σsi, p− σei)

2σ
, (2.15)

σ = min(σi, σy) ,

or by adaptively switching between (2.14)+(2.14’) and (2.15), depending on the relative size of the
finite difference increments σi and σy. In the adaptive scheme, if ρ = max(σi/σy, σy/σi), we use
separate evaluations if ρ > ρmax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (σi, σy, σ) and switching between finite difference
and directional derivative formulas have also been implemented for one-sided difference formulas.
Forward finite differences can be applied to (∂f/∂y)si and ∂f/∂pi separately, or the single directional
derivative formula

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + σsi, p + σei)− f(t, y, p)

σ
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can be used. In cvodes, the default value of ρmax = 0 indicates the use of the second-order centered
directional derivative formula (2.15) exclusively. Otherwise, the magnitude of ρmax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.6.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.5), cvodes does
not carry their sensitivities automatically. Instead, we provide a more general feature through which
integrals depending on both the states y of (2.2) and the state sensitivities si of (2.11) can be evaluated.
In other words, cvodes provides support for computing integrals of the form:

z̄(t) =

∫ t

t0

q̄(τ, y(τ), s1(τ), . . . , sNp
(τ), p) dτ .

If the sensitivities of the quadrature variables z of (2.9) are desired, these can then be computed
by using:

q̄i = qysi + qpi
, i = 1, . . . , Np ,

as integrands for z̄, where qy and qp are the partial derivatives of the integrand function q of (2.9).
As with the quadrature variables z, the new variables z̄ are also excluded from any nonlinear solver

phase and “corrected” values z̄n are obtained through explicit formulas.

2.7 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with
respect to Ns parameters is roughly equivalent to solving an ODE system of size (1 + Ns)N . This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities si, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) =

∫ T

t0

g(t, y, p)dt , (2.16)

or, alternatively, the gradient dg/dp of the function g(t, y, p) at the final time T . The function g must
be smooth enough that ∂g/∂y and ∂g/∂p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [6]. Introducing a Lagrange multiplier λ, we form the augmented objective
function

I(p) = G(p)−
∫ T

t0

λ∗ (ẏ − f(t, y, p)) dt , (2.17)

where ∗ denotes the conjugate transpose. The gradient of G with respect to p is

dG

dp
=

dI

dp
=

∫ T

t0

(gp + gys)dt−
∫ T

t0

λ∗ (ṡ− fys− fp) dt , (2.18)

where subscripts on functions f or g are used to denote partial derivatives and s = [s1, . . . , sNs
] is the

matrix of solution sensitivities. Applying integration by parts to the term λ∗ṡ, and by requiring that
λ satisfy

λ̇ = −
(

∂f

∂y

)

∗

λ−
(

∂g

∂y

)

∗

λ(T ) = 0 ,

(2.19)
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the gradient of G with respect to p is nothing but

dG

dp
= λ∗(t0)s(t0) +

∫ T

t0

(gp + λ∗fp) dt . (2.20)

The gradient of g(T, y, p) with respect to p can be then obtained by using the Leibnitz differentiation
rule. Indeed, from (2.16),

dg

dp
(T ) =

d

dT

dG

dp

and therefore, taking into account that dG/dp in (2.20) depends on T both through the upper inte-
gration limit and through λ, and that λ(T ) = 0,

dg

dp
(T ) = µ∗(t0)s(t0) + gp(T ) +

∫ T

t0

µ∗fpdt , (2.21)

where µ is the sensitivity of λ with respect to the final integration limit T . Thus µ satisfies the
following equation, obtained by taking the total derivative with respect to T of (2.19):

µ̇ = −
(

∂f

∂y

)

∗

µ

µ(T ) =

(

∂g

∂y

)

∗

t=T

.

(2.22)

The final condition on µ(T ) follows from (∂λ/∂t) + (∂λ/∂T ) = 0 at T , and therefore, µ(T ) = −λ̇(T ).
The first thing to notice about the adjoint system (2.19) is that there is no explicit specification

of the parameters p; this implies that, once the solution λ is found, the formula (2.20) can then be
used to find the gradient of G with respect to any of the parameters p. The same holds true for the
system (2.22) and the formula (2.21) for gradients of g(T, y, p). The second important remark is that
the adjoint systems (2.19) and (2.22) are terminal value problems which depend on the solution y(t)
of the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to cvodes during the backward integration phase of (2.19) or
(2.22). The approach adopted in cvodes, based on checkpointing, is described below.

2.7.1 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
cvodes implements variable-step integration formulas, it is unlikely that the states will be available
at the desired time and so some form of interpolation is needed. The cvodes implementation being
also variable-order, it is possible that during the forward integration phase the order may be reduced
as low as first order, which means that there may be points in time where only y and ẏ are available.
These requirements therefore limit the choices for possible interpolation schemes. cvodes implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and ẏ that would need to be stored make this approach computationally intractable.
Thus, cvodes settles for a compromise between storage space and execution time by implementing
a so-called checkpointing scheme. At the cost of at most one additional forward integration, this
approach offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To
begin with, based on the problem size N and the available memory, the user decides on the number
Nd of data pairs (y, ẏ) if cubic Hermite interpolation is selected, or on the number Nd of y vectors
in the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose
of interpolation. Then, during the first forward integration stage, after every Nd integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with Nc checkpoints, including one at t0. During the
backward integration stage, the adjoint variables are integrated from T to t0 going from one checkpoint
to the previous one. The backward integration from checkpoint i + 1 to checkpoint i is preceded by a
forward integration from i to i + 1 during which the Nd vectors y (and, if necessary ẏ) are generated
and stored in memory for interpolation1 (see Fig. 2.1).

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, Nc is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval of
integration. If no checkpoints are necessary (Nd is larger than the number of integration steps taken
in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as one
forward plus one backward integration. In addition, cvodes provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.16).

Finally, we note that the adjoint sensitivity module in cvodes provides the necessary infrastructure
to integrate backwards in time any ODE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.19) or (2.22), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.20) or (2.21). In particular, for ODE systems arising from
semi-discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.8 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the ODE problem (2.2) and some model output

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. daspkadjoint). The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy differences
are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant for the Adams
method for which the order can reach 12.
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functional,2 g(y) then the Hessian d2g/dp2 can be obtained in a forward sensitivity analysis setting as

d2g

dp2
=
(

gy ⊗ INp

)

ypp + yT
p gyyyp ,

where ⊗ is the Kronecker product. The second-order sensitivities are solution of the matrix ODE
system:

ẏpp =
(

fy ⊗ INp

)

· ypp +
(

IN ⊗ yT
p

)

· fyyyp

ypp(t0) =
∂2y0

∂p2
,

where yp is the first-order sensitivity matrix, the solution of Np systems (2.11), and ypp is a third-order
tensor. It is easy to see that, except for situations in which the number of parameters Np is very small,
the computational cost of this so-called forward-over-forward approach is exorbitant as it requires the
solution of Np + N2

p additional ODE systems of the same dimension N as (2.2).
A much more efficient alternative is to compute Hessian-vector products using a so-called forward-

over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional
forward derivation to one of the gradients of (2.20) or (2.21). With that, the cost of computing
a full Hessian is roughly equivalent to the cost of computing the gradient with forward sensitivity
analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p) =

∫ tf

t0
g(t, y) dt. It can be shown that the product between the

Hessian of G (with respect to the parameters p) and some vector u can be computed as

∂2G

∂p2
u =

[(

λT ⊗ INp

)

yppu + yT
p µ
]

t=t0
,

where λ, µ, and s are solutions of

− µ̇ = fT
y µ +

(

λT ⊗ In

)

fyys + gyys ; µ(tf ) = 0

− λ̇ = fT
y λ + gT

y ; λ(tf ) = 0

ṡ = fys ; s(t0) = y0pu

(2.23)

In the above equation, s = ypu is a linear combination of the columns of the sensitivity matrix yp.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.11).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two
backward integrations of a system of ODEs of size N . For more details, including the corresponding
formulas for a pointwise model functional output, see [23].

To allow the foward-over-adjoint approach described above, cvodes provides support for:

• the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

• the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time t or parameters p.
Moreover, we only consider the case in which the dependency of the original ODE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [23].



Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode (for ODE systems), kinsol

(for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition, sundials

also includes variants of cvode and ida with sensitivity analysis capabilities (using either forward or
adjoint methods): cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 3.1). The following is a list
of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODEs dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 CVODES organization

The cvodes package is written in ANSI C. The following summarizes the basic structure of the
package, although knowledge of this structure is not necessary for its use.

The overall organization of the cvodes package is shown in Figure 3.2. The basic elements of the
structure are a module for the basic integration algorithm (including forward sensitivity analysis), a
module for adjoint sensitivity analysis, and a set of modules for the solution of linear systems that
arise in the case of a stiff system. The central integration module, implemented in the files cvodes.h,
cvodes impl.h, and cvodes.c, deals with the evaluation of integration coefficients, the functional or
Newton iteration process, estimation of local error, selection of step size and order, and interpolation
to user output points, among other issues. Although this module contains logic for the basic Newton
iteration algorithm, it has no knowledge of the method being used to solve the linear systems that
arise. For any given user problem, one of the linear system modules is specified, and is then invoked
as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. cvodes provides three different strategies
for dealing with the correction stage for the sensitivity variables: CV SIMULTANEOUS, CV STAGGERED

and CV STAGGERED1 (see §2.6 and §5.2.1). The cvodes package includes an algorithm for the ap-
proximation of the sensitivity equations right-hand sides by difference quotients, but the user has the
option of supplying these right-hand sides directly.
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Figure 3.2: Overall structure of the cvodes package. Modules specific to cvodes are distinguished
by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes. Note that the
direct linear solvers using Lapack implementations are not explicitly represented.

The adjoint sensitivity module (file cvodea.c) provides the infrastructure needed for the backward
integration of any system of ODEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

At present, the package includes the following eight cvodes linear algebra modules, organized
into two families. The direct familiy of linear solvers provides solvers for the direct solution of linear
systems with dense or banded matrices and includes:

• cvdense: LU factorization and backsolving with dense matrices (using either an internal im-
plementation or Blas/Lapack);

• cvband: LU factorization and backsolving with banded matrices (using either an internal im-
plementation or Blas/Lapack);

The spils family of linear solvers provides scaled preconditioned iterative linear solvers and includes:

• cvspgmr: scaled preconditioned GMRES method;

• cvspbcg: scaled preconditioned Bi-CGStab method;

• cvsptfqmr: scaled preconditioned TFQMR method.

Additionally, cvode includes:

• cvdiag: an internally generated diagonal approximation to the Jacobian;

The set of linear solver modules distributed with cvodes is intended to be expanded in the future as
new algorithms are developed.

In the case of the direct methods cvdense and cvband the package includes an algorithm for the
approximation of the Jacobian by difference quotients, but the user also has the option of supplying the



24 Code Organization

Jacobian (or an approximation to it) directly. In the case of the Krylov iterative methods cvspgmr,
cvspbcg, and cvsptfqmr, the package includes an algorithm for the approximation by difference
quotients of the product between the Jacobian matrix and a vector of appropriate length. Again,
the user has the option of providing a routine for this operation. For the Krylov methods, the
preconditioner must be supplied by the user, in two phases: setup (preprocessing of Jacobian data)
and solve. While there is no default choice of preconditioner analogous to the difference-quotient
approximation in the direct case, the references [2, 3], together with the example programs included
with cvodes, offer considerable assistance in building preconditioners.

Each cvodes linear solver module consists of four routines devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, and only as required to achieve
convergence. The call list within the central cvodes module for each of the five associated functions
is fixed, thus allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. With the exception of cvdiag and the modules
interfacing to Lapack linear solvers, each of the modules cvdense, cvband, cvspgmr, cvspbcg, and
cvsptfqmr is a set of interface routines built on top of a generic solver module, named dense, band,
spgmr, spbcg, and sptfqmr, respectively. The interfaces deal with the use of these methods in the
cvodes context, whereas the generic solver is independent of the context. While the generic solvers
here were generated with sundials in mind, our intention is that they be usable in other applications
as general-purpose solvers. This separation also allows for any generic solver to be replaced by an
improved version, with no necessity to revise the cvodes package elsewhere.

cvodes also provides two preconditioner modules for use with any of the Krylov iterative linear
solvers. The first one, cvbandpre, is intended to be used with nvector serial and provides banded
difference-quotient Jacobian-based preconditioner and solver routines. The second preconditioner
module, cvbbdpre, works in conjunction with nvector parallel and generates a preconditioner
that is a block-diagonal matrix with each block being a band matrix.

All state information used by cvodes to solve a given problem is saved in a structure, and a
pointer to that structure is returned to the user. There is no global data in the cvodes package, and
so in this respect it is reentrant. State information specific to the linear solver is saved in a separate
structure, a pointer to which resides in the cvodes memory structure. The reentrancy of cvodes was
motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting
where two or more problems are solved by intermixed calls to the package from within a single user
program.
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Using CVODES for IVP Solution

This chapter is concerned with the use of cvodes for the solution of initial value problems (IVPs).
The following sections treat the header files and the layout of the user’s main program, and provide de-
scriptions of the cvodes user-callable functions and user-supplied functions. This usage is essentially
equivalent to using cvode [18].

The sample programs described in the companion document [27] may also be helpful. Those codes
may be used as templates (with the removal of some lines used in testing) and are included in the
cvodes package.

The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense or direct
band linear solvers since these linear solver modules need to form the complete system Jacobian.
The following cvodes modules can only be used with nvector serial: cvdense, cvband (using
either the internal or the Lapack implementation) and cvbandpre. Also, the preconditioner module
cvbbdpre can only be used with nvector parallel.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of cvodes, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvodes. The relevant library files are

• libdir/libsundials cvodes.lib,

• libdir/libsundials nvec*.lib (one or two files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/cvodes

• incdir/include/sundials

• incdir/include/nvector

The directories libdir and incdir are the install library and include directories, resp. For a default
installation, these are instdir/lib and instdir/include, respectively, where instdir is the directory
where sundials was installed (see Appendix A).

Note that an application cannot link to both the cvode and cvodes libraries because both
contain user-callable functions with the same names (to ensure that cvodes is backward compatible
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with cvode). Therefore, applications that contain both ODE problems and ODEs with sensitivity
analysis, should use cvodes.

4.2 Data Types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials

solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the sundials solvers arithmetic at
the configuration stage (see §A.1.1).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials

uses the RCONST macro internally to declare all of its floating-point constants.
A user program which uses the type realtype and the RCONST macro to handle floating-point

constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.1).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• cvodes.h, the main header file for cvodes, which defines the several types and various constants,
and includes function prototypes.

Note that cvodes.h includes sundials types.h, which defines the types realtype and booleantype

and the constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see Chapter 7

for details). For the two nvector implementations that are included in the cvodes package, the
corresponding header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel (MPI) implementation, nvector parallel.

Note that both these files in turn include the header file sundials nvector.h which defines the
abstract N Vector data type.

Finally, if the user chooses Newton iteration for the solution of the nonlinear systems, then a linear
solver module header file will be required. The header files corresponding to the various linear solvers
availble for use with cvodes are:
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• cvodes dense.h, which is used with the dense direct linear solver;

• cvodes band.h, which is used with the band direct linear solver;

• cvodes lapack.h, which is used with Lapack implementations of dense or band direct linear
solvers;

• cvodes diag.h, which is used with the diagonal linear solver;

• cvodes spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear solver
spgmr;

• cvodes spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov linear solver
spbcg;

• cvodes sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov solver spt-

fqmr;

The header files for the dense and banded linear solvers (both internal and Lapack) include the file
cvodes direct.h, which defines common functions. This in turn includes a file (sundials direct.h)
which defines the matrix type for these direct linear solvers (DlsMat), as well as various functions and
macros acting on such matrices.

The header files for the Krylov iterative solvers include cvodes spils.h which defines common
functions and which in turn includes a header file (sundials iterative.h) which enumerates the
kind of preconditioning and (for the spgmr solver only) the choices for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
cvsDiurnal kry p example (see [27]), preconditioning is done with a block-diagonal matrix. For this,
even though the cvspgmr linear solver is used, the header sundials dense.h is included for access
to the underlying generic dense linear solver.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an
ODE IVP. Some steps are independent of the nvector implementation used; where this is not the
case, usage specifications are given for the two implementations provided with cvodes: steps marked
[P] correspond to nvector parallel, while steps marked [S] correspond to nvector serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv) to initialize MPI if used by the user’s program. Here argc and
argv are the command line argument counter and array received by main, respectively.

2. Set problem dimensions

[S] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this process); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set of
processes.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular
nvector implementation. If a realtype array ydata containing the initial values of y already
exists, then make the call:

[S] y0 = N VMake Serial(N, ydata);

[P] y0 = N VMake Parallel(comm, Nlocal, N, ydata);

Otherwise, make the call:
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[S] y0 = N VNew Serial(N);

[P] y0 = N VNew Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(y0)

[P] NV DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processes
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processes are
to be used, comm must be MPI COMM WORLD.

4. Create cvodes object

Call cvode mem = CVodeCreate(lmm, iter) to create the cvodes memory block and to specify
the solution method (linear multistep method and nonlinear solver iteration type). CVodeCreate
returns a pointer to the cvodes memory structure. See §4.5.1 for details.

5. Initialize cvodes solver

Call CVodeInit(...) to provide required problem specifications, allocate internal memory for
cvodes, and initialize cvodes. CVodeInit returns a flag, the value of which indicates either
success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call CVodeSStolerances(...) or CVodeSVtolerances(...) to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodeWFtolerances to specify a function which sets
directly the weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Set optional inputs

Call CVodeSet* functions to change any optional inputs that control the behavior of cvodes from
their default values. See §4.5.6.1 for details.

8. Attach linear solver module

If Newton iteration is chosen, initialize the linear solver module with one of the following calls
(for details see §4.5.3):

[S] ier = CVDense(...);

[S] ier = CVBand(...);

[S] flag = CVLapackDense(...);

[S] flag = CVLapackBand(...);

ier = CVDiag(...);

ier = CVSpgmr(...);

ier = CVSpbcg(...);

ier = CVSptfqmr(...);

9. Set linear solver optional inputs

Call CV*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §4.5.6 for details.

10. Specify rootfinding problem

Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §4.5.4, and see §4.5.6.4 for relevant optional input calls.
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11. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,

itask). Here itask specifies the return mode. The vector y (which can be the same as the vector
y0 above) will contain y(t). See §4.5.5 for details.

12. Get optional outputs

Call CV*Get* functions to obtain optional output. See §4.5.8 for details.

13. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y by calling the destructor
function defined by the nvector implementation:

[S] N VDestroy Serial(y);

[P] N VDestroy Parallel(y);

14. Free solver memory

Call CVodeFree(&cvode mem) to free the memory allocated for cvodes.

15. [P] Finalize MPI

Call MPI Finalize() to terminate MPI.

4.5 User-callable functions

This section describes the cvodes functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §4.5.6, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of cvodes. In
any case, refer to §4.4 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.6.1).

4.5.1 CVODES initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the cvodes memory block created and allocated by the first
two calls.

CVodeCreate

Call cvode mem = CVodeCreate(lmm, iter);

Description The function CVodeCreate instantiates a cvodes solver object and specifies the solution
method.

Arguments lmm (int) specifies the linear multistep method and may be one of two possible values:
CV ADAMS or CV BDF.

iter (int) specifies the type of nonlinear solver iteration and may be either CV NEWTON

or CV FUNCTIONAL.

The recommended choices for (lmm, iter) are (CV ADAMS, CV FUNCTIONAL) for nonstiff
problems and (CV BDF, CV NEWTON) for stiff problems.

Return value If successful, CVodeCreate returns a pointer to the newly created cvodes memory block
(of type void *). Otherwise, it returns NULL.
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CVodeInit

Call flag = CVodeInit(cvode mem, f, t0, y0);

Description The function CVodeInit provides required problem and solution specifications, allocates
internal memory, and initializes cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

f (CVRhsFn) is the C function which computes the right-hand side function
f in the ODE. This function has the form f(t, y, ydot, user data) (for
full details see §4.6.1).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeInit has an illegal value.

Notes If an error occurred, CVodeInit also sends an error message to the error handler func-
tion.

CVodeFree

Call CVodeFree(&cvode mem);

Description The function CVodeFree frees the memory allocated by a previous call to CVodeCreate.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeFree has no return value.

4.5.2 CVODES tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to CVodeInit.

CVodeSStolerances

Call flag = CVodeSStolerances(cvode mem, reltol, abstol);

Description The function CVodeSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV ILL INPUT One of the input tolerances was negative.
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CVodeSVtolerances

Call flag = CVodeSVtolerances(cvode mem, reltol, abstol);

Description The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

CVodeWFtolerances

Call flag = CVodeWFtolerances(cvode mem, efun);

Description The function CVodeWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.7).

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

efun (CVEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeWFtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvsRoberts dns in the cvodes package, and the discussion of it in the cvode Examples document
[17]. In that problem, the three components vary betwen 0 and 1, and have different noise levels;
hence the abstol vector. It is impossible to give any general advice on abstol values, because the
appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some
idea as to what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservately, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from
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the actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol
= 10−6. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in y returned by cvodes, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the f routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(t, y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recover-
able error return feature in the user-supplied right-hand side function. However, because this option
involves some extra overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

4.5.3 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (2.5).
There are six cvodes linear solvers currently available for this task: cvdense, cvband, cvdiag,
cvspgmr, cvspbcg, and cvsptfqmr.

The first two linear solvers are direct and derive their names from the type of approximation used
for the Jacobian J = ∂f/∂y; cvdense and cvband work with dense and banded approximations to
J , respectively. The sundials suite includes both internal implementations of these two linear solvers
and interfaces to Lapack implementations. Together, these linear solvers are referred to as cvdls

(from Direct Linear Solvers).

The cvdiag linear solver is also a direct linear solver, but it only uses a diagonal approximation
to J .

The last three cvodes linear solvers, cvspgmr, cvspbcg, and cvsptfqmr, are Krylov itera-
tive solvers, which use scaled preconditioned GMRES, scaled preconditioned Bi-CGStab, and scaled
preconditioned TFQMR, respectively. Together, they are referred to as cvspils (from Scaled Precon-
ditioned Iterative Linear Solvers).

With any of the Krylov methods, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. For the specification of a preconditioner, see the iterative
linear solver sections in §4.5.6 and §4.6.

If preconditioning is done, user-supplied functions define left and right preconditioner matrices P1

and P2 (either of which could be the identity matrix), such that the product P1P2 approximates the
Newton matrix M = I − γJ of (2.6).

To specify a cvodes linear solver, after the call to CVodeCreate but before any calls to CVode,
the user’s program must call one of the functions CVDense/CVLapackDense, CVBand/CVLapackBand,
CVDiag, CVSpgmr, CVSpbcg, or CVSptfqmr, as documented below. The first argument passed to these
functions is the cvodes memory pointer returned by CVodeCreate. A call to one of these functions
links the main cvodes integrator to a linear solver and allows the user to specify parameters which
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are specific to a particular solver, such as the half-bandwidths in the cvband case. The use of each of
the linear solvers involves certain constants and possibly some macros, that are likely to be needed in
the user code. These are available in the corresponding header file associated with the linear solver,
as specified below.

In each case except the diagonal approximation case cvdiag and the Lapack direct solvers, the lin-
ear solver module used by cvodes is actually built on top of a generic linear system solver, which may
be of interest in itself. These generic solvers, denoted dense, band, spgmr, spbcg, and sptfqmr,
are described separately in Chapter 9.

CVDense

Call flag = CVDense(cvode mem, N);

Description The function CVDense selects the cvdense linear solver and indicates the use of the
internal direct dense linear algebra functions.

The user’s main program must include the cvodes dense.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of:

CVDLS SUCCESS The cvdense initialization was successful.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS ILL INPUT The cvdense solver is not compatible with the current nvector

module.

CVDLS MEM FAIL A memory allocation request failed.

Notes The cvdense linear solver may not be compatible with the particular implementation
of the nvector module. Of the two nvector modules provided with sundials, only
nvector serial is compatible.

CVLapackDense

Call flag = CVLapackDense(cvode mem, N);

Description The function CVLapackDense selects the cvdense linear solver and indicates the use of
Lapack functions.

The user’s main program must include the cvodes lapack.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

N (int) problem dimension.

Return value The values of the returned flag (of type int) are identical to those of CVDense.

Notes Note that N is restricted to be of type int here, because of the corresponding type
restriction in the Lapack solvers.

CVBand

Call flag = CVBand(cvode mem, N, mupper, mlower);

Description The function CVBand selects the cvband linear solver and indicates the use of the
internal direct band linear algebra functions.

The user’s main program must include the cvodes band.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).
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mlower (long int) lower half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

Return value The return value flag (of type int) is one of:

CVDLS SUCCESS The cvband initialization was successful.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS ILL INPUT The cvband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside of its valid
range (0 . . . N−1).

CVDLS MEM FAIL A memory allocation request failed.

Notes The cvband linear solver may not be compatible with the particular implementa-
tion of the nvector module. Of the two nvector modules provided with sundials,
only nvector serial is compatible. The half-bandwidths are to be set such that the
nonzero locations (i, j) in the banded (approximate) Jacobian satisfy −mlower ≤ j−i ≤
mupper.

CVLapackBand

Call flag = CVLapackBand(cvode mem, N, mupper, mlower);

Description The function CVLapackBand selects the cvband linear solver and indicates the use of
Lapack functions.

The user’s main program must include the cvodes lapack.h header file.

Arguments The input arguments are identical to those of CVBand, except that N, mupper, and mlower

are of type int here.

Return value The values of the returned flag (of type int) are identical to those of CVBand.

Notes Note that N, mupper, and mlower are restricted to be of type int here, because of the
corresponding type restriction in the Lapack solvers.

CVDiag

Call flag = CVDiag(cvode mem);

Description The function CVDiag selects the cvdiag linear solver.

The user’s main program must include the cvodes diag.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of:

CVDIAG SUCCESS The cvdiag initialization was successful.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG ILL INPUT The cvdiag solver is not compatible with the current nvector

module.

CVDIAG MEM FAIL A memory allocation request failed.

Notes The cvdiag solver is the simplest of all of the current cvodes linear solvers. The
cvdiag solver uses an approximate diagonal Jacobian formed by way of a difference
quotient. The user does not have the option of supplying a function to compute an
approximate diagonal Jacobian.
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CVSpgmr

Call flag = CVSpgmr(cvode mem, pretype, maxl);

Description The function CVSpgmr selects the cvspgmr linear solver.

The user’s main program must include the cvodes spgmr.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspgmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvspgmr solver uses a scaled preconditioned GMRES iterative method to solve
the linear system (2.5).

CVSpbcg

Call flag = CVSpbcg(cvode mem, pretype, maxl);

Description The function CVSpbcg selects the cvspbcg linear solver.

The user’s main program must include the cvodes spbcgs.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspbcg initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvspbcg solver uses a scaled preconditioned Bi-CGStab iterative method to solve
the linear system (2.5).

CVSptfqmr

Call flag = CVSptfqmr(cvode mem, pretype, maxl);

Description The function CVSptfqmr selects the cvsptfqmr linear solver.

The user’s main program must include the cvodes sptfqmr.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of
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CVSPILS SUCCESS The cvsptfqmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvsptfqmr solver uses a scaled preconditioned TFQMR iterative method to solve
the linear system (2.5).

4.5.4 Rootfinding initialization function

While solving the IVP, cvodes has the capability to find the roots of a set of user-defined functions.
To activate the root finding algorithm, call the following function:

CVodeRootInit

Call flag = CVodeRootInit(cvode mem, nrtfn, g);

Description The function CVodeRootInit specifies that the roots of a set of functions gi(t, y) are to
be found while the IVP is being solved.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

nrtfn (int) is the number of root functions gi.

g (CVRootFn) is the C function which defines the nrtfn functions gi(t, y)
whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

CV SUCCESS The call to CVodeRootInit was successful.

CV MEM NULL The cvode mem argument was NULL.

CV MEM FAIL A memory allocation failed.

CV ILL INPUT The function g is NULL, but nrtfn > 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

4.5.5 CVODES solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One
of the input arguments (itask) specifies one of two modes as to where cvodes is to return a solution.
But these modes are modified if the user has set a stop time (with CVodeSetStopTime) or requested
rootfinding.

CVode

Call flag = CVode(cvode mem, tout, yout, &tret, itask);

Description The function CVode integrates the ODE over an interval in t.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N Vector) the computed solution vector.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next user step. The
CV NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV ONE STEP

option tells the solver to take just one internal step and then return the
solution at the point reached by that step.
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Return value CVode returns a vector yout and a corresponding independent variable value t = tret,
such that yout is the computed value of y(t).

In CV NORMAL mode (with no errors), tret will be equal to tout and yout = y(tout).

The return value flag (of type int) will be one of the following:

CV SUCCESS CVode succeeded and no roots were found.

CV TSTOP RETURN CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §4.5.6.1).

CV ROOT RETURN CVode succeeded and found one or more roots. If nrtfn > 1, call
CVodeGetRootInfo to see which gi were found to have a root.

CV MEM NULL The cvode mem argument was NULL.

CV NO MALLOC The cvodes memory was not allocated by a call to CVodeInit.

CV ILL INPUT One of the inputs to CVode was illegal, or some other input to the
solver was either illegal or missing. The latter category includes the
following situations: (a) The tolerances have not been set. (b) A
component of the error weight vector became zero during internal
time-stepping. (c) The linear solver initialization function (called by
the user after calling CVodeCreate) failed to set the linear solver-
specific lsolve field in cvode mem. (d) A root of one of the root
functions was found both at a point t and also very near t. In any
case, the user should see the error message for details.

CV TOO CLOSE The initial time t0 and the final time tout are too close to each other
and the user did not specify an initial step size.

CV TOO MUCH WORK The solver took mxstep internal steps but still could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Either error test failures occurred too many times (MXNEF = 7) dur-
ing one internal time step, or with |h| = hmin.

CV CONV FAILURE Either convergence test failures occurred too many times (MXNCF =

10) during one internal time step, or with |h| = hmin.

CV LINIT FAIL The linear solver’s initialization function failed.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV RHSFUNC FAIL The right-hand side function failed in an unrecoverable manner.

CV FIRST RHSFUNC FAIL The right-hand side function had a recoverable error at the
first call.

CV REPTD RHSFUNC ERR Convergence test failures occurred too many times due to re-
peated recoverable errors in the right-hand side function. This flag
will also be returned if the right-hand side function had repeated
recoverable errors during the estimation of an initial step size.

CV UNREC RHSFUNC ERR The right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
right-hand side function fails recoverably after an error test failed
while at order one.

CV RTFUNC FAIL The rootfinding function failed.

Notes The vector yout can occupy the same space as the vector y0 of initial conditions that
was passed to CVodeInit.

In the CV ONE STEP mode, tout is used only on the first call, and only to get the direction
and a rough scale of the independent variable.

All failure return values are negative and so the test ier < 0 will trap all CVode failures.
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Table 4.1: Optional inputs for cvodes, cvdls, and cvspils

Optional input Function name Default
CVODES main solver

Pointer to an error file CVodeSetErrFile stderr

Error handler function CVodeSetErrHandlerFn internal fn.
User data CVodeSetUserData NULL

Maximum order for BDF method CVodeSetMaxOrd 5
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before tout CVodeSetMaxNumSteps 500
Maximum no. of warnings for tn + h = tn CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet FALSE

Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep ∞
Value of tstop CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Nonlinear iteration type CVodeSetIterType none
Direction of zero-crossing CVodeSetRootDirection both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn none

CVDLS linear solvers
Dense Jacobian function CVDlsSetDenseJacFn DQ
Band Jacobian function CVDlsSetBandJacFn DQ

CVSPILS linear solvers
Preconditioner functions CVSpilsSetPreconditioner NULL, NULL
Jacobian-times-vector function CVSpilsSetJacTimesVecFn DQ
Preconditioning type CVSpilsSetPrecType none
Ratio between linear and nonlinear tolerances CVSpilsSetEpsLin 0.05
Type of Gram-Schmidt orthogonalization(a) CVSpilsSetGSType classical GS
Maximum Krylov subspace size(b) CVSpilsSetMaxl 5

(a) Only for cvspgmr
(b) Only for cvspbcg and cvsptfqmr

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.

4.5.6 Optional input functions

There are numerous optional input parameters that control the behavior of the cvodes solver. cvodes

provides functions that can be used to change these optional input parameters from their default
values. Table 4.1 lists all optional input functions in cvodes which are then described in detail in the
remainder of this section, begining with those for the main cvodes solver and continuing with those
for the linear solver modules. Note that the diagonal linear solver module has no optional inputs. For
the most casual use of cvodes, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. We also note that all error return values are negative, so the test flag < 0

will catch all errors.
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4.5.6.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions CVodeSetErrFile
or CVodeSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

CVodeSetErrFile

Call flag = CVodeSetErrFile(cvode mem, errfp);

Description The function CVodeSetErrFile specifies a pointer to the file where all cvodes messages
should be directed when the default cvodes error handler function is used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case in
which the cvodes memory pointer is NULL). This use of CVodeSetErrFile is strongly
discouraged.

If CVodeSetErrFile is to be called, it should be called before any other optional input !

functions, in order to take effect for any later error message.

CVodeSetErrHandlerFn

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh data);

Description The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ehfun (CVErrHandlerFn) is the C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

CV SUCCESS The function ehfun and data pointer eh data have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Error messages indicating that the cvodes solver memory is NULL will always be directed
to stderr.

CVodeSetUserData

Call flag = CVodeSetUserData(cvode mem, user data);

Description The function CVodeSetUserData specifies the user data block user data and attaches
it to the main cvodes memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user preconditioner functions, the call to CVodeSetUserData

must be made before the call to specify the linear solver.

CVodeSetMaxOrd

Call flag = CVodeSetMaxOrder(cvode mem, maxord);

Description The function CVodeSetMaxOrder specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxord (int) value of the maximum method order. This must be positive.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The specified value maxord is ≤ 0, or larger than its previous value.

Notes The default value is ADAMS Q MAX = 12 for the Adams-Moulton method and BDF Q MAX

= 5 for the BDF method. Since maxord affects the memory requirements for the internal
cvodes memory block, its value cannot be increased past its previous value.

An input value greater than the default will result in the default value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Passing mxsteps = 0 results in cvodes using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

CVodeSetMaxHnilWarns

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that t + h = t on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mxhnil (int) maximum number of warning messages (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.
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CVodeSetStabLimDet

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §2.3 for further details.

Arguments cvode mem (void *) pointer to the cvodes memory block.

stldet (booleantype) flag controlling stability limit detection (TRUE = on; FALSE
= off).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The linear multistep method is not set to CV BDF.

Notes The default value is FALSE. If stldet = TRUE when BDF is used and the method order
is greater than or equal to 3, then an internal function, CVsldet, is called to detect a
possible stability limit. If such a limit is detected, then the order is reduced.

CVodeSetInitStep

Call flag = CVodeSetInitStep(cvode mem, hin);

Description The function CVodeSetInitStep specifies the initial step size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to use
the default value.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, cvodes estimates the initial step size to be the solution h of the equation
‖0.5h2ÿ‖WRMS = 1, where ÿ is an estimated second derivative of the solution at t0.

CVodeSetMinStep

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hmin (realtype) minimum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax);

Description The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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hmax (realtype) maximum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmax is nonpositive or it is smaller than the minimum allowable
step size.

Notes Pass hmax = 0.0 to obtain the default value ∞.

CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The value of tstop is beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.

CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 7.

CVodeSetMaxNonlinIters

Call flag = CVodeSetMaxNonlinIters(cvode mem, maxcor);

Description The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 3.
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CVodeSetMaxConvFails

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures
per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10.

CVodeSetNonlinConvCoef

Call flag = CVodeSetNonlinConvCoef(cvode mem, nlscoef);

Description The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §2.1).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 0.1.

CVodeSetIterType

Call flag = CVodeSetIterType(cvode mem, iter);

Description The function CVodeSetIterType resets the nonlinear solver iteration type to iter.

Arguments cvode mem (void *) pointer to the cvodes memory block.

iter (int) specifies the type of nonlinear solver iteration and may be either
CV NEWTON or CV FUNCTIONAL.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The iter value passed is neither CV NEWTON nor CV FUNCTIONAL.

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate (see
§4.5.1). This function call is needed only if iter is being changed from its value in the
prior call to CVodeCreate.

4.5.6.2 Direct linear solvers optional input functions

The cvdense solver needs a function to compute a dense approximation to the Jacobian matrix
J(t, y). This function must be of type CVDlsDenseJacFn. The user can supply his/her own dense
Jacobian function, or use the default internal difference quotient approximation that comes with the
cvdense solver. To specify a user-supplied Jacobian function djac, cvdense provides the function
CVDlsSetDenseJacFn. The cvdense solver passes the pointer user data to the dense Jacobian
function. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user data may be specified through CVodeSetUserData.
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CVDlsSetDenseJacFn

Call flag = CVDlsSetDenseJacFn(cvode mem, djac);

Description The function CVDlsSetDenseJacFn specifies the dense Jacobian approximation function
to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

djac (CVDlsDenseJacFn) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdense linear solver has not been initialized.

Notes By default, cvdense uses an internal difference quotient function. If NULL is passed to
djac, this default function is used.

The function type CVDlsDenseJacFn is described in §4.6.5.

The cvband solver needs a function to compute a banded approximation to the Jacobian matrix
J(t, y). This function must be of type CVDlsBandJacFn. The user can supply his/her own banded
Jacobian approximation function, or use the default internal difference quotient approximation that
comes with the cvband solver. To specify a user-supplied Jacobian function bjac, cvband provides
the function CVDlsSetBandJacFn. The cvband solver passes the pointer user data to the banded
Jacobian approximation function. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian function, without using
global data in the program. The pointer user data may be specified through CVodeSetUserData.

CVDlsSetBandJacFn

Call flag = CVDlsSetBandJacFn(cvode mem, bjac);

Description The function CVDlsSetBandJacFn specifies the banded Jacobian approximation function
to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

bjac (CVBandJacFn) user-defined banded Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvband linear solver has not been initialized.

Notes By default, cvband uses an internal difference quotient function. If NULL is passed to
bjac, this default function is used.

The function type CVBandJacFn is described in §4.6.6.

4.5.6.3 Iterative linear solvers optional input functions

If any preconditioning is to be done within one of the cvspils linear solvers, then the user must supply
a preconditioner solve function psolve and specify its name in a call to CVSpilsSetPreconditioner.

The evaluation and preprocessing of any Jacobian-related data needed by the user’s precondi-
tioner solve function is done in the optional user-supplied function psetup. Both of these func-
tions are fully specified in §4.6. If used, the psetup function should also be specified in the call to
CVSpilsSetPreconditioner.

The pointer user data received through CVodeSetUserData (or a pointer to NULL if user data

was not specified) is passed to the preconditioner psetup and psolve functions. This allows the user
to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.
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Ther cvspils solvers require a function to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian-times-vector
approximation function, or use the default internal difference quotient function that comes with the
cvspils solvers. A user-defined Jacobian-vector function must be of type CVSpilsJacTimesVecFn

and can be specified through a call to CVSpilsSetJacTimesVecFn (see §4.6.7 for specification de-
tails). As with the preconditioner user-supplied functions, a pointer to the user-defined data struc-
ture, user data, specified through CVodeSetUserData (or a NULL pointer otherwise) is passed to the
Jacobian-times-vector function jtimes each time it is called.

CVSpilsSetPreconditioner

Call flag = CVSpilsSetPreconditioner(cvode mem, psetup, psolve);

Description The function CVSpilsSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments cvode mem (void *) pointer to the cvodes memory block.

psetup (CVSpilsPrecSetupFn) user-defined preconditioner setup function. Pass
NULL if no setup is to be done.

psolve (CVSpilsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional values have been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The function type CVSpilsPrecSolveFn is described in §4.6.8. The function type
CVSpilsPrecSetupFn is described in §4.6.9.

CVSpilsSetJacTimesVecFn

Call flag = CVSpilsSetJacTimesVecFn(cvode mem, jtimes);

Description The function CVSpilsSetJacTimesFn specifies the Jacobian-vector function to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

jtimes (CVSpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes By default, the cvspils linear solvers use an internal difference quotient function. If
NULL is passed to jtimes, this default function is used.

The function type CVSpilsJacTimesVecFn is described in §4.6.7.

CVSpilsSetPrecType

Call flag = CVSpilsSetPrecType(cvode mem, pretype);

Description The function CVSpilsSetPrecType resets the type of preconditioning to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the type of preconditioning and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.
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CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

Notes The preconditioning type is initially set in the call to the linear solver’s specification
function (see §4.5.3). This function call is needed only if pretype is being changed from
its original value.

CVSpilsSetGSType

Call flag = CVSpilsSetGSType(cvode mem, gstype);

Description The function CVSpilsSetGSType specifies the Gram-Schmidt orthogonalization to be
used with the cvspgmr solver (one of the enumeration constants MODIFIED GS or
CLASSICAL GS). These correspond to using modified Gram-Schmidt and classical Gram-
Schmidt, respectively.

Arguments cvode mem (void *) pointer to the cvodes memory block.

gstype (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The value of gstype is not valid.

Notes The default value is MODIFIED GS.

This option is available only for the cvspgmr linear solver.!

CVSpilsSetEpsLin

Call flag = CVSpilsSetEpsLin(cvode mem, eplifac);

Description The function CVSpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eplifac (realtype) linear convergence safety factor (≥ 0.0).

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The factor eplifac is negative.

Notes The default value is 0.05.

Passing a value eplifac= 0.0 also indicates using the default value.

CVSpilsSetMaxl

Call flag = CVSpilsSetMaxl(cv mem, maxl);

Description The function CVSpilsSetMaxl resets the maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments cv mem (void *) pointer to the cvodes memory block.

maxl (int) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of



4.5 User-callable functions 47

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The current linear solver is SPGMR.

Notes The maximum subspace dimension is initially specified in the call to the linear solver
specification function (see §4.5.3). This function call is needed only if maxl is being
changed from its previous value.

An input value maxl ≤ 0 will result in the default value, 5.

This option is available only for the cvspbcg and cvsptfqmr linear solvers. !

4.5.6.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

CVodeSetRootDirection

Call flag = CVodeSetRootDirection(cvode mem, rootdir);

Description The function CVodeSetRootDirection specifies the direction of zero-crossings to be
located and returned.

Arguments cvode mem (void *) pointer to the cvodes memory block.

rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-
ified in the call to the function CVodeRootInit. A value of 0 for rootdir[i]
indicates that crossing in either direction for gi should be reported. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT rootfinding has not been activated through a call to CVodeRootInit.

Notes The default behavior is to monitor for both zero-crossing directions.

CVodeSetNoInactiveRootWarn

Call flag = CVodeSetNoInactiveRootWarn(cvode mem);

Description The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root
function appears to be identically zero at the beginning of the integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes cvodes will not report the initial conditions as a possible zero-crossing (assuming that
one or more components gi are zero at the initial time). However, if it appears that
some gi is identically zero at the initial time (i.e., gi is zero at the initial time and after
the first step), cvodes will issue a warning which can be disabled with this optional
input function.
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4.5.7 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by cvodes.

The call to the CVodeGetDky function has the following form:

CVodeGetDky

Call flag = CVodeGetDky(cvode mem, t, k, dky);

Description The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d(k)y/dt(k)(t), where tn−hu ≤ t ≤ tn, tn denotes the current internal time reached, and
hu is the last internal step size successfully used by the solver. The user may request k
= 0, 1, . . . , qu, where qu is the current order (optional output qlast).

Arguments cvode mem (void *) pointer to the cvodes memory block.

t (realtype) the value of the independent variable at which the derivative is
to be evaluated.

k (int) the derivative order requested.

dky (N Vector) vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag (of type int) is one of

CV SUCCESS CVodeGetDky succeeded.

CV BAD K k is not in the range 0, 1, . . . , qu.

CV BAD T t is not in the interval [tn − hu, tn].

CV BAD DKY The dky argument was NULL.

CV MEM NULL The cvode mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to tn, qu, and hu, respectively.

4.5.8 Optional output functions

cvodes provides an extensive set of functions that can be used to obtain solver performance infor-
mation. Table 4.2 lists all optional output functions in cvodes, which are then described in detail in
the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the cvodes solver is in doing its job. For example, the counters nsteps and nfevals

provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps

measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.
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Table 4.2: Optional outputs from cvodes, cvdls, cvdiag, and cvspils

Optional output Function name
CVODES main solver

Size of cvodes real and integer workspaces CVodeGetWorkSpace

Cumulative number of internal steps CVodeGetNumSteps

No. of calls to r.h.s. function CVodeGetNumRhsEvals

No. of calls to linear solver setup function CVodeGetNumLinSolvSetups

No. of local error test failures that have occurred CVodeGetNumErrTestFails

Order used during the last step CVodeGetLastOrder

Order to be attempted on the next step CVodeGetCurrentOrder

No. of order reductions due to stability limit detection CVodeGetNumStabLimOrderReds

Actual initial step size used CVodeGetActualInitStep

Step size used for the last step CVodeGetLastStep

Step size to be attempted on the next step CVodeGetCurrentStep

Current internal time reached by the solver CVodeGetCurrentTime

Suggested factor for tolerance scaling CVodeGetTolScaleFactor

Error weight vector for state variables CVodeGetErrWeights

Estimated local error vector CVodeGetEstLocalErrors

No. of nonlinear solver iterations CVodeGetNumNonlinSolvIters

No. of nonlinear convergence failures CVodeGetNumNonlinSolvConvFails

All cvodes integrator statistics CVodeGetIntegratorStats

cvodes nonlinear solver statistics CVodeGetNonlinSolvStats

Array showing roots found CvodeGetRootInfo

No. of calls to user root function CVodeGetNumGEvals

Name of constant associated with a return flag CVodeGetReturnFlagName

CVDLS linear solvers
Size of real and integer workspaces CVDlsGetWorkSpace

No. of Jacobian evaluations CVDlsGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. CVDlsGetNumRhsEvals

Last return from a linear solver function CVDlsGetLastFlag

Name of constant associated with a return flag CVDlsGetReturnFlagName

CVDIAG linear solver
Size of cvdiag real and integer workspaces CVDiagGetWorkSpace

No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals

Last return from a cvdiag function CVDiagGetLastFlag

Name of constant associated with a return flag CVDiagGetReturnFlagName

CVSPILS linear solvers
Size of real and integer workspaces CVSpilsGetWorkSpace

No. of linear iterations CVSpilsGetNumLinIters

No. of linear convergence failures CVSpilsGetNumConvFails

No. of preconditioner evaluations CVSpilsGetNumPrecEvals

No. of preconditioner solves CVSpilsGetNumPrecSolves

No. of Jacobian-vector product evaluations CVSpilsGetNumJtimesEvals

No. of r.h.s. calls for finite diff. Jacobian-vector evals. CVSpilsGetNumRhsEvals

Last return from a linear solver function CVSpilsGetLastFlag

Name of constant associated with a return flag CVSpilsGetReturnFlagName
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4.5.8.1 Main solver optional output functions

cvodes provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the cvodes memory block (a suggested tolerance scaling factor,
the error weight vector, and the vector of estimated local errors). Functions are also provided to
extract statistics related to the performance of the cvodes nonlinear solver used. As a convenience,
additional information extraction functions provide the optional outputs in groups. These optional
output functions are described next.

CVodeGetWorkSpace

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);

Description The function CVodeGetWorkSpace returns the cvodes real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrw (long int) the number of realtype values in the cvodes workspace.

leniw (long int) the number of integer values in the cvodes workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.4), the actual size of the real workspace, in realtype

words, is given by the following:

• base value: lenrw = 96 + (maxord+5) ∗Nr + 3∗nrtfn;
• using CVodeSVtolerances: lenrw = lenrw +Nr;

where Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 40 + (maxord+5) ∗Ni + nrtfn;

• using CVodeSVtolerances: leniw = leniw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial

and 2*npes for nvector parallel and npes processors).

For the default value of maxord, no rootfinding, and without using CVodeSVtolerances,
these lengths are given roughly by:

• For the Adams method: lenrw = 96 + 17N and leniw = 57

• For the BDF method: lenrw = 96 + 10N and leniw = 50

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.

CVodeGetNumSteps

Call flag = CVodeGetNumSteps(cvode mem, &nsteps);

Description The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nsteps (long int) number of steps taken by cvodes.
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Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumRhsEvals

Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevals (long int) number of calls to the user’s f function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to f by a linear solver or preconditioner module.

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastOrder

Call flag = CVodeGetLastOrder(cvode mem, &qlast);

Description The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetCurrentOrder

Call flag = CVodeGetCurrentOrder(cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused);

Description The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by cvodes to ensure
that the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to satisfy the
local error test condition.
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CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumStabLimOrderReds

Call flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

Description The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §2.3).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nslred (long int) number of order reductions due to stability limit detection.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet was
not called), then nslred = 0.

CVodeGetTolScaleFactor

Call flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

Description The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tolsfac (realtype) suggested scaling factor for user-supplied tolerances.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the Wi given by (2.7).

Arguments cvode mem (void *) pointer to the cvodes memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for eweight. !
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CVodeGetEstLocalErrors

Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ele (N Vector) estimated local errors.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for ele.!

The values returned in ele are valid only if CVode returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the es-
timated local error test. Specifically, that error test uses the RMS norm of a vector
whose components are the products of the components of these two vectors. Thus, for
example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,

&nlinsetups, &netfails, &qlast, &qcur,

&hinused, &hlast, &hcur, &tcur);

Description The function CVodeGetIntegratorStats returns the cvodes integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nsteps (long int) number of steps taken by cvodes.

nfevals (long int) number of calls to the user’s f function.

nlinsetups (long int) number of calls made to the linear solver setup function.

netfails (long int) number of error test failures.

qlast (int) method order used on the last internal step.

qcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CVodeGetNumNonlinSolvIters

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear (func-
tional or Newton) iterations performed.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of
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CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumNonlinSolvConvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description The function CVodeGetNonlinSolvStats returns the cvodes nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nniters (long int) number of nonlinear iterations performed.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName(flag);

Description The function CVodeGetReturnFlagName returns the name of the cvodes constant cor-
responding to flag.

Arguments The only argument, of type int, is a return flag from a cvodes function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.2 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

CVodeGetRootInfo

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.

Arguments cvode mem (void *) pointer to the cvodes memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions gi

found to have a root. For i = 0, . . . ,nrtfn−1, rootsfound[i]6= 0 if gi has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.
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CV MEM NULL The cvode mem pointer is NULL.

Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound.!

CVodeGetNumGEvals

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ngevals (long int) number of calls made to the user’s function g thus far.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

4.5.8.3 Direct linear solvers optional output functions

The following optional outputs are available from the cvdls modules: workspace requirements, num-
ber of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-difference
Jacobian approximation, and last return value from a cvdls function. Note that, where the name of
an output would otherwise conflict with the name of an optional output from the main solver, a suffix
LS (for Linear Solver) has been added here (e.g. lenrwLS).

CVDlsGetWorkSpace

Call flag = CVDlsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDlsGetWorkSpace returns the sizes of the real and integer workspaces
used by a cvdls linear solver (cvdense or cvband).

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvdls workspace.

leniwLS (long int) the number of integer values in the cvdls workspace.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output values have been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes For the cvdense linear solver, in terms of the problem size N , the actual size of the real
workspace is 2N2 realtype words, and the actual size of the integer workspace is N in-
teger words. For the cvband linear solver, in terms of N and Jacobian half-bandwidths,
the actual size of the real workspace is (2 mupper+3 mlower+2)N realtype words, and
the actual size of the integer workspace is N integer words.

CVDlsGetNumJacEvals

Call flag = CVDlsGetNumJacEvals(cvode mem, &njevals);

Description The function CVDlsGetNumJacEvals returns the number of calls made to the cvdls

(dense or band) Jacobian approximation function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njevals (long int) the number of calls to the Jacobian function.
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Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

CVDlsGetNumRhsEvals

Call flag = CVDlsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDlsGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference (dense or band) Jacobian
approximation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default internal difference quotient
function is used.

CVDlsGetLastFlag

Call flag = CVDlsGetLastFlag(cvode mem, &lsflag);

Description The function CVDlsGetLastFlag returns the last return value from a cvdls routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (long int) the value of the last return flag from a cvdls function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes If the cvdense setup function failed (CVode returned CV LSETUP FAIL), then the value
of lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the (dense or banded) Jacobian
matrix. For all other failures, lsflag is negative.

CVDlsGetReturnFlagName

Call name = CVDlsGetReturnFlagName(lsflag);

Description The function CVDlsGetReturnFlagName returns the name of the cvdls constant corre-
sponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvdls function.

Return value The return value is a string containing the name of the corresponding constant.

If 1 ≤ lsflag ≤ N (LU factorization failed), this routine returns “NONE”.
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4.5.8.4 Diagonal linear solver optional output functions

The following optional outputs are available from the cvdiag module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a cvdiag function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwLS).

CVDiagGetWorkSpace

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDiagGetWorkSpace returns the cvdiag real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvdiag workspace.

leniwLS (long int) the number of integer values in the cvdiag workspace.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output valus have been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is roughly 3N
realtype words.

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDiagGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

CVDiagGetLastFlag

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description The function CVDiagGetLastFlag returns the last return value from a cvdiag routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (long int) the value of the last return flag from a cvdiag function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.
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Notes If the cvdiag setup function failed (CVode returned CV LSETUP FAIL), the value of
lsflag is equal to CVDIAG INV FAIL, indicating that a diagonal element with value zero
was encountered. The same value is also returned if the cvdiag solve function failed
(CVode returned CV LSOLVE FAIL).

CVDiagGetReturnFlagName

Call name = CVDiagGetReturnFlagName(lsflag);

Description The function CVDiagGetReturnFlagName returns the name of the cvdiag constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvdiag function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.5 Iterative linear solvers optional output functions

The following optional outputs are available from the cvspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to the
right-hand side routine for finite-difference Jacobian-vector product approximation, and last return
value from a linear solver function. Note that, where the name of an output would otherwise conflict
with the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been
added here (e.g. lenrwLS).

CVSpilsGetWorkSpace

Call flag = CVSpilsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVSpilsGetWorkSpace returns the global sizes of the cvspgmr real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvspils workspace.

leniwLS (long int) the number of integer values in the cvspils workspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of the
real workspace is roughly:
(maxl+5) ∗N+ maxl ∗( maxl+4) + 1 realtype words for cvspgmr,
9 ∗N realtype words for cvspbcg,
and 11 ∗N realtype words for cvsptfqmr.

In a parallel setting, the above values are global, summed over all processors.

CVSpilsGetNumLinIters

Call flag = CVSpilsGetNumLinIters(cvode mem, &nliters);

Description The function CVSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of
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CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumConvFails

Call flag = CVSpilsGetNumConvFails(cvode mem, &nlcfails);

Description The function CVSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumPrecEvals

Call flag = CVSpilsGetNumPrecEvals(cvode mem, &npevals);

Description The function CVSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup with jok = FALSE.

Arguments cvode mem (void *) pointer to the cvodes memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumPrecSolves

Call flag = CVSpilsGetNumPrecSolves(cvode mem, &npsolves);

Description The function CVSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments cvode mem (void *) pointer to the cvodes memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumJtimesEvals

Call flag = CVSpilsGetNumJtimesEvals(cvode mem, &njvevals);

Description The function CVSpilsGetNumJtimesEvals returns the cumulative number made to the
Jacobian-vector function, jtimes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of
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CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumRhsEvals

Call flag = CVSpilsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVSpilsGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVSpilsDQJtimes difference
quotient function is used.

CVSpilsGetLastFlag

Call flag = CVSpilsGetLastFlag(cvode mem, &lsflag);

Description The function CVSpilsGetLastFlag returns the last return value from a cvspils routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (long int) the value of the last return flag from a cvspils function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes If the cvspils setup function failed (CVode returned CV LSETUP FAIL), lsflag will be
SPGMR PSET FAIL UNREC, SPBCG PSET FAIL UNREC, or SPTFQMR PSET FAIL UNREC.

If the cvspgmr solve function failed (CVode returned CV LSOLVE FAIL), lsflag contains
the error return flag from SpgmrSolve and will be one of: SPGMR MEM NULL, indicating
that the spgmr memory is NULL; SPGMR ATIMES FAIL UNREC, indicating an unrecover-
able failure in the J ∗v function; SPGMR PSOLVE FAIL UNREC, indicating that the precon-
ditioner solve function psolve failed unrecoverably; SPGMR GS FAIL, indicating a failure
in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating that the matrix R
was found to be singular during the QR solve phase.

If the cvspbcg solve function failed (CVode returned CV LSOLVE FAIL), lsflag contains
the error return flag from SpbcgSolve and will be one of: SPBCG MEM NULL, indicating
that the spbcg memory is NULL; SPBCG ATIMES FAIL UNREC, indicating an unrecover-
able failure in the J ∗ v function; or SPBCG PSOLVE FAIL UNREC, indicating that the
preconditioner solve function psolve failed unrecoverably.

If the cvsptfqmr solve function failed (CVode returned CV LSOLVE FAIL), lsflag con-
tains the error return flag from SptfqmrSolve and will be one of: SPTFQMR MEM NULL,
indicating that the sptfqmr memory is NULL; SPTFQMR ATIMES FAIL UNREC, indicating
an unrecoverable failure in the J∗v function; or SPTFQMR PSOLVE FAIL UNREC, indicating
that the preconditioner solve function psolve failed unrecoverably.
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CVSpilsGetReturnFlagName

Call name = CVSpilsGetReturnFlagName(lsflag);

Description The function CVSpilsGetReturnFlagName returns the name of the cvspils constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvspils function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.9 CVODES reinitialization function

The function CVodeReInit reinitializes the main cvodes solver for the solution of a problem, where
a prior call to CVodeInit been made. The new problem must have the same size as the previous one.
CVodeReInit performs the same input checking and initializations that CVodeInit does, but does no
memory allocation as it assumes that the existing internal memory is sufficient for the new problem.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
if the multistep method parameter lmm is unchanged (or changed from CV ADAMS to CV BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate CV*Set* calls, as
described in §4.5.3

CVodeReInit

Call flag = CVodeReInit(cvode mem, t0, y0);

Description The function CVodeReInit provides required problem specifications and reinitializes
cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC Memory space for the cvodes memory block was not allocated through
a previous call to CVodeInit.

CV ILL INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) a function that provides Jacobian-related information for the linear solver (if Newton
iteration is chosen), and (optionally) one or two functions that define the preconditioner for use in
any of the Krylov iterative algorithms.

4.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:
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CVRhsFn

Definition typedef int (*CVRhsFn)(realtype t, N Vector y, N Vector ydot,

void *user data);

Purpose This function computes the ODE right-hand side for a given value of the independent
variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

ydot is the output vector f(t, y).

user data is the user data pointer passed to CVodeSetUserData.

Return value A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV RHSFUNC FAIL is returned).

Notes Allocation of memory for ydot is handled within cvodes.

A recoverable failure error return from the CVRhsFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, cvodes will
attempt to recover (possibly repeating the Newton iteration, or reducing the step size)
in order to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged
solution of the nonlinear solver. Therefore, in general, a recoverable error in that con-
verged value cannot be corrected. (It may be detected when the right-hand side function
is called the first time during the following integration step, but a successful step can-
not be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to CVQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore cvodes can be flagged
to attempt to recover from such a situation. Also, if sensitivity analysis is performed
with one of the staggered methods, the ODE right-hand side function is called at the
converged solution of the nonlinear system, and a recoverable error at that point can
be flagged, and cvodes will then try to correct it.

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. One is when this occurs at the very
first call to the CVRhsFn (in which case cvodes returns CV FIRST RHSFUNC ERR). The
other is when a recoverable error is reported by CVRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvodes returns
CV UNREC RHSFUNC ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVSetErrFile), the user may provide a function of type CVErrHandlerFn to process
any such messages. The function type CVErrHandlerFn is defined as follows:

CVErrHandlerFn

Definition typedef void (*CVErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from cvodes and its sub-modules.

Arguments error code is the error code.

module is the name of the cvodes module reporting the error.

function is the name of the function in which the error occurred.



64 Using CVODES for IVP Solution

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
CVodeSetErrHandlerFn.

Return value A CVErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (CV WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖ v‖WRMS =
√

(1/N)
∑N

1 (Wi · vi)2. These weights will be used in place of those defined by Eq. (2.7). The function

type CVEwtFn is defined as follows:

CVEwtFn

Definition typedef int (*CVEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within cvodes.

The error weight vector must have all components positive. It is the user’s responsiblity!

to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

CVRootFn

Definition typedef int (*CVRootFn)(realtype t, N Vector y, realtype *gout,

void *user data);

Purpose This function implements a vector-valued function g(t, y) such that the roots of the
nrtfn components gi(t, y) are sought.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

gout is the output array, of length nrtfn, with components gi(t, y).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and CVode returns CV RTFUNC FAIL).

Notes Allocation of memory for gout is automatically handled within cvodes.
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4.6.5 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e., CVDense or CVLapackDense
is called in Step 8 of §4.4), the user may provide a function of type CVDlsDenseJacFn defined by:

CVDlsDenseJacFn

Definition typedef (*CVDlsDenseJacFn)(long int N, realtype t, N Vector y, N Vector fy,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the dense Jacobian J = ∂f/∂y (or an approximation to it).

Arguments N is the problem size.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

Jac is the output dense Jacobian matrix (of type DlsMat).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by a CVDlsDenseJacFn as temporary storage or work space.

Return value A CVDlsDenseJacFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvdense sets last flag

on CVDLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVode returns CV LSETUP FAIL and cvdense sets last flag

on CVDLS JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an
approximation to the Jacobian matrix J(t, y) at the point (t, y). Only nonzero elements
need to be loaded into Jac because Jac is set to the zero matrix before the call to the
Jacobian function. The type of Jac is DlsMat.

The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation
of the DlsMat type. DENSE ELEM(J, i, j) references the (i, j)-th element of the
dense matrix Jac (i, j = 0 . . . N − 1). This macro is meant for small problems for
which efficiency of access is not a major concern. Thus, in terms of the indices m
and n ranging from 1 to N , the Jacobian element Jm,n can be set using the statement
DENSE ELEM(J, m-1, n-1) = Jm,n. Alternatively, DENSE COL(J, j) returns a pointer
to the first element of the j-th column of Jac (j = 0 . . . N −1), and the elements of the
j-th column can then be accessed using ordinary array indexing. Consequently, Jm,n

can be loaded using the statements col n = DENSE COL(J, n-1); col n[m-1] = Jm,n.
For large problems, it is more efficient to use DENSE COL than to use DENSE ELEM. Note
that both of these macros number rows and columns starting from 0.

The DlsMat type and accessor macros DENSE ELEM and DENSE COL are documented in
§9.1.3.

If the user’s CVDenseJacFn function uses difference quotient approximations, then it
may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §4.5.8.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.
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For the sake of uniformity, the argument N is of type long int, even in the case that
the Lapack dense solver is to be used.

4.6.6 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. CVBand or CVLapackBand
is called in Step 8 of §4.4), the user may provide a function of type CVDlsBandJacFn defined as follows:

CVDlsBandJacFn

Definition typedef int (*CVBandJacFn)(long int N, long int mupper, long int mlower,

realtype t, N Vector y, N Vector fy,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the banded Jacobian J = ∂f/∂y (or a banded approximation
to it).

Arguments N is the problem size.

mlower

mupper are the lower and upper half-bandwidths of the Jacobian.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

Jac is the output band Jacobian matrix (of type DlsMat).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVDlsBandJacFn as temporary storage or work space.

Return value A CVDlsBandJacFn function should return 0 if successful, a positive value if a recover-
able error occurred (in which case cvodes will attempt to correct, while cvband sets
last flag on CVDLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in
which case the integration is halted, CVode returns CV LSETUP FAIL and cvband sets
last flag on CVDLS JACFUNC UNRECVR).

Notes A user-supplied band Jacobian function must load the band matrix Jac of type DlsMat

with the elements of the Jacobian J(t, y) at the point (t,y). Only nonzero elements
need to be loaded into Jac because Jac is initialized to the zero matrix before the call
to the Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the DlsMat type. BAND ELEM(J, i, j) references the (i, j)-th element
of the band matrix Jac, counting from 0. This macro is meant for use in small problems
for which efficiency of access is not a major concern. Thus, in terms of the indices
m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded using the statement BAND ELEM(J,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, BAND COL(J, j) returns a pointer to the diagonal element of the
j-th column of Jac, and if we assign this address to realtype *col j, then the i-th
element of the j-th column is given by BAND COL ELEM(col j, i, j), counting from 0.
Thus, for (m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(J,
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n-1); BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the j-th column can
also be accessed via ordinary array indexing, but this approach requires knowledge of the
underlying storage for a band matrix of type DlsMat. The array col n can be indexed
from −mupper to mlower. For large problems, it is more efficient to use BAND COL and
BAND COL ELEM than to use the BAND ELEM macro. As in the dense case, these macros
all number rows and columns starting from 0.

The DlsMat type and the accessor macros BAND ELEM, BAND COL and BAND COL ELEM are
documented in §9.1.4.

If the user’s CVBandJacFn function uses difference quotient approximations, then it
may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §4.5.8.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

For the sake of uniformity, the arguments N, mlower, and mupper are of type long int,
even in the case that the Lapack band solver is to be used.

4.6.7 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (CVSp* is called in
step 8 of §4.4), the user may provide a function of type CVSpilsJacTimesVecFn in the following form,
to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

CVSpilsJacTimesVecFn

Definition typedef int (*CVSpilsJacTimesVecFn)(N Vector v, N Vector Jv,

realtype t, N Vector y, N Vector fy,

void *user data, N Vector tmp);

Purpose This function computes the product Jv = (∂f/∂y)v (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied.

Jv is the output vector computed.

t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the Jacobian-vector product function should be 0 if success-
ful. Any other return value will result in an unrecoverable error of the spgmr generic
solver, in which case the integration is halted.

Notes If the user’s CVSpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §4.5.8.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

4.6.8 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz = r,
where P may be either a left or right preconditioner matrix. Here P should approximate (at least
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crudely) the Newton matrix M = I − γJ , where J = ∂f/∂y. If preconditioning is done on both sides,
the product of the two preconditioner matrices should approximate M . This function must be of type
CVSpilsPrecSolveFn, defined as follows:

CVSpilsPrecSolveFn

Definition typedef int (*CVSpilsPrecSolveFn)(realtype t, N Vector y, N Vector fy,

N Vector r, N Vector z,

realtype gamma, realtype delta,

int lr, void *user data, N Vector tmp);

Purpose This function solves the preconditioned system Pz = r.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

r is the right-hand side vector of the linear system.

z is the computed output vector.

gamma is the scalar γ appearing in the Newton matrix given by M = I − γJ .

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in the weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 <
delta. To obtain the N Vector ewt, call CVodeGetErrWeights (see §4.5.8.1).

lr is an input flag indicating whether the preconditioner solve function is to
use the left preconditioner (lr = 1) or the right preconditioner (lr = 2);

user data is a pointer to user data, the same as the user data parameter passed to
the function CVodeSetUserData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

4.6.9 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of type CVSpilsPrecSetupFn, defined as follows:

CVSpilsPrecSetupFn

Definition typedef int (*CVSpilsPrecSetupFn)(realtype t, N Vector y, N Vector fy,

booleantype jok, booleantype *jcurPtr,

realtype gamma, void *user data,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner.

Arguments The arguments of a CVSpilsPrecSetupFn are as follows:

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).
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jok is an input flag indicating whether the Jacobian-related data needs to be
updated. The jok argument provides for the reuse of Jacobian data in
the preconditioner solve function. jok = FALSE means that the Jacobian-
related data must be recomputed from scratch. jok = TRUE means that the
Jacobian data, if saved from the previous call to this function, can be reused
(with the current value of gamma). A call with jok = TRUE can only occur
after a call with jok = FALSE.

jcurPtr is a pointer to a flag which should be set to TRUE if Jacobian data was
recomputed, or set to FALSE if Jacobian data was not recomputed, but
saved data was still reused.

gamma is the scalar γ appearing in the Newton matrix M = I − γJ .

user data is a pointer to user data, the same as the user data parameter passed to
the function CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVSpilsPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recov-
erable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization of the resulting approximation to M =
I − γJ .

Each call to the preconditioner setup function is preceded by a call to the CVRhsFn user
function with the same (t,y) arguments. Thus, the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the ODE
right-hand side.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s CVSpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current step size, the
error weights, etc. To obtain these, use the CVodeGet* functions described in §4.5.8.1.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.7 Integration of pure quadrature equations

cvodes allows the ODE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin by
excluding the quadrature variables from the vector y and excluding the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisfy (d/dt)yQ = fQ(t, y). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. [P] Initialize MPI

2. Set problem dimensions

[S] Set N to the problem size N (excluding quadrature variables), and Nq to the number of quadra-
ture variables.
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[P] Set Nlocal to the local vector length (excluding quadrature variables), and Nqlocal to the
local number of quadrature variables.

3. Set vector of initial values

4. Create cvodes object

5. Allocate internal memory

6. Set optional inputs

7. Attach linear solver module

8. Set linear solver optional inputs

9. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

10. Initialize quadrature integration

Call CVodeQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

11. Set optional inputs for quadrature integration

Call CVodeSetQuadErrCon to indicate whether or not quadrature variables shoule be used in the
step size control mechanism, and to specify the integration tolerances for quadrature variables.
See §4.7.4 for details.

12. Advance solution in time

13. Extract quadrature variables

Call CVodeGetQuad to obtain the values of the quadrature variables at the current time. See §4.7.3
for details.

14. Get optional outputs

15. Get quadrature optional outputs

Call CVodeGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

16. Deallocate memory for solution vector and for the vector of quadrature variables

17. Free solver memory

18. [P] Finalize MPI

CVodeQuadInit can be called and quadrature-related optional inputs (step 11 above) can be set,
anywhere between steps 4 and 12.

4.7.1 Quadrature initialization and deallocation functions

The function CVodeQuadInit activates integration of quadrature equations and allocates internal
memory related to these calculations. The form of the call to this function is as follows:
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CVodeQuadInit

Call flag = CVodeQuadInit(cvode mem, fQ, yQ0);

Description The function CVodeQuadInit provides required problem specifications, allocates internal
memory, and initializes quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

fQ (CVQuadRhsFn) is the C function which computes fQ, the right-hand side
of the quadrature equations. This function has the form fQ(t, y, yQdot,

fQ data) (for full details see §4.7.6).

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadInit was successful.

CV MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV MEM FAIL A memory allocation request failed.

Notes If an error occurred, CVodeQuadInit also sends an error message to the error handler
function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If using CVodeSVtolerances (see CVodeSetQuadErrCon): lenrw = lenrw +Nq

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If using CVodeSVtolerances: leniw = leniw +Nq

The function CVodeQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to CVodeQuadInit (and
maybe a call to CVodeReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to CVodeQuadInit. The call to the CVodeQuadReInit function has the following form:

CVodeQuadReInit

Call flag = CVodeQuadReInit(cvode mem, yQ0);

Description The function CVodeQuadReInit provides required problem specifications and reinitial-
izes the quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV NO QUAD Memory space for the quadrature integration was not allocated by a prior
call to CVodeQuadInit.

Notes If an error occurred, CVodeQuadReInit also sends an error message to the error handler
function.
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CVodeQuadFree

Call CVodeQuadFree(cvode mem);

Description The function CVodeQuadFree frees the memory allocated for quadrature integration.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeQuadFree has no return value.

Notes In general, CVodeQuadFree need not be called by the user as it is invoked automatically
by CVodeFree.

4.7.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the
same as in §4.5.5. However, in this case the return value flag can also be one of the following:
CV QRHSFUNC FAIL The quadrature right-hand side function failed in an unrecoverable manner.

CV FIRST QRHSFUNC FAIL The quadrature right-hand side function failed at the first call.

CV REPTD QRHSFUNC ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

CV UNREC RHSFUNC ERR The quadrature right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
quadrature right-hand side function fails recoverably after an error test
failed while at order one.

4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to CVodeQuadInit, or reinitialized by a call
to CVodeQuadReInit, then cvodes computes both a solution and quadratures at time t. However,
CVode will still return only the solution y in yout. Solution quadratures can be obtained using the
following function:

CVodeGetQuad

Call flag = CVodeGetQuad(cvode mem, &tret, yQ);

Description The function CVodeGetQuad returns the quadrature solution vector after a successful
return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).

yQ (N Vector) the computed quadrature vector.

Return value The return value flag of CVodeGetQuad is one of:

CV SUCCESS CVodeGetQuad was successful.

CV MEM NULL cvode mem was NULL.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY yQ is NULL.

Notes In case of an error return, an error message is also sent to the error handler function.

The function CVodeGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by CVodeGetQuad with k = 0 and with the
current time at which CVode has returned, but may also be called directly by the user.
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CVodeGetQuadDky

Call flag = CVodeGetQuadDky(cvode mem, t, k, dkyQ);

Description The function CVodeGetQuadDky returns derivatives of the quadrature solution vector
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) the time at which quadrature information is requested. The
time t must fall within the interval defined by the last successful step taken
by cvodes.

k (int) order of the requested derivative. This must be ≤ qlast.

dkyQ (N Vector) the vector containing the derivative. This vector must be allo-
cated by the user.

Return value The return value flag of CVodeGetQuadDky is one of:

CV SUCCESS CVodeGetQuadDky succeeded.

CV MEM NULL The pointer to cvode mem was NULL.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY The vector dkyQ is NULL.

CV BAD K k is not in the range 0, 1, . . . , qlast.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also sent to the error handler function.

4.7.4 Optional inputs for quadrature integration

cvodes provides the following optional input functions to control the integration of quadrature equa-
tions.

CVodeSetQuadErrCon

Call flag = CVodeSetQuadErrCon(cvode mem, errconQ);

Description The function CVodeSetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within cvodes. If they are, the user must
call CVodeQuadSStolerances or CVodeQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errconQ (booleantype) specifies whether quadrature variables are included (TRUE)
or not (FALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

Notes By default, errconQ is set to FALSE.

It is illegal to call CVodeSetQuadErrCon before a call to CVodeQuadInit. !

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

CVodeQuadSStolerances

Call flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);

Description The function CVodeQuadSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV NO QUAD Quadrature integration was not initialized.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT One of the input tolerances was negative.

CVodeQuadSVtolerances

Call flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);

Description The function CVodeQuadSVtolerances specifies scalar relative and vector absolute tol-
erances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (N Vector) is the vector absolute error tolerance.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV NO QUAD Quadrature integration was not initialized.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT One of the input tolerances was negative.

4.7.5 Optional outputs for quadrature integration

cvodes provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadNumRhsEvals

Call flag = CVodeGetQuadNumRhsEvals(cvode mem, &nfQevals);

Description The function CVodeGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfQevals (long int) number of calls made to the user’s fQ function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

CVodeGetQuadNumErrTestFails

Call flag = CVodeGetQuadNumErrTestFails(cvode mem, &nQetfails);

Description The function CVodeGetQuadNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.
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CVodeGetQuadErrWeights

Call flag = CVodeGetQuadErrWeights(cvode mem, eQweight);

Description The function CVodeGetQuadErrWeights returns the quadrature error weights at the
current time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eQweight (N Vector) quadrature error weights at the current time.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

Notes The user must allocate memory for eQweight. !

If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadErrCon with errconQ = TRUE), CVodeGetQuadErrWeights does not set
the eQweight vector.

CVodeGetQuadStats

Call flag = CVodeGetQuadStats(cvode mem, &nfQevals, &nQetfails);

Description The function CVodeGetQuadStats returns the cvodes integrator statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfQevals (long int) number of calls to the user’s fQ function.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type CVQuadRhsFn defined as follows:

CVQuadRhsFn

Definition typedef int (*CVQuadRhsFn)(realtype t, N Vector y,

N Vector yQdot, void *user data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yQdot is the output vector fQ(t, y).

user data is the user data pointer passed to CVodeSetUserData.

Return value A CVQuadRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV QRHSFUNC FAIL is re-
turned).
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Notes Allocation of memory for yQdot is automatically handled within cvodes.

Both y and yQdot are of type N Vector, but they typically have different internal
representations. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each nvector implementation).
For the sake of computational efficiency, the vector functions in the two nvector

implementations provided with cvodes do not perform any consistency checks with
respect to their N Vector arguments (see §7.1 and §7.2).

There are two situations in which recovery is not possible even if CVQuadRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVQuadRhsFn (in which case cvodes returns CV FIRST QRHSFUNC ERR). The other
is when a recoverable error is reported by CVQuadRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvodes returns
CV UNREC QRHSFUNC ERR).

4.8 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, cvodes provides a banded preconditioner in the module cvbandpre and a
band-block-diagonal preconditioner module cvbbdpre.

4.8.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with any of the Krylov iterative
linear solvers, in a serial setting. It uses difference quotients of the ODE right-hand side function f

to generate a band matrix of bandwidth ml + mu + 1, where the number of super-diagonals (mu, the
upper half-bandwidth) and sub-diagonals (ml, the lower half-bandwidth) are specified by the user,
and uses this to form a preconditioner for use with the Krylov linear solver. Although this matrix
is intended to approximate the Jacobian ∂f/∂y, it may be a very crude approximation. The true
Jacobian need not be banded, or its true bandwidth may be larger than ml + mu + 1, as long as the
banded approximation generated here is sufficiently accurate to speed convergence as a preconditioner.

In order to use the cvbandpre module, the user need not define any additional functions. Aside
from the header files required for the integration of the ODE problem (see §4.3), to use the cvbandpre

module, the main program must include the header file cvodes bandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in §4.4 are grayed out.

1. Set problem dimensions

2. Set vector of initial values

3. Create cvodes object

4. Allocate internal memory

5. Set optional inputs

6. Attach iterative linear solver, one of:

(a) flag = CVSpgmr(cvode mem, pretype, maxl);

(b) flag = CVSpbcg(cvode mem, pretype, maxl);

(c) flag = CVSptfqmr(cvode mem, pretype, maxl);
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7. Initialize the cvbandpre preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

flag = CVBandPrecInit(cvode mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

8. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to CVSpilsSet** optional input functions.

9. Advance solution in time

10. Get optional outputs

Additional optional outputs associated with cvbandpre are available by way of two routines
described below, CVBandPrecGetWorkSpace and CVBandPrecGetNumRhsEvals.

11. Deallocate memory for solution vector

12. Free solver memory

The cvbandpre preconditioner module is initialized and attached by calling the following function:

CVBandPrecInit

Call flag = CVBandPrecInit(cvode mem, N, mu, ml);

Description The function CVBandPrecInit initializes the cvbandpre preconditioner and allocates
required (internal) memory for it.

Arguments cvode mem (void *) pointer to the cvodes memory block.

N (long int) problem dimension.

mu (long int) upper half-bandwidth of the Jacobian approximation.

ml (long int) lower half-bandwidth of the Jacobian approximation.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBandPrecInit was successful.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS MEM FAIL A memory allocation request has failed.

CVSPILS LMEM NULL A cvspils linear solver memory was not attached.

CVSPILS ILL INPUT The supplied vector implementation was not compatible with block
band preconditioner.

Notes The banded approximate Jacobian will have nonzero elements only in locations (i, j)
with −ml ≤ j − i ≤ mu.

The following three optional output functions are available for use with the cvbandpre module:

CVBandPrecGetWorkSpace

Call flag = CVBandPrecGetWorkSpace(cvode mem, &lenrwBP, &leniwBP);

Description The function CVBandPrecGetWorkSpace returns the sizes of the cvbandpre real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwBP (long int) the number of realtype values in the cvbandpre workspace.

leniwBP (long int) the number of integer values in the cvbandpre workspace.

Return value The return value flag (of type int) is one of:
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CVSPILS SUCCESS The optional output values have been successfully set.

CVSPILS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes In terms of problem size N and smu = min(N − 1, mu+ml), the actual size of the real
workspace is (2 ml + mu + smu +2)N realtype words, and the actual size of the integer
workspace is N integer words.

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpils***GetWorkSpace.

CVBandPrecGetNumRhsEvals

Call flag = CVBandPrecGetNumRhsEvals(cvode mem, &nfevalsBP);

Description The function CVBandPrecGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function for finite difference banded Jacobian approximation
used within the preconditioner setup function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsBP (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes The counter nfevalsBP is distinct from the counter nfevalsLS returned by the cor-
responding function CVSpils***GetNumRhsEvals, and also from nfevals, returned by
CVodeGetNumRhsEvals. The total number of right-hand side function evaluations is the
sum of all three of these counters.

4.8.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as cvodes lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many
such problems is motivated by the nature of the underlying linear system of equations (2.5) that must
be solved at each time step. The linear algebraic system is large, sparse and structured. However, if
a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [19] and is
included in a software module within the cvodes package. This module works with the parallel vector
module nvector parallel and is usable with any of the Krylov iterative linear solvers. It generates
a preconditioner that is a block-diagonal matrix with each block being a band matrix. The blocks
need not have the same number of super- and sub-diagonals and these numbers may vary from block
to block. This Band-Block-Diagonal Preconditioner module is called cvbbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is then
assigned to one of the M processes to be used to solve the ODE system. The basic idea is to isolate the
preconditioning so that it is local to each process, and also to use a (possibly cheaper) approximate
right-hand side function. This requires the definition of a new function g(t, y) which approximates
the function f(t, y) in the definition of the ODE system (2.1). However, the user may set g = f .
Corresponding to the domain decomposition, there is a decomposition of the solution vector y into
M disjoint blocks ym, and a decomposition of g into blocks gm. The block gm depends both on ym

and on components of blocks ym′ associated with neighboring subdomains (so-called ghost-cell data).
Let ȳm denote ym augmented with those other components on which gm depends. Then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gM (t, ȳM )]T (4.1)
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and each of the blocks gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)

where

Pm ≈ I − γJm (4.3)

and Jm is a difference quotient approximation to ∂gm/∂ym. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed using
mudq + mldq +2 evaluations of gm, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.
Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g,
if smaller values provide a more efficient preconditioner. The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations

Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatments of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The cvbbdpre module calls two user-provided functions to construct P : a required function gloc

(of type CVLocalFn) which approximates the right-hand side function g(t, y) ≈ f(t, y) and which is
computed locally, and an optional function cfn (of type CVCommFn) which performs all interprocess
communication necessary to evaluate the approximate right-hand side g. These are in addition to the
user-supplied right-hand side function f. Both functions take as input the same pointer user data

that is passed by the user to CVodeSetUserData and that was passed to the user’s function f. The
user is responsible for providing space (presumably within user data) for components of y that are
communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

CVLocalFn

Definition typedef int (*CVLocalFn)(long int Nlocal, realtype t, N Vector y,

N Vector glocal, void *user data);

Purpose This gloc function computes g(t, y). It loads the vector glocal as a function of t and
y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

glocal is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes This function must assume that all interprocess communication of data needed to cal-
culate glocal has already been done, and that this data is accessible within user data.

The case where g is mathematically identical to f is allowed.
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CVCommFn

Definition typedef int (*CVCommFn)(long int Nlocal, realtype t,

N Vector y, void *user data);

Purpose This cfn function performs all interprocess communication necessary for the execution
of the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes The cfn function is expected to save communicated data in space defined within the
data structure user data.

Each call to the cfn function is preceded by a call to the right-hand side function f

with the same (t, y) arguments. Thus, cfn can omit any communication done by f

if relevant to the evaluation of glocal. If all necessary communication was done in f,
then cfn = NULL can be passed in the call to CVBBDPrecInit (see below).

Besides the header files required for the integration of the ODE problem (see §4.3), to use the
cvbbdpre module, the main program must include the header file cvodes bbdpre.h which declares
the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from
the skeleton program presented in §4.4 are grayed out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create cvodes object

5. Allocate internal memory

6. Set optional inputs

7. Attach iterative linear solver, one of:

(a) flag = CVSpgmr(cvode mem, pretype, maxl);

(b) flag = CVSpbcg(cvode mem, pretype, maxl);

(c) flag = CVSptfqmr(cvode mem, pretype, maxl);

8. Initialize the cvbbdpre preconditioner module

Specify the upper and lower half-bandwidths mudq and mldq, and mukeep and mlkeep, and call

flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
CVBBDPrecInit are the two user-supplied functions described above.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to cvspils optional input functions.
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10. Advance solution in time

11. Get optional outputs

Additional optional outputs associated with cvbbdpre are available by way of two routines de-
scribed below, CVBBDPrecGetWorkSpace and CVBBDPrecGetNumGfnEvals.

12. Deallocate memory for solution vector

13. Free solver memory

14. Finalize MPI

The user-callable functions that initialize (step 8 above) or re-initialize the cvbbdpre preconditioner
module are described next.

CVBBDPrecInit

Call flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

Description The function CVBBDPrecInit initializes and allocates (internal) memory for the cvbb-

dpre preconditioner.

Arguments cvode mem (void *) pointer to the cvodes memory block.

local N (long int) local vector length.

mudq (long int) upper half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mukeep (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely=

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of g(t, y).

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBBDPrecInit was successful.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS MEM FAIL A memory allocation request has failed.

CVSPILS LMEM NULL A cvspils linear solver was not attached.

CVSPILS ILL INPUT The supplied vector implementation was not compatible with block
band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference quotient cal-
culation of the approximate Jacobian is negative or exceeds the value local N−1, it is
replaced by 0 or local N−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.
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The cvbbdpre module also provides a reinitialization function to allow solving a sequence of
problems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize cvodes

for a subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
increment dqrely, or one of the user-supplied functions gloc and cfn. If there is a change in any of
the linear solver inputs, an additional call to CVSpgmr, CVSpbcg, or CVSptfqmr, and/or one or more
of the corresponding CVSpils***Set*** functions, must also be made (in the proper order).

CVBBDPrecReInit

Call flag = CVBBDPrecReInit(cvode mem, mudq, mldq, dqrely);

Description The function CVBBDPrecReInit re-initializes the cvbbdpre preconditioner.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mudq (long int) upper half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely =

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBBDPrecReInit was successful.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS LMEM NULL A cvspils linear solver memory was not attached.

CVSPILS PMEM NULL The function CVBBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value local N−1,
it is replaced by 0 or local N−1 accordingly.

The following two optional output functions are available for use with the cvbbdpre module:

CVBBDPrecGetWorkSpace

Call flag = CVBBDPrecGetWorkSpace(cvode mem, &lenrwBBDP, &leniwBBDP);

Description The function CVBBDPrecGetWorkSpace returns the local cvbbdpre real and integer
workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwBBDP (long int) local number of realtype values in the cvbbdpre workspace.

leniwBBDP (long int) local number of integer values in the cvbbdpre workspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS PMEM NULL The cvbbdpre preconditioner has not been initialized.

Notes In terms of local N and smu = min(local N - 1, mukeep + mlkeep), the actual size
of the real workspace is (2 mlkeep + mukeep + smu +2) local N realtype words, and
the actual size of the integer workspace is local N integer words. These values are local
to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpils***GetWorkSpace.
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CVBBDPrecGetNumGfnEvals

Call flag = CVBBDPrecGetNumGfnEvals(cvode mem, &ngevalsBBDP);

Description The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-
supplied gloc function due to the finite difference approximation of the Jacobian blocks
used within the preconditioner setup function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ngevalsBBDP (long int) the number of calls made to the user-supplied gloc function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS PMEM NULL The cvbbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with cvbbdpre also in-
clude nlinsetups LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional cvodes output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.8).





Chapter 5

Using CVODES for Forward
Sensitivity Analysis

This chapter describes the use of cvodes to compute solution sensitivities using forward sensitivity
analysis. One of our main guiding principles was to design the cvodes user interface for forward
sensitivity analysis as an extension of that for IVP integration. Assuming a user main program and
user-defined support routines for IVP integration have already been defined, in order to perform
forward sensitivity analysis the user only has to insert a few more calls into the main program and
(optionally) define an additional routine which computes the right-hand side of the sensitivity systems
(2.11). The only departure from this philosophy is due to the CVRhsFn type definition (§4.6.1).
Without changing the definition of this type, the only way to pass values of the problem parameters
to the ODE right-hand side function is to require the user data structure f data to contain a pointer
to the array of real parameters p.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of cvodes.
The user program is to have these steps in the order indicated, unless otherwise noted. For the sake
of brevity, we defer many of the details to the later sections. As in §4.4, most steps are independent of
the nvector implementation used; where this is not the case, usage specifications are given for the
two implementations provided with cvodes: steps marked [P] correspond to nvector parallel,
while steps marked [S] correspond to nvector serial. Differences between the user main program
in §4.4 and the one below start only at step (10). Steps that are unchanged from the skeleton program
presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. [P] Initialize MPI

2. Set problem dimensions

3. Set initial values

4. Create cvodes object

5. Allocate internal memory
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6. Specify integration tolerances

7. Set optional inputs

8. Attach linear solver module

9. Set linear solver optional inputs

10. Define the sensitivity problem

•Number of sensitivities (required)

Set Ns = Ns, the number of parameters with respect to which sensitivities are to be computed.

•Problem parameters (optional)

If cvodes is to evaluate the right-hand sides of the sensitivity systems, set p, an array of
Np real parameters upon which the IVP depends. Only parameters with respect to which
sensitivities are (potentially) desired need to be included. Attach p to the user data structure
user data. For example, user data->p = p;

If the user provides a function to evaluate the sensitivity right-hand side, p need not be
specified.

•Parameter list (optional)

If cvodes is to evaluate the right-hand sides of the sensitivity systems, set plist, an array
of Ns integers to specify the parameters p with respect to which solution sensitivities are to
be computed. If sensitivities with respect to the j-th parameter p[j] are desired (0 ≤ j <
Np), set plisti = j, for some i = 0, . . . , Ns − 1.

If plist is not specified, cvodes will compute sensitivities with respect to the first Ns

parameters; i.e., plisti = i (i = 0, . . . , Ns − 1).

If the user provides a function to evaluate the sensitivity right-hand side, plist need not be
specified.

•Parameter scaling factors (optional)

If cvodes is to estimate tolerances for the sensitivity solution vectors (based on tolerances
for the state solution vector) or if cvodes is to evaluate the right-hand sides of the sensitivity
systems using the internal difference-quotient function, the results will be more accurate if
order of magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if pi 6= 0, the value p̄i = |pplistj
|

can be used.

If pbar is not specified, cvodes will use p̄i = 1.0.

If the user provides a function to evaluate the sensitivity right-hand side and specifies toler-
ances for the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user data are arbitrary, but they
must agree with the arguments passed to CVodeSetSensParams below.

11. Set sensitivity initial conditions

Set the Ns vectors yS0[i] of initial values for sensitivities (for i = 0, . . . , Ns −1).

First, create an array of Ns vectors by making the call

[S] yS0 = N VCloneVectorArray Serial(Ns, y0);

[P] yS0 = N VCloneVectorArray Parallel(Ns, y0);

Here the argument y0 serves only to provide the N Vector type for cloning.

Then, for each i = 0, . . . ,Ns −1, load initial values for the i-th sensitivity vector into the structure
defined by:
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[S] NV DATA S(yS0[i])

[P] NV DATA P(yS0[i])

Alternatively, if the initial values for the sensitivity variables are already available in realtype

arrays, create an array of Ns “empty” vectors by making the call

[S] yS0 = N VCloneEmptyVectorArray Serial(Ns, y0);

[P] yS0 = N VCloneEmptyVectorArray Parallel(Ns, y0);

and then attach the realtype array yS0[i] containing the initial values of the i-th sensitivity
vector using

[S] N VSetArrayPointer Serial(yS0 i, yS0[i]);

[P] N VSetArrayPointer Parallel(yS0 i, yS0[i]);

for i = 0, . . . ,Ns −1.

12. Activate sensitivity calculations

Call flag = CVodeSensInit or CVodeSensInit1 to activate forward sensitivity computations and
allocate internal memory for cvodes related to sensitivity calculations (see §5.2.1).

13. Set sensitivity tolerances

Call CVodeSensSStolerances or CVodeSensSVtolerances or CVodeEEtolerances (see §5.2.2).

14. Set sensitivity analysis optional inputs

Call CVodeSetSens* routines to change from their default values any optional inputs that control
the behavior of cvodes in computing forward sensitivities. (See §5.2.5.)

15. Specify rootfinding

16. Advance solution in time

17. Extract sensitivity solution

After each successful return from CVode, the solution of the original IVP is available in the y

argument of CVode, while the sensitivity solution can be extracted into yS (which can be the
same as yS0) by calling one of the routines CVodeGetSens,CVodeGetSens1, CVodeGetSensDky, or
CVodeGetSensDky1 (see §5.2.4).

18. Deallocate memory for solution vector

19. Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors yS0:

[S] N VDestroyVectorArray Serial(yS0, Ns);

[P] N VDestroyVectorArray Parallel(yS0, Ns);

If yS was created from realtype arrays yS i, it is the user’s responsibility to also free the space
for the arrays yS0 i.

20. Free user data structure

21. Free solver memory

22. Free vector specification memory
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5.2 User-callable routines for forward sensitivity analysis

This section describes the cvodes functions, in addition to those presented in §4.5, that are called by
the user to setup and solve a forward sensitivity problem.

5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling CVodeSensInit or CVodeSensInit1,
depending on whether the sensitivity right-hand side function returns all sensitivities at once or one
by one, respectively. The form of the call to each of these routines is as follows:

CVodeSensInit

Call flag = CVodeSensInit(cvode mem, Ns, ism, fS, yS0);

Description The routine CVodeSensInit activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV SIMULTANEOUS or CV STAGGERED:

• In the CV SIMULTANEOUS approach, the state and sensitivity variables
are corrected at the same time. If CV NEWTON was selected as the non-
linear system solution method, this amounts to performing a modified
Newton iteration on the combined nonlinear system;

• In the CV STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

fS (CVSensRhsFn) is the C function which computes all sensitivity ODE right-
hand sides at the same time. For full details see §5.3.

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSensInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeSensInit has an illegal value.

Notes Passing fS=NULL indicates using the default internal difference quotient sensitivity right-
hand side routine.

If an error occurred, CVodeSensInit also sends an error message to the error handler
function.

It is illegal here to use ism = CV STAGGERED1. This option requires a different type for!

fS and can therefore only be used with CVodeSensInit1 (see below).

CVodeSensInit1

Call flag = CVodeSensInit1(cvode mem, Ns, ism, fS1, yS0);

Description The routine CVodeSensInit1 activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.
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Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV SIMULTANEOUS, CV STAGGERED, or CV STAGGERED1:

• In the CV SIMULTANEOUS approach, the state and sensitivity variables
are corrected at the same time. If CV NEWTON was selected as the non-
linear system solution method, this amounts to performing a modified
Newton iteration on the combined nonlinear system;

• In the CV STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

• In the CV STAGGERED1 approach, all corrections are done sequentially,
first for the state variables and then for the sensitivity variables, one
parameter at a time. If the sensitivity variables are not included in
the error control, this approach is equivalent to CV STAGGERED. Note
that the CV STAGGERED1 approach can be used only if the user-provided
sensitivity right-hand side function is of type CVSensRhs1Fn (see §5.3).

fS1 (CVSensRhs1Fn) is the C function which computes the right-hand sides of
the sensitivity ODE, one at a time. For full details see §5.3.

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSensInit1 was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeSensInit1 has an illegal value.

Notes Passing fS1=NULL indicates using the default internal difference quotient sensitivity
right-hand side routine.

If an error occurred, CVodeSensInit1 also sends an error message to the error handler
funciton.

In terms of the problem size N , number of sensitivity vectors Ns, and maximum method order maxord,
the size of the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)NsN

• With CVodeSensSVtolerances: lenrw = lenrw +NsN

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)NsNi

• With CVodeSensSVtolerances: leniw = leniw +NsNi

where Ni is the number of integers in one N Vector.
The routine CVodeSensReInit, useful during the solution of a sequence of problems of same size,

reinitializes the sensitivity-related internal memory. The call to it must follow a call to CVodeSensInit

or CVodeSensInit1 (and maybe a call to CVodeReInit). The number Ns of sensitivities is assumed to
be unchanged since the call to the initialization function. The call to the CVodeSensReInit function
has the form:
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CVodeSensReInit

Call flag = CVodeSensReInit(cvode mem, ism, yS0);

Description The routine CVodeSensReInit reinitializes forward sensitivity computations.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV SIMULTANEOUS, CV STAGGERED, or CV STAGGERED1.

yS0 (N Vector *) a pointer to an array of Ns variables of type N Vector con-
taining the initial values of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS Memory space for sensitivity integration was not allocated through a
previous call to CVodeSensInit.

CV ILL INPUT An input argument to CVodeSensReInit has an illegal value.

CV MEM FAIL A memory allocation request has failed.

Notes All arguments of CVodeSensReInit are the same as those of the functions CVodeSensInit
and CVodeSensInit1.

If an error occurred, CVodeSensReInit also sends a message to the error handler func-
tion.

The value of the input argument ism must be compatible with the type of the sensitivity!

ODE right-hand side function. Thus if the sensitivity module was initialized using
CVodeSensInit, then it is illegal to pass ism = CV STAGGERED1 to CVodeSensReInit.

To deallocate all forward sensitivity-related memory (allocated in a prior call to CVodeSensInit or
CVodeSensInit1), the user must call

CVodeSensFree

Call CVodeSensFree(cvode mem);

Description The function CVodeSensFree frees the memory allocated for forward sensitivity com-
putations by a previous call to CVodeSensInit or CVodeSensInit1.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeSensFree has no return value.

Notes In general, CVodeSensFree need not be called by the user, as it is invoked automatically
by CVodeFree.

After a call to CVodeSensFree, forward sensitivity computations can be reactivated only
by calling CVodeSensInit or CVodeSensInit1 again.

To activate and deactivate forward sensitivity calculations for successive cvodes runs, without having
to allocate and deallocate memory, the following function is provided:

CVodeSensToggleOff

Call CVodeSensToggleOff(cvode mem);

Description The function CVodeSensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments cvode mem (void *) pointer to the memory previously returned by CVodeCreate.

Return value The return value flag of CVodeSensToggle is one of:

CV SUCCESS CVodeSensToggleOff was successful.
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CV MEM NULL cvode mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using CVodeSensReInit).

5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to CVodeSensInit/CVodeSensInit1.

CVodeSensSStolerances

Call flag = CVodeSensSStolerances(cvode mem, reltolS, abstolS);

Description The function CVodeSensSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (realtype*) is a pointer to an array of length Ns containing the scalar
absolute error tolerances, one for each parameter.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS The sensitivity allocation function (CVodeSensInit or CVodeSensInit1)
has not been called.

CV ILL INPUT One of the input tolerances was negative.

CVodeSensSVtolerances

Call flag = CVodeSensSVtolerances(cvode mem, reltolS, abstolS);

Description The function CVodeSensSVtolerances specifies scalar relative tolerance and vector ab-
solute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (N Vector*) is an array of Ns variables of type N Vector. The N Vector

from abstolS[is] specifies the vector tolerances for is-th sensitivity.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS The allocation function for sensitivities has not been called.

CV ILL INPUT The relative error tolerance was negative or an absolute tolerance vector
had a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].

CVodeSensEEtolerances

Call flag = CVodeSensEEtolerances(cvode mem);

Description When CVodeSensEEtolerances is called, cvodes will estimate tolerances for sensitivity
variables based on the tolerances supplied for states variables and the scaling factors p̄.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.



92 Using CVODES for Forward Sensitivity Analysis

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSensEEtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS The sensitivity allocation function has not been called.

5.2.3 CVODES solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function CVode is exactly
the same as in §4.5.5. However, in this case the return value flag can also be one of the following:

CV SRHSFUNC FAIL The sensitivity right-hand side function failed in an unrecoverable manner.

CV FIRST SRHSFUNC ERR The sensitivity right-hand side function failed at the first call.

CV REPTD SRHSFUNC ERR Convergence tests occurred too many times due to repeated recoverable
errors in the sensitivity right-hand side function. This flag will also be
returned if the sensitivity right-hand side function had repeated recoverable
errors during the estimation of an initial step size.

CV UNREC SRHSFUNC ERR The sensitivity right-hand function had a recoverable error, but no recovery
was possible. This failure mode is rare, as it can occur only if the sensitivity
right-hand side function fails recoverably after an error test failed while at
order one.

5.2.4 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to CVodeSensInit/CVodeSensInit1,
or reinitialized by a call to CVSensReInit, then cvodes computes both a solution and sensitivities
at time t. However, CVode will still return only the solution y in yout. Solution sensitivities can be
obtained through one of the following functions:

CVodeGetSens

Call flag = CVodeGetSens(cvode mem, &tret, yS);

Description The function CVodeGetSens returns the sensitivity solution vectors after a successful
return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype *) the time reached by the solver (output).

yS (N Vector *) array of computed forward sensitivity vectors.

Return value The return value flag of CVodeGetSens is one of:

CV SUCCESS CVodeGetSens was successful.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY yS is NULL.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.

The function CVodeGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by CVodeGetSens with k = 0, but may also be
called directly by the user.
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CVodeGetSensDky

Call flag = CVodeGetSensDky(cvode mem, t, k, dkyS);

Description The function CVodeGetSensDky returns derivatives of the sensitivity solution vectors
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivatives.

dkyS (N Vector *) array of Ns vectors containing the derivatives on output. The
space for dkyS must be allocated by the user.

Return value The return value flag of CVodeGetSensDky is one of:

CV SUCCESS CVodeGetSensDky succeeded.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY One of the vectors dkyS is NULL.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetSens1 and CVodeGetSensDky1, defined as follows:

CVodeGetSens1

Call flag = CVodeGetSens1(cvode mem, &tret, is, yS);

Description The function CVodeGetSens1 returns the is-th sensitivity solution vector after a suc-
cessful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype *) the time reached by the solver (output).

is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).

yS (N Vector) the computed forward sensitivity vector.

Return value The return value flag of CVodeGetSens1 is one of:

CV SUCCESS CVodeGetSens1 was successful.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD IS The index is is not in the allowed range.

CV BAD DKY yS is NULL.

CV BAD T The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.

CVodeGetSensDky1

Call flag = CVodeGetSensDky1(cvode mem, t, k, is, dkyS);

Description The function CVodeGetSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.
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t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivative.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyS (N Vector) the vector containing the derivative. The space for dkyS must
be allocated by the user.

Return value The return value flag of CVodeGetSensDky1 is one of:

CV SUCCESS CVodeGetQuadDky1 succeeded.

CV MEM NULL The pointer to cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY dkyS or one of the vectors dkyS[i] is NULL.

CV BAD IS The index is is not in the allowed range.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

5.2.5 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to CVodeSetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in cvodes which are described in detail in the remainder of this section.

CVodeSetSensParams

Call flag = CVodeSetSensParams(cvode mem, p, pbar, plist);

Description The function CVodeSetSensParams specifies problem parameter information for sensi-
tivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

p (realtype *) a pointer to the array of real problem parameters used to
evaluate f(t, y, p). If non-NULL, p must point to a field in the user’s data
structure user data passed to the right-hand side function. (See §5.1).

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components
p[i] to use in estimating the sensitivity equations. If non-NULL, plist

must have all components ≥ 0. (See §5.1).

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV ILL INPUT An argument has an illegal value.

Notes This function must be preceded by a call to CVodeSensInit or CVodeSensInit1.!

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors CVodeSetSensParams NULL

DQ approximation method CVodeSetSensDQMethod centered/0.0
Error control strategy CVodeSetSensErrCon FALSE

Maximum no. of nonlinear iterations CVodeSetSensMaxNonlinIters 3
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CVodeSetSensDQMethod

Call flag = CVodeSetSensDQMethod(cvode mem, DQtype, DQrhomax);

Description The function CVodeSetSensDQMethod specifies the difference quotient strategy in the
case in which the right-hand side of the sensitivity equations are to be computed by
cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

DQtype (int) specifies the difference quotient type. Its value can be CV CENTERED

or CV FORWARD.

DQrhomax (realtype) positive value of the selection parameter used in deciding switch-
ing between a simultaneous or separate approximation of the two terms in
the sensitivity right-hand side.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax ≥ 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.6 for more details.

The default value are DQtype=CV CENTERED and DQrhomax= 0.0.

CVodeSetSensErrCon

Call flag = CVodeSetSensErrCon(cvode mem, errconS);

Description The function CVodeSetSensErrCon specifies the error control strategy for sensitivity
variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errconS (booleantype) specifies whether sensitivity variables are to be included
(TRUE) or not (FALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, errconS is set to FALSE. If errconS=TRUE then both state variables and
sensitivity variables are included in the error tests. If errconS=FALSE then the sensi-
tivity variables are excluded from the error tests. Note that, in any event, all variables
are considered in the convergence tests.

CVodeSetSensMaxNonlinIters

Call flag = CVodeSetSensMaxNonlinIters(cvode mem, maxcorS);

Description The function CVodeSetSensMaxNonlinIters specifies the maximum number of nonlin-
ear solver iterations for sensitivity variables per step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxcorS (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.
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CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 3.

5.2.6 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.

CVodeGetSensNumRhsEvals

Call flag = CVodeGetSensNumRhsEvals(cvode mem, &nfSevals);

Description The function CVodeGetSensNumRhsEvals returns the number of calls to the sensitivity
right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfSevals (long int) number of calls to the sensitivity right-hand side function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes In order to accommodate any of the three possible sensitivity solution methods, the
default internal finite difference quotient functions evaluate the sensitivity right-hand
sides one at a time. Therefore, nfSevals will always be a multiple of the number of
sensitivity parameters (the same as the case in which the user supplies a routine of type
CVSensRhs1Fn).

CVodeGetNumRhsEvalsSens

Call flag = CVodeGetNumRhsEvalsSens(cvode mem, &nfevalsS);

Description The function CVodeGetNumRhsEvalsSEns returns the number of calls to the user’s right-
hand side function due to the internal finite difference approximation of the sensitivity
right-hand sides.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsS (long int) number of calls to the user’s ODE right-hand side function for
the evaluation of sensitivity right-hand sides.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

Table 5.2: Forward sensitivity optional outputs

Optional output Routine name
No. of calls to sensitivity r.h.s. function CVodeGetSensNumRhsEvals

No. of calls to r.h.s. function for sensitivity CVodeGetNumRhsEvalsSens

No. of sensitivity local error test failures CVodeGetSensNumErrTestFails

No. of calls to lin. solv. setup routine for sens. CVodeGetSensNumLinSolvSetups

Error weight vector for sensitivity variables CVodeGetSensErrWeights

No. of sens. nonlinear solver iterations CVodeGetSensNumNonlinSolvIters

No. of sens. convergence failures CVodeGetSensNumNonlinSolvConvFails

No. of staggered nonlinear solver iterations CVodeGetStgrSensNumNonlinSolvIters

No. of staggered convergence failures CVodeGetStgrSensNumNonlinSolvConvFails
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CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity right-hand sides.

CVodeGetSensNumErrTestFails

Call flag = CVodeGetSensNumErrTestFails(cvode mem, &nSetfails);

Description The function CVodeGetSensNumErrTestFails returns the number of local error test
failures for the sensitivity variables that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSetfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the sensitivity variables have been included in the
error test (see CVodeSetSensErrCon in §5.2.5). Even in that case, this counter is not
incremented if the ism=CV SIMULTANEOUS sensitivity solution method has been used.

CVodeGetSensNumLinSolvSetups

Call flag = CVodeGetSensNumLinSolvSetups(cvode mem, &nlinsetupsS);

Description The function CVodeGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if Newton iteration has been used and if either the
ism = CV STAGGERED or the ism = CV STAGGERED1 sensitivity solution method has been
specified (see §5.2.1).

CVodeGetSensStats

Call flag = CVodeGetSensStats(cvode mem, &nfSevals, &nfevalsS, &nSetfails,

&nSetfails, &nlinsetupsS);

Description The function CVodeGetSensStats returns all of the above sensitivity-related solver
statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfSevals (long int) number of calls to the sensitivity right-hand side function.

nfevalsS (long int) number of calls to the ODE right-hand side function for sensi-
tivity evaluations.

nSetfails (long int) number of error test failures.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:
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CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CVodeGetSensErrWeights

Call flag = CVodeGetSensErrWeights(cvode mem, eSweight);

Description The function CVodeGetSensErrWeights returns the sensitivity error weight vectors at
the current time. These are the reciprocals of the Wi of (2.7) for the sensitivity variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eSweight (N Vector *) pointer to the array of error weight vectors.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate memory for eweightS.

CVodeGetSensNumNonlinSolvIters

Call flag = CVodeGetSensNumNonlinSolvIters(cvode mem, &nSniters);

Description The function CVodeGetSensNumNonlinSolvIters returns the number of nonlinear iter-
ations performed for sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was CV STAGGERED or CV STAGGERED1 (see
§5.2.1).

In the CV STAGGERED1 case, the value of nSniters is the sum of the number of nonlinear
iterations performed for each sensitivity equation. These individual counters can be
obtained through a call to CVodeGetStgrSensNumNonlinSolvIters (see below).

CVodeGetSensNumNonlinSolvConvFails

Call flag = CVodeGetSensNumNonlinSolvConvFails(cvode mem, &nSncfails);

Description The function CVodeGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.
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Notes This counter is incremented only if ism was CV STAGGERED or CV STAGGERED1 (see
§5.2.1).

In the CV STAGGERED1 case, the value of nSncfails is the sum of the number of non-
linear convergence failures that occurred for each sensitivity equation. These individual
counters can be obtained through a call to CVodeGetStgrSensNumNonlinConvFails

(see below).

CVodeGetSensNonlinSolvStats

Call flag = CVodeGetSensNonlinSolvStats(cvode mem, &nSniters, &nSncfails);

Description The function CVodeGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSniters (long int) number of nonlinear iterations performed.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CVodeGetStgrSensNumNonlinSolvIters

Call flag = CVodeGetStgrSensNumNonlinSolvIters(cvode mem, nSTGR1niters);

Description The function CVodeGetStgrSensNumNonlinSolvIters returns the number of nonlinear
(functional or Newton) iterations performed for each sensitivity equation separately, in
the CV STAGGERED1 case.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSTGR1niters (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear iterations performed for each sensitivity system indi-
vidually.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate space for nSTGR1niters. !

CVodeGetStgrSensNumNonlinSolvConvFails

Call flag = CVodeGetStgrSensNumNonlinSolvConvFails(cvode mem, nSTGR1ncfails);

Description The function CVodeGetStgrSensNumNonlinSolvConvFails returns the number of non-
linear convergence failures that have occurred for each sensitivity equation separately,
in the CV STAGGERED1 case.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSTGR1ncfails (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear convergence failures for each sensitivity system indi-
vidually.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.
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CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate space for nSTGR1ncfails.!

5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using cvodes

for forward sensitivity analysis, the user has the option of providing a routine that calculates the
right-hand side of the sensitivity equations (2.11).

By default, cvodes uses difference quotient approximation routines for the right-hand sides of the
sensitivity equations. However, cvodes allows the option for user-defined sensitivity right-hand side
routines (which also provides a mechanism for interfacing cvodes to routines generated by automatic
differentiation).

5.3.1 Sensitivity equations right-hand side (all at once)

If the CV SIMULTANEOUS or CV STAGGERED approach was selected in the call to CVodeSensInit or
CVodeSensInit1, the user may provide the right-hand sides of the sensitivity equations (2.11), for all
sensitivity parameters at once, through a function of type CVSensRhsFn defined by:

CVSensRhsFn

Definition typedef int (*CVSensRhsFn)(int Ns, realtype t,

N Vector y, N Vector ydot,

N Vector *yS, N Vector *ySdot,

void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the sensitivity right-hand side for all sensitivity equations at
once. It must compute the vectors (∂f/∂y)si(t)+(∂f/∂pi) and store them in ySdot[i].

Arguments t is the current value of the independent variable.

y is the current value of the state vector, y(t).

ydot is the current value of the right-hand side of the state equations.

yS contains the current values of the sensitivity vectors.

ySdot is the output of CVSensRhsFn. On exit it must contain the sensitivity right-
hand side vectors.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2 are N Vectors of length N which can be used as temporary storage.

Return value A CVSensRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV SRHSFUNC FAIL is re-
turned).

Notes A sensitivity right-hand side function of type CVSensRhsFn is not compatible with the!

CV STAGGERED1 approach.

Allocation of memory for ySdot is handled within cvodes.

There are two situations in which recovery is not possible even if CVSensRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVSensRhsFn (in which case cvodes returns CV FIRST SRHSFUNC ERR). The other
is when a recoverable error is reported by CVSensRhsFn after an error test failure,
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while the linear multistep method order is equal to 1 (in which case cvodes returns
CV UNREC SRHSFUNC ERR).

5.3.2 Sensitivity equations right-hand side (one at a time)

Alternatively, the user may provide the sensitivity right-hand sides, one sensitivity parameter at a
time, through a function of type CVSensRhs1Fn. Note that a sensitivity right-hand side function of
type CVSensRhs1Fn is compatible with any valid value of the argument ism to CVodeSensInit and
CVodeSensInit1, and is required if ism = CV STAGGERED1 in the call to CVodeSensInit1. The type
CVSensRhs1Fn is defined by

CVSensRhs1Fn

Definition typedef int (*CVSensRhs1Fn)(int Ns, realtype t,

N Vector y, N Vector ydot,

int iS, N Vector yS, N Vector ySdot,

void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the sensitivity right-hand side for one sensitivity equation at a
time. It must compute the vector (∂f/∂y)si(t) + (∂f/∂pi) for i = iS and store it in
ySdot.

Arguments t is the current value of the independent variable.

y is the current value of the state vector, y(t).

ydot is the current value of the right-hand side of the state equations.

iS is the index of the parameter for which the sensitivity right-hand side must be
computed (0 ≤ iS < Ns).

yS contains the current value of the iS-th sensitivity vector.

ySdot is the output of CVSensRhs1Fn. On exit it must contain the iS-th sensitivity
right-hand side vector.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2 are N Vectors of length N which can be used as temporary storage.

Return value A CVSensRhs1Fn should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and CV SRHSFUNC FAIL is
returned).

Notes Allocation of memory for ySdot is handled within cvodes.

There are two situations in which recovery is not possible even if CVSensRhs1Fn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVSensRhs1Fn (in which case cvodes returns CV FIRST SRHSFUNC ERR). The other
is when a recoverable error is reported by CVSensRhs1Fn after an error test failure,
while the linear multistep method order equal to 1 (in which case cvodes returns
CV UNREC SRHSFUNC ERR).

5.4 Integration of quadrature equations depending on forward
sensitivities

cvodes provides support for integration of quadrature equations that depends not only on the state
variables but also on forward sensitivities.
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The following is an overview of the sequence of calls in a user’s main program in this situation.
Steps that are unchanged from the skeleton program presented in §5.1 are grayed out.

1. [P] Initialize MPI

2. Set problem dimensions

3. Set vectors of initial values

4. Create cvodes object

5. Allocate internal memory

6. Set optional inputs

7. Attach linear solver module

8. Set linear solver optional inputs

9. Define the sensitivity problem

10. Set sensitivity initial conditions

11. Activate sensitivity calculations

12. Set sensitivity analysis optional inputs

13. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

14. Initialize sensitivity-dependent quadrature integration

Call CVodeQuadSensInit to specify the quadrature equation right-hand side function and to
allocate internal memory related to quadrature integration. See §5.4.1 for details.

15. Set optional inputs for sensitivity-dependent quadrature integration

Call CVodeSetQuadSensErrCon to indicate whether or not quadrature variables should be used in
the step size control mechanism. If so, one of the CVodeQuadSens*tolerances functions must be
called to specify the integration tolerances for quadrature variables. See §5.4.4 for details.

16. Advance solution in time

17. Extract sensitivity-dependent quadrature variables

Call CVodeGetQuadSens, CVodeGetQuadSens1, CVodeGetQuadSensDky or CVodeGetQuadSensDky1
to obtain the values of the quadrature variables or their derivatives at the current time. See §5.4.3
for details.

18. Get optional outputs

19. Extract sensitivity solution

20. Get sensitivity-dependent quadrature optional outputs

Call CVodeGetQuadSens* functions to obtain desired optional output related to the integration of
sensitivity-dependent quadratures. See §5.4.5 for details.

21. Deallocate memory for solutions vector

22. Deallocate memory for sensitivity vectors
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23. Deallocate memory for sensitivity-dependent quadrature variables

24. Free solver memory

25. [P] Finalize MPI

Note: CVodeQuadSensInit (step 14 above) can be called and quadrature-related optional inputs (step
15 above) can be set, anywhere between steps 9 and 16.

5.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function CVodeQuadSensInit activates integration of quadrature equations depending on sen-
sitivities and allocates internal memory related to these calculations. The form of the call to this
function is as follows:

CVodeQuadSensInit

Call flag = CVodeQuadSensInit(cvode mem, rhsQS, yQS0);

Description The function CVodeQuadSensInit provides required problem specifications, allocates
internal memory, and initializes quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

rhsQS (CVQuadSensRhsFn) is the C function which computes fQS , the right-hand
side of the sensitivity-dependent quadrature equations (for full details see
§5.4.6).

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadra-
tures.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadSensInit was successful.

CVODE MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CVODE MEM FAIL A memory allocation request failed.

CV NO SENS The sensitivities were not initialized by a prior call to CVodeSensInit or
CVodeSensInit1.

CV ILL INPUT The parameter yQS0 is NULL.

Notes Before calling CVodeQuadSensInit, the user must enable the sensitivites by calling !

CVodeSensInit or CVodeSensInit1.

If an error occurred, CVodeQuadSensInit also sends an error message to the error
handler function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If CVodeQuadSensSVtolerances is called: lenrw = lenrw +NqNs

and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If CVodeQuadSensSVtolerances is called: leniw = leniw +NqNs

The function CVodeQuadSensReInit, useful during the solution of a sequence of problems of same
size, reinitializes quadrature-related internal memory and must follow a call to CVodeQuadSensInit.
The number Nq of quadratures as well as the number Ns of sensitivities are assumed to be unchanged
from the prior call to CVodeQuadSensInit. The call to the CVodeQuadSensReInit function has the
form:
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CVodeQuadSensReInit

Call flag = CVodeQuadSensReInit(cvode mem, yQS0);

Description The function CVodeQuadSensReInit provides required problem specifications and reini-
tializes the sensitivity-dependent quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadra-
tures.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadSensReInit was successful.

CVODE MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV NO SENS Memory space for the sensitivity calculation was not allocated by a
prior call to CVodeSensInit or CVodeSensInit1.

CV NO QUADSENS Memory space for the sensitivity quadratures integration was not al-
located by a prior call to CVodeQuadSensInit.

CV ILL INPUT The parameter yQS0 is NULL.

Notes If an error occurred, CVodeQuadSensReInit also sends an error message to the error
handler function.

CVodeQuadSensFree

Call CVodeQuadSensFree(cvode mem);

Description The function CVodeQuadSensFree frees the memory allocated for sensitivity quadrature
integration.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeQuadSensFree has no return value.

Notes In general, CVodeQuadSensFree need not be called by the user, as it is invoked auto-
matically by CVodeFree.

5.4.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the
same as in §4.5.5. However, in this case the return value flag can also be one of the following:

CV QSRHSFUNC ERR The sensitivity quadrature right-hand side function failed in an unrecover-
able manner.

CV FIRST QSRHSFUNC ERR The sensitivity quadrature right-hand side function failed at the first call.

CV REPTD QSRHSFUNC ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This flag will also
be returned if the quadrature right-hand side function had repeated recov-
erable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).

5.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to CVodeQuadSensInit, or reini-
tialized by a call to CVodeQuadSensReInit, then cvodes computes a solution, sensitivity vectors, and
quadratures depending on sensitivities at time t. However, CVode will still return only the solution y.
Sensitivity-dependent quadratures can be obtained using one of the following functions:
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CVodeGetQuadSens

Call flag = CVodeGetQuadSens(cvode mem, &tret, yQS);

Description The function CVodeGetQuadSens returns the quadrature sensitivities solution vectors
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).

yQS (N Vector *) array of Ns computed sensitivity-dependent quadrature vec-
tors.

Return value The return value flag of CVodeGetQuadSens is one of:

CV SUCCESS CVodeGetQuadSens was successful.

CVODE MEM NULL cvode mem was NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD DKY yQS or one of the yQS[i] is NULL.

The function CVodeGetQuadSensDky computes the k-th derivatives of the interpolating polynomials for
the sensitivity-dependent quadrature variables at time t. This function is called by CVodeGetQuadSens

with k = 0, but may also be called directly by the user.

CVodeGetQuadSensDky

Call flag = CVodeGetQuadSensDky(cvode mem, t, k, dkyQS);

Description The function CVodeGetQuadSensDky returns derivatives of the quadrature sensitivities
solution vectors after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) the time at which information is requested. The time t must
fall within the interval defined by the last successful step taken by cvodes.

k (int) order of the requested derivative.

dkyQS (N Vector *) array of Ns the vector containing the derivatives on output.
This vector array must be allocated by the user.

Return value The return value flag of CVodeGetQuadSensDky is one of:

CV SUCCESS CVodeGetQuadSensDky succeeded.

CVODE MEM NULL The pointer to cvode mem was NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD DKY dkyQS or one of the vectors dkyQS[i] is NULL.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetQuadSens1 and CVodeGetQuadSensDky1, defined as follows:

CVodeGetQuadSens1

Call flag = CVodeGetQuadSens1(cvode mem, &tret, is, yQS);

Description The function CVodeGetQuadSens1 returns the is-th sensitivity of quadratures after a
successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).

is (int) specifies which sensitivity vector is to be returned (0 ≤ is < Ns).
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yQS (N Vector) the computed sensitivity-dependent quadrature vector.

Return value The return value flag of CVodeGetQuadSens1 is one of:

CV SUCCESS CVodeGetQuadSens1 was successful.

CVODE MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD IS The index is is not in the allowed range.

CV BAD DKY yQS is NULL.

CVodeGetQuadSensDky1

Call flag = CVodeGetQuadSensDky1(cvode mem, t, k, is, dkyQS);

Description The function CVodeGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivative.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyQS (N Vector) the vector containing the derivative on output. The space for
dkyQS must be allocated by the user.

Return value The return value flag of CVodeGetQuadSensDky1 is one of:

CV SUCCESS CVodeGetQuadDky1 succeeded.

CVODE MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD DKY dkyQS is NULL.

CV BAD IS The index is is not in the allowed range.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

5.4.4 Optional inputs for sensitivity-dependent quadrature integration

cvodes provides the following optional input functions to control the integration of sensitivity-
dependent quadrature equations.

CVodeSetQuadSensErrCon

Call flag = CVodeSetQuadSensErrCon(cvode mem, errconQS)

Description The function CVodeSetQuadSensErrCon specifies whether or not the quadrature vari-
ables are to be used in the step size control mechanism. If they are, the user must call
one of the functions CVodeQuadSensSStolerances, CVodeQuadSensSVtolerances, or
CVodeQuadSensEEtolerances to specify the integration tolerances for the quadrature
variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errconQS (booleantype) specifies whether sensitivity quadrature variables are to be
included (TRUE) or not (FALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:
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CV SUCCESS The optional value has been successfully set.

CVODE MEM NULL cvode mem is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes By default, errconQS is set to FALSE.

It is illegal to call CVodeSetQuadSensErrCon before a call to CVodeQuadSensInit. !

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

CVodeQuadSensSStolerances

Call flag = CVodeQuadSensSVtolerances(cvode mem, reltolQS, abstolQS);

Description The function CVodeQuadSensSStolerances specifies scalar relative and absolute toler-
ances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (realtype*) is a pointer to an array containing the Ns scalar absolute error
tolerances.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV ILL INPUT One of the input tolerances was negative.

CVodeQuadSensSVtolerances

Call flag = CVodeQuadSensSVtolerances(cvode mem, reltolQS, abstolQS);

Description The function CVodeQuadSensSVtolerances specifies scalar relative and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (N Vector*) is an array of Ns variables of type N Vector. The N Vector

abstolS[is] specifies the vector tolerances for is-th quadrature sensitivity.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV NO QUAD Quadrature integration was not initialized.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV ILL INPUT One of the input tolerances was negative.

CVodeQuadSensEEtolerances

Call flag = CVodeQuadSensEEtolerances(cvode mem);

Description A call to the function CVodeQuadSensEEtolerances specifies that the tolerances for the
sensitivity-dependent quadratures should be estimated from those provided for the pure
quadrature variables.
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Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes When CVodeQuadSensEEtolerances is used, before calling CVode, integration of pure
quadratures must be initialized (see 4.7.1) and tolerances for pure quadratures must be
also specified (see 4.7.4).

5.4.5 Optional outputs for sensitivity-dependent quadrature integration

cvodes provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadSensNumRhsEvals

Call flag = CVodeGetQuadSensNumRhsEvals(cvode mem, &nrhsQSevals);

Description The function CVodeGetQuadSensNumRhsEvals returns the number of calls made to the
user’s quadrature right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nrhsQSevals (long int) number of calls made to the user’s rhsQS function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

CVodeGetQuadSensNumErrTestFails

Call flag = CVodeGetQuadSensNumErrTestFails(cvode mem, &nQSetfails);

Description The function CVodeGetQuadSensNumErrTestFails returns the number of local error
test failures due to quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

CVodeGetQuadSensErrWeights

Call flag = CVodeGetQuadSensErrWeights(cvode mem, eQSweight);

Description The function CVodeGetQuadSensErrWeights returns the quadrature error weights at
the current time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eQSweight (N Vector *) array of quadrature error weight vectors at the current time.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.
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CVODE MEM NULL The cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

Notes The user must allocate memory for eQSweight. !

If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadSensErrCon with errconQS = TRUE), then this function does not set the
eQSweight array.

CVodeGetQuadSensStats

Call flag = CVodeGetQuadSensStats(cvode mem, &nrhsQSevals, &nQSetfails);

Description The function CVodeGetQuadSensStats returns the cvodes integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nrhsQSevals (long int) number of calls to the user’s rhsQS function.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CVODE MEM NULL the cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

5.4.6 User-supplied function for sensitivity-dependent quadrature integra-
tion

For the integration of sensitivity-dependent quadrature equations, the user must provide a function
that defines the right-hand side of those quadrature equations. For the sensitivities of quadratures
(2.9) with integrand q, the appropriate right-hand side functions are given by: q̄i = qysi + qpi

. This
user function must be of type CVQuadSensRhsFn defined as follows:

CVQuadSensRhsFn

Definition typedef int (*CVQuadSensRhsFn)(int Ns, realtype t, N Vector y,

N Vector yS, N Vector yQdot,

N Vector *rhsvalQS, void *user data,

N Vector tmp1, N Vector tmp2)

Purpose This function computes the sensitivity quadrature equation right-hand side for a given
value of the independent variable t and state vector y.

Arguments Ns is the number of sensitivity vectors.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yS is an array of Ns variables of type N Vector containing the dependent sen-
sitivity vectors si.

yQdot is the current value of the quadrature right-hand side, q.

rhsvalQS array of Ns vectors to contain the right-hand sides.

user data is the user data pointer passed to CVodeSetUserData.

tmp1

tmp2 are N Vectors which can be used as temporary storage.

Return value A CVQuadSensRhsFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV QRHS FAIL is returned).
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Notes Allocation of memory for rhsvalQS is automatically handled within cvodes.

Here y is of type N Vector and yS is a pointer to an array containing Ns vectors of
type N Vector. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each nvector implementation).
For the sake of computational efficiency, the vector functions in the two nvector

implementations provided with cvodes do not perform any consistency checks with
respect to their N Vector arguments (see §7.1 and §7.2).

There are two situations in which recovery is not possible even if CVQuadSensRhsFn

function returns a recoverable error flag. One is when this occurs at the very first call
to the CVQuadSensRhsFn (in which case cvodes returns CV FIRST QSRHSFUNC ERR). The
other is when a recoverable error is reported by CVQuadSensRhsFn after an error test
failure, while the linear multistep method order is equal to 1 (in which case cvodes

returns CV UNREC QSRHSFUNC ERR).

5.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of cvodes

may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection. A comparison of the solver diagnostics
reported for cvsdenx and the second run of the cvsfwddenx example in [27] indicates that this may
not always be the case.

The short explanation of this behavior is that the step size selection implemented by the er-
ror control mechanism in cvodes is based on the magnitude of the correction calculated by the
nonlinear solver. As mentioned in §5.2.1, even with partial error control selected (in the call to
CVodeSetSensErrCon), the sensitivity variables are included in the convergence tests of the nonlinear
solver.

When using the simultaneous corrector method (§2.6), the nonlinear system that is solved at
each step involves both the state and sensitivity equations. In this case, it is easy to see how the
sensitivity variables may affect the convergence rate of the nonlinear solver and therefore the step size
selection. The case of the staggered corrector approach is more subtle. After all, in this case (ism
= CV STAGGERED or CV STAGGERED1 in the call to CVodeSensInit/CVodeSensInit1), the sensitivity
variables at a given step are computed only once the solver for the nonlinear state equations has
converged. However, if the nonlinear system corresponding to the sensitivity equations has convergence
problems, cvodes will attempt to improve the initial guess by reducing the step size in order to provide
a better prediction of the sensitivity variables. Moreover, even if there are no convergence failures in
the solution of the sensitivity system, cvodes may trigger a call to the linear solver’s setup routine
which typically involves reevaluation of Jacobian information (Jacobian approximation in the case of
cvdense and cvband, or preconditioner data in the case of the Krylov solvers). The new Jacobian
information will be used by subsequent calls to the nonlinear solver for the state equations and, in
this way, potentially affect the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods however, these situations can be identified by carefully monitoring the diagnostic information
provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given
system of ODEs on the step size selection (through the mechanisms described above) is problem-
dependent and can therefore lead to either an increase or decrease of the total number of steps that
cvodes takes to complete the simulation. At first glance, one would expect that the impact of the
sensitivity variables, if any, would be in the direction of increasing the step size and therefore reducing
the total number of steps. The argument for this is that the presence of the sensitivity variables in
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the convergence test of the nonlinear solver can only lead to additional iterations (and therefore a
smaller final iteration error), or to additional calls to the linear solver setup routine (and therefore
more up-to-date Jacobian information), both of which will lead to larger steps being taken by cvodes.
However, this is true only locally. Overall, a larger integration step taken at a given time may lead
to step size reductions at later times, due to either nonlinear solver convergence failures or error test
failures.





Chapter 6

Using CVODES for Adjoint
Sensitivity Analysis

This chapter describes the use of cvodes to compute sensitivities of derived functions using adjoint
sensitivity analysis. As mentioned before, the adjoint sensitivity module of cvodes provides the in-
frastructure for integrating backward in time any system of ODEs that depends on the solution of
the original IVP, by providing various interfaces to the main cvodes integrator, as well as several
supporting user-callable functions. For this reason, in the following sections we refer to the backward
problem and not to the adjoint problem when discussing details relevant to the ODEs that are inte-
grated backward in time. The backward problem can be the adjoint problem (2.19) or (2.22), and
can be augmented with some quadrature differential equations.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in Chapter 4.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of cvodes. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §4.4, most steps are independent of the nvector

implementation used; where this is not the case, usage specifications are given for the two imple-
mentations provided with cvodes: steps marked [P] correspond to nvector parallel, while steps
marked [S] correspond to nvector serial. Steps that are unchanged from the skeleton program
presented in §4.4 are grayed out.

1. Include necessary header files

The cvodes.h header file also defines additional types, constants, and function prototypes for the
adjoint sensitivity module user-callable functions. In addition, the main program should include
an nvector implementation header file (nvector serial.h or nvector parallel.h for the two
implementations provided with cvodes) and, if Newton iteration was selected, the main header
file of the desired linear solver module.

2. [P] Initialize MPI

Forward problem

3. Set problem dimensions for the forward problem
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4. Set initial conditions for the forward problem

5. Create cvodes object for the forward problem

6. Allocate internal memory for the forward problem

7. Specify integration tolerances for forward problem

8. Set optional inputs for the forward problem

9. Attach linear solver module for the forward problem

10. Set linear solver optional inputs for the forward problem

11. Allocate space for the adjoint computation

Call CVodeAdjInit() to allocate memory for the combined forward-backward problem (see §6.2.1
for details). This call requires Nd, the number of steps between two consecutive checkpoints.
CVodeAdjInit also specifies the type of interpolation used (see §2.7.1).

12. Integrate forward problem

Call CVodeF, a wrapper for the cvodes main integration function CVode, either in CV NORMAL

mode to the time tout or in CV ONE STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.2)). The final value of tret is then the maximum allowable
value for the endpoint T of the backward problem.

Backward problem(s)

13. Set problem dimensions for the backward problem

[S] set NB, the number of variables in the backward problem
[P] set NB and NBlocal

14. Set final values for the backward problem

Set the endpoint time tB0 = T and the corresponding vector yB0 at which the backward problem
starts.

15. Create the backward problem

Call CVodeCreateB, a wrapper for CVodeCreate, to create the cvodes memory block for the new
backward problem. Unlike CVodeCreate, the function CVodeCreateB does not return a pointer
to the newly created memory block (see §6.2.3). Instead, this pointer is attached to the internal
adjoint memory block (created by CVodeAdjInit) and returns an identifier called which that the
user must later specify in any actions on the newly created backward problem.

16. Allocate memory for the backward problem

Call CVodeInitB (or CVodeInitBS, when the backward problem depends on the forward sensi-
tivities). The two functions are actually wrappers for CVodeInit and allocate internal memory,
specify problem data, and initialize cvodes at tB0 for the backward problem (see §6.2.3).

17. Specify integration tolerances for backward problem

Call CVodeSStolerancesB(...) or CVodeSVtolerancesB(...) to specify a scalar relative tol-
erance and scalar absolute tolerance or scalar relative tolerance and a vector of absolute toler-
ances, respectively. The functions are wrappers for CVodeSStolerances and CVodeSVtolerances,
but they require an extra argument which, the identifier of the backward problem returned by
CVodeCreateB. See §6.2.4 for more information.
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18. Set optional inputs for the backward problem

Call CVodeSet*B functions to change from their default values any optional inputs that control
the behavior of cvodes. Unlike their counterparts for the forward problem, these functions take
an extra argument which, the identifier of the backward problem returned by CVodeCreateB (see
§6.2.8).

19. Attach linear solver module for the backward problem

Initialize the linear solver module for the backward problem by calling the appropriate wrap-
per function: CVDenseB, CVBandB, CVLapackDenseB, CVLapackBandB, CVDiagB, CVodeSpgmrB,
CVodeSpbcgB, or CVodeSptfqmrB (see §6.2.5). Note that it is not required to use the same linear
solver module for both the forward and the backward problems; for example, the forward problem
could be solved with the cvdense linear solver and the backward problem with cvspgmr.

20. Initialize quadrature calculation

If additional quadrature equations must be evaluated, call CVodeQuadInitB or CVodeQuadInitBS
(if quadrature depends also on the forward sensitivities) as shown in §6.2.10.1. These functions are
wrappers around CVodeQuadInit and can be used to initialize and allocate memory for quadra-
ture integration. Optionally, call CVodeSetQuad*B functions to change from their default values
optional inputs that control the integration of quadratures during the backward phase.

21. Integrate backward problem

Call CVodeB, a second wrapper around the cvodes main integration function CVode, to integrate
the backward problem from tB0 (see §6.2.6). This function can be called either in CV NORMAL or
CV ONE STEP mode. Typically, CVodeB will be called in CV NORMAL mode with an end time equal
to the initial time t0 of the forward problem.

22. Extract quadrature variables

If applicable, call CVodeGetQuadB, a wrapper around CVodeGetQuad, to extract the values of the
quadrature variables at the time returned by the last call to CVodeB. See §6.2.10.2.

23. Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to CVodeFree to free the cvodes

memory block for the forward problem. If additional forward integration(s) are to be done for
this problem, a call to CVodeAdjFree (see §6.2.1) may be made to free and deallocate memory
allocated for the backward problems.

24. Finalize MPI

[P] If MPI was initialized by the user main program, call MPI Finalize();.

The above user interface to the adjoint sensitivity module in cvodes was motivated by the desire
to keep it as close as possible in look and feel to the one for ODE IVP integration. Note that if steps
(13)-(22) are not present, a program with the above structure will have the same functionality as one
described in §4.4 for integration of ODEs, albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps
(13)-(22) above for each successive backward problem. In the process, each call to CVodeCreateB

creates a new value of the identifier which.
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6.2 User-callable functions for adjoint sensitivity analysis

6.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to CVodeF, memory for the combined
forward-backward problem must be allocated by a call to the function CVodeAdjInit. The form of
the call to this function is

CVodeAdjInit

Call flag = CVodeAdjInit(cvode mem, Nd, interpType);

Description The function CVodeAdjInit updates cvodes memory block by allocating the internal
memory needed for backward integration. Space is allocated for the Nd = Nd interpo-
lation data points, and a linked list of checkpoints is initialized.

Arguments cvode mem (void *) is the pointer to the cvodes memory block returned by a previ-
ous call to CVodeCreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be CV POLYNOMIAL

or CV HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §2.7.1).

Return value The return value flag of CVodeAdjInit is one of:

CV SUCCESS CVodeAdjInit was successful.

CV MEM FAIL A memory allocation request has failed.

CV MEM NULL cvode mem was NULL.

CV ILL INPUT One of the parameters was invalid: Nd was not positive or interpType

is not one of the CV POLYNOMIAL or CV HERMITE.

Notes The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. CVodeAdjInit attempts to allocate
space for (2Nd+3) variables of type N Vector.

If an error occurred, CVodeAdjInit also sends a message to the error handler function.

CVodeAdjFree

Call CVodeAdjFree(cvode mem);

Description The function CVodeAdjFree frees the memory related to backward integration allocated
by a previous call to CVodeAdjInit.

Arguments The only argument is the cvodes memory block pointer returned by a previous call to
CVodeCreate.

Return value The function CVodeAdjFree has no return value.

Notes This function frees all memory allocated by CVodeAdjInit. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as the
cvodes memory for the backward integration phase. In general, CVodeAdjFree need
not be called by the user, as it is invoked automatically by CVodeFree.

6.2.2 Forward integration function

The function CVodeF is very similar to the cvodes function CVode (see §4.5.5) in that it integrates
the solution of the forward problem and returns the solution in y. At the same time, however, CVodeF
stores checkpoint data every Nd integration steps. CVodeF can be called repeatedly by the user. The
call to this function has the form
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CVodeF

Call flag = CVodeF(cvode mem, tout, yret, &tret, itask, &ncheck);

Description The function CVodeF integrates the forward problem over an interval in t and saves
checkpointing data.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tout (realtype) the next time at which a computed solution is desired.

yret (N Vector) the computed solution vector y.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next step. The CV NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to
return an approximate value of y(tout). The CV ONE STEP option tells the
solver to just take one internal step and return the solution at the point
reached by that step.

ncheck (int) the number of (internal) checkpoints stored so far.

Return value On return, CVodeF returns the vector yret and a corresponding independent variable
value t = tret, such that yret is the computed value of y(t). Additionally, it returns
in ncheck the number of internal checkpoints saved; the total number of checkpoint
intervals is ncheck+1. The return value flag (of type int) will be one of the following.
For more details see §4.5.5.

CV SUCCESS CVodeF succeeded.

CV TSTOP RETURN CVodeF succeeded by reaching the optional stopping point.

CV NO MALLOC The function CVodeInit has not been previously called.

CV ILL INPUT One of the inputs to CVodeF is illegal.

CV TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Error test failures occurred too many times during one internal time
step or occurred with |h| = hmin.

CV CONV FAILURE Convergence test failures occurred too many times during one inter-
nal time step or occurred with |h| = hmin.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed (in an attempt to allocate
space for a new checkpoint).

Notes All failure return values are negative and therefore a test flag< 0 will trap all CVodeF
failures.

At this time, CVodeF stores checkpoint information in memory only. Future versions
will provide for a safeguard option of dumping checkpoint data into a temporary file
as needed. The data stored at each checkpoint is basically a snapshot of the cvodes

internal memory block and contains enough information to restart the integration from
that time and to proceed with the same step size and method order sequence as during
the forward integration.

In addition, CVodeF also stores interpolation data between consecutive checkpoints so
that, at the end of this first forward integration phase, interpolation information is
already available from the last checkpoint forward. In particular, if no checkpoints were
necessary, there is no need for the second forward integration phase.

It is illegal to change the integration tolerances between consecutive calls to CVodeF, as !

this information is not captured in the checkpoint data.
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6.2.3 Backward problem initialization functions

The functions CVodeCreateB and CVodeInitB (or CVodeInitBS) must be called in the order listed.
They instantiate a cvodes solver object, provide problem and solution specifications, and allocate
internal memory for the backward problem.

CVodeCreateB

Call flag = CVodeCreateB(cvode mem, lmmB, iterB, &which);

Description The function CVodeCreateB instantiates a cvodes solver object and specifies the solu-
tion method for the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

lmmB (int) specifies the linear multistep method and may be one of two possible
values: CV ADAMS or CV BDF.

iterB (int) specifies the type of nonlinear solver iteration and may be either
CV NEWTON or CV FUNCTIONAL.

which (int) contains the identifier assigned by cvodes for the newly created back-
ward problem. Any call to CVode*B functions requires such an identifier.

Return value The return value flag (of type int) is one of:

CV SUCCESS The call to CVodeCreateB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

There are two initialization functions for the backward problem – one for the case when the
backward problem does not depend on the forward sensitivities, and one for the case when it does.
These two functions are described next.

The function CVodeInitB initializes the backward problem when it does not depend on the forward
sensitivities. It is essentially a wrapper for CVodeInit with some particularization for backward
integration, as described below.

CVodeInitB

Call flag = CVodeInitB(cvode mem, which, rhsB, tB0, yB0);

Description The function CVodeInitB provides problem specification, allocates internal memory,
and initializes the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

rhsB (CVRhsFnB) is the C function which computes fB, the right-hand side of
the backward ODE problem. This function has the form rhsB(t, y, yB,

yBdot, user dataB) (for full details see §6.3.1).

tB0 (realtype) specifies the endpoint T where final conditions are provided
for the backward problem, normally equal to the endpoint of the forward
integration.

yB0 (N Vector) is the final value of the backward problem.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInitB was successful.

CV NO MALLOC The function CVodeInit has not been previously called.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV BAD TB0 The final time tB0 was outside the interval over which the forward prob-
lem was solved.
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CV ILL INPUT The parameter which represented an invalid identifier, or either yB0 or
rhsB was NULL.

Notes The memory allocated by CVodeInitB is deallocated by the function CVodeAdjFree.

For the case when backward problem also depends on the forward sensitivities, user must call
CVodeInitBS instead of CVodeInitB. Only the third argument of each function differs between these
two functions.

CVodeInitBS

Call flag = CVodeInitBS(cvode mem, which, rhsBS, tB0, yB0);

Description The function CVodeInitBS provides problem specification, allocates internal memory,
and initializes the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

rhsBS (CVRhsFnBS) is the C function which computes fB, the right-hand side of
the backward ODE problem. This function has the form rhsBS(t, y, yS,

yB, yBdot, user dataB) (for full details see §6.3.2).

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the final value of the backward problem.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInitB was successful.

CV NO MALLOC The function CVodeInit has not been previously called.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV BAD TB0 The final time tB0 was outside the interval over which the forward prob-
lem was solved.

CV ILL INPUT The parameter which represented an invalid identifier, either yB0 or
rhsBS was NULL, or sensitivities were not active during the forward inte-
gration.

Notes The memory allocated by CVodeInitBS is deallocated by the function CVodeAdjFree.

The function CVodeReInitB reinitializes cvodes for the solution of a series of backward prob-
lems, each identified by a value of the parameter which. CVodeReInitB is essentially a wrapper for
CVodeReInit, and so all details given for CVodeReInit in §4.5.9 apply. Also note that CVodeReInitB
can be called to reinitialize the backward problem even it has been initialized with the sensitivity-
dependent version CVodeInitBS. The call to the CVodeReInitB function has the form

CVodeReInitB

Call flag = CVodeReInitB(cvode mem, which, tB0, yB0)

Description The function CVodeReInitB reinitializes cvodes the backward problem.

Arguments cvode mem (void *) pointer to cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the final value of the backward problem.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInitB was successful.

CV NO MALLOC The function CVodeInit has not been previously called.
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CV MEM NULL The cvode mem memory block pointer was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV BAD TB0 The final time tB0 is outside the interval over which the forward problem
was solved.

CV ILL INPUT The parameter which represented an invalid identifier, or yB0 was NULL.

6.2.4 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward
problem. Note that this call must be made after the call to CVodeInitB or CVodeInitBS.

CVodeSStolerancesB

Call flag = CVodeSStolerancesB(cvode mem, which, reltolB, abstolB);

Description The function CVodeSStolerancesB specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

reltolB (realtype) is the scalar relative error tolerance.

abstolB (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerancesB was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV ILL INPUT One of the input tolerances was negative.

CVodeSVtolerancesB

Call flag = CVodeSVtolerancesB(cvode mem, which, reltolB, abstolB);

Description The function CVodeSVtolerancesB specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerancesB was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.
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6.2.5 Linear solver initialization functions for backward problem

All linear solver modules in cvodes available for forward problems provide additional specification
functions for backward problems. The initialization functions described in §4.5.3 cannot be directly
used since the optional user-defined Jacobian-related functions have different prototypes for the back-
ward problem than for the forward problem (see §6.3).

The following wrapper functions can be used to initialize one of the linear solver modules for the
backward problem. Their arguments are identical to those of the functions in §4.5.3 with the exception
of the additional second argument, which, the identifier of the backward problem.

flag = CVDenseB(cvode_mem, which, nB);

flag = CVBandB(cvode_mem, which, nB, mupperB, mlowerB);

flag = CVLapackDenseB(cvode_mem, which, nB);

flag = CVLapackBandB(cvode_mem, which, nB, mupperB, mlowerB);

flag = CVDiagB(cvode_mem, which);

flag = CVSpgmrB(cvode_mem, which, pretypeB, maxlB);

flag = CVSpbcgB(cvode_mem, which, pretypeB, maxlB);

flag = CVSptfqmrB(cvode_mem, which, pretypeB, maxlB);

Their return value flag (of type int) can have any of the return values of their counterparts. If
the cvode mem argument was NULL, flag will be If the cvode mem argument was NULL, flag will be
CVDLS MEM NULL, CVDIAG MEM NULL, or CVSPILS MEM NULL. Also, if which is not a valid identifier, the
functions will return CVDLS ILL INPUT, CVDIAG ILL INPUT, or CVSPILS ILL INPUT.

6.2.6 Backward integration function

The function CVodeB performs the integration of the backward problem. It is essentially a wrapper
for the cvodes main integration function CVode and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integration
pairs between consecutive checkpoints. The first run of each pair integrates the original IVP forward
in time and stores interpolation data; the second run integrates the backward problem backward in
time and performs the required interpolation to provide the solution of the IVP to the backward
problem.

The function CVodeB does not return the solution yB itself. To obtain that, call the function
CVodeGetB, which is also described below.

The call to CVodeB has the form

CVodeB

Call flag = CVodeB(cvode mem, tBout, itaskB);

Description The function CVodeB integrates the backward ODE problem.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

tBout (realtype) the next time at which a computed solution is desired.

itaskB (int) a flag indicating the job of the solver for the next step. The CV NORMAL

task is to have the solver take internal steps until it has reached or just
passed the user-specified value tBout. The solver then interpolates in order
to return an approximate value of yB(tBout). The CV ONE STEP option tells
the solver to take just one internal step in the direction of tBout and return.

Return value The return value flag (of type int) will be one of the following. For more details see
§4.5.5.

CV SUCCESS CVodeB succeeded.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.
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CV NO BCK No backward problem has been added to the list of backward prob-
lems by a call to CVodeCreateB

CV NO FWD The function CVodeF has not been previously called.

CV ILL INPUT One of the inputs to CVodeB is illegal.

CV BAD ITASK The itaskB argument has an illegal value.

CV TOO MUCH WORK The solver took mxstep internal steps but could not reach tBout.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Error test failures occurred too many times during one internal time
step.

CV CONV FAILURE Convergence test failures occurred too many times during one inter-
nal time step.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV SOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV BCKMEM NULL The solver memory for the backward problem was not created with
a call to CVodeCreateB.

CV BAD TBOUT The desired output time tBout is outside the interval over which the
forward problem was solved.

CV REIFWD FAIL Reinitialization of the forward problem failed at the first checkpoint
(corresponding to the initial time of the forward problem).

CV FWD FAIL An error occurred during the integration of the forward problem.

Notes All failure return values are negative and therefore a test flag< 0 will trap all CVodeB
failures.

In the case of multiple checkpoints and multiple backward problems, a given call to
CVodeB in CV ONE STEP mode may not advance every problem one step, depending on
the relative locations of the current times reached. But repeated calls will eventually
advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function CVodeGetB as follows:

CVodeGetB

Call flag = CVodeGetB(cvode mem, which, &tret, yB);

Description The function CVodeGetB provides the solution yB of the backward ODE problem.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

which (int) the identifier of the backward problem.

tret (realtype) the time reached by the solver (output).

yB (N Vector) the backward solution at time tret.

Return value The return value flag (of type int) will be one of the following.

CV SUCCESS CVodeGetB was successful.

CV MEM NULL cvode mem is NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV ILL INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yB.!

6.2.7 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of
the forward sensitivities by calling the following function:
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CVodeAdjSetNoSensi

Call flag = CVodeAdjSetNoSensi(cvode mem);

Description The function CVodeAdjSetNoSensi instructs CVodeF not to save checkpointing data for
forward sensitivities anymore.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of:

CV SUCCESS The call to CVodeCreateB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

6.2.8 Optional input functions for the backward problem

6.2.8.1 Main solver optional input functions

The adjoint module in cvodes provides wrappers for most of the optional input functions defined
in §4.5.6.1. The only difference is that the user must specify the identifier which of the backward
problem within the list managed by cvodes.

The optional input functions defined for the backward problem are:

flag = CVodeSetUserDataB(cvode_mem, which, user_dataB);

flag = CVodeSetIterTypeB(cvode_mem, which, iterB);

flag = CVodeSetMaxOrdB(cvode_mem, which, maxordB);

flag = CVodeSetMaxNumStepsB(cvode_mem, which, mxstepsB);

flag = CVodeSetInitStepB(cvode_mem, which, hinB)

flag = CVodeSetMinStepB(cvode_mem, which, hminB);

flag = CVodeSetMaxStepB(cvode_mem, which, hmaxB);

flag = CVodeSetStabLimDetB(cvode_mem, which, stldetB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be CV NO ADJ if CVodeAdjInit has not been called, or CV ILL INPUT if which was an invalid
identifier.

6.2.8.2 Dense linear solver

Optional inputs for the cvdense linear solver module can be set for the backward problem through
the following function:

CVDlsSetDenseJacFnB

Call flag = CVDlsSetDenseJacFnB(cvode mem, which, jacB);

Description The function CVDlsSetDenseJacFnB specifies the dense Jacobian approximation func-
tion to be used for the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

jacB (CVDlsDenseJacFnB) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of:

CVDLS SUCCESS CVDlsSetDenseJacFnB succeeded.

CVDLS MEM NULL cvode mem was NULL.

CVDLS NO ADJ The function CVodeAdjInit has not been previously called.

CVDLS LMEM NULL The linear solver has not been initialized with a call to CVDenseB or
CVLapackDenseB.

CVDLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type CVDlsDenseJacFnB is described in §6.3.5.
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6.2.8.3 Band linear solver

Optional inputs for the cvband linear solver module can be set for the backward problem through
the following function:

CVDlsSetBandJacFnB

Call flag = CVDlsSetBandJacFnB(cvode mem, which, jacB);

Description The function CVDlsSetBandJacFnB specifies the banded Jacobian approximation func-
tion to be used for the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

jacB (CVDlsBandJacFnB) user-defined banded Jacobian approximation function.

Return value The return value flag (of type int) is one of:

CVDLS SUCCESS CVDlsSetBandJacFnB succeeded.

CVDLS MEM NULL cvode mem was NULL.

CVDLS NO ADJ The function CVodeAdjInit has not been previously called.

CVDLS LMEM NULL The linear solver has not been initialized with a call to CVBandB or
CVLapackBandB.

CVDLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type CVDlsBandJacFnB is described in §6.3.6.

6.2.8.4 SPILS linear solvers

Optional inputs for the cvspils linear solver module can be set for the backward problem through
the following functions:

CVSpilsSetPreconditionerB

Call flag = CVSpilsSetPreconditionerB(cvode mem, which, psetupB, psolveB);

Description The function CVSpilsSetPrecSolveFnB specifies the preconditioner setup and solve
functions for the backward integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

psetupB (CVSpilsPrecSetupFnB) user-defined preconditioner setup function.

psolveB (CVSpilsPrecSolveFnB) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL cvode mem was NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS NO ADJ The function CVodeAdjInit has not been previously called.

CVSPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types CVSpilsPrecSolveFnB and CVSpilsPrecSetupFnB are described in
§6.3.8 and §6.3.9, resp. The psetupB argument may be NULL if no setup operation is
involved in the preconditioner.
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CVSpilsSetJacTimesVecFnB

Call flag = CVSpilsSetJacTimesVecFnB(cvode mem, which, jtvB);

Description The function CVSpilsSetJacTimesFnB specifies the Jacobian-vector product function
to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

jtvB (CVSpilsJacTimesVecFnB) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL cvode mem was NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS NO ADJ The function CVodeAdjInit has not been previously called.

CVSPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type CVSpilsJacTimesVecFnB is described in §6.3.7.

CVSpilsSetGSTypeB

Call flag = CVSpilsSetGSType(cvode mem, which, gstypeB);

Description The function CVSpilsSetGSTypeB specifies the type of Gram-Schmidt orthogonaliza-
tion to be used with cvspgmr. This must be one of the enumeration constants
MODIFIED GS or CLASSICAL GS. These correspond to using modified Gram-Schmidt and
classical Gram-Schmidt, respectively.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

gstypeB (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL cvode mem was NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS NO ADJ The function CVodeAdjInit has not been previously called.

CVSPILS ILL INPUT The parameter which represented an invalid identifier, or the value
of gstypeB was not valid.

Notes The default value is MODIFIED GS.

This option is available only with cvspgmr. !

CVSpilsSetMaxlB

Call flag = CVSpilsSetMaxlB(cvode mem, which, maxlB);

Description The function CVSpilsSetMaxlB resets maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

maxlB (realtype) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL cvode mem was NULL.
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CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS NO ADJ The function CVodeAdjInit has not been previously called.

CVSPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The maximum subspace dimension is initially specified in the call to CVodeSpbcgB or
CVodeSptfqmrB. The call to CVodeSpilsSetMaxlB is needed only if maxlB is being
changed from its previous value.

This option is available only for the cvspbcg and cvsptfqmr linear solvers.!

CVSpilsSetEpsLinB

Call flag = CVSpilsSetEpsLinB(cvode mem, which, eplifacB);

Description The function CVSpilsSetEpsLinB specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

eplifacB (realtype) value of the convergence test constant reduction factor (≥ 0.0).

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL cvode mem was NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS NO ADJ The function CVodeAdjInit has not been previously called.

CVSPILS ILL INPUT The parameter which represented an invalid identifier, or eplifacB
was negative.

Notes The default value is 0.05. Passing a value eplifacB= 0.0 also indicates using the default
value.

CVSpilsSetPrecTypeB

Call flag = CVSpilsSetPrecTypeB(cvode mem, which, pretypeB);

Description The function CVSpilsSetPrecTypeB resets the type of preconditioning to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

pretypeB (int) specifies the type of prconditioning and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL cvode mem was NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS NO ADJ The function CVodeAdjInit has not been previously called.

CVSPILS ILL INPUT The parameter which represented an invalid identifier, or the value
of pretypeB was not valid.

Notes The preconditioning type is initially specified in the call to the linear solver specification
function (see §6.2.5). The call to CVSpilsSetPrecTypeB is needed only if pretypeB is
being changed from its previous value.
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6.2.9 Optional output functions for the backward problem

The user of the adjoint module in cvodes has access to any of the optional output functions described
in §4.5.8, both for the main solver and for the linear solver modules. The first argument of these
CVodeGet* and CVode*Get* functions is the pointer to the cvodes memory block for the backward
problem. In order to call any of these functions, the user must first call the following function to
obtain this pointer.

CVodeGetAdjCVodeBmem

Call cvode memB = CVodeGetAdjCVodeBmem(cvode mem, which);

Description The function CVodeGetAdjCVodeBmem returns a pointer to the cvodes memory block
for the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block created by CVodeCreate.

which (int) the identifier of the backward problem.

Return value The return value, cvode memB (of type void *), is a pointer to the cvodes memory for
the backward problem.

Notes The user should not modify in any way cvode memB. !

Optional output calls should pass cvode memB as the first argument; for example, to get
the number of integration steps: flag = CVodeGetNumSteps(cvodes memB, &nsteps).

6.2.10 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend
on the forward sensitivities. Accordingly, either CVodeQuadInitB or CVodeQuadInitBS should be used
to allocate internal memory and to initialize backward quadratures. For any other operation (extrac-
tion, optional input/output, reinitialization, deallocation), the same function is callable regardless of
whether or not the quadratures are sensitivity-dependent.

6.2.10.1 Backward quadrature initialization functions

The function CVodeQuadInitB initializes and allocates memory for the backward integration of quadra-
ture equations that do not depend on forward sensitivities. It has the following form:

CVodeQuadInitB

Call flag = CVodeQuadInitB(cvode mem, which, rhsQB, yQB0);

Description The function CVodeQuadInitB provides required problem specifications, allocates inter-
nal memory, and initializes backward quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

rhsQB (CVQuadRhsFnB) is the C function which computes fQB, the right-hand side
of the backward quadrature equations. This function has the form rhsQB(t,

y, yB, qBdot, user dataB) (see §6.3.3).

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadInitB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT The parameter which is an invalid identifier.
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The function CVodeQuadInitBS initializes and allocates memory for the backward integration of
quadrature equations that depends on the forward sensitivities.

CVodeQuadInitBS

Call flag = CVodeQuadInitBS(cvode mem, which, rhsQBS, yQBS0);

Description The function CVodeQuadInitBS provides required problem specifications, allocates in-
ternal memory, and initializes backward quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

rhsQBS (CVQuadRhsFnBS) is the C function which computes fQBS, the right-hand
side of the backward quadrature equations. This function has the form
rhsQBS(t, y, yS, yB, qBdot, user dataB) (see §6.3.4).

yQBS0 (N Vector) is the value of the sensitivity-dependent quadrature variables at
tB0.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadInitBS was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling

CVodeQuadReInitB

Call flag = CVodeQuadReInitB(cvode mem, which, yQB0);

Description The function CVodeQuadReInitB re-initializes the backward quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadReInitB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

CV NO QUAD Quadrature integration was not activated through a previous call to
CVodeQuadInitB.

CV ILL INPUT The parameter which is an invalid identifier.

Notes The function CVodeQuadReInitB can be called after a call to either CVodeQuadInitB or
CVodeQuadInitBS.

6.2.10.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of CVodeB, cvodes provides
a wrapper for the function CVodeGetQuad (see §4.7.3). The call to this function has the form
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CVodeGetQuadB

Call flag = CVodeGetQuadB(cvode mem, which, &tret, yQB);

Description The function CVodeGetQuadB returns the quadrature solution vector after a successful
return from CVodeB.

Arguments cvode mem (void *) pointer to the cvodes memory.

tret (realtype) the time reached by the solver (output).

yQB (N Vector) the computed quadrature vector.

Return value The return value flag of CVodeGetQuadB is one of:

CV SUCCESS CVodeGetQuadB was successful.

CV MEM NULL cvode mem is NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY yQB was NULL.

CV ILL INPUT The parameter which is an invalid identifier.

6.2.10.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §4.7.4. The user must specify the identifier which of the
backward problem for which the optional values are specified.

flag = CVodeSetQuadErrConB(cvode_mem, which, errconQ);

flag = CVodeQuadSStolerancesB(cvode_mem, which, reltolQ, abstolQ);

flag = CVodeQuadSVtolerancesB(cvode_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it
can also be CV NO ADJ if the function CVodeAdjInit has not been previously called or CV ILL INPUT

if the parameter which was an invalid identifier.
Access to optional outputs related to backward quadrature integration can be obtained by call-

ing the corresponding CVodeGetQuad* functions (see §4.7.5). A pointer cvode memB to the cvodes

memory block for the backward problem, required as the first argument of these functions, can be
obtained through a call to the functions CVodeGetAdjCVodeBmem (see §6.2.9).

6.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required ODE right-hand side function and any optional functions for the forward
problem, when using the adjoint sensitivity module in cvodes, the user must supply one function
defining the backward problem ODE and, optionally, functions to supply Jacobian-related information
and one or two functions that define the preconditioner (if one of the cvspils solvers is selected) for
the backward problem. Type definitions for all these user-supplied functions are given below.

6.3.1 ODE right-hand side for the backward problem

If the backward problem does not depend on the forward sensitivities, the user must provide a rhsB

function of type CVRhsFnB defined as follows:

CVRhsFnB

Definition typedef int (*CVRhsFnB)(realtype t, N Vector y,

N Vector yB, N Vector yBdot, void *user dataB);
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Purpose This function evaluates the right-hand side fB(t, y, yB) of the backward problem ODE
system. This could be either (2.19) or (2.22).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

yBdot is the output vector containing the right-hand side fB of the backward
ODE problem.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVRhsFnB should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV RHSFUNC FAIL).

Notes Allocation of memory for yBdot is handled within cvodes.

The y, yB, and yBdot arguments are all of type N Vector, but yB and yBdot typically
have different internal representations from y. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from
each nvector implementation). For the sake of computational efficiency, the vector
functions in the two nvector implementations provided with cvodes do not perform
any consistency checks with respect to their N Vector arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s rhsB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s rhsB function, cvodes needs to evaluate (through interpola-!

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the right-hand side function
which will halt the integration and CVodeB will return CV RHSFUNC FAIL.

6.3.2 ODE right-hand side for the backward problem depending on the
forward sensitivities

If the backward problem does depend on the forward sensitivities, the user must provide a rhsBS

function of type CVRhsFnBS defined as follows:

CVRhsFnBS

Definition typedef int (*CVRhsFnBS)(realtype t, N Vector y, N Vector *yS,

N Vector yB, N Vector yBdot, void *user dataB);

Purpose This function evaluates the right-hand side fB(t, y, yB , s) of the backward problem ODE
system. This could be either (2.19) or (2.22).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.

yBdot is the output vector containing the right-hand side fB of the backward
ODE problem.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVRhsFnBS should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV RHSFUNC FAIL).
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Notes Allocation of memory for qBdot is handled within cvodes.

The y, yB, and yBdot arguments are all of type N Vector, but yB and yBdot typically
have different internal representations from y. Likewise for each yS[i]. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each nvector implementation). For the sake of computational
efficiency, the vector functions in the two nvector implementations provided with
cvodes do not perform any consistency checks with respect to their N Vector arguments
(see §7.1 and §7.2).

The user dataB pointer is passed to the user’s rhsBS function every time it is called
and can be the same as the user data pointer used for the forward problem.

Before calling the user’s rhsBS function, cvodes needs to evaluate (through interpo- !

lation) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the right-hand side function
which will halt the integration and CVodeB will return CV RHSFUNC FAIL.

6.3.3 Quadrature right-hand side for the backward problem

The user must provide an fQB function of type CVQuadRhsFnB defined by

CVQuadRhsFnB

Definition typedef int (*CVQuadRhsFnB)(realtype t, N Vector y, N Vector yB,

N Vector qBdot, void *user dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

qBdot is the output vector containing the right-hand side fQB of the backward
quadrature equations.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV QRHSFUNC FAIL).

Notes Allocation of memory for rhsvalBQ is handled within cvodes.

The y, yB, and qBdot arguments are all of type N Vector, but they typically do not
all have the same representation. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each nvector

implementation). For the sake of computational efficiency, the vector functions in the
two nvector implementations provided with cvodes do not perform any consistency
checks with repsect to their N Vector arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s fQB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQB function, cvodes needs to evaluate (through interpola- !

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the quadrature right-hand
side function which will halt the integration and CVodeB will return CV QRHSFUNC FAIL.
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6.3.4 Sensitivity-dependent quadrature right-hand side for the backward
problem

The user must provide an fQBS function of type CVQuadRhsFnBS defined by

CVQuadRhsFnBS

Definition typedef int (*CVQuadRhsFnBS)(realtype t, N Vector y, N Vector *yS,

N Vector yB, N Vector qBdot,

void *user dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.

qBdot is the output vector containing the right-hand side fQBS of the backward
quadrature equations.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVQuadRhsFnBS should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV QRHSFUNC FAIL).

Notes Allocation of memory for qBdot is handled within cvodes.

The y, yS, and qBdot arguments are all of type N Vector, but they typically do not
all have the same internal representation. Likewise for each yS[i]. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each nvector implementation). For the sake of computational
efficiency, the vector functions in the two nvector implementations provided with
cvodes do not perform any consistency checks with repsect to their N Vector arguments
(see §7.1 and §7.2).

The user dataB pointer is passed to the user’s fQBS function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQBS function, cvodes needs to evaluate (through interpola-!

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the quadrature right-hand
side function which will halt the integration and CVodeB will return CV QRHSFUNC FAIL.

6.3.5 Jacobian information for the backward problem (direct method with
dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is selected for the backward problem
(i.e. CVDenseB or CVLapackDenseB is called in step 19 of §6.1), the user may provide, through a call
to CVDlsSetDenseJacFnB (see §6.2.8), a function of the following type:

CVDlsDenseJacFnB

Definition typedef int (*CVDlsDenseJacFnB)(long int NeqB, realtype t, N Vector y,

N Vector yB, N Vector fyB,

DlsMat JacB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);
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Purpose This function computes the dense Jacobian of the backward problem (or an approxima-
tion to it).

Arguments NeqB is the backward problem size (number of equations).

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

JacB is the output approximate dense Jacobian matrix.

user dataB is a pointer to user data – the same as passed to CVodeSetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by CVDlsDenseJacFnB as temporary storage or work space.

Return value A CVDlsDenseJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvdense sets last flag

to CVDLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV LSETUP FAIL and cvdense sets last flag

to CVDLS JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the NeqB by NeqB dense matrix
JacB with an approximation to the Jacobian matrix at the point (t,y,yB), where y is
the solution of the original IVP at time tt and yB is the solution of the backward
problem at the same time. Only nonzero elements need to be loaded into JacB as this
matrix is set to zero before the call to the Jacobian function. The type of JacB is
DlsMat. The user is referred to §4.6.5 for details regarding accessing a DlsMat object.

Before calling the user’s CVDlsDenseJacFnB, cvodes needs to evaluate (through inter- !

polation) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV LSETUP FAIL and cvdense sets last flag

to CVDLS JACFUNC UNRECVR).

6.3.6 Jacobian information for the backward problem (direct method with
banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is selected for the backward problem
(i.e. CVBandB or CVLapackBandB is called in step 19 of §6.1), the user may provide, through a call to
CVDlsSetBandJacFnB (see §6.2.8), a function the following type:

CVDlsBandJacFnB

Definition typedef int (*CVDlsBandJacFnB)(long int NeqB,

long int mupperB, long int mlowerB,

realtype t, N Vector y

N Vector yB, N Vector fyB,

DlsMat JacB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the banded Jacobian of the backward problem (or a banded
approximation to it).

Arguments NeqB is the backward problem size.

mlowerB

mupperB are the lower and upper half-bandwidth of the Jacobian.
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t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

JacB is the output approximate band Jacobian matrix.

user dataB is a pointer to user data – the same as passed to CVodeSetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by CVDlsBandJacFnB as temporary storage or work space.

Return value A CVDlsBandJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvband sets last flag

to CVDLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV LSETUP FAIL and cvdense sets last flag

to CVDLS JACFUNC UNRECVR).

Notes A user-supplied band Jacobian function must load the band matrix JacB (of type
DlsMat) with the elements of the Jacobian at the point (t,y,yB), where y is the so-
lution of the original IVP at time tt and yB is the solution of the backward problem at
the same time. Only nonzero elements need to be loaded into JacB because JacB is pre-
set to zero before the call to the Jacobian function. More details on the accessor macros
provided for a DlsMat object and on the rest of the arguments passed to a function of
type CVDlsBandJacFnB are given in §4.6.6.

Before calling the user’s CVDlsBandJacFnB, cvodes needs to evaluate (through inter-!

polation) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV LSETUP FAIL and cvband sets last flag

to CVDLS JACFUNC UNRECVR).

6.3.7 Jacobian information for the backward problem (matrix-vector prod-
uct)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (CVodeSp*B is
called in step 19 of §6.1), the user may provide a function of type CVSpilsJacTimesVecFnB in the
following form:

CVSpilsJacTimesVecFnB

Definition typedef int (*CVSpilsJacTimesVecFnB)(N Vector vB, N Vector JvB,

realtype t, N Vector y, N Vector yB,

N Vector fyB, void *user dataB,

N Vector tmpB);

Purpose This function computes the action of the Jacobian JB for the backward problem on a
given vector vB.

Arguments vB is the vector by which the Jacobian must be multiplied to the right.

JvB is the computed output vector JB*vB.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

user dataB is a pointer to user data – the same as passed to CVodeSetUserDataB.
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tmpB is a pointer to memory allocated for a variable of type N Vector which can
be used by CVSpilsJacTimesVecFn as temporary storage or work space.

Return value The return value of a function of type CVSpilsJtimesFnB should be 0 if successful or
nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t,y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of
the backward problem at the same time. The rest of the arguments are equivalent to
those passed to a function of type CVSpilsJacTimesVecFn (see §4.6.7). If the backward
problem is the adjoint of ẏ = f(t, y), then this function is to compute −(∂f/∂y)T vB .

6.3.8 Preconditioning for the backward problem (linear system solution)

If preconditioning is used during integration of the backward problem, then the user must provide a
C function to solve the linear system Pz = r, where P may be either a left or a right preconditioner
matrix. Here P should approximate (at least crudely) the Newton matrix MB = I − γBJB, where
JB = ∂fB/∂yB . If preconditioning is done on both sides, the product of the two preconditioner
matrices should approximate MB . This function must be of type CVSpilsPrecSolveFnB defined by

CVSpilsPrecSolveFnB

Definition typedef int (*CVSpilsPrecSolveFnB)(realtype t, N Vector y,

N Vector yB, N Vector fyB,

N Vector rvecB, N Vector zvecB,

realtype gammaB, realtype deltaB,

void *user dataB, N Vector tmpB);

Purpose This function solves the preconditioning system Pz = r for the backward problem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

gammaB is the scalar appearing in the Newton matrix, MB = I − γBJB .

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

tmpB is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

6.3.9 Preconditioning for the backward problem (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of type CVSpilsPrecSetupFnB defined by
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CVSpilsPrecSetupFnB

Definition typedef int (*CVSpilsPrecSetupFnB)(realtype t, N Vector y,

N Vector yB, N Vector fyB,

booleantype jokB, booleantype *jcurPtrB,

realtype gammaB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of a CVSpilsPrecSetupFnB are as follows:

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

jokB is an input flag indicating whether Jacobian-related data needs to be re-
computed (jokB=FALSE) or information saved from a previous invokation
can be safely used (jokB=TRUE).

jcurPtr is an output flag which must be set to TRUE if Jacobian-relatd data was
recomputed or FALSE otherwise.

gammaB is the scalar appearing in the Newton matrix.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for vectors which can be used as tempo-
rary storage or work space.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

6.4 Using CVODES preconditioner modules for the backward
problem

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of linear
systems can be greatly enhanced through preconditioning. Both preconditioner modules provided
with sundials, the serial banded preconditioner cvbandpre and the parallel band-block-diagonal
preconditioner module cvbbdpre, provide interface functions through which they can be used on the
backward integration phase.

6.4.1 Using the banded preconditioner CVBANDPRE

The adjoint module in cvodes offers an interface to the banded preconditioner module cvbandpre

described in section §4.8.1. This preconditioner, usable only in a serial setting, provides a band matrix
preconditioner based on difference quotients of the backward problem right-hand side function fB. It
generates a banded approximation to the Jacobian with mlB sub-diagonals and muB super-diagonals
to be used with one of the Krylov linear solvers.

In order to use the cvbandpre module in the solution of the backward problem, the user need not
define any additional functions. Instead, after one of the cvspils linear solvers has been specified, by
calling the appropriate function (see §6.2.5), the following call to the cvbandpre module initialization
function must be made.
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CVBandPrecInitB

Call flag = CVBandPrecInitB(cvode mem, which, nB, muB, mlB);

Description The function CVBandPrecInitB initializes and allocates memory for the cvbandpre

preconditioner for the backward problem. It creates, allocates, and stores (internally in
the cvodes solver block) a pointer to the newly created cvbandpre memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

nB (long int) backward problem dimension.

muB (long int) upper half-bandwidth of the backward problem Jacobian ap-
proximation.

mlB (long int) lower half-bandwidth of the backward problem Jacobian ap-
proximation.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The call to CVodeBandPrecInitB was successful.

CVSPILS MEM FAIL A memory allocation request has failed.

CVSPILS MEM NULL The cvode mem argument was NULL.

CVSPILS LMEM NULL No linear solver has been attached.

CVSPILS ILL INPUT An invalid parameter has been passed.

For more details on cvbandpre see §4.8.1.

6.4.2 Using the band-block-diagonal preconditioner CVBBDPRE

The adjoint module in cvodes offers an interface to the band-block-diagonal preconditioner module
cvbbdpre described in section §4.8.2. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the parallel vector module nvector parallel.

In order to use the cvbbdpre module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.

6.4.2.1 Initialization of CVBBDPRE

The cvbbdpre module is initialized by calling the following function, after one of the cvspils linear
solvers has been specified by calling the appropriate function (see §6.2.5).

CVBBDPrecInitB

Call flag = CVBBDPrecInitB(cvode mem, which, NlocalB, mudqB, mldqB,

mukeepB, mlkeepB, dqrelyB, glocB, gcommB);

Description The function CVBBDPrecInitB initializes and allocates memory for the cvbbdpre pre-
conditioner for the backward problem. It creates, allocates, and stores (internally in
the cvodes solver block) a pointer to the newly created cvbbdpre memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

NlocalB (long int) local vector dimension for the backward problem.

mudqB (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldqB (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mukeepB (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.
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mlkeepB (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dqrelyB=

√
unit roundoff, which

can be specified by passing dqrely= 0.0.

glocB (CVBBDLocalFnB) the C function which computes the function gB(t, y, yB)
approximating the right-hand side of the backward problem.

gcommB (CVBBDCommFnB) the optional C function which performs all interprocess
communication required for the computation of gB .

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The call to CVodeBBDPrecInitB was successful.

CVSPILS MEM FAIL A memory allocation request has failed.

CVSPILS MEM NULL The cvode mem argument was NULL.

CVSPILS LMEM NULL No linear solver has been attached.

CVSPILS ILL INPUT An invalid parameter has been passed.

To reinitialize the cvbbdpre preconditioner module for the backward problem, possibly with changes
in mudqB, mldqB, or dqrelyB, call the following function:

CVBBDPrecReInitB

Call flag = CVBBDPrecReInitB(cvode mem, which, mudqB, mldqB, dqrelyB);

Description The function CVBBDPrecReInitB reinitializes the cvbbdpre preconditioner for the
backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) the identifier of the backward problem.

mudqB (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldqB (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The call to CVodeBBDPrecReInitB was successful.

CVSPILS MEM FAIL A memory allocation request has failed.

CVSPILS MEM NULL The cvode mem argument was NULL.

CVSPILS PMEM NULL The CVodeBBDPrecInitB has not been previously called.

CVSPILS LMEM NULL No linear solver has been attached.

CVSPILS ILL INPUT An invalid parameter has been passed.

For more details on cvbbdpre see §4.8.2.

6.4.2.2 User-supplied functions for CVBBDPRE

To use the cvbbdpre module, the user must supply one or two functions which the module calls to
construct the preconditioner: a required function glocB (of type CVBBDLocalFnB) which approximates
the right-hand side of the backward problem and which is computed locally, and an optional function
gcommB (of type CVBBDCommFnB) which performs all interprocess communication necessary to evaluate
this approximate right-hand side (see §4.8.2). The prototypes for these two functions are described
below.
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CVBBDLocalFnB

Definition typedef int (*CVBBDLocalFnB)(long int NlocalB, realtype t, N Vector y,

N Vector yB, N Vector gB, void *user dataB);

Purpose This glocB function loads the vector gB, an approximation to the right-hand side fB of
the backward problem, as a function of t, y, and yB.

Arguments NlocalB is the local vector length for the backward problem.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

gB is the output vector, gB(t, y, yB).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value An CVBBDLocalFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV LSETUP FAIL).

Notes This routine must assume that all interprocess communication of data needed to calcu-
late gB has already been done, and this data is accessible within user dataB.

Before calling the user’s CVBBDLocalFnB, cvodes needs to evaluate (through interpo- !

lation) the values of the states from the forward integration. If an error occurs in
the interpolation, cvodes triggers an unrecoverable failure in the preconditioner setup
function which will halt the integration (CVodeB returns CV LSETUP FAIL).

CVBBDCommFnB

Definition typedef int (*CVBBDCommFnB)(long int NlocalB, realtype t, N Vector y,

N Vector yB, void *user dataB);

Purpose This gcommB function must perform all interprocess communications necessary for the
execution of the glocB function above, using the input vectors y and yB.

Arguments NlocalB is the local vector length.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value An CVBBDCommFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV LSETUP FAIL).

Notes The gcommB function is expected to save communicated data in space defined within
the structure user dataB.

Each call to the gcommB function is preceded by a call to the function that evaluates the
right-hand side of the backward problem with the same t, y, and yB, arguments. If there
is no additional communication needed, then pass gcommB = NULL to CVBBDPrecInitB.





Chapter 7

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module or use one of two provided
within sundials, a serial and an MPI parallel implementations.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);
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realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector

implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector

module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 7.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.
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Table 7.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for the data array.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied nvector

module if that information is not of interest.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the solver-specific interfaces
to the dense and banded (serial) linear solvers, and in the interfaces
to the banded (serial) and band-block-diagonal (parallel) preconditioner
modules provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
nvector module for a parallel environment.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax + by, where a and b are scalars and x
and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to c: zi = c, i = 0, . . . , n− 1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

continued on next page
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continued from last page

Name Usage and Description

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z: zi =
cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
weight vector w built using only the elements of x corresponding to
nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean ℓ2 norm of the N Vector x with weight

vector w: m =
√

∑n−1
i=0 (xiwi)2.

continued on next page
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continued from last page

Name Usage and Description

N VL1Norm m = N VL1Norm(x);

Returns the ℓ1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n− 1. This routine returns TRUE if all components of
x are nonzero (successful inversion) and returns FALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if
ci = 0. This routine returns FALSE if any element failed the constraint
test, TRUE if all passed. It also sets a mask vector m, with elements equal
to 1.0 where the constraint test failed, and 0.0 where the test passed.
This routine is used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

7.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S
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These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Table
7.1. Their names are obtained from those in Table 7.1 by appending the suffix Serial. The module
nvector serial provides the following additional user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneEmptyVectorArray Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Serial(int count, N_Vector w);

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneEmptyVectorArray Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);
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• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneEmptyVectorArray Serial set the field !

own data = FALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.2 The NVECTOR PARALLEL implementation

The parallel implementation of the nvector module provided with sundials, nvector parallel,
defines the content field of N Vector to be a structure containing the global and local lengths of the
vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a
boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.
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The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 7.1 Their names are obtained from those in Table 7.1 by appending the suffix Parallel. The
module nvector parallel provides the following additional user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.
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N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneEmptyVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneEmptyVectorArray Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneEmptyVectorArray Parallel set the !

field own data = FALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.3 NVECTOR functions used by CVODES

In Table 7.2 below, we list the vector functions in the nvector module within the cvodes package.
The table also shows, for each function, which of the code modules uses the function. The cvodes

column shows function usage within the main integrator module, while the remaining seven columns
show function usage within each of the six cvodes linear solvers (cvspils stands for any of cvspgmr,
cvspbcg, or cvsptfqmr), the cvbandpre and cvbbdpre preconditioner modules, and the cvodes

adjoint sensitivity module (denoted here with cvodea).
There is one subtlety in the cvspils column hidden by the table, explained here for the case of the

cvspgmr module. The N VDotProd function is called both within the interface file cvodes spgmr.c

and within the implementation files sundials spgmr.c and sundials iterative.c for the generic
spgmr solver upon which the cvspgmr solver is built. Also, although N VDiv and N VProd are
not called within the interface file cvodes spgmr.c, they are called within the implementation file
sundials spgmr.c, and so are required by the cvspgmr solver module. Analogous statements apply
to the cvspbcg and cvsptfqmr modules, except that they do not use sundials iterative.c.
This issue does not arise for the other three cvodes linear solvers because the generic dense and
band solvers (used in the implementation of cvdense and cvband) do not make calls to any vector
functions and cvdiag is not implemented using a generic diagonal solver.
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Table 7.2: List of vector functions usage by CVODES code modules
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N VClone X X X X

N VDestroy X X X X

N VSpace X

N VGetArrayPointer X X X X

N VSetArrayPointer X

N VLinearSum X X X X X

N VConst X X

N VProd X X X

N VDiv X X X

N VScale X X X X X X X X

N VAbs X

N VInv X X

N VAddConst X X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X X X X X X

N VMin X

N VCompare X

N VInvTest X

At this point, we should emphasize that the cvodes user does not need to know anything about
the usage of vector functions by the cvodes code modules in order to use cvodes. The information
is presented as an implementation detail for the interested reader.

The vector functions listed in Table 7.1 that are not used by cvodes are: N VWL2Norm, N VL1Norm,
N VWrmsNormMask, N VConstrMask, N VCloneEmpty, and N VMinQuotient. Therefore a user-supplied
nvector module for cvodes could omit these six kernels.
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Providing Alternate Linear Solver
Modules

The central cvodes module interfaces with the linear solver module to be used by way of calls to four
functions. These are denoted here by linit, lsetup, lsolve, and lfree. Briefly, their purposes are
as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: preprocess and evaluate the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification function (like those described in
§4.5.3) which will attach the above four functions to the main cvodes memory block. The cvodes

memory block is a structure defined in the header file cvodes impl.h. A pointer to such a structure
is defined as the type CVodeMem. The four fields in a CvodeMem structure that must point to the linear
solver’s functions are cv linit, cv lsetup, cv lsolve, and cv lfree, respectively. Note that of the
four interface functions, only the lsolve function is required. The lfree function must be provided
only if the solver specification function makes any memory allocation. The linear solver specification
function must also set the value of the field cv setupNonNull in the cvodes memory block — to
TRUE if lsetup is used, or FALSE otherwise.

For consistency with the existing cvodes linear solver modules, we recommend that the return
value of the specification function be 0 for a successful return or a negative value if an error occurs (the
pointer to the main cvodes memory block is NULL, an input is illegal, the nvector implementation
is not compatible, a memory allocation fails, etc.)

To facilitate data exchange between the four interface functions, the field cv lmem in the cvodes

memory block can be used to attach a linear solver-specific memory block. That memory should be
allocated in the linear solver specification function.

To be used during the backward integration with the cvodes module, a linear solver module must
also provide an additional user-callable specification function (like those described in §6.2.5) which
will attach the four functions to the cvodes memory block for the backward integration. Note that
this block (of type struct CVodeMemRec) is not directly accessible to the user, but rather is itself a
field in the cvodes memory block. The cvodes memory block is a structure defined in the header
file cvodes impl.h. A pointer to such a structure is defined as the type CVodeMem. The specification
function for backward integration should also return a negative value if the adjoint cvodes memory
block is NULL.

An additional field (ca lmemB) in the cvodes memory block provides a hook-up for optionally
attaching a linear solver-specific memory block.
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The four functions that interface between cvodes and the linear solver module necessarily have
fixed call sequences. Thus, a user wishing to implement another linear solver within the cvodes

package must adhere to this set of interfaces. The following is a complete description of the argument
list for each of these functions. Note that the argument list of each function includes a pointer to the
main cvodes memory block, by which the function can access various data related to the cvodes

solution. The contents of this memory block (of type CVodeMem) are given in the file cvodes impl.h

(but not reproduced here, for the sake of space).

8.1 Initialization function

The type definition of linit is

linit

Definition int (*linit)(CVodeMem cv mem);

Purpose The purpose of linit is to complete linear solver-specific initializations, such as counters
and statistics.

Arguments cv mem is the cvodes memory pointer of type CVodeMem.

Return value An linit function should return 0 if it has successfully initialized the cvodes linear
solver and −1 otherwise.

8.2 Setup function

The type definition of lsetup is

lsetup

Definition int (*lsetup)(CVodeMem cv mem, int convfail, N Vector ypred,

N Vector fpred, booleantype *jcurPtr,

N Vector vtemp1, N Vector vtemp2, N Vector vtemp3);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It may
recompute Jacobian-related data if it is deemed necessary.

Arguments cv mem is the cvodes memory pointer of type CVodeMem.

convfail is an input flag used to indicate any problem that occurred during the solution
of the nonlinear equation on the current time step for which the linear solver
is being used. This flag can be used to help decide whether the Jacobian
data kept by a cvodes linear solver needs to be updated or not. Its possible
values are:

• NO FAILURES: this value is passed to lsetup if either this is the first call
for this step, or the local error test failed on the previous attempt at this
step (but the Newton iteration converged).

• FAIL BAD J: this value is passed to lsetup if (a) the previous Newton
corrector iteration did not converge and the linear solver’s setup function
indicated that its Jacobian-related data is not current, or (b) during the
previous Newton corrector iteration, the linear solver’s solve function
failed in a recoverable manner and the linear solver’s setup function
indicated that its Jacobian-related data is not current.

• FAIL OTHER: this value is passed to lsetup if during the current internal
step try, the previous Newton iteration failed to converge even though
the linear solver was using current Jacobian-related data.

ypred is the predicted y vector for the current cvodes internal step.
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fpred is the value of the right-hand side at ypred, i.e. f(tn, ypred).

jcurPtr is a pointer to a boolean to be filled in by lsetup. The function should set
*jcurPtr = TRUE if its Jacobian data is current after the call, and should
set *jcurPtr = FALSE if its Jacobian data is not current. If lsetup calls for
reevaluation of Jacobian data (based on convfail and cvodes state data), it
should return *jcurPtr = TRUE unconditionally; otherwise an infinite loop
can result.

vtemp1

vtemp2

vtemp3 are temporary variables of type N Vector provided for use by lsetup.

Return value An lsetup function should return 0 if successful, a positive value for a recoverable error,
and a negative value for an unrecoverable error.

8.3 Solve function

The type definition of lsolve is

lsolve

Definition int (*lsolve)(CVodeMem cv mem, N Vector b, N Vector weight,

N Vector ycur, N Vector fcur);

Purpose The function lsolve must solve the linear equation Mx = b, where M is some approx-
imation to I − γJ , J = (∂f/∂y)(tn, ycur) (see Eq.(2.6)), and the right-hand side vector
b is input. Here γ is available as cv mem->cv gamma.

Arguments cv mem is the cvodes memory pointer of type CVodeMem.

b is the right-hand side vector b. The solution is to be returned in the vector b.

weight is a vector that contains the error weights. These are the Wi of Eq.(2.7).

ycur is a vector that contains the solver’s current approximation to y(tn).

fcur is a vector that contains f(tn, ycur).

Return value An lsolve function should return a positive value for a recoverable error and a negative
value for an unrecoverable error. Success is indicated by a 0 return value.

8.4 Memory deallocation function

The type definition of lfree is

lfree

Definition void (*lfree)(CVodeMem cv mem);

Purpose The function lfree should free up any memory allocated by the linear solver.

Arguments The argument cv mem is the cvodes memory pointer of type CVodeMem.

Return value An lfree function has no return value.

Notes This function is called once a problem has been completed and the linear solver is no
longer needed.
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Generic Linear Solvers in
SUNDIALS

In this chapter, we describe five generic linear solver code modules that are included in cvodes, but
which are of potential use as generic packages in themselves, either in conjunction with the use of
cvodes or separately.

These generic linear solver modules in sundials are organized in two families of solvers, the dls
family, which includes direct linear solvers appropriate for sequential computations; and the spils
family, which includes scaled preconditioned iterative (Krylov) linear solvers. The solvers in each
family share common data structures and functions.

The dls family contains the following two generic linear solvers:

• The dense package, a linear solver for dense matrices either specified through a matrix type
(defined below) or as simple arrays.

• The band package, a linear solver for banded matrices either specified through a matrix type
(defined below) or as simple arrays.

Note that this family also includes the Blas/Lapack linear solvers (dense and band) available to the
sundials solvers, but these are not discussed here.

The spils family contains the following three generic linear solvers:

• The spgmr package, a solver for the scaled preconditioned GMRES method.

• The spbcg package, a solver for the scaled preconditioned Bi-CGStab method.

• The sptfqmr package, a solver for the scaled preconditioned TFQMR method.

For reasons related to installation, the names of the files involved in these generic solvers begin
with the prefix sundials . But despite this, each of the solvers is in fact generic, in that it is usable
completely independently of sundials.

For the sake of space, the functions for the dense and band modules that work with a matrix type
and the functions in the spgmr, spbcg, and sptfqmr modules are only summarized briefly, since
they are less likely to be of direct use in connection with a sundials solver. However, the functions
for dense matrices treated as simple arrays are fully described, because we expect that they will be
useful in the implementation of preconditioners used with the combination of one of the sundials

solvers and one of the spils linear solvers.

9.1 The DLS modules: DENSE and BAND

The files comprising the dense generic linear solver, and their locations in the sundials srcdir, are
as follows:
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• header files (located in srcdir/include/sundials)
sundials direct.h sundials dense.h

sundials types.h sundials math.h sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c sundials dense.c sundials math.c

The files comprising the band generic linear solver are as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h sundials band.h

sundials types.h sundials math.h sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c sundials band.c sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are relevant to the
dense and band packages by themselves (see §A.3 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MIN, MAX, and ABS macros and
RAbs function.

The files listed above for either module can be extracted from the sundials srcdir and compiled
by themselves into a separate library or into a larger user code.

9.1.1 Type DlsMat

The type DlsMat, defined in sundials direct.h is a pointer to a structure defining a generic matrix,
and is used with all linear solvers in the dls family:

typedef struct _DlsMat {

int type;

long int M;

long int N;

long int ldim;

long int mu;

long int ml;

long int s_mu;

realtype *data;

long int ldata;

realtype **cols;

} *DlsMat;

For the dense module, the relevant fields of this structure are as follows. Note that a dense matrix
of type DlsMat need not be square.

type - SUNDIALS DENSE (=1)

M - number of rows

N - number of columns
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ldim - leading dimension (ldim ≥ M)

data - pointer to a contiguous block of realtype variables

ldata - length of the data array (= ldim·N). The (i,j)-th element of a dense matrix A of type DlsMat

(with 0 ≤ i < M and 0 ≤ j < N) is given by the expression (A->data)[0][j*M+i]

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense matrix A of type DlsMat (with 0 ≤ i < M and 0 ≤
j < N) is given by the expression (A->cols)[j][i]

For the band module, the relevant fields of this structure are as follows (see Figure 9.1 for a diagram
of the underlying data representation in a banded matrix of type DlsMat). Note that only square
band matrices are allowed.

type - SUNDIALS BAND (=2)

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < min(M,N)

ml - lower half-bandwidth, 0 ≤ ml < min(M,N)

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routine writes the LU
factors into the storage for A. The upper triangular factor U, however, may have an upper
bandwidth as big as min(N-1,mu+ml) because of partial pivoting. The s mu field holds the upper
half-bandwidth allocated for A.

ldim - leading dimension (ldim ≥ s mu)

data - pointer to a contiguous block of realtype variables. The elements of a banded matrix of type
DlsMat are stored columnwise (i.e. columns are stored one on top of the other in memory). Only
elements within the specified half-bandwidths are stored. data is a pointer to ldata contiguous
locations which hold the elements within the band of A.

ldata - length of the data array (= ldim·(s mu+ml+1)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s mu−mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s mu] is the (i, j)-th element,
j−mu ≤ i ≤ j+ml.

9.1.2 Accessor macros for the DLS modules

The macros below allow a user to efficiently access individual matrix elements without writing out
explicit data structure references and without knowing too much about the underlying element storage.
The only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL or BAND COL macros. Users should use
these macros whenever possible.

The following two macros are defined by the dense module to provide access to data in the DlsMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the M ×N DlsMat A, 0 ≤ i < M , 0 ≤ j < N .
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A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 9.1: Diagram of the storage for a banded matrix of type DlsMat. Here A is an N × N band
matrix of type DlsMat with upper and lower half-bandwidths mu and ml, respectively. The rows and
columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The
greyed out areas of the underlying component storage are used by the BandGBTRF and BandGBTRS

routines.
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• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the M × N DlsMat A, 0 ≤ j < N . The type of the
expression DENSE COL(A,j) is realtype * . After the assignment in the usage above, col j

may be treated as an array indexed from 0 to M − 1. The (i, j)-th element of A is referenced
by col j[i].

The following three macros are defined by the band module to provide access to data in the DlsMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N −1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N ×N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned by
the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to (A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction with
BAND COL to reference the j-th column through col j. The index (i,j) should satisfy j−(A->mu)
≤ i ≤ j+(A->ml).

9.1.3 Functions in the DENSE module

The dense module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on dense matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat dense matrices are available in the dense package. For full
details, see the header files sundials direct.h and sundials dense.h.

• NewDenseMat: allocation of a DlsMat dense matrix;

• DestroyMat: free memory for a DlsMat matrix;

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of long int integers for use as pivots with DenseGETRF

and DenseGETRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack dense
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with DenseGETRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;
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• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseGETRF: LU factorization with partial pivoting;

• DenseGETRS: solution of Ax = b using LU factorization (for square matrices A);

• DensePOTRF: Cholesky factorization of a real symmetric positive matrix;

• DensePOTRS: solution of Ax = b using the Cholesky factorization of A;

• DenseGEQRF: QR factorization of an m× n matrix, with m ≥ n;

• DenseORMQR: compute the product w = Qv, with Q calculated using DenseGEQRF;

The following functions for small dense matrices are available in the dense package:

• newDenseMat

newDenseMat(m,n) allocates storage for an m by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then newDenseMat

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = newDenseMat(m,n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i < m, 0 ≤ j < n, and a[j] is a pointer to the first element in
the j-th column of a. The location a[0] contains a pointer to m × n contiguous locations which
contain the elements of a.

• destroyMat

destroyMat(a) frees the dense matrix a allocated by newDenseMat;

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• denseCopy

denseCopy(a,b,m,n) copies the m by n dense matrix a into the m by n dense matrix b;

• denseScale

denseScale(c,a,m,n) scales every element in the m by n dense matrix a by the scalar c;

• denseAddIdentity

denseAddIdentity(a,n) increments the square n by n dense matrix a by the identity matrix
In;
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• denseGETRF

denseGETRF(a,m,n,p) factors the m by n dense matrix a, using Gaussian elimination with row
pivoting. It overwrites the elements of a with its LU factors and keeps track of the pivot rows
chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix,
L is an m by n lower trapezoidal matrix with all diagonal elements equal to 1, and U is an
n by n upper triangular matrix, then the upper triangular part of a (including its diagonal)
contains U and the strictly lower trapezoidal part of a contains the multipliers, I −L. If a
is square, L is a unit lower triangular matrix.

denseGETRF returns 0 if successful. Otherwise it encountered a zero diagonal element during
the factorization, indicating that the matrix a does not have full column rank. In this case
it returns the column index (numbered from one) at which it encountered the zero.

• denseGETRS

denseGETRS(a,n,p,b) solves the n by n linear system ax = b. It assumes that a (of size
n × n) has been LU-factored and the pivot array p has been set by a successful call to
denseGETRF(a,n,n,p). The solution x is written into the b array.

• densePOTRF

densePOTRF(a,m) calculates the Cholesky decomposition of the m by m dense matrix a, assumed
to be symmetric positive definite. Only the lower triangle of a is accessed and overwritten with
the Cholesky factor.

• densePOTRS

densePOTRS(a,m,b) solves the m by m linear system ax = b. It assumes that the Cholesky
factorization of a has been calculated in the lower triangular part of a by a successful call to
densePOTRF(a,m).

• denseGEQRF

denseGEQRF(a,m,n,beta,wrk) calculates the QR decomposition of the m by n matrix a (m ≥
n) using Householder reflections. On exit, the elements on and above the diagonal of a contain
the n by n upper triangular matrix R; the elements below the diagonal, with the array beta,
represent the orthogonal matrix Q as a product of elementary reflectors. The real array wrk, of
length m, must be provided as temporary workspace.

• denseORMQR

denseORMQR(a,m,n,beta,v,w,wrk) calculates the product w = Qv for a given vector v of length
n, where the orthogonal matrix Q is encoded in the m by n matrix a and the vector beta of
length n, after a successful call to denseGEQRF(a,m,n,beta,wrk). The real array wrk, of length
m, must be provided as temporary workspace.

9.1.4 Functions in the BAND module

The band module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on band matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat banded matrices are available in the band package. For full
details, see the header files sundials direct.h and sundials band.h.
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• NewBandMat: allocation of a DlsMat band matrix;

• DestroyMat: free memory for a DlsMat matrix;

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of int integers for use as pivots with BandGBRF and
BandGBRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack band
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with BandGBRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandGBTRF: LU factorization with partial pivoting;

• BandGBTRS: solution of Ax = b using LU factorization;

The following functions for small band matrices are available in the band package:

• newBandMat

newBandMat(n, smu, ml) allocates storage for an n by n band matrix with lower half-bandwidth
ml.

• destroyMat

destroyMat(a) frees the band matrix a allocated by newBandMat;

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• bandCopy

bandCopy(a,b,n,a smu, b smu,copymu, copyml) copies the n by n band matrix a into the n

by n band matrix b;

• bandScale

bandScale(c,a,n,mu,ml,smu) scales every element in the n by n band matrix a by c;
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• bandAddIdentity

bandAddIdentity(a,n,smu) increments the n by n band matrix a by the identity matrix;

• bandGETRF

bandGETRF(a,n,mu,ml,smu,p) factors the n by n band matrix a, using Gaussian elimination
with row pivoting. It overwrites the elements of a with its LU factors and keeps track of the
pivot rows chosen in the pivot array p.

• bandGETRS

bandGETRS(a,n,smu,ml,p,b) solves the n by n linear system ax = b. It assumes that a (of
size n × n) has been LU-factored and the pivot array p has been set by a successful call to
bandGETRF(a,n,mu,ml,smu,p). The solution x is written into the b array.

9.2 The SPILS modules: SPGMR, SPBCG, and SPTFQMR

A linear solver module from the spils family can only be used in conjunction with an actual nvector !

implementation library, such as the nvector serial or nvector parallel provided with sundi-

als.

9.2.1 The SPGMR module

The spgmr package, in the files sundials spgmr.h and sundials spgmr.c, includes an implemen-
tation of the scaled preconditioned GMRES method. A separate code module, implemented in
sundials iterative.(h,c), contains auxiliary functions that support spgmr, as well as the other
Krylov solvers in sundials (spbcg and sptfqmr). For full details, including usage instructions, see
the header files sundials spgmr.h and sundials iterative.h.

The files comprising the spgmr generic linear solver, and their locations in the sundials srcdir,
are as follows:

• header files (located in srcdir/include/sundials)
sundials spgmr.h sundials iterative.h sundials nvector.h

sundials types.h sundials math.h sundials config.h

• source files (located in srcdir/src/sundials)
sundials spgmr.c sundials iterative.c sundials nvector.c

Only two of the preprocessing directives in the header file sundials config.h are required to use the
spgmr package by itself (see §A.3 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MAX and ABS macros and RAbs

and RSqrt functions.
The generic nvector files, sundials nvector.(h,c) are needed for the definition of the generic

N Vector type and functions. The nvector functions used by the spgmr module are: N VDotProd,
N VLinearSum, N VScale, N VProd, N VDiv, N VConst, N VClone, N VCloneVectorArray, N VDestroy,
and N VDestroyVectorArray.
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The nine files listed above can be extracted from the sundials srcdir and compiled by themselves
into an spgmr library or into a larger user code.

The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials iterative.(h,c):

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

9.2.2 The SPBCG module

The spbcg package, in the files sundials spbcgs.h and sundials spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions,
see the file sundials spbcgs.h.

The files needed to use the spbcg module by itself are the same as for the spgmr module, but
with sundials spbcgs.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spbcg package:

• SpbcgMalloc: allocation of memory for SpbcgSolve;

• SpbcgSolve: solution of Ax = b by the spbcg method;

• SpbcgFree: free memory allocated by SpbcgMalloc.

9.2.3 The SPTFQMR module

The sptfqmr package, in the files sundials sptfqmr.h and sundials sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions,
see the file sundials sptfqmr.h.

The files needed to use the sptfqmr module by itself are the same as for the spgmr module, but
with sundials sptfqmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the sptfqmr package:

• SptfqmrMalloc: allocation of memory for SptfqmrSolve;

• SptfqmrSolve: solution of Ax = b by the sptfqmr method;

• SptfqmrFree: free memory allocated by SptfqmrMalloc.



Appendix A

CVODES Installation Procedure

The installation of cvodes is accomplished by installing the sundials suite as a whole, according to
the instructions that follow. The same procedure applies whether or not the downloaded file contains
solvers other than cvodes.1

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz). The
name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of: sundials,
cvode, cvodes, ida, idas, or kinsol, and x.y.z represents the version number (of the sundials suite
or of the individual solver). To begin the installation, first uncompress and expand the sources, by
issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.4.0 of sundials, two installation methods are provided: in addition to

the previous autotools-based method, sundials now provides a method based on CMake. Before
providing detailed explanations on the installation procedure for the two approaches, we begin with
a few common observations:

• In the remainder of this chapter, we make the following distinctions:

srcdir is the directory solver-x.y.z created above; i.e., the directory containing the sundials

sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/lib, with instdir specified at configuration time.

• For the CMake-based installation, in-source builds are prohibited; in other words, the build
directory builddir can not be the same as srcdir and such an attempt will lead to an error.
For autotools-based installation, in-source builds are allowed, although even in that case we
recommend using a separate builddir. Indeed, this prevents “polluting” the source tree and
allows efficient builds for different configurations and/or options.

• The installation directory instdir can not be the same as the source directory srcdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate option to configure or toggle for CMake), the
examples distributed with sundials will be built together with the solver libraries but the

1Files for both the serial and parallel versions of cvodes are included in the distribution. For users in a
serial computing environment, the files specific to parallel environments (which may be deleted) are as follows:
all files in src/nvec par/; nvector parallel.h (in include/nvector/); cvodes bbdpre.c, cvodes bbdpre impl.h (in
src/cvodes/); cvodes bbdpre.h (in include/cvodes/); all files in examples/cvodes/parallel/. (By “serial version” of
cvodes we mean the cvodes solver with the serial nvector module attached, and similarly for “parallel version”.)
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installation step will result in exporting (by default in a subdirectory of the installation directory)
the example sources and sample outputs together with automatically generated configuration
files that reference the installed sundials headers and libraries. As such, these configuration files
for the sundials examples can be used as ”templates” for your own problems. The configure

script will install makefiles. CMake installs CMakeLists.txt files and also (as an option available
only under Unix/Linux) makefiles. Note that both installation approaches also allow the option
of building the sundials examples without having to install them. (This can be used as a sanity
check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in ”undefined symbol” errors at link time.)

A.1 Autotools-based installation

The installation procedure outlined below will work on commodity LINUX/UNIX systems without
modification. However, users are still encouraged to carefully read this entire section before attempting
to install the sundials suite, in case non-default choices are desired for compilers, compilation options,
installation location, etc. The user may invoke the configuration script with the help flag to view a
complete listing of available options, by issuing the command

% ./configure --help

from within srcdir.

The installation steps for sundials can be as simple as the following:

% cd (...)/srcdir

% ./configure

% make

% make install

in which case the sundials header files and libraries are installed under /usr/local/include and
/usr/local/lib, respectively. Note that, by default, the example programs are not built and installed.
To delete all temporary files created by building sundials, issue

% make clean

To prepare the sundials distribution for a new install (using, for example, different options and/or
installation destinations), issue

% make distclean

The above steps are for an “in-source” build. For an “out-of-source” build (recommended), the
procedure is simply:

% cd (...)/builddir

% (...)/srcdir/configure

% make

% make install

Note that, in this case, make clean and make distclean are irrelevant. Indeed, if disk space is a
priority, the entire builddir can be purged after the installation completes. For a new install, a new
builddir directory can be created and used.
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A.1.1 Configuration options

The installation procedure given above will generally work without modification; however, if the
system includes multiple MPI implementations, then certain configure script-related options may be
used to indicate which MPI implementation should be used. Also, if the user wants to use non-default
language compilers, then, again, the necessary shell environment variables must be appropriately
redefined. The remainder of this section provides explanations of available configure script options.

General options

--prefix=PREFIX

Location for architecture-independent files.

Default: PREFIX=/usr/local

--exec-prefix=EPREFIX

Location for architecture-dependent files.

Default: EPREFIX=/usr/local

--includedir=DIR

Alternate location for installation of header files.

Default: DIR=PREFIX/include

--libdir=DIR

Alternate location for installation of libraries.

Default: DIR=EPREFIX/lib

--disable-solver

Although each existing solver module is built by default, support for a given solver can be
explicitly disabled using this option. The valid values for solver are: cvode, cvodes, ida, idas,
and kinsol.

--enable-examples

Available example programs are not built by default. Use this option to enable compilation of all
pertinent example programs. Upon completion of the make command, the example executables
will be created under solver-specific subdirectories of builddir/examples:

builddir/examples/solver/serial : serial C examples

builddir/examples/solver/parallel : parallel C examples

builddir/examples/solver/fcmix serial : serial Fortran examples

builddir/examples/solver/fcmix parallel : parallel Fortran examples

Note: Some of these subdirectories may not exist depending upon the solver and/or the configu-
ration options given.

--with-examples-instdir=EXINSTDIR

Alternate location for example executables and sample output files (valid only if examples are en-
abled). Note that installation of example files can be completely disabled by issuing EXINSTDIR=no
(in case building the examples is desired only as a test of the sundials libraries).

Default: DIR=EPREFIX/examples

--with-cppflags=ARG

Specify additional C preprocessor flags (e.g., ARG=-I<include dir> if necessary header files are
located in nonstandard locations).
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--with-cflags=ARG

Specify additional C compilation flags.

--with-ldflags=ARG

Specify additional linker flags (e.g., ARG=-L<lib dir> if required libraries are located in nonstan-
dard locations).

--with-libs=ARG

Specify additional libraries to be used (e.g., ARG=-l<foo> to link with the library named libfoo.a

or libfoo.so).

--with-precision=ARG

By default, sundials will define a real number (internally referred to as realtype) to be a
double-precision floating-point numeric data type (double C-type); however, this option may be
used to build sundials with realtype defined instead as a single-precision floating-point numeric
data type (float C-type) if ARG=single, or as a long double C-type if ARG=extended.

Default: ARG=double

Users should not build sundials with support for single-precision floating-point arithmetic on!

32- or 64-bit systems. This will almost certainly result in unreliable numerical solutions. The
configuration option --with-precision=single is intended for systems on which single-precision
arithmetic involves at least 14 decimal digits.

Options for Fortran support

--disable-fcmix

Using this option will disable all Fortran support. The fcvode, fkinsol, fida, and fnvector

modules will not be built, regardless of availability.

--with-fflags=ARG

Specify additional Fortran compilation flags.

Options for MPI support

The following configuration options are only applicable to the parallel sundials packages:

--disable-mpi

Using this option will completely disable MPI support.

--with-mpicc=ARG

--with-mpif77=ARG

By default, the configuration utility script will use the MPI compiler scripts named mpicc and
mpif77 to compile the parallelized sundials subroutines; however, for reasons of compatibility,
different executable names may be specified via the above options. Also, ARG=no can be used to
disable the use of MPI compiler scripts, thus causing the serial C and Fortran compilers to be
used to compile the parallelized sundials functions and examples.

--with-mpi-root=MPIDIR

This option may be used to specify which MPI implementation should be used. The sundi-

als configuration script will automatically check under the subdirectories MPIDIR/include and
MPIDIR/lib for the necessary header files and libraries. The subdirectory MPIDIR/bin will also
be searched for the C and Fortran MPI compiler scripts, unless the user uses --with-mpicc=no
or --with-mpif77=no.

--with-mpi-incdir=INCDIR
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--with-mpi-libdir=LIBDIR

--with-mpi-libs=LIBS

These options may be used if the user would prefer not to use a preexisting MPI compiler script,
but instead would rather use a serial complier and provide the flags necessary to compile the
MPI-aware subroutines in sundials.

Often an MPI implementation will have unique library names and so it may be necessary to
specify the appropriate libraries to use (e.g., LIBS=-lmpich).

Default: INCDIR=MPIDIR/include and LIBDIR=MPIDIR/lib

--with-mpi-flags=ARG

Specify additional MPI-specific flags.

Options for library support

By default, only static libraries are built, but the following option may be used to build shared libraries
on supported platforms.

--enable-shared

Using this particular option will result in both static and shared versions of the available sundials

libraries being built if the system supports shared libraries. To build only shared libraries also
specify --disable-static.

Note: The fcvode, fkinsol, and fida libraries can only be built as static libraries because they
contain references to externally defined symbols, namely user-supplied Fortran subroutines.
Although the Fortran interfaces to the serial and parallel implementations of the supplied
nvector module do not contain any unresolvable external symbols, the libraries are still built
as static libraries for the purpose of consistency.

Options for Blas/Lapack support

The configure script will attempt to automatically determine the proper libraries to be linked for
support of the new Blas/Lapack linear solver module. If these are not found, or if Blas and/or Lapack
libraries are installed in a non-standard location, the following options can be used:

--with-blas=BLASDIR

Specify the Blas library.

Default: none

--with-lapack=LAPACKDIR

Specify the Lapack library.

Default: none

Environment variables

The following environment variables can be locally (re)defined for use during the configuration of
sundials. See the next section for illustrations of these.

CC

F77

Since the configuration script uses the first C and Fortran compilers found in the current
executable search path, then each relevant shell variable (CC and F77) must be locally (re)defined
in order to use a different compiler. For example, to use xcc (executable name of chosen compiler)
as the C language compiler, use CC=xcc in the configure step.
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CFLAGS

FFLAGS

Use these environment variables to override the default C and Fortran compilation flags.

A.1.2 Configuration examples

The following examples are meant to help demonstrate proper usage of the configure options.
To build sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples,and install libraries, headers, and example sources
under appropriate subdirectories of /home/myname/sundials/, use

% configure --prefix=/home/myname/sundials --enable-examples

To disable installation of the examples, use:

% configure --prefix=/home/myname/sundials \

--enable-examples --with-examples-instdir=no

The following example builds sundials using gcc as the serial C compiler, g77 as the serial Fortran

compiler, mpicc as the parallel C compiler, mpif77 as the parallel Fortran compiler, and appends
the -g3 compilaton flag to the list of default flags:

% configure CC=gcc F77=g77 --with-cflags=-g3 --with-fflags=-g3 \

--with-mpicc=/usr/apps/mpich/1.2.4/bin/mpicc \

--with-mpif77=/usr/apps/mpich/1.2.4/bin/mpif77

The next example again builds sundials using gcc as the serial C compiler, but the --with-mpicc=no
option explicitly disables the use of the corresponding MPI compiler script. In addition, since the
--with-mpi-root option is given, the compilation flags -I/usr/apps/mpich/1.2.4/include and
-L/usr/apps/mpich/1.2.4/lib are passed to gcc when compiling the MPI-enabled functions. The
--with-mpi-libs option is required so that the configure script can check if gcc can link with the
appropriate MPI library. The --disable-lapack option explicitly disables support for Blas/Lapack,
while the --disable-fcmix explicitly disables building the FCMIX interfaces. Note that, because of
the last two options, no Fortran-related settings are checked for.

% configure CC=gcc --with-mpicc=no \

--with-mpi-root=/usr/apps/mpich/1.2.4 \

--with-mpi-libs=-lmpich \

--disable-lapack --disable-fcmix

Finally, a minimal configuration and installation of sundials in /home/myname/sundials/ (serial
only, no Fortran support, no examples) can be obtained with:

% configure --prefix=/home/myname/sundials \

--disable-mpi --disable-lapack --disable-fcmix

A.2 CMake-based installation

Support for CMake-based installation has been added to sundials primarily to provide a platform-
independent build system. Like autotools, CMake can generate a Unix Makefile. Unlike autotools,
CMake can also create KDevelop, Visual Studio, and (Apple) XCode project files from the same
configuration file. In addition, CMake provides a GUI front end and therefore the installation process
is more interactive than when using autotools.

The installation options are very similar to the options mentioned above (although their default
values may differ slightly). Practically, all configurations supported by the autotools-based installation
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approach are also possible with CMake, the only notable exception being cross-compilation, which is
currently not implemented in the CMake approach.

The sundials build process requires CMake version 2.4.x or higher and a working compiler.
On Unix-like operating systems, it also requires Make (and curses, including its development li-
braries, for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio.
While many Linux distributions offer CMake, the version included is probably out of date. Many
new CMake features have been added recently, and you should download the latest version from
http://www.cmake.org/HTML/Download.html. Build instructions for Cmake (only necessary for
Unix-like systems) can be found on the CMake website. Once CMake is installed, Linux/Unix user
will be able to use ccmake, while Windows user will be able to use CMakeSetup.

As noted above, when using CMake to configure, build and install sundials, it is always required
to use a separate build directory. While in-source builds are possible, they are explicitly prohibited
by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake does not
provide a make distclean procedure and it is therefore difficult to clean-up the source tree after an
in-source build).

A.2.1 Configuring, building, and installing on Unix-like systems

Use ccmake from the CMake installed location. ccmake is a Curses based GUI for CMake. To run it
go to the build directory and specify as an argument the build directory:

% mkdir (...)/builddir

% cd (...)/builddir

% ccmake (...)/srcdir

About ccmake:

• Iterative process

– Select values, run configure (c key)

– Set the settings, run configure, set the settings, run configure, etc.

• Repeat until all values are set and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced varables, toggle to advanced mode (t key)

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will flip the value

– If it is string or file, it will allow editing of the string

– For file and directories, the <tab> key can be used to complete

• To search for a variable press / key, and to repeat the search, press the n key

CMake will now generate makefiles including all dependencies and all rules to build sundials on
this system. You should not, however, try to move the build directory to another location on this
system or to another system. Once you have makefiles you should be able to just type:

% make

To install sundials in the installation directory specified at configuration time, simply run

% make install
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A.2.2 Configuring, building, and installing on Windows

Use CMakeSetup from the CMake install location. Make sure to select the appropriate source and
the build directory. Also, make sure to pick the appropriate generator (on Visual Studio 6, pick the
Visual Studio 6 generator). Some CMake versions will ask you to select the generator the first time
you press Configure instead of having a drop-down menu in the main dialog.

About CMakeSetup:

• Iterative process

– Select values, press the Configure button

– Set the settings, run configure, set the settings, run configure, etc.

• Repeat until all values are set and the OK button becomes available.

• Some variables (advanced variables) are not visible right away

• To see advanced varables, toggle to advanced mode (”Show Advanced Values” toggle).

• To set the value of a variable, click on that value.

– If it is boolean (ON/OFF), a drop-down menu will appear for changing the value.

– If it is file or directory, an ellipsis button will appear (”...”) on the far right of the entry.
Clicking this button will bring up the file or directory selection dialog.

– If it is a string, it will become an editable string.

CMake will now create Visual Studio project files. You should now be able to open the sundials

project (or workspace) file. Make sure to select the appropriate build type (Debug, Release, ...). To
build sundials, simply build the ALL BUILD target. To install sundials, simply run the INSTALL

target within the build system.

A.2.3 Configuration options

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only. Some of them will be different on different systems.

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: OFF

BUILD STATIC LIBS - Build static libraries
Default: ON



A.2 CMake-based installation 173

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used) Debug
Release RelWithDebInfo MinSizeRel
Default:

CMAKE C COMPILER - C compiler
Default: /usr/bin/gcc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the compiler during release builds
Default: -O3 -DNDEBUG

CMAKE BACKWARDS COMPATIBILITY - For backwards compatibility, what version of CMake commands
and syntax should this version of CMake allow.
Default: 2.4

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/g77
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or Blas/Lapack support is enabled (LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the compiler during debug builds
Default:

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default:

CMAKE Fortran FLAGS RELEASE - Flags used by the compiler during release builds
Default:

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Exported
sundials header files and libraries will be installed under subdirectories include and lib of
CMAKE INSTALL PREFIX, respectively.

EXAMPLES ENABLE - Build the sundials examples
Default: OFF
Note: setting this option to ON will trigger additional options related to how and where example
programs will be installed.

EXAMPLES GENERATE MAKEFILES - Create Makefiles for building the examples
Default: ON
Note: This option is triggered only if enabling the building and installing of the example pro-
grams (i.e., both EXAMPLES ENABLE and EXAMPLEs INSTALL are set to ON) and if configuration
is done on a Unix-like system. If enabled, makefiles for the compilation of the example programs
(using the installed sundials libraries) will be automatically generated and exported to the
directory specified by EXAMPLES INSTALL PATH.
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EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered only if building example programs is enabled (EXAMPLES ENABLE

ON). If the user requires installation of example programs then the sources and sample output
files for all sundials modules that are currently enabled will be exported to the directory
specified by EXAMPLES INSTALL PATH. A CMake configuration script will also be automatically
generated and exported to the same directory. Additionally, if the configuration is done under
a Unix-like system, an additional option (EXAMPLES GENERATE MAKEFILES) will be triggered.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will an examples subdirectory created under
CMAKE INSTALL PREFIX.

EXAMPLES USE STATIC LIBS - Link examples using the static libraries
Default: OFF
Note: This option is triggered only if building shared libraries is enabled (BUILD SHARED LIBS

is ON).

FCMIX ENABLE - Enable Fortran-C support
Default: OFF

LAPACK ENABLE - Enable Lapack support
Default: OFF
Note: Setting this option to ON will trigger the two additional options see below.

LAPACK LIBRARIES - Lapack (and Blas) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

LAPACK LINKER FLAGS - Lapack (and Blas) required linker flags
Default: -lg2c

MPI ENABLE - Enable MPI support
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI MPICC - mpicc program
Default: /home/radu/apps/mpich1/gcc/bin/mpicc
Note: This option is triggered only if using MPI compiler scripts (MPI USE MPISCRIPTS is ON).

MPI MPIF77 - mpif77 program
Default: /home/radu/apps/mpich1/gcc/bin/mpif77
Note: This option is triggered only if using MPI compiler scripts (MPI USE MPISCRIPTS is ON)
and Fortran-C support is enabled (FCMIx ENABLE is ON).

MPI INCLUDE PATH - Path to MPI header files
Default: /home/radu/apps/mpich1/gcc/include
Note: This option is triggered only if not using MPI compiler scripts (MPI USE MPISCRIPTS is
ON).

MPI LIBRARIES - MPI libraries
Default: /home/radu/apps/mpich1/gcc/lib/libmpich.a
Note: This option is triggered only if not using MPI compiler scripts (MPI USE MPISCRIPTS is
ON).

MPI USE MPISCRIPTS - Use MPI compiler scripts
Default: ON
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SUNDIALS PRECISION - Precision used in sundials, options are: double, single or extended
Default: double

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

A.3 Manually building SUNDIALS

With the addition of CMake support, the installation of the sundials package on almost any platform
was greatly simplified. However, if for whatever reason, neither of the two procedures described above
is convenient (for example for users who prefer to own the build process or otherwise incorporate
sundials or one of its solvers in a larger project with its own build system), we provide here a few
directions for a completely manual installation.

The following files are required to compile a sundials solver module:

• public header files located under srcdir/include/solver

• implementation header files and source files located under srcdir/src/solver

• (optional) Fortran/C interface files located under srcdir/src/solver/fcmix

• shared public header files located under srcdir/include/sundials

• shared source files located under srcdir/src/sundials

• (optional) nvector serial header and source files located under srcdir/include/nvector and
srcdir/src/nvec ser

• (optional) nvector parallel header and source files located under srcdir/include/nvector
and srcdir/src/nvec par

• configuration header file sundials config.h (see below)

A sample header file that, appropriately modified, can be used as sundials config.h (otherwise
created automatically by the configure or CMake scripts) is provided below.

1 /∗ SUNDIALS con f i gu r a t i on header f i l e ∗/
2

3 #de f i n e SUNDIALS PACKAGE VERSION ” 2 . 4 . 0 ”
4

5 #de f i n e F77 FUNC(name ,NAME) name ##
6 #de f i n e F77 FUNC (name ,NAME) name ##
7

8 #de f i n e SUNDIALS DOUBLE PRECISION 1
9

10 #de f i n e SUNDIALS USE GENERIC MATH
11

12 #de f i n e SUNDIALS MPI COMM F2C 1
13

14 #de f i n e SUNDIALS EXPORT

The various preprocessor macros defined within sundials config.h have the following uses:

• Precision of the sundials realtype type

Only one of the macros SUNDIALS SINGLE PRECISION, SUNDIALS DOUBLE PRECISION and
SUNDIALS EXTENDED PRECISION should be defined to indicate if the sundials realtype type is
an alias for float, double, or long double, respectively.
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• Use of generic math functions

If SUNDIALS USE GENERIC MATH is defined, then the functions in sundials math.(h,c) will use
the pow, sqrt, fabs, and exp functions from the standard math library (see math.h), regardless
of the definition of realtype. Otherwise, if realtype is defined to be an alias for the float

C-type, then sundials will use powf, sqrtf, fabsf, and expf. If realtype is instead defined
to be a synonym for the long double C-type, then powl, sqrtl, fabsl, and expl will be used.

Note: Although the powf/powl, sqrtf/sqrtl, fabsf/fabsl, and expf/expl routines are not
specified in the ANSI C standard, they are ISO C99 requirements. Consequently, these routines
will only be used if available.

• Fortran name-mangling scheme

The macros given below are used to transform the C-language function names defined in the
Fortran-C interface modules in a manner consistent with the preferred Fortran compiler,
thus allowing native C functions to be called from within a Fortran subroutine. The name-
mangling scheme is specified by appropriately defining the following parameterized macros (using
the stringization operator, ##, if necessary):

– F77 FUNC(name,NAME)

– F77 FUNC (name,NAME)

For example, to specify that mangled C-language function names should be lowercase with one
underscore appended include

#define F77_FUNC(name,NAME) name ## _

#define F77_FUNC_(name,NAME) name ## _

in the sundials config.h header file.

• Use of an MPI communicator other than MPI COMM WORLD in Fortran

If the macro SUNDIALS MPI COMM F2C is defined, then the MPI implementation used to build
sundials defines the type MPI Fint and the function MPI Comm f2c, and it is possible to use
MPI communicators other than MPI COMM WORLD with the Fortran-C interface modules.

• Mark sundials API functions for export/import. When building shared sundials libraries
under Windows, use

#define SUNDIALS_EXPORT __declspec(dllexport)

When linking to shared sundials libraries under Windows, use

#define SUNDIALS_EXPORT __declspec(dllimport)

In all other cases (other platforms or static libraries under Windows), the SUNDIALS EXPORT

macro is empty.

A.4 Installed libraries and exported header files

Using the standard sundials build system, the command

% make install
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will install the libraries under libdir and the public header files under includedir. The default values
for these directories are instdir/lib and instdir/include, respectively, but can be changed using the
configure script options --prefix, --exec-prefix, --includedir and --libdir (see §A.1) or the
appropriate CMake options (see §A.2). For example, a global installation of sundials on a *NIX

system could be accomplished using

% configure --prefix=/opt/sundials-2.1.1

Although all installed libraries reside under libdir, the public header files are further organized into
subdirectories under includedir.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in Table A.1,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/sundials directory since they are explicitly included by the appropriate solver
header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and safe to
do so (e.g., the functions declared in sundials dense.h could be used in building a preconditioner).
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Table A.1: sundials libraries and header files

shared Libraries n/a
Header files sundials/sundials config.h sundials/sundials types.h

sundials/sundials math.h
sundials/sundials nvector.h sundials/sundials fnvector.h
sundials/sundials direct.h sundials/sundials lapack.h
sundials/sundials dense.h sundials/sundials band.h
sundials/sundials iterative.h sundials/sundials spgmr.h
sundials/sundials spbcgs.h sundials/sundials sptfqmr.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector/nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode lapack.h
cvode/cvode dense.h cvode/cvode band.h
cvode/cvode diag.h
cvode/cvode spils.h cvode/cvode spgmr.h
cvode/cvode sptfqmr.h cvode/cvode spbcgs.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes lapack.h
cvodes/cvodes dense.h cvodes/cvodes band.h
cvodes/cvodes diag.h
cvodes/cvodes spils.h cvodes/cvodes spgmr.h
cvodes/cvodes sptfqmr.h cvodes/cvodes spbcgs.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida lapack.h
ida/ida dense.h ida/ida band.h
ida/ida spils.h ida/ida spgmr.h
ida/ida spbcgs.h ida/ida sptfqmr.h
ida/ida bbdpre.h

idas Libraries libsundials idas.lib
Header files idas/idas.h idas/idas impl.h

idas/idas direct.h idas/idas lapack.h
idas/idas dense.h idas/idas band.h
idas/idas spils.h idas/idas spgmr.h
idas/idas spbcgs.h idas/idas sptfqmr.h
idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol lapack.h
kinsol/kinsol dense.h kinsol/kinsol band.h
kinsol/kinsol spils.h kinsol/kinsol spgmr.h
kinsol/kinsol spbcgs.h kinsol/kinsol sptfqmr.h
kinsol/kinsol bbdpre.h
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CVODES Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 CVODES input constants

cvodes main solver module

CV ADAMS 1 Adams-Moulton linear multistep method.
CV BDF 2 BDF linear multistep method.
CV FUNCTIONAL 1 Nonlinear system solution through functional iterations.
CV NEWTON 2 Nonlinear system solution through Newton iterations.
CV NORMAL 1 Solver returns at specified output time.
CV ONE STEP 2 Solver returns after each successful step.
CV SIMULTANEOUS 1 Simultaneous corrector forward sensitivity method.
CV STAGGERED 2 Staggered corrector forward sensitivity method.
CV STAGGERED1 3 Staggered (variant) corrector forward sensitivity method.
CV CENTERED 1 Central difference quotient approximation (2nd order) of the

sensitivity RHS.
CV FORWARD 2 Forward difference quotient approximation (1st order) of the

sensitivity RHS.

cvodes adjoint solver module

CV HERMITE 1 Use Hermite interpolation.
CV POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left only.
PREC RIGHT 2 Preconditioning on the right only.
PREC BOTH 3 Preconditioning on both the left and the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 CVODES output constants
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cvodes main solver module

CV SUCCESS 0 Successful function return.
CV TSTOP RETURN 1 CVode succeeded by reaching the specified stopping point.
CV ROOT RETURN 2 CVode succeeded and found one or more roots.
CV WARNING 99 CVode succeeded but an unusual situation occurred.
CV TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
CV TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the

user for some internal step.
CV ERR FAILURE -3 Error test failures occurred too many times during one in-

ternal time step or minimum step size was reached.
CV CONV FAILURE -4 Convergence test failures occurred too many times during

one internal time step or minimum step size was reached.
CV LINIT FAIL -5 The linear solver’s initialization function failed.
CV LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
CV LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
CV RHSFUNC FAIL -8 The right-hand side function failed in an unrecoverable man-

ner.
CV FIRST RHSFUNC ERR -9 The right-hand side function failed at the first call.
CV REPTD RHSFUNC ERR -10 The right-hand side function had repetead recoverable er-

rors.
CV UNREC RHSFUNC ERR -11 The right-hand side function had a recoverable error, but no

recovery is possible.
CV RTFUNC FAIL -12 The rootfinding function failed in an unrecoverable manner.
CV MEM FAIL -20 A memory allocation failed.
CV MEM NULL -21 The cvode mem argument was NULL.
CV ILL INPUT -22 One of the function inputs is illegal.
CV NO MALLOC -23 The cvode memory block was not allocated by a call to

CVodeMalloc.
CV BAD K -24 The derivative order k is larger than the order used.
CV BAD T -25 The time t is outside the last step taken.
CV BAD DKY -26 The output derivative vector is NULL.
CV TOO CLOSE -27 The output and initial times are too close to each other.
CV NO QUAD -30 Quadrature integration was not activated.
CV QRHSFUNC FAIL -31 The quadrature right-hand side function failed in an unre-

coverable manner.
CV FIRST QRHSFUNC ERR -32 The quadrature right-hand side function failed at the first

call.
CV REPTD QRHSFUNC ERR -33 The quadrature ight-hand side function had repetead recov-

erable errors.
CV UNREC QRHSFUNC ERR -34 The quadrature right-hand side function had a recoverable

error, but no recovery is possible.
CV NO SENS -40 Forward sensitivity integration was not activated.
CV SRHSFUNC FAIL -41 The sensitivity right-hand side function failed in an unre-

coverable manner.
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CV FIRST SRHSFUNC ERR -42 The sensitivity right-hand side function failed at the first
call.

CV REPTD SRHSFUNC ERR -43 The sensitivity ight-hand side function had repetead recov-
erable errors.

CV UNREC SRHSFUNC ERR -44 The sensitivity right-hand side function had a recoverable
error, but no recovery is possible.

CV BAD IS -45 The sensitivity index is larger than the number of sensitivi-
ties computed.

CV NO QUADSENS -50 Forward sensitivity integration was not activated.
CV QSRHSFUNC FAIL -51 The sensitivity right-hand side function failed in an unre-

coverable manner.
CV FIRST QSRHSFUNC ERR -52 The sensitivity right-hand side function failed at the first

call.
CV REPTD QSRHSFUNC ERR -53 The sensitivity ight-hand side function had repetead recov-

erable errors.
CV UNREC QSRHSFUNC ERR -54 The sensitivity right-hand side function had a recoverable

error, but no recovery is possible.

cvodes adjoint solver module

CV NO ADJ -101 Adjoint module was not initialized.
CV NO FWD -102 The forward integration was not yet performed.
CV NO BCK -103 No backward problem was specified.
CV BAD TB0 -104 The final time for the adjoint problem is outside the interval

over which the forward problem was solved.
CV REIFWD FAIL -105 Reinitialization of the forward problem failed at the first

checkpoint.
CV FWD FAIL -106 An error occurred during the integration of the forward

problem.
CV GETY BADT -107 Wrong time in interpolation function.

cvdls linear solver modules

CVDLS SUCCESS 0 Successful function return.
CVDLS MEM NULL -1 The cvode mem argument was NULL.
CVDLS LMEM NULL -2 The cvdls linear solver has not been initialized.
CVDLS ILL INPUT -3 The cvdls solver is not compatible with the current nvec-

tor module.
CVDLS MEM FAIL -4 A memory allocation request failed.
CVDLS JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
CVDLS JACFUNC RECVR -6 The Jacobian function had a recoverable error.
CVDLS NO ADJ -101 The combined forward-backward problem has not been ini-

tialized.
CVDLS LMEMB NULL -102 The linear solver was not initialized for the backward phase.

cvdiag linear solver module

CVDIAG SUCCESS 0 Successful function return.
CVDIAG MEM NULL -1 The cvode mem argument was NULL.
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CVDIAG LMEM NULL -2 The cvdiag linear solver has not been initialized.
CVDIAG ILL INPUT -3 The cvdiag solver is not compatible with the current nvec-

tor module.
CVDIAG MEM FAIL -4 A memory allocation request failed.
CVDIAG INV FAIL -5 A diagonal element of the Jacobian was 0.
CVDIAG RHSFUNC UNRECVR -6 The right-hand side function failed in an unrecoverable man-

ner.
CVDIAG RHSFUNC RECVR -7 The right-hand side function had a recoverable error.
CVDIAG NO ADJ -101 The combined forward-backward problem has not been ini-

tialized.

cvspils linear solver modules

CVSPILS SUCCESS 0 Successful function return.
CVSPILS MEM NULL -1 The cvode mem argument was NULL.
CVSPILS LMEM NULL -2 The cvspils linear solver has not been initialized.
CVSPILS ILL INPUT -3 The cvspils solver is not compatible with the current nvec-

tor module, or an input value was illegal.
CVSPILS MEM FAIL -4 A memory allocation request failed.
CVSPILS PMEM NULL -5 The preconditioner module has not been initialized.
CVSPILS NO ADJ -101 The combined forward-backward problem has not been ini-

tialized.
CVSPILS LMEMB NULL -102 The linear solver was not initialized for the backward phase.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPGMR PSET FAIL REC 6 The preconditioner setup function failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPGMR PSET FAIL UNREC -6 The preconditioner setup function failed unrecoverably.

spbcg generic linear solver module

SPBCG SUCCESS 0 Converged.
SPBCG RES REDUCED 1 No convergence, but the residual norm was reduced.
SPBCG CONV FAIL 2 Failure to converge.
SPBCG PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPBCG ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
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SPBCG PSET FAIL REC 5 The preconditioner setup function failed recoverably.
SPBCG MEM NULL -1 The spbcg memory is NULL
SPBCG ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPBCG PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPBCG PSET FAIL UNREC -4 The preconditioner setup function failed unrecoverably.

sptfqmr generic linear solver module

SPTFQMR SUCCESS 0 Converged.
SPTFQMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPTFQMR CONV FAIL 2 Failure to converge.
SPTFQMR PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPTFQMR ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPTFQMR PSET FAIL REC 5 The preconditioner setup function failed recoverably.
SPTFQMR MEM NULL -1 The sptfqmr memory is NULL
SPTFQMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed.
SPTFQMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPTFQMR PSET FAIL UNREC -4 The preconditioner setup function failed unrecoverably.
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