RRD-BEGINNERS(1) rrdtool RRD-BEGINNERS(1)

NAME

rrd—beginners — RRDtool Beginners’ Guide

SYNOPSIS

Helping nev RRDtool users to understand the basics of RRDtool

DESCRIPTION

This manual is an attempt to assist beginners in understanding the concepts of RRDtool. It sheds a light on
differences between RRDtool and other databases. With help of an example, it explains the structure of
RRDtool database. This is followed by arewwiew of the ‘graph’ feature of RRDtool At the end, it has

sample scripts that illustrate the usage/wrapping of RRDtool within Shell or Perl scripts.

What makes RRDtool so special?

RRDtool isGNU licensed softare deeloped by Tobias Oetédt, a gystem manager at the Swiss Federal
Institute of Bchnology Though it is a database, there are distinct differences between RRDtool databases
and other databases as listed below:

 RRDtool stores data; that makes it a back-end tool. The RRDtool command \wstaik to create
graphs; that makes it a front-end tool as well. Other databases just store data and can not create graphs.

* In case of linear databasesyndata gets appended at the bottom of the database table. Thus its size
keeps on increasing, whereas the size of an RRDtool database is determined at creation time. Imagine
an RRDtool database as the perimeter of a circle. Data is added along the penimetenev data
reaches the starting point, ivewrites existing data. This ay, the size of an RRDtool database
always remains constant. The name “Round Rdlsitems from this behavior.

e Other databases store the values as supplied. RRDtool can be configured to calculate the rate of
change from the previous to the current value and store this information instead.

» Other databases get updated whelues are supplied. The RRDtool database is structured in such a
way that it needs data at predefined time irdésvIf it does not get a wevalue during the interval, it
stores alUNKNOWN value for that interval. So, when using the RRDtool database, it is impetati
use scripts that run at regular intervals to ensure a constant data flodate the RRDtool database.

RRDtool is designed to store time series of datigh Wery data update, an associated time stamp is stored.
Time is alvays expressed in seconds passed since epoch (01-01-1970). RRDtool can be installed on Unix
as well as Whdows. It comes with a command set to carry out various operatioR®Dmatabases. This
command set can be accessed from the command line, as well as from Shell or Perl scripts. The scripts act
as wrappers for accessing data stored in RRDtool databases.

Understanding by an example

153

The structure of aRRD database is diérent than other linear databases. Other databases define tables
with columns, and manother parameters. These definitions sometimes ang somplex, especially in

large databases. RRDtool databases are primarily used for monitoring purposes and henrgesangle

in structure. The parameters that need to be definedaaebles that hold values and axasi of those
values. Being time sensit, a cwuple of time related parameters are also defined. Because of its structure,
the definition of an RRDtool database also includes a provision to specify specific actiores itotak
absence of update values. Data Soulr®,(heartbeat, Date Source TygeS{), Round Robin Arclvie

(RRA), and Consolidation Functiogk) are some of the terminologies related to RRDtool databases.

The structure of a database and the terminology associated with it can be best explained with an example.

rrdtool create target.rrd \
——start 1023654125\
——step 300\
DS:mem:GAUGE:600:0:671744 \
RRA:AVERAGE:0.5:12:24 \
RRA:AVERAGE:0.5:288:31

This example creates a database nataegtt.rrd. Start time (1'023'654'125) is specified in total number
of seconds since epoch (time in seconds since 01-01-1970). While updating the database, the update time
is also specified. This update tifvJST be larger (later) than start time amlST be in seconds since

2015-07-18 1

RRD-BEGINNERS(1) rrdtool RRD-BEGINNERS(1)

153

epoch.

The step of 300 seconds indicates that the databpsete nes values gery 300 seconds. The wrapper
script should be scheduled to rurey step seconds so that it updates the databeay etep seconds.

DS (Data Source) is the actuanable which relates to the parameter on the device that is monitored. Its
syntax is

DS:variable_name:DST:heartbeat:min:max

DSis a lkey word. variable_name is a name under which the parameter i®dan the database. There
can be as manDSs in a database as needed. Afteryestep interval, a me value ofDS is supplied to
update the database. This value is also called Primary Data(P@i)t In our example mentioned abg

a rew PDPis generatedwery 300 seconds.

Note, that if you doNOT supply nev data points exactlyvery 300 seconds, this is not a problem, RRDtool
will interpolate the data accordingly.

DST (Data Source Type) defines the type of it It can beCOUNTER, DERIVE, ABSOLUTE, GAUGE. A
DS declared a€OUNTERWill save the rate of change of the valueepa gep period. This assumes that the
value is aWays increasing (the diérence between the current and the previous value is greater than 0).
Traffic counters on a router are an ideal candidate for UBDIGNTER as DST. DERIVE is the same as
COUNTER,but it allows nayative values as well. If you want to see the ratetainge in free disk space on
your serer, then you might \&nt to use th®ERIVE data type ABSOLUTE also saes the rate of change,
but it assumes that the previous value is set to 0. THierdifce between the current and the previalisev

is alays equal to the current value. Thus it just stores the curedue divided by the step interval (300
seconds in oun@mple).GAUGE does not sz the rate of change. Itees the actual value itself. There are
no divisions or calculations. Memory consumption in a server is a typical exampag#.J he dference
between the different types DSTs can be explained better with the following example:

Values = 300, 600, 900, 1200
Step = 300 seconds

COUNTER DS = 1, 1, 1, 1
DERIVE DS = 1, 1, 1, 1
ABSOLUTEDS = 1, 2, 3, 4
GAUGE DS = 300, 600, 900, 120

The next parameter tseartbeat. In our example, heartbeat is 600 seconds. If the database does not get a
new PDPwithin 300 seconds, it will wait for another 300 seconds (total 600 seconds). If it tieesve

any PDPwithin 600 seconds, it will s an UNKNOWN value into the database. THIS{NKNOWN value is a
special feature of RRDtool — it is much better than to assume a missing value was 0 (zeyojtberan
number which might also be a valid datdue. Br example, the traffic fl@ counter on a routerdeps
increasing. Lets sap \alue is missed for an interval and 0 is stored insteatN&NOWN. Now when the

next value becomesvailable, it will calculate the difference between the current value and th®pse

value (0) which is not correct. So, inserting the val&KNOWN makes much more sense here.

The next tvo parameters are the minimum and maximum value, resphctif the variable to be stored has
predictable maximum and minimum values, this should be specified herepdate value falling out of
this range will be stored &8NKNOWN.

The next line declares a round robin avehRRA). The syntax for declaring &RA is
RRA:CF:xff:step:rows

RRA is the leyword to declare RRAs. The consolidation functia@F)(can be AVERAGE, MINIMUM,
MAXIMUM, andLAST. The concept of the consolidated data po@DR) comes into the picture here. A
CDPis CFed (meraged, maximum/minimumalue or last value) frorstep number of PDPs. ThiRRA will
hold rows CDPs.

Lets hae a bok at the example abe For the firstRRA, 12(steps) PDPsDS variables) are XERAGEed
(CF) to form oneCDP 24 (rows) of theses CDPs are andd. EachPDP occurs at 300 seconds. 12 PDPs
represent 12 times 300 seconds which is 1.Hboreans 1ICDP (which is equal to 12 PDPs) represents data

2015-07-18 2

RRD-BEGINNERS(1) rrdtool RRD-BEGINNERS(1)

worth 1 hour 24 sich CDPs represent 1 day (1 hour times 24 CDPs). This mear®R#his an archie for

one dayAfter 24 CDPsCDP number 25 will replace the 16DP. The secondRRA saves 31 (DPs; each
CPDrepresents aAv ERAGE vaue for a day (288 PDPs, eachvedng 300 seconds = 24 hours). Therefore

this RRA is an archie for one month. A single database camehamry RRAs. If there are multiple DSs,

each indvidual RRA will save data for all the DSs in the database. For example, if a database has 3 DSs and
daily, weekly, monthly, and yearly RRAs are declared, then e&kA will hold data from all 3 data
sources.

Graphical Magic
Another important feature of RRDtool is its ability to create graphs. Tineph’ command uses the
“fetch” command internally to retrie values from the database. With the rettbvalues it draws graphs
as defined by the parameters supplied on the command line. A single graphvealiffehent DS (Data
Sources) from a database. It is also possible tar $he values from more than one database in a single
graph. Often, it is necessary to perform some math oralbiesretriged from the database before plotting
them. For example, inNSNMP replies, memory consumption values are usually specified in KBytes and
traffic flow on interfaces is specified in Bytes. Graphs for these values will be more meaningful if values are
represented in MBytes and mbps. The RRDtool graph command allows to define sigchiamn Apart
from mathematical calculations, it is also possible to perform logical operations such as greater than, less
than, and if/then/else. If a database contains more tharRrRAmarchive, then a question may arise -wo
does RRDtool decide whidRRA archive © use for retrieving the values? RRDtool looks atesa things
when making its choice. First it makes sure thatRRa covers as much of the graphing time frame as
possible. Second it looks at the resolution of RiR&A compared to the resolution of the graph. It tries to
find one which has the same or higher better resolution. With-thiedption you can force RRDtool to
assume a different resolution than the one calculated from the pixel width of the graph.

Values of different variables can be presented in ferdift shapes in a graphAREA, LINE1, LINE2,

LINE3, and STACK. AREA is represented by a solid colored area with values as the boundary of this area.
LINE1/2/3 (increasing width) are just plain lines representing thieies.STACK is also an area but it is
“stack’ed on topAREA or LINE1/2/3. Another important thing to note is that variables are plotted in the
order thg are defined in the graph command. Therefore care must be taken to SiRfGie only after
defining AREA/LINE. It is also possible to put formatted comments within the gr&tailed instructions

can be found in the graph manual.

Wrapping RRDtool within Shell/Perl| script
After understanding RRDtool it is noa time to actually use RRDtool in scripts. Task#laed in netvark
management are data collection, data storage, and datsatetrieghe following example, the prously
created target.rrd database is used. Data collection and data storage is done using Shell scripts. Data
retrieval and report generation is done using Perl scripts. These scripts are shown below:

Shell script (collects data, updates database)

#!/bin/sh
a=0
while ["$a" == 0]; do
snmpwalk —c public 192.168.1.250 hrSWRunPerfMem > snmp_reply
total_mem="awk 'BEGIN {tot_mem=0}
{ if ($NF =="KBytes")
{tot_mem=tot_mem+$(NF-1)}
}
END {print tot_mem}' snmp_reply
| ¢ anuse N as a replacement for the current time
rrdtool update target.rrd N:$total_mem
sleep until the next 300 seconds are full
perl —e 'sleep 300 - time % 300
done # end of while loop

Per| script (retrieves data from database and generates graphs and statistics)

153 2015-07-18 3

RRD-BEGINNERS(1) rrdtool RRD-BEGINNERS(1)

#!/usr/bin/perl —w
This script fetches data from target.rrd, creates a graph of memory
consumption on the target (Dual P3 Processor 1 GHz, 656 MB RAM)

call the RRD perl module
use lib qw(/usr/local/rrdtool-1.0.41/lib/perl ../lib/perl);

use RRDs;
my $cur_time = time(); # set current time
my $end_time = $cur_time — 86400; # setend time to 24 hours ago

my $start_time = $end_time — 2592000; # set start 30 days in the past

f etch average values from the RRD database between start and end time
my ($start,$step,$ds_names,$data) =
RRDs::fetch("target.rrd", "AVERAGE",
"—r", "600", "-s", "$start_time", "-e", "$end_time");
save fetched values in a 2-dimensional array
my $rows = 0;
my $columns = 0;
my $time_variable = $start;
foreach $line (@$data) {
$vals[$rows][$columns] = $time_variable;
$time_variable = $time_variable + $step;
foreach $val (@$line) {
$vals[$rows][++$columns] = $val;}
Srows++;
$columns = 0;
}
my $tot_time = 0;
my $count = 0;
save the values from the 2-dimensional into a 1-dimensional array
for $i (0 .. $#vals) {
$tot_mem[$count] = $vals[$i][1];
$count++;
}
my $tot_mem_sum = 0;
calculate the total of all values
for $i (0 .. ($count-1)) {
$tot_mem_sum = $tot_mem_sum + $tot_mem][$i];

calculate the average of the array

my $tot_mem_ave = $tot_mem_sum/($count);

create the graph

RRDs::graph ("/images/mem_$count.png",
"——title= Memory Usage",
"——vertical-label=Memory Consumption (MB)",
"——start=$start_time",
"——end=%end_time",
"——color=BACK#CCCCCC",
"——color=CANVAS#CCFFFF",
"——color=SHADEB#9999CC",
"——height=125",
"——upper-limit=656",
"——lower-limit=0",
"——rigid",

153 2015-07-18 4

RRD-BEGINNERS(1)

my $err=RRDs::

rrdtool RRD-BEGINNERS(1)

"——base=1024",

"DEF:tot_mem=target.rrd:mem:AVERAGE",
"CDEF:tot_mem_cor=tot_mem,0,671744,LIMIT,UN,0,tot_ mem,IF,1024,/",
"CDEF:machine_mem=tot_mem,656,+,tot_mem,-",
"COMMENT:Memory Consumption between $start_time",

"COMMENT: and $end_time
"HRULE:656#000000:Maximum Available Memory — 656 MB",
"AREA:machine_mem#CCFFFF:Memory Unused",
"AREA:tot_mem_cor#6699CC:Total memory consumed in MB");

error;

if ($err) {print "problem generating the graph: $err\n";}

print the output

print "Average memory consumption is ";

printf "%5.2f",$tot_mem_ave/1024;

print " MB. Graphical representation can be found at /images/mem_$count.png.";

AUTHOR

Ketan Patel <k2pattu@yahoo.com>

153

2015-07-18 5

