
SpacePy Documentation
Release 0.2.2

The SpacePy Team

Dec 29, 2020

CONTENTS

1 Getting Started 3

2 SpacePy Documents 27

3 Developer Guide 51

4 SpacePy Module Reference 65

Python Module Index 291

Index 293

i

ii

SpacePy Documentation, Release 0.2.2

SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and
visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication
quality output direct from analyses is emphasized among other goals:

• Quickly obtain data

• Create publications quality plots

• Perform complicated analysis easily

• Run common empirical models

• Change coordinates effortlessly

• Harness the power of Python

The SpacePy project seeks to promote accurate and open research standards by providing an open environment for
code development. In the space physics community there has long been a significant reliance on proprietary languages
that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of
widely-used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will
be diminished.

When publishing research which used SpacePy, please provide appropriate credit to the SpacePy team via citation or
acknowledgment.

To cite SpacePy in publications, use (BibTeX code): @INPROCEEDINGS{spacepy11, author = {{Morley}, S.~K.
and {Koller}, J. and {Welling}, D.~T. and {Larsen}, B.~A. and {Henderson}, M.~G. and {Niehof}, J.~T.}, title
= “{Spacepy - A Python-based library of tools for the space sciences}”, booktitle = “{Proceedings of the 9th
Python in science conference (SciPy 2010)}”, year = 2011, address = {Austin, TX} }

Or to cite the code itself: @software{SpacePy, author = {{Larsen}, B.~A. and {Morley}, S.~K. and {Niehof}, J.~T.
and {Welling}, D.~T.}, title = {SpacePy}, publisher = {Zenodo}, doi = {10.5281/zenodo.3252523}, url = {https:
//doi.org/10.5281/zenodo.3252523} }

Certain modules may provide additional citations in the __citation__ attribute. Contact a module’s author (details
in the __citation__ attribute) before publication or public presentation of analysis performed by that module, or
in case of questions about the module. This allows the author to validate the analysis and receive appropriate credit
for his or her work.

CONTENTS 1

https://doi.org/10.5281/zenodo.3252523
https://doi.org/10.5281/zenodo.3252523

SpacePy Documentation, Release 0.2.2

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

First steps in SpacePy and scientific Python.

1.1 Installing SpacePy

The simplest way from zero (no Python) to a working SpacePy setup is:

1. Install the Anaconda Python environment. Python 3 is strongly recommended (64-bit is recommended).

2. pip install --upgrade spacepy

If you already have a working Python setup, install SpacePy by:

1. pip install --upgrade numpy

2. pip install --upgrade spacepy

This will install a binary build of SpacePy if available (currently only on Windows), otherwise it will attempt to
compile. It will also install most dependencies.

numpy must be installed first as it’s required for the SpacePy build. See Windows Installation for important notes
regarding numpy on Windows.

If you are familiar with installing Python packages, have particular preferences for managing an installation, or if
the above doesn’t work, refer to platform-specific instructions and the details below. (In particular, if you will use
LANLstar).

For installing the NASA CDF library to support pycdf, see the platform-specific instructions linked below.

The first time a user imports SpacePy, it automatically creates the configuration directory.

If you need further assistance, you can open an issue.

1.1.1 SpacePy Dependencies

SpacePy relies on several other pieces of software for complete functionality. Installing SpacePy links to details on
installing the required software for each platform.

Unless otherwise noted, a dependency may be installed after SpacePy, and the new functionality will be available the
next time SpacePy is imported.

Currently required versions are documented here. Dependency version support describes future support.

3

https://docs.anaconda.com/anaconda/
https://github.com/spacepy/spacepy/issues

SpacePy Documentation, Release 0.2.2

Hard Dependencies

Without these packages installed, SpacePy will not function.

Python 2.7+

Python is the core language for SpacePy. Python 3 is strongly recommended; while SpacePy currently supports Python
2.7, this support will be phased out over the course of 2020. See Python 2 End of Support.

Required to install SpacePy.

NumPy 1.10+

NumPy provides the high-performance array data structure used throughout SpacePy. Version 1.10 or later is required.

Required to install SpacePy. f2py is part of NumPy, but is sometimes packaged separately; it is required (at installation
time) if irbempy is to be used.

Due to a numpy bug, numpy 1.15.0 is not supported. Use 1.15.1 or later.

On Python 3.9, numpy 1.18 or later is required.

dateutil

If you choose not to install matplotlib, dateutil 1.4 or later is required. (Installing matplotlib will fulfill this depen-
dency.)

C compiler

If you are installing SpacePy from source, a working C compiler is required. (Not necessary for the Windows binary
installer.)

Soft Dependencies

Without these packages, SpacePy will install, but certain features may not be available. Usually an ImportError means
a dependency is missing.

These are simply marked as dependencies in SpacePy metadata and thus will be automatically installed when using
dependency-resolving methods such as pip.

SciPy 0.11+

SciPy provides several useful scientific and numerical functions build on top of NumPy. It is highly recommended.
The following modules may have limited functionality without SciPy:

• empiricals

• seapy

• toolbox

4 Chapter 1. Getting Started

http://www.python.org/
http://numpy.scipy.org/
http://labix.org/python-dateutil
http://www.scipy.org/

SpacePy Documentation, Release 0.2.2

matplotlib 1.5.0+

matplotlib is the preferred plotting package for Python. It is highly recommended. Without it, you will not be able to
effectively visualize data, and the following modules may have limited functionality or fail entirely:

• plot

• poppy

• pybats

• radbelt

• seapy

• toolbox

ffnet 0.7+

ffnet is a neural network package, required for LANLstar.

networkx 1.0+

networkx is a requirement for ffnet, and thus LANLstar.

h5py 2.6+

h5py provides a Python interface to HDF5 files. It is required for the HDF import/export capability of datamodel
and for use of the omni module.

CDF 2.7+

NASA’s CDF library provides access to Common Data Format files. It is required for pycdf, and thus for the CDF
import/export capability of datamodel.

Warning: Unlike the Python-based dependencies, the CDF library must be installed if pycdf support is needed;
it will not be automatically installed.

Fortran compiler

If installing from source, irbempy requires a Fortran compiler. (This is not required for the Windows binary in-
staller). Supported compilers are the GNU compiler gfortran, the older GNU compiler g77, and the Portland
Group PGI compiler.

If irbempy is to be used, the Fortran compiler (and f2py) must be installed before SpacePy.

coordinates requires irbempy .

1.1. Installing SpacePy 5

http://matplotlib.sourceforge.net/
http://ffnet.sourceforge.net/
http://networkx.lanl.gov/
http://code.google.com/p/h5py/
http://cdf.gsfc.nasa.gov/

SpacePy Documentation, Release 0.2.2

Astropy 1.0+

time requires AstroPy if conversion to/from AstroPy Time is desired.

Soft Dependency Summary

The following table summarizes, by SpacePy module, the functionality that is lost if a soft dependency is not installed.
If there is nothing for a given dependency/module combination, the module is unaffected by that dependency.

6 Chapter 1. Getting Started

https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time

SpacePy Documentation, Release 0.2.2

Table 1: SpacePy functionality lost without soft dependencies
CDF Fortran

compiler
ffnet h5py matplotlib networkx SciPy AstroPy

coordinates Coords
(except
Windows
binaries)

datamodel •
toCDF()

•
fromCDF()

•
toCDF()

•
toHDF5()

•
fromHDF5()

•
toHDF5()

empiricals •
vampolaPA()

•
omniFromDirectionalFlux()

irbempy Entire
module
(except
Windows
binaries)

LANLstar May be
required
to install
ffnet

Entire
module

Entire
module

omni Entire
module

plot Entire
module

poppy •
assoc()

•
plot()

•
plot_mult()

•
plot_two_ppro()

pybats •
regrid()

•
dgcpm

•
interact

•
kyoto

•
pwom

•
ram

•
rim

All plot-
ting func-
tions:

•
add_body()

•
add_planet()

•
add_pram_bz()

•
quicklook()

•
add_dst_quicklook()

•
add_b_magsphere()

•
add_b_magsphere_legacy()

•
add_body()

•
add_comp_plot()

•
add_contour()

•
add_cont_shell()

•
add_grid_plot()

•
add_pcolor()

•
add_planet()

•
add_plot()

•
add_stream_scatter()

•
add_ae_quicklook()

•
add_contour()

•
add_kp_quicklook()

•
add_orbit_plot()

•
plot_res()

•
plotbox()

•
plot_res()

•
test_asymtote()

•
test_dipole()

pycdf Entire
module

radbelt •
plot()

•
plot_obs()

seapy Entire
module

•
sea_signif()

time AstroPy
support in
Ticktock

toolbox •
tCommon()

•
linspace()
if
us-
ing
datetime
in-
puts

•
logspace()
if
us-
ing
datetime
in-
puts

•
dist_to_list()

•
intsolve()

•
poisson_fit()

1.1. Installing SpacePy 7

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.2.2

1.1.2 Linux Installation

Installation on Linux requires both a C and a Fortran compiler; a recent GCC is recommended (the C compiler is likely
included with your distribution). On Debian and Ubuntu:

sudo apt-get install gfortran

Once this is set up, pip install spacepy should Just Work. If you’re installing as a single user (not in a virtual
environment) then add the --user flag.

You will also need the NASA CDF library to use pycdf.

Our recommended (but not required) Python distribution is Anaconda running 64-bit Python 3. Anaconda includes
much of the scientific Python stack. Another excellent distribution is Canopy.

You may need to install the dependencies some way other than pip; for example, if you are running an earlier version
of Python. The latest version of many dependencies requires Python 3.6 and pip will not install older versions to get
around this. See Dependencies via conda and Dependencies via system packages.

• Dependencies via conda

• Dependencies via system packages

• CDF

• ffnet

• Compiling

Dependencies via conda

Installation via pip will automatically install most Python dependencies (but not the NASA CDF library). They can
also be installed from conda:

conda install numpy scipy matplotlib networkx h5py

Dependencies via system packages

SpacePy usually works with the system Python on Linux. To install dependencies via the package manager on Debian
or Ubuntu:

sudo apt-get install python-dev python-h5py python-matplotlib python-networkx python-
→˓numpy python-scipy

For Python 3, use:

sudo apt-get install python3-dev python3-h5py python3-matplotlib python3-networkx
→˓python3-numpy python3-scipy

For other distributions, check SpacePy Dependencies and install by hand or via your package manager.

8 Chapter 1. Getting Started

https://docs.anaconda.com/anaconda/
https://www.enthought.com/product/canopy/

SpacePy Documentation, Release 0.2.2

CDF

It is recommended to install the ncurses library; on Ubuntu and Debian:

sudo apt-get install ncurses-dev

Download the latest CDF library. Choose the file ending in -dist-all.tar.gz from the linux directory. Untar
and cd into the resulting directory. Then build:

make OS=linux ENV=gnu CURSES=yes FORTRAN=no UCOPTIONS=-O2 SHARED=yes all

Use CURSES=no if the curses library is not installed. (The distribution-specific directions above will install curses.)

Install:

sudo make install

This will install the library into the default location /usr/local/cdf, where SpacePy can find it. If you choose to
install elsewhere, see the CDF documentation, particularly the notes on the CDF_BASE and CDF_LIB environment
variables. SpacePy uses these variables to find the library.

ffnet

ffnet is required for LANLstar. Installing SpacePy from pip will automatically attempt to compile and install
ffnet on Linux (it is not automatically installed by binary installers, but SpacePy does not currently provide binaries
for Linux.) Otherwise ffnet can be installed from pip. In either case, if the wrong Fortran compiler is found try:

FC_VENDOR=gfortran pip install ffnet

It can also be installed from source. Compilation requires f2py (from numpy), installed per the distribution-specific
directions above. Untar and cd into the resulting directory. Then build:

python setup.py build

Either install just for one user:

python setup.py install --user

Or install for all users on the system:

sudo python setup.py install

Normally the correct Fortran compiler will be found; if compilation fails, try specifying the older GNU compiler at
the build step:

python setup.py build --fcompiler=gnu

1.1. Installing SpacePy 9

http://cdf.gsfc.nasa.gov/
http://ffnet.sourceforge.net/install.html

SpacePy Documentation, Release 0.2.2

Compiling

With the dependencies installed, SpacePy can be built from source. This uses the same basic setup as ffnet (standard
Python distutils). You can always get the latest source code for SpacePy from our github repository and the latest
release from PyPI

Build:

python setup.py build

If this fails, specify a Fortran compiler:

python setup.py build --fcompiler=gnu95

python setup.py build --help-fcompiler will list options for Fortran compilers. Currently available
compilers are pg, gnu95, gnu, intelem, intel or none (to skip all Fortran); gnu95 (the GNU gfortran com-
piler) is recommended.

Install for one user:

python setup.py install --user

If you’re using conda, installation as user isn’t recommended:

python setup.py install

Or install for all users on the system:

sudo python setup.py install

If you want to build the documentation yourself (rather than using the documentation shipped with SpacePy), install
sphinx and numpydoc. The easiest way is via pip:

pip install sphinx numpydoc

They are also available via conda:

conda install sphinx numpydoc

Or the package manager:

sudo apt-get install python-sphinx python-numpydoc

For Python 3:

sudo apt-get install python3-sphinx python3-numpydoc

1.1.3 MacOS Installation

The following are performed from the command line on OSX.

Installation on OSX requires a C compiler:

xcode-select --install

Our recommended (but not required) Python distribution is Anaconda running 64-bit Python 3. Anaconda includes
much of the scientific Python stack. Another excellent distribution is Canopy.

Once python is installed (Anaconda assumed) install the Fortran compiler:

10 Chapter 1. Getting Started

https://github.com/spacepy/spacepy
https://pypi.org/project/SpacePy/#files
https://docs.anaconda.com/anaconda/
https://www.enthought.com/product/canopy/

SpacePy Documentation, Release 0.2.2

conda install gfortran_osx-64

Dependencies via conda and pip

Installation via pip will automatically install most Python dependencies (but not the NASA CDF library). They can
also be installed from conda:

conda install numpy scipy matplotlib networkx h5py
pip install ffnet

Once this is set up, pip install spacepy should just work. If you’re installing as a single user (not in a virtual
environment) then add the --user flag.

You will also need the NASA CDF library to use pycdf.

ffnet is required for LANLstar. It is automatically installed when SpacePy is installed from source (currently the
only supported means on Mac). It can also be explicitly installed via pip:

pip install ffnet

To install the latest code from the repository, rather than the latest stable release, use:

pip install git+https://github.com/spacepy/spacepy

1.1.4 Windows Installation

The SpacePy team currently provides binary “wheels” via PyPI so it can be installed on Windows without a compiler.
Binaries are provided for Python 2.7 and 3.6 through 3.9 in 64-bit and 32-bit variants for each. pip install
spacepy should find and install these binaries.

At this writing (2020-12-24), a Windows bug affects numpy. Version 1.19.3 is known to work, so it is strongly
recommended to install this version:

1. pip install numpy==1.19.3

2. pip install spacepy

The bug is documented here. It will affect users for whom all of the following are true. In general, if you don’t know,
the answer is probably yes:

1. Running 64-bit Windows

2. Running the latest (2004) update of Windows 10.

3. Not taking specific action to compile numpy and its dependent libraries in a way that works around this bug.

32-bit Windows binaries will be discontinued with SpacePy 0.3, so installing 32-bit SpacePy will require compiling.

Our recommended (but not required) Python distribution is Anaconda running 64-bit Python 3. Anaconda includes
much of the scientific Python stack. Another excellent distribution is Canopy.

You may need to install the dependencies some way other than pip; for example, if you are running an earlier version
of Python. The latest version of many dependencies requires Python 3.6 and pip will not install older versions to get
around this. See Dependencies via conda.

1.1. Installing SpacePy 11

https://developercommunity.visualstudio.com/content/problem/1207405/fmod-after-an-update-to-windows-2004-is-causing-a.html
https://docs.anaconda.com/anaconda/
https://www.enthought.com/product/canopy/

SpacePy Documentation, Release 0.2.2

• Fortran and ffnet

• Compiling

• NASA CDF

• Standalone installers

• Dependencies via conda

• Standalone dependencies

• Developers

Fortran and ffnet

ffnet is required for LANLstar. It can be installed either before or after SpacePy. Binary wheels are not provided, so
a Fortran compiler is required.

With Anaconda, the compiler and ffnet can be installed with:

conda install m2w64-gcc-fortran libpython
SET FC_VENDOR=gfortran
pip install ffnet

The FC_VENDOR line is necessary because ffnet defaults to the Microsoft compiler.

Some standalone binary installers (no pip support) are also available on the ffnet site. These do not require a compiler
but support only a limited set of Python versions.

Compiling

If a binary wheel is not available for your version of Python, pip will try to compile SpacePy. The only supported
compiler is mingw32. Install it with:

conda install m2w64-gcc-fortran libpython

This is also required if installing from a source distribution or git checkout.

irbempy requires Fortran to compile and the only supported compiler is gnu95; this is the default and provided by
m2w64-gcc-fortran.

If you have difficulties, it may be useful to reference the build scripts the SpacePy developers use.

NASA CDF

pycdf requires the NASA CDF library . Binary installers are available for Windows; be sure to pick the version that
matches your Python installation. The current 32-bit version is cdf37_1_0-setup-32.exe; for 64-bit, cdf37_1_0-setup-
64.exe.

This is a simple self-extracting installer that can be installed either before or after installing SpacePy.

12 Chapter 1. Getting Started

http://ffnet.sourceforge.net/download.html
http://ffnet.sourceforge.net/download.html
https://github.com/spacepy/spacepy/tree/master/developer/scripts
https://cdf.gsfc.nasa.gov/html/sw_and_docs.html
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/cdf37_1/windows/cdf37_1_0-setup-32.exe
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/cdf37_1/windows/cdf37_1_0-setup-64.exe
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/cdf37_1/windows/cdf37_1_0-setup-64.exe

SpacePy Documentation, Release 0.2.2

Standalone installers

Standalone installers for Windows will be discontinued starting with SpacePy 0.3. Binary wheels will still be provided
and can be downloaded from the same location and installed with pip, e.g. pip install spacepy-0.2.
2-cp38-cp38-win_amd64.whl.

Self-extracting and self-installing executables are also available for download direct from our github. Be sure to
choose the file that matches your Python installation, both in Python version and word size (64-bit vs. 32-bit.) E.g.
spacepy-0.2.0.win-amd64.py36.exe is the installer for Python 3.6 on 64-bit Windows and spacepy-0.
2.0.win32.py27.exe is the installer for Python 2.7 on 32-bit Windows.

Once downloaded, these can be installed without an internet connection.

If using these installers, the SpacePy Dependencies will not be installed automatically.

Dependencies via conda

Installation via pip will automatically install most Python dependencies (but not ffnet or the NASA CDF library).
They can also be installed from conda:

conda install numpy scipy matplotlib networkx h5py

Standalone dependencies

Most of the SpacePy Dependencies have Windows installers available via their pages, but pip or conda are recom-
mended instead.

Developers

If you want to build the documentation yourself (rather than using the documentation shipped with SpacePy), install
sphinx and numpydoc. The easiest way is via pip:

pip install sphinx numpydoc

They are also available via conda:

conda install sphinx numpydoc

SpacePy installs with the common Python distutils and pip.

The latest stable release is provided via PyPI To install from PyPI, make sure you have pip installed:

pip install --upgrade spacepy

If you are installing for a single user, and are not working in a virtual environment, add the --user flag when
installing with pip.

Source releases are available from PyPI and our github. Development versions are on github.

After downloading and unpacking, run (a virtual environment, such as a conda environment, is recommended):

python setup.py install

or, to install for all users (not in a virtual environment):

1.1. Installing SpacePy 13

https://github.com/spacepy/spacepy/releases
https://pypi.org/project/SpacePy/
https://pypi.org/project/SpacePy/#files
https://github.com/spacepy/spacepy/releases
https://github.com/spacepy/spacepy

SpacePy Documentation, Release 0.2.2

sudo python setup.py install

or, to install for a single user (not in a virtual environment):

python setup.py install --user

If you do not have administrative privileges, or you will be developing for SpacePy, we strongly recommend using
virtual environments.

To install in custom location, e.g.:

python setup.py install --home=/n/packages/lib/python

Installs using setup.py do not require setuptools. SpacePy: Space Science Tools for Python

SpacePy is a package of tools primarily aimed at the space science community. This __init__.py file sets the parameters
for import statements.

If running the ipython shell, simply type ‘?’ after any command for help. ipython also offers tab completion, so hitting
tab after ‘<module name>.’ will list all available functions, classes and variables.

Detailed HTML documentation is available locally in the spacepy/doc directory and can be launched by typing:

>>> spacepy.help()

Most functionality is in spacepy’s submodules. Each module has specific help available:

Submodules

coordinates Implementation of Coords class functions for coordi-
nate transformations

data_assimilation
datamodel The datamodel classes constitute a data model imple-

mentation meant to mirror the functionality of the data
model output from pycdf, though implemented slightly
differently.

empiricals Module with some useful empirical models (plasma-
pause, magnetopause, Lmax)

irbempy module wrapper for irbem_lib Reference for this library
https://sourceforge.net/projects/irbem/ D.

LANLstar Lstar and Lmax calculation using artificial neural net-
work (ANN) technique.

omni Tools to read and process omni data (Qin-Denton, etc.)
poppy PoPPy – Point Processes in Python.
pybats PyBats! An open source Python-based interface for

reading, manipulating, and visualizing BATS-R-US and
SWMF output.

pycdf This package provides a Python interface to the Com-
mon Data Format (CDF) library used for many NASA
missions, available at http://cdf.gsfc.nasa.gov/.

radbelt Functions supporting radiation belt diffusion codes
seapy SeaPy – Superposed Epoch in Python.
time Time conversion, manipulation and implementation of

Ticktock class
continues on next page

14 Chapter 1. Getting Started

https://sourceforge.net/projects/irbem/
http://cdf.gsfc.nasa.gov/

SpacePy Documentation, Release 0.2.2

Table 2 – continued from previous page
toolbox Toolbox of various functions and generic utilities.
ae9ap9 Module for reading and dealing with AE9AP9 data files.

Functions

deprecated(version, message[, docstring]) Decorator to deprecate a function/method
help() Launches web browser with local HTML help

spacepy.deprecated(version, message, docstring=None)
Decorator to deprecate a function/method

Modifies a function so that calls to it raise DeprecationWarning and the docstring has a deprecation note
added in accordance with numpydoc format

Parameters

version [str] What is the first version where this was deprecated?

message [str] Message to include in the deprecation warning and in the docstring.

Other Parameters

docstring [str] New in version 0.2.2.

If specified, docstring will be added to the modified function’s docstring instead of
message (which will only be used in the deprecation warning.) It can be a multi-line
string (separated with \n). It will be indented to match the existing docstring.

Notes

On Python 2, the deprecated function’s signature won’t be preserved. The function will work but will not have
proper argument names listed in e.g. help.

Examples

>>> import spacepy
>>> @spacepy.deprecated('0.2.1', 'Use a different function instead',
... docstring='A different function is better\n'
... 'because of reasons xyz')
... def foo(x):
... '''This is a test function
...
... It may do many useful things.
... '''
... return x + 1
>>> help(foo)
Help on function foo in module __main__:
foo(x)

This is a test function
.. deprecated:: 0.2.1

A different function is better
because of reasons xyz

It may do many useful things.

(continues on next page)

1.1. Installing SpacePy 15

https://numpydoc.readthedocs.io/en/latest/format.html#sections

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> foo(2)
DeprecationWarning: Use a different function instead
3

spacepy.help()
Launches web browser with local HTML help

Copyright 2010-2016 Los Alamos National Security, LLC.

1.2 SpacePy - A Quick Start Documentation

The SpacePy Team (Steve Morley, Josef Koller, Dan Welling, Brian Larsen, Jon Niehof, Mike Henderson)

1.2.1 Installation

See Installing SpacePy.

1.2.2 Toolbox - A Box Full of Tools

Contains tools that don’t fit anywhere else but are, in general, quite useful. The following functions are a selection of
those implemented:

• windowMean(): windowing mean with variable window size and overlap

• dictree(): pretty prints the contents of dictionaries (recursively)

• loadpickle(): single line convenience routine for loading Python pickles

• savepickle(): same as loadpickle, but for saving

• update(): updates the OMNI database and the leap seconds database (internet connection required)

• tOverlap(): find interval of overlap between two time series

• tCommon(): find times common to two time series

• binHisto(): calculate number of bins for a histogram

• medAbsDev(): find the median absolute deviation of a data series

• normalize(): normalize a data series

• feq(): floating point equals

Import this module as:

>>> import spacepy.toolbox as tb

Examples:

>>> import spacepy.toolbox as tb
>>> a = {'entry1':'val1', 'entry2':2, 'recurse1':{'one':1, 'two':2}}
>>> tb.dictree(a)
+
|____entry1
|____entry2

(continues on next page)

16 Chapter 1. Getting Started

SpacePy Documentation, Release 0.2.2

(continued from previous page)

|____recurse1
|____one
|____two

>>> import numpy as np
>>> dat = np.random.random_sample(100)
>>> tb.binHisto(dat)
(0.19151723370512266, 5.0)

1.2.3 Time and Coordinate Transformations

Import the modules as:

>>> import spacepy.time as spt
>>> import spacepy.coords as spc

Ticktock Class

The Ticktock class provides a number of time conversion routines and is implemented as a container class built on the
functionality of the Python datetime module. The following time coordinates are provided

• UTC: Coordinated Universal Time implemented as a datetime.datetime

• ISO: standard ISO 8601 format like 2002-10-25T14:33:59

• TAI: International Atomic Time in units of seconds since Jan 1, 1958 (midnight) and includes leap seconds, i.e.
every second has the same length

• JD: Julian Day

• MJD: Modified Julian Day

• UNX: UNIX time in seconds since Jan 1, 1970

• RDT: Rata Die Time (Gregorian Ordinal Time) in days since Jan 1, 1 AD midnight

• CDF: CDF Epoch time in milliseconds since Jan 1, year 0

• DOY: Day of Year including fractions

• leaps: Leap seconds according to ftp://maia.usno.navy.mil/ser7/tai-utc.dat

To access these time coordinates, you’ll create an instance of a Ticktock class, e.g.:

>>> t = spt.Ticktock('2002-10-25T12:30:00', 'ISO')

Instead of ISO you may use any of the formats listed above. You can also use numpy arrays or lists of time points. t
has now the class attributes:

>>> t.dtype = 'ISO'
>>> t.data = '2002-10-25T12:30:00'

FYI t.UTC is added automatically.

If you want to convert/add a class attribute from the list above, simply type e.g.:

>>> t.RTD

1.2. SpacePy - A Quick Start Documentation 17

https://docs.python.org/3/library/datetime.html#datetime.datetime
ftp://maia.usno.navy.mil/ser7/tai-utc.dat

SpacePy Documentation, Release 0.2.2

You can replace RTD with any from the list above.

You can find out how many leap seconds were used by issuing the command:

>>> t.getleapsecs()

Timedelta Class

You can add/subtract time from a Ticktock class instance by using an instance of datetime.timedelta:

>>> dt = datetime.timedelta(days=2.3)

Then you can add by e.g.:

>>> t+dt

Coords Class

The spatial coordinate class includes the following coordinate systems in Cartesian and spherical forms.

• GZD: (altitude, latitude, longitude) in km, deg, deg

• GEO: cartesian, Re

• GSM: cartesian, Re

• GSE: cartesian, Re

• SM: cartesian, Re

• GEI: cartesian, Re

• MAG: cartesian, Re

• SPH: same as GEO but in spherical

• RLL: radial distance, latitude, longitude, Re, deg, deg.

Create a Coords instance with spherical=’sph’ or cartesian=’car’ coordinates:

>>> spaco = spc.Coords([[1,2,4],[1,2,2]], 'GEO', 'car')

This will let you request, for example, all y-coordinates by spaco.y or if given in spherical coordinates by spaco.
lati. One can transform the coordinates by newcoord = spaco.convert('GSM', 'sph'). This will
return GSM coordinates in a spherical system. Since GSM coordinates depend on time, you’ll have to add first a Tick-
tock vector with the name ticks like spaco.ticks = spt.Ticktock(['2002-02-02T12:00:00',
'2002-02-02T12:00:00'], 'ISO')

Unit conversion will be implemented in the future.

18 Chapter 1. Getting Started

https://docs.python.org/3/library/datetime.html#datetime.timedelta

SpacePy Documentation, Release 0.2.2

1.2.4 The radbelt Module

The radiation belt module currently includes a simple radial diffusion code as a class. Import the module and instatiate
a radbelt object:

>>> import spacepy.radbelt as sprb
>>> rb = sprb.RBmodel()

Add a time grid for a particular period that you are interested in:

>>> rb.setup_ticks('2002-02-01T00:00:00', '2002-02-10T00:00:00', 0.25)

This will automatically lookup required geomagnetic/solar wind conditions for that period. Run the diffusion solver
for that setup and plot the results:

>>> rb.evolve()
>>> rb.plot()

1.2.5 The Data Assimilation Module

This module includes data assimilation capabilities, through the assimilation class. The class assimilates data for the
radiation belt model using the Ensemble Kalman Filter. The algorithm used is the SVD method presented by Evensen
in 2003 (Evensen, G., Ocean dynamics, 53, pp.343–367, 2003). To compensate for model errors, three inflation
algorithms are implemented. The inflation methodology is specified by the inflation argument, where the options are
the following:

• inflation = 0: Add model error (perturbation for the ensemble) around model state values only where observa-
tions are available (DEFAULT).

• inflation = 1: Add model error (perturbation for the ensemble) around observation values only where observa-
tions are available.

• inflation = 2: Inflate around ensemble average for EnKF.

Prior to assimilation, a set of data values has to be specified by setting the start and end dates, and time step, using the
setup_ticks function of the radiation belt model:

>>> import spacepy
>>> import datetime
>>> from spacepy import radbelt

>>> start = datetime.datetime(2002,10,23)
>>> end = datetime.datetime(2002,11,4)
>>> delta = datetime.timedelta(hours=0.5)
>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

Once the dates and time step are specified, the data is added using the add_PSD function (NOTE: This requires a
database available from the SpacePy team):

>>> rmod.add_PSD()

The observations are averaged over the time windows, whose interval is give by the time step. Once the dates and data
are set, the assimilation is performed using the assimilate function:

>>> rmod.assimilate(inflation=1)

1.2. SpacePy - A Quick Start Documentation 19

SpacePy Documentation, Release 0.2.2

This function will add the PSDa values, which are the analysis state of the radiation belt using the observations within
the dates. To plot the analysis simply use the plot function:

>>> rmod.plot(values=rmod.PSDa,clims=[-10,-6],Lmax=False,Kp=False,Dst=False)

Additionally, to create a summary plot of the observations use the plot_obs function within the radbelt module.
For reference, the last closed drift shell, Dst, and Kp are all included. These can be disabled individually using the
corresponding Boolean kwargs.

The clims kwarg can be used to manually set the color bar range. To use, set it equal to a two-element list containing
minimum and maximum log 10 value to plot. Default action is to use [0,10] as the log 10 of the color range. This is
good enough for most applications. The title of the top most plot defaults to ‘Summary Plot’ but can be customized
using the title kwarg.

The figure object and all three axis objects (PSD axis, Dst axis, and Kp axis) are all returned to allow the user to further
customize the plots as necessary. If any of the plots are excluded, None is returned in their stead.

Example:

>>> rmod.plot_obs(clims=[-10,-6],Lmax=False,Kp=False,Dst=False,title='Observations
→˓Plot')

This command would create the summary plot with a color bar range of 10 -10 to 10 -6. The Lmax line, Kp and Dst
values would be excluded. The title of the topmost plot (phase space density) would be set to ‘Observations Plot’.

1.2.6 OMNI Module

The OMNI database is an hourly resolution, multi-source data set with coverage from November 1963; higher temporal
resolution versions of the OMNI database exist, but with coverage from 1995. The primary data are near-Earth solar
wind, magnetic field and plasma parameters. However, a number of modern magnetic field models require derived
input parameters, and Qin and Denton (2007) have used the publicly-available OMNI database to provide a modified
version of this database containing all parameters necessary for these magnetic field models. These data are available
through ViRBO - the Virtual Radiation Belt Observatory.

In SpacePy this data is made available, at 1-hourly resolution, on request on first import; if not downloaded when
SpacePy is first used then any attempt to import the omni module will ask the user whether they wish to download
the data. Should the user require the latest data, the toolbox.update function can be used to fetch the latest files from
ViRBO.

The following example fetches the OMNI data for the storms of October and November, 2003.:

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> import datetime as dt
>>> st = dt.datetime(2003,10,20)
>>> en = dt.datetime(2003,12,5)
>>> delta = dt.timedelta(days=1)
>>> ticks = spt.tickrange(st, en, delta, 'UTC')
>>> data = om.get_omni(ticks)

data is a dictionary containing all the OMNI data, by variable, for the timestamps contained within the Ticktock
object ticks. Now it is simple to plot Dst values for instance:

>>> import pyplot as p
>>> p.plot(ticks.eDOY, data['Dst'])

20 Chapter 1. Getting Started

SpacePy Documentation, Release 0.2.2

1.2.7 The irbempy Module

ONERA (Office National d’Etudes et Recherches Aerospatiales) initiated a well-known FORTRAN library that pro-
vides routines to compute magnetic coordinates for any location in the Earth’s magnetic field, to perform coordinate
conversions, to compute magnetic field vectors in geospace for a number of external field models, and to propagate
satellite orbits in time. Older versions of this library were called ONERA-DESP-LIB. Recently the library has changed
its name to IRBEM-LIB and is maintained by a number of different institutions.

A number of key routines in IRBEM-LIB have been made available through the module irbempy . Current function-
ality includes calls to calculate the local magnetic field vectors at any point in geospace, calculation of the magnetic
mirror point for a particle of a given pitch angle (the angle between a particle’s velocity vector and the magnetic field
line that it immediately orbits such that a pitch angle of 90 degrees signifies gyration perpendicular to the local field)
anywhere in geospace, and calculation of electron drift shells in the inner magnetosphere.:

>>> import spacepy.time as spt
>>> import spacepy.coordinates as spc
>>> import spacepy.irbempy as ib
>>> t = spt.Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO')
>>> y = spc.Coords([[3,0,0],[2,0,0]], 'GEO', 'car')
>>> ib.get_Bfield(t,y)
>>> # {'Blocal': array([976.42565251, 3396.25991675]),
>>> # 'Bvec': array([[-5.01738885e-01, -1.65104338e+02, 9.62365503e+02], [3.
→˓33497974e+02, -5.42111173e+02, 3.33608693e+03]])}

One can also calculate the drift shell L* for a 90 degree pitch angle value by using:

>>> ib.get_Lstar(t,y, [90])
>>> # {'Bmin': array([975.59122652, 3388.2476667]),
>>> # 'Bmirr': array([[976.42565251], [3396.25991675]]),
>>> # 'Lm': array([[3.13508015], [2.07013638]]),
>>> # 'Lstar': array([[2.86958324], [1.95259007]]),
>>> # 'MLT': array([11.97222034, 12.13378624]),
>>> # 'Xj': array([[0.00081949], [0.00270321]])}

Other function wrapped with the IRBEM library include:

• find_Bmirror()

• find_magequator()

• coord_trans()

1.2.8 pyCDF - Python Access to NASA CDF Library

pycdf provides a “pythonic” interface to the NASA CDF library. It requires that the NASA CDF C-library is properly
installed. The module can then be imported, e.g.:

>>> import spacepy.pycdf as cdf

To open and close a CDF file, we use the CDF class:

>>> cdf_file = cdf.CDF('filename.cdf')
>>> cdf_file.close()

CDF files, like standard Python files, act as context managers:

1.2. SpacePy - A Quick Start Documentation 21

SpacePy Documentation, Release 0.2.2

>>> with cdf.CDF('filename.cdf') as cdf_file:
>>> #do brilliant things with cdf_file
>>> #cdf_file is automatically closed here

CDF files act as Python dictionaries, holding CDF variables keyed by the variable name:

>>> var_names = keys(cdf_file) #list of all variables
>>> for var_name in cdf_file:
>>> print(len(cdf_file[var_name])) #number of records in each variable
>>> #list comprehensions work, too
>>> lengths = [len(cdf_file[var_name]) for var_name in cdf_file]

Each CDF variable acts like a numpy array, where the first dimension is the record number. Multidimensional CDF
variables can be subscripted using numpy’s multidimensional slice notation. Many common list operations are also im-
plemented, where each record acts as one element of the list and can be independently deleted, inserted, etc. Creating
a Python Var object does not read the data from disc; data are only read as they are accessed:

>>> epoch = cdf_file['Epoch'] #Python object created, nothing read from disc
>>> epoch[0] #time of first record in CDF (datetime object)
>>> a = epoch[...] #copy all times to list a
>>> a = epoch[-5:] #copy last five times to list a
>>> b_gse = cdf_file['B_GSE'] #B_GSE is a 1D, three-element array
>>> bz = b_gse[0,2] #Z component of first record
>>> bx = b_gse[:,0] #copy X component of all records to bx
>>> bx = cdf_file['B_GSE'][:,0] #same as above

1.2.9 The datamodel Module

The SpacePy datamodel module implements classes that are designed to make implementing a standard data model
easy. The concepts are very similar to those used in standards like HDF5, netCDF and NASA CDF.

The basic container type is analogous to a folder (on a filesystem; HDF5 calls this a group): Here we implement this
as a dictionary-like object, a datamodel.SpaceData object, which also carries attributes. These attributes can be
considered to be global, i.e. relevant for the entire folder. The next container type is for storing data and is based on a
numpy array, this class is datamodel.dmarray and also carries attributes. The dmarray class is analogous to an
HDF5 dataset.

Guide for NASA CDF users

By definition, a NASA CDF only has a single ‘layer’. That is, a CDF contains a series of records (stored variables
of various types) and a set of attributes that are either global or local in scope. Thus to use SpacePy’s datamodel
to capture the functionality of CDF the two basic data types are all that is required, and the main constraint is that
datamodel.SpaceData objects cannot be nested (more on this later, if conversion from a nested datamodel to a flat
datamodel is required).

This is best illustrated with an example. Imagine representing some satellite data within a CDF – the global attributes
might be the mission name and the instrument PI, the variables might be the instrument counts [n-dimensional array],
timestamps[1-dimensional array and an orbit number [scalar]. Each variable will have one attribute (for this example).

>>> import spacepy.datamodel as dm
>>> mydata = dm.SpaceData(attrs={'MissionName': 'BigSat1'})
>>> mydata['Counts'] = dm.dmarray([[42, 69, 77], [100, 200, 250]], attrs={'Units':
→˓'cnts/s'})
>>> mydata['Epoch'] = dm.dmarray([1, 2, 3], attrs={'units': 'minutes'})

(continues on next page)

22 Chapter 1. Getting Started

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> mydata['OrbitNumber'] = dm.dmarray(16, attrs={'StartsFrom': 1})
>>> mydata.attrs['PI'] 'Prof. Big Shot'

This has now populated a structure that can map directly to a NASA CDF. To visualize our datamodel, we can use
the tree() method, which is equivalent to toolbox.dictree() (which works for any dictionary-like object,
including PyCDF file objects).

>>> mydata.tree(attrs=True)
+
:|____MissionName
:|____PI
|____Counts

:|____Units
|____Epoch

:|____units
|____OrbitNumber

:|____StartsFrom
>>> import spacepy.toolbox as tb
>>> tb.dictree(mydata, attrs=True)
+
:|____MissionName
:|____PI
|____Counts

:|____Units
|____Epoch

:|____units
|____OrbitNumber

:|____StartsFrom

Attributes are denoted by a leading colon. The global attributes are those in the base level, and the local attributes are
attached to each variable.

If we have data that has nested ‘folders’, allowed by HDF5 but not by NASA CDF, then how can this be represented
such that the data structure can be mapped directly to a NASA CDF? The data will need to be flattened so that it is
single layered. Let us now store some ephemerides in our data structure:

>>> mydata['Ephemeris'] = dm.SpaceData()
>>> mydata['Ephemeris']['GSM'] = dm.dmarray([[1,3,3], [1.2,4,2.5], [1.4,5,1.9]])
>>> tb.dictree(mydata, attrs=True)
+
:|____MissionName
:|____PI
|____Counts

:|____Units
|____Ephemeris

|____GSM
|____Epoch

:|____units
|____OrbitNumber

:|____StartsFrom

Nested dictionary-like objects is not uncommon in Python (and can be exceptionally useful for representing data, so
to make this compatible with NASA CDF we call the flatten() method .

>>> mydata.flatten()
>>> tb.dictree(mydata, attrs=True)

(continues on next page)

1.2. SpacePy - A Quick Start Documentation 23

SpacePy Documentation, Release 0.2.2

(continued from previous page)

+
:|____MissionName
:|____PI
|____Counts

:|____Units
|____Ephemeris<--GSM
|____Epoch

:|____units
|____OrbitNumber

:|____StartsFrom

Note that the nested SpaceData has been moved to a variable with a new name reflecting its origin. The data structure
is now flat again and can be mapped directly to NASA CDF.

Converters to/from datamodel

Currently converters exist to read HDF5 and NASA CDF files directly to a SpacePy datamodel. This capability
also exists for JSON-headed ASCII files (RBSP/AutoPlot-compatible). A converter from the datamodel to HDF5 is
now available and a converter to NASA CDF is under development. Also under development is the reverse of the
SpaceData.flatten method, so that flattened objects can be restored to their former glory.

1.2.10 Empiricals Module

The empiricals module provides access to some useful empirical models. As of SpacePy 0.1.2, the models available
are:

• getLmax() An empirical parametrization of the L* of the last closed drift shell (Lmax)

• getPlasmaPause() The plasmapause location, following either Carpenter and Anderson (1992) or Moldwin
et al. (2002)

• getMPstandoff() The magnetopause standoff location (i.e. the sub-solar point), using the Shue et al. (1997)
model

• vampolaPA() A conversion of omnidirectional electron flux to pitch-angle dependent flux, using the sin n

model of Vampola (1996)

Each of the first three models is called by passing it a Ticktock object (see above) which then calculates the model
output using the 1-hour Qin-Denton OMNI data (from the OMNI module; see above). For example:

>>> import spacepy.time as spt
>>> import spacepy.empiricals as emp
>>> ticks = spt.tickrange('2002-01-01T12:00:00','2002-01-04T00:00:00',.25)

calls tickrange() and makes a Ticktock object with times from midday on January 1st 2002 to midnight January
4th 2002, incremented 6-hourly:

>>> Lpp = emp.getPlasmaPause(ticks)

then returns the model plasmapause location using the default setting of the Moldwin et al. (2002) model. The
Carpenter and Anderson model can be used by setting the Lpp_model keyword to ‘CA1992’.

The magnetopause standoff location can be called using this syntax, or can be called for specific solar wind parameters
(ram pressure, P, and IMF Bz) passed through in a Python dictionary:

24 Chapter 1. Getting Started

SpacePy Documentation, Release 0.2.2

>>> data = {'P': [2,4], 'Bz': [-2.4, -2.4]}
>>> emp.getMPstandoff(data)
>>> # array([10.29156018, 8.96790412])

1.2.11 SeaPy - Superposed Epoch Analysis in Python

Superposed epoch analysis is a technique used to reveal consistent responses, relative to some repeatable phenomenon,
in noisy data . Time series of the variables under investigation are extracted from a window around the epoch and all
data at a given time relative to epoch forms the sample of events at that lag. The data at each time lag are then averaged
so that fluctuations not consistent about the epoch cancel. In many superposed epoch analyses the mean of the data
at each time u relative to epoch, is used to represent the central tendency. In SeaPy we calculate both the mean and
the median, since the median is a more robust measure of central tendency and is less affected by departures from
normality. SeaPy also calculates a measure of spread at each time relative to epoch when performing the superposed
epoch analysis; the interquartile range is the default, but the median absolute deviation and bootstrapped confidence
intervals of the median (or mean) are also available.

As an example we fetch OMNI data for 4 years and perform a superposed epoch analysis of the solar wind radial
velocity, with a set of epoch times read from a text file:

>>> import datetime as dt
>>> import spacepy.seapy as sea
>>> import spacepy.omni as om
>>> import spacepy.toolbox as tb
>>> import spacepy.time as spt
>>> # now read the epochs for the analysis (the path specified is the default
>>> # install location on linux, different OS will have this elsewhere)
>>> epochs = sea.readepochs('~/.local/lib/python2.7/site-packages/spacepy/data/SEA_
→˓epochs_OMNI.txt')

The readepochs function can handle multiple formats by a user-specified format code. ISO 8601 format is directly
supported though it is not used here. The the readepochs docstring for more information. As above, we use the
get_omni function to retrieve the hourly data from the OMNI module:

>>> ticks = spt.tickrange(dt.datetime(2005,1,1), dt.datetime(2009,1,1), dt.
→˓timedelta(hours=1))
>>> omni1hr = om.get_omni(ticks)
>>> omni1hr.tree(levels=1, verbose=True)

+
|____ByIMF (spacepy.datamodel.dmarray (35065,))
|____Bz1 (spacepy.datamodel.dmarray (35065,))
|____Bz2 (spacepy.datamodel.dmarray (35065,))
|____Bz3 (spacepy.datamodel.dmarray (35065,))
|____Bz4 (spacepy.datamodel.dmarray (35065,))
|____Bz5 (spacepy.datamodel.dmarray (35065,))
|____Bz6 (spacepy.datamodel.dmarray (35065,))
|____BzIMF (spacepy.datamodel.dmarray (35065,))
|____DOY (spacepy.datamodel.dmarray (35065,))
|____Dst (spacepy.datamodel.dmarray (35065,))
|____G (spacepy.datamodel.dmarray (35065, 3))
|____Hr (spacepy.datamodel.dmarray (35065,))
|____Kp (spacepy.datamodel.dmarray (35065,))
|____Pdyn (spacepy.datamodel.dmarray (35065,))
|____Qbits (spacepy.datamodel.SpaceData [7])
|____RDT (spacepy.datamodel.dmarray (35065,))

(continues on next page)

1.2. SpacePy - A Quick Start Documentation 25

SpacePy Documentation, Release 0.2.2

(continued from previous page)

|____UTC (spacepy.datamodel.dmarray (35065,))
|____W (spacepy.datamodel.dmarray (35065, 6))
|____Year (spacepy.datamodel.dmarray (35065,))
|____akp3 (spacepy.datamodel.dmarray (35065,))
|____dens (spacepy.datamodel.dmarray (35065,))

and these data are used for the superposed epoch analysis. the temporal resolution is 1 hr and the window is +/- 3 days

>>> delta = dt.timedelta(hours=1)
>>> window= dt.timedelta(days=3)
>>> sevx = sea.Sea(omni1hr['velo'], omni1hr['UTC'], epochs, window, delta)

#rather than quartiles, we calculate the 95% confidence interval on the median
>>> sevx.sea(ci=True)
>>> sevx.plot()

1.3 SpacePy Help

The best way to get help is to open an issue. Searching existing issues may find other people who have had similar
questions. Try changing the filters (at the top) to include closed issues, as they may have been addressed.

Most modules also have a contact person listed in the docstring. These are built into in the main SpacePy documenta-
tion, or you can view it from within Python/IPython:

>>> import spacepy.pycdf
>>> help(spacepy.pycdf)
>>> print(spacepy.pycdf.__contact__)

A web version of this documentation is currently hosted at spacepy.github.io.

1.3.1 Contributing

Contributions to SpacePy are welcome! Development is managed via our github. If you’re interesting in contributing
a new feature or bugfix, it is recommended to open an issue to discuss your plans. Once your code is ready, you can
open a pull request. Thanks for helping to improve SpacePy!

26 Chapter 1. Getting Started

https://github.com/spacepy/spacepy/issues
https://spacepy.github.io/
https://github.com/spacepy/spacepy
https://github.com/spacepy/spacepy/pulls

CHAPTER

TWO

SPACEPY DOCUMENTS

Further reference material on how to use SpacePy, and examples.

2.1 SpacePy Capabilities

This page lists some capabilities of SpacePy and, in some cases, of other packages that might be of interest to SpacePy
users. It is organized by topic; searching within this page is recommended. See the module reference for every
class/function available in SpacePy, organized by module.

• Array manipulation

• Coordinate Transforms

• File I/O

• Modeling

• Statistics

• Time conversions

• Time series analysis and correlations

• Visualization

2.1.1 Array manipulation

Various toolbox functions are useful in manipulating NumPy arrays. datamanager also contains many functions
for indexing arrays and manipulating them in ways that do not depend on the interpretation of their contents.

2.1.2 Coordinate Transforms

coordinates provides a class for transforming among most coordinate systems used in Earth magnetospheric and
ionospheric physics.

It also provides generalized coordinate transforms via quaternions.

27

SpacePy Documentation, Release 0.2.2

2.1.3 File I/O

pycdf provides reading and writing of NASA CDF files, with additional functionality for those with ISTP-compliant
metadata.

datamodel provides easy reading and writing of HDF5 and most netCDF files. It also supports reading and writing
ASCII-based data files with rich JSON metadata, supported by tools such as Autoplot.

numpy.loadtxt() and related functions are helpful for reading various “plain-text” files into numerical arrays.

scipy.io.readsav() reads IDL savesets.

astropy.io.fits supports FITS files.

2.1.4 Modeling

ae9ap9 supports import and visualization of data from the AE9/AP9 empirical radiation belt model.

empiricals implements several simple empirical and/or analytic models for magnetospheric and solar wind phe-
nomena, including the plasmapause location, the Shue magnetopause model, and solar wind temperature.

pybats supports output analysis and visualization of many models compatible with the Space Weather Modeling
Framework, including the BATS-R-US global MHD model and the RAM-SCB ring current model.

omni provides ready access to the OMNI near-Earth solar wind dataset, useful for model inputs.

2.1.5 Statistics

poppy supports determining confidence intervals on population metrics using the non-parametric bootstrap
method.

2.1.6 Time conversions

time contains a class that easily allows time to be represented in, and converted among, many representations, in-
cluding Python datetimes, ISO time strings, GPS time, TAI, etc.

2.1.7 Time series analysis and correlations

poppy implements association analysis to determine the relationship between point-in-time events.

seapy implements superposed epoch analysis, the statistical evaluation of the time evolution of a system relative to
a set of starting epochs.

2.1.8 Visualization

plot provides tools useful in making publication-quality plots with the matplotlib toolkit.

28 Chapter 2. SpacePy Documents

http://autoplot.org
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.readsav.html#scipy.io.readsav
https://docs.astropy.org/en/stable/io/fits/index.html#module-astropy.io.fits
https://omniweb.gsfc.nasa.gov/
https://matplotlib.org/

SpacePy Documentation, Release 0.2.2

2.2 Release Notes

This document presents the most notable user-level changes in each release of SpacePy. The CHANGELOG file in
the source distribution contains more detail.

• 0.2 Series

– 0.2.2 (2020-12-29)

– 0.2.1 (2019-10-02)

– 0.2.0 (2019-06-22)

• 0.1 Series

– 0.1.6 (2016-09-08)

– 0.1.5 (2014-12-23)

– 0.1.4 (2013-05-21)

– 0.1.3 (2012-06-22)

– 0.1.2 (2012-05-25)

– 0.1.1 (2011-10-31)

– 0.1 (2011-08-24)

2.2.1 0.2 Series

0.2.2 (2020-12-29)

The 0.2 series will be the last with full support for Python 2; 0.2.3 will likely be the last release. Binary installers for
32-bit Windows will also end after the 0.2 series.

New features

irbempy incorporates upstream IRBEMlib rev620. This adds IGRF13 coefficients. coordinates and irbempy
now also support using all supported coordinate systems as inputs to routines; if a routine does not support an input
system, it will be automatically converted.

Ticktock supports conversions to and from astropy.time.Time.

The following classes, functions, and methods are new:

quaternionFromMatrix(matrix[, scalarPos]) Given an input rotation matrix, return the equivalent
quaternion

quaternionToMatrix(Qin[, scalarPos, normal-
ize])

Given an input quaternion, return the equivalent rotation
matrix.

rebin(data, bindata, bins[, axis, bintype, . . .]) Rebin one axis of input data based on values of another
array

add_arrows(lines[, n, size, style, . . .]) Add directional arrows along a plotted line.
concatCDF(cdfs[, varnames, raw]) Concatenate data from multiple CDFs

continues on next page

2.2. Release Notes 29

https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time

SpacePy Documentation, Release 0.2.2

Table 1 – continued from previous page
nanfill(v) Set fill values to NaN
empty_entry(f) Check for attributes with empty string
VarBundle(var) Collective handling of ISTP-compliant variable and its

dependencies.
deltas(v) Check DELTA variables
empty_entry(v) Check for attributes with empty string

Deprecations and removals

pycdf now warns if creating a new CDF file without explicitly setting backward compatible or not backward com-
patible (set_backward()). The default is still to make backward-compatible CDFs, but this will change in 0.3.0.
Similarly it now warns if creating a time variable without specifying a time type; the default is still to use EPOCH or
EPOCH16, but this will change to TIME_TT2000 in 0.3.0.

fix_format() is now deprecated, as Iono can now read these files directly.

Quaternion math functions have been moved to coordinates; using the functions in toolbox is deprecated.

feq() is deprecated; numpy 1.7 added the equivalent isclose().

The spectrogram class is now capitalized (Spectrogram); the old, lower-case variant is kept for compatibility
but will be removed.

Dependency requirements

Not all dependencies are required for all functionality; see SpacePy Dependencies for full details, including what
functionality is lost if a dependency is not installed.

numpy 1.10 is now required. (Many functions erroneously required it from 0.2.1, but this was not adequately docu-
mented.)

scipy 0.11 is now the minimum supported version of SciPy. (Again, this was erroneously required in 0.2.0 without
appropriate documentation.)

Several dependencies without an established minimum version were tested.

As of 0.2.2, minimum supported versions of dependencies are:

• CPython 2 2.7 or CPython 3 3.2

• AstroPy 1.0

• CDF 2.7

• dateutil 1.4 (earlier may work)

• ffnet 0.7 (earlier may work)

• h5py 2.6 (earlier may work)

• matplotlib 1.5

• networkx 1.0 (earlier may work)

• numpy 1.10

• scipy 0.11

30 Chapter 2. SpacePy Documents

https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose

SpacePy Documentation, Release 0.2.2

Major bugfixes

Time conversions between time systems before 1961 now use the proper number of leapseconds (0).

Many minor bugfixes.

Other changes

Data sources for leapsecond files and omni Qin-Denton files have been updated to provide current sources. If present,
entries in the configuration file will still be used instead. A (configurable) warning is issued for out-of-date leapsecond
files.

The representation of leap second intervals in time systems which cannot directly represent them has been changed.
Formerly times such as 2008-12-31T23:59:60 were represented in e.g. UTC datetime as the the beginning of the next
day, e.g. 2009-01-01T00:00:00. They are now represented by the last possible moment of the same day, e.g. 2008-12-
31T23:59:59.999999. Fractional leapsecond counts are now rounded to the integer instead of truncated; this rounding
is applied to the total TAI - UTC quantity not the individual increments of leap seconds. E.g successive 0.2, 0.2, 0.2
leap seconds will result in 0, 0, and 1 new leap seconds.

Similarly, leap seconds are now included in the fractional day calculation of MJD, so MJD values around a leap second
may be different than in previous versions of SpacePy.

Most time systems are now converted to/from TAI rather than using datetime. This may cause small differences with
previous versions of SpacePy, on order of a double precision. RDT and JD are particularly affected for dates in
the modern era. Time conversions around leapseconds may also be different; in many cases they were undefined in
previous versions.

now() and today() return times in UTC; in previous versions the value returned was local, but was treated as UTC
for all conversions (and thus inaccurate.)

See time for full discussion of leap seconds, time resolution, and other conversion considerations.

0.2.1 (2019-10-02)

New features

The following module is new:

istp Support for ISTP-compliant CDFs

Deprecations and removals

None

2.2. Release Notes 31

SpacePy Documentation, Release 0.2.2

Dependency requirements

No changes to minimum dependency versions.

As of 0.2.1, the minimum versions of dependencies are:

• CPython 2 2.7 or CPython 3 3.2

• CDF 2.7

• matplotlib 1.5

• numpy 1.4

• scipy 0.10

Other dependencies have no established minimum. See SpacePy Dependencies for full details.

Major bugfixes

Fixed compliation of irbempy on several systems.

Other changes

None of note.

0.2.0 (2019-06-22)

New features

Deprecations and removals

None

Dependency requirements

Support for Python 2.6 was removed; 2.7 is the only supported version of Python 2.

As of 0.2.0, the minimum versions of dependencies are:

• CPython 2 2.6 or CPython 3 3.2

• CDF 2.7

• matplotlib 1.5

• numpy 1.4

• scipy 0.10

Other dependencies have no established minimum. See SpacePy Dependencies for full details.

32 Chapter 2. SpacePy Documents

SpacePy Documentation, Release 0.2.2

Major bugfixes

human_sort() was fixed for non-numeric inputs (the normal case.) This had been broken since 0.1.6.

Many minor bugfixes as well.

Other changes

Many updates to improve ease of installation, including Windows binary wheels.

2.2.2 0.1 Series

See the CHANGELOG file in the source distribution for changes in the 0.1 release series.

0.1.6 (2016-09-08)

0.1.5 (2014-12-23)

0.1.4 (2013-05-21)

0.1.3 (2012-06-22)

0.1.2 (2012-05-25)

0.1.1 (2011-10-31)

0.1 (2011-08-24)

2.3 SpacePy Case Studies

The SpacePy team has prepared case studies showing how to reproduce the results from published papers using Python-
based tools, including SpacePy. It is hoped that these extensively-documented examples will ease the transition to
Python for space scientists.

Basic familiarity with programming and general computing tasks in your chosen environment is assumed, including
editing text files, copying and deleting files, etc. No Python-specific knowledge is assumed, although it is recom-
mended to at least skim the excellent Python tutorial.

2.3.1 Paulikas and Blake revisited (Reeves et al. 2011)

This case study reproduces the figures of Reeves et al. (2011), “On the relationship between relativistic electron flux
and solar wind velocity: Paulikas and Blake revisited” (doi:10.1029/2010JA015735).

2.3. SpacePy Case Studies 33

http://docs.python.org/tutorial/index.html
http://dx.doi.org/10.1029/2010JA015735

SpacePy Documentation, Release 0.2.2

Setup

Create a directory to hold files for this case study. Within this directory, create subdirectories code, data, and
plots. (Using version control on the code directory is recommended; the SpacePy team uses git.)

Obtaining energetic particle data

We require the 1.8-3.5 MeV electron flux from the LANL-GEO ESP detector, available in the paper’s auxiliary material
(scroll down to “Supporting information” on the paper’s page. The ESP data are in Data Set S1. Save this file to the
data directory; the filename is assumed to be jgra20797-sup-0003-ds01.txt.

The data file was corrupted on upload to AGU, and the code to fix it is non-trivial, so this is a good chance to learn
how to run someone else’s code. (Appendix: Fixing the ESP data file has step-by-step information on each portion of
this process.) Copy all of the following and paste it into a file called fix_esp_data.py in the code directory.

import os.path

datadir = os.path.join('..', 'data')
in_name = os.path.join(datadir, 'jgra20797-sup-0003-ds01.txt')
out_name = os.path.join(datadir, 'jgra20797-sup-0003-ds01_FIXED.txt')
infile = open(in_name, 'r')
outfile = open(out_name, 'w')
data = infile.read()
infile.close()

data = data.replace('\r', '\n')
data = data.replace('\n\n', '\n')
data = data.split('\n')

for i in range(15):
outfile.write(data.pop(0) + '\n')

oldline = None
for line in data:

if line[0:2] in ['19', '20', '2']:
if not oldline is None:

outfile.write(oldline + '\n')
oldline = line

else:
oldline += line

outfile.write(oldline + '\n')
outfile.close()

Now this script can be run with python fix_esp_data.py. It should create a file called
jgra20797-sup-0003-ds01_FIXED.txt in the data directory.

File fixed, we can load and begin examining the data. Change to the code directory and start your Python interpreter.
(IPython is recommended, but not required.)

In the following examples, do not type the leading >>>; this is the Python interpreter prompt. IPython has a different
prompt that looks like In [1].

>>> import os.path
>>> datadir = os.path.join('..', 'data')
>>> print(datadir)
../data

34 Chapter 2. SpacePy Documents

http://git-scm.com/documentation
http://dx.doi.org/10.1029/2010JA015735
http://ipython.org/

SpacePy Documentation, Release 0.2.2

The first line imports the os.path module from the Python standard library. Python has a huge standard library. To
keep this code organized, it is divided into many modules, and a module must be imported before it can be used. (The
Python module of the week is a great way to explore the standard library.)

The second line makes a variable, datadir, which will contain the path of the data directory. The os.path.
join() function provides a portable way of “gluing” together directories in a path, and will use backslashes on
Windows and forward slashes on Unix. The third line then prints out the value of this variable for confirmation; note
this is a Unix system.

Note that string constants in Python can use single or double quotes; we could just as well have written:

>>> datadir = os.path.join("..", "data")

or even:

>>> datadir = os.path.join('..', "data")

The full path can also be used (and this is a better case for using a variable.) For example, I am preparing this example
in a directory reeves_morley_friedel_2011 in my home directory, so I could use:

>>> datadir = os.path.join('home', 'jniehof', 'reeves_morley_friedel_2011',
... 'data')

This very long line can be typed across two lines in Python, and because the line break happens within parentheses, a
line continuation character is not required.

Returning to reading the ESP data file:

>>> fname = os.path.join(datadir, 'jgra20797-sup-0003-ds01_FIXED.txt')

creates a variable holding the full path to the fixed file.

>>> import numpy

The import statement imports any installed module, just as if it were in the standard library. Here we import the very
useful numpy module, which is a prerequisite for SpacePy and useful in its own right.

>>> esp_fluxes = numpy.loadtxt(fname, skiprows=14, usecols=[1])

loadtxt() makes it easy to load data from a file into a numpy ndarray, a very useful data container. skiprows
skips the header information, and specifying only column 1 (first column is column 0) with usecols will only load
the fluxes for 1.8-3.5MeV. We only load the fluxes at this point because they can be represented as floats, which numpy
arrays store very efficiently.

>>> import datetime

The datetime module provides Python objects which can manipulate dates and times and have some understanding
of the meanings of dates, making for easy comparisons between dates, date arithmetic, and other useful features.

>>> convert = lambda x: datetime.datetime.strptime(x, '%Y-%m-%d')

This line sets up a converter to be used later. strptime() creates a datetime from a string, given a format
definition (here specified as year-month-day). So:

>>> print(datetime.datetime.strptime('2010-01-02', '%Y-%m-%d'))
2010-01-02 00:00:00

2.3. SpacePy Case Studies 35

https://docs.python.org/3/library/os.path.html#module-os.path
http://docs.python.org/library/index.html
http://www.doughellmann.com/PyMOTW/
https://docs.python.org/3/library/os.path.html#os.path.join
https://docs.python.org/3/library/os.path.html#os.path.join
http://docs.python.org/tutorial/modules.html
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.2.2

lambda is a simple shortcut for a one-liner function; wherever convert(x) is used after the definition, it functions
like datetime.datetime.strptime(x, '%Y-%m-%d'). This makes it easier to parse a date string without
specifying the format all the time:

>>> print(convert('2010-01-02'))

This converter can be used with loadtxt():

>>> esp_times = numpy.loadtxt(fname, skiprows=14, usecols=[0],
... converters={0: convert}, dtype=numpy.object)

The converters option takes a Python dictionary. The default dtype is float, which cannot store datetimes; using
numpy.object allows storage of any Python object.

Since it would be useful to be able to load the data without typing so many lines, create a file called common.py in
the code directory with the following contents:

import datetime
import os.path

import numpy

datadir = os.path.join('..', 'data')

def load_esp():
fname = os.path.join(datadir, 'jgra20797-sup-0003-ds01_FIXED.txt')
esp_fluxes = numpy.loadtxt(fname, skiprows=14, usecols=[1])
convert = lambda x: datetime.datetime.strptime(x, '%Y-%m-%d')
esp_times = numpy.loadtxt(fname, skiprows=14, usecols=[0],

converters={0: convert}, dtype=numpy.object)
return (esp_times, esp_fluxes)

All needed imports are at the top of the file, with one blank line between standard library imports and other imports
and two blank lines after them. datadir is defined as a global variable, outside of the function (but notice that it is
available to the load_esp function.)

The rest of the file defines a function which returns the dates and fluxes in a tuple. The next section shows how to use
this function.

Solar Wind data and averaging

The top panel of figure 1 shows the ESP fluxes overplotted with the solar wind velocity. Fortunately, the omni
module of SpacePy provides an interface to the hourly solar wind dataset, OMNI. get_omni() returns data for a
particular set of times. In this case, we want hourly data, covering 1989 through 2010 (we’ll cut it down to size later).
tickrange() allows us to specify a start time, stop time, and time step.

>>> import spacepy.omni
>>> import spacepy.time
>>> times = spacepy.time.tickrange('1989-01-01', '2011-01-01',
... datetime.timedelta(hours=1))
>>> d = spacepy.omni.get_omni(times)
>>> vsw = d['velo']
>>> vsw_times = d['UTC']

We’ll also load the esp data:

36 Chapter 2. SpacePy Documents

http://docs.python.org/tutorial/controlflow.html#lambda-forms
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
http://docs.python.org/tutorial/datastructures.html#dictionaries
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
http://docs.python.org/tutorial/controlflow.html#defining-functions
http://docs.python.org/tutorial/datastructures.html#tuples-and-sequences

SpacePy Documentation, Release 0.2.2

>>> import common
>>> esp_times, esp_flux = common.load_esp()

Even though we have not installed common.py, the import statement finds it because it is in the current directory.

load_esp returns a tuple, which can be unpacked into separate variables.

Now we need to produce 27-day running averages of both the flux and the solar wind speed. Fortunately there are no
gaps in the time series:

>>> import numpy
>>> d = numpy.diff(vsw_times)
>>> print(d.min())
1:00:00
>>> print(d.max())
1:00:00
>>> d = numpy.diff(esp_times)
>>> print(d.min())
1 day, 0:00:00
>>> print(d.max())
1 day, 0:00:00

numpy.diff() returns the difference between every element of an array and the previous element. min() and
max() do exactly what they sound like. So this code confirms that every time in the vsw data is on a continuous one
hour cadence, and the ESP data is on a continuous one day cadence.

>>> import scipy.stats
>>> esp_flux_av = numpy.empty(shape=esp_flux.shape, dtype=esp_flux.dtype)
>>> for i in range(len(esp_flux_av)):
... esp_flux_av[i] = scipy.stats.nanmean(esp_flux[max(i - 13, 0):i + 14])

numpy.empty() creates an empty array, taking the shape and dtype from the esp_flux array. empty does
not initialize the data in the array, so it is essentially random junk; use zeros() to create an array filled with zeros.

len() returns the length of an array, and range() then iterates over each number from 0 to length minus 1, i.e.
the entire array. Each element is then set to a 27-day average: from 13 days before a day’s measurement through 13
days after. (Python slices do not include the last element listed; they are half-open). Note that these slices can happily
run off the end of the esp_flux array, but we use max() to ensure the first index does not go negative. (Negative
indices have special meaning in Python.)

nanmean() takes the mean of a numpy array, but skips any elements with a value of “not a number” (nan), which is
often used for fill. (This is our first exposure to the scipy module.)

For the solar wind averaging, the times need to cover the 24 * 13.5 = 324 hours previous, and 324 hours following
(non-inclusive). There is also a more efficient way than using an explicit loop:

>>> vsw_av = numpy.fromiter((scipy.stats.nanmean(vsw[max(0, i - 324):i + 324])
... for i in range(len(vsw))),
... count=len(vsw), dtype=vsw.dtype)

fromiter() makes a numpy array from an iterator, which is like a list except that it holds information on generating
each element in a sequence rather than creating the entire sequence. count provides numpy with the number of
elements in the output (so it can make the entire array at once); dtype here is just copied from the input.

The type of iterator used here is a generator expression, closely related to a list comprehension. These are among the
most powerful and most difficult to understand concepts in Python. An illustrative, although not useful, example:

>>> for i in (x + 1 for x in range(10)):
... print(i)

2.3. SpacePy Case Studies 37

http://docs.python.org/tutorial/datastructures.html#tuples-and-sequences
https://numpy.org/doc/stable/reference/generated/numpy.diff.html#numpy.diff
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max
https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#max
https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy
https://numpy.org/doc/stable/reference/generated/numpy.fromiter.html#numpy.fromiter
http://docs.python.org/library/stdtypes.html#iterator-types
http://www.python.org/dev/peps/pep-0289/
http://docs.python.org/tutorial/datastructures.html#list-comprehensions

SpacePy Documentation, Release 0.2.2

Here (x + 1 for x in range(10)) is a generator expression that creates an iterator, which will return the
numbers 1 through 10. At no point is the complete list of all numbers constructed, saving memory.

In our calculation of esp_flux_av, we created an explicit loop in Python. The generator expression used to compute
vsw_av has no explicit loop, and the actual looping is handled in (much faster) compiled C code.

Making Figure 1

To actually plot, we need access to the pyplot module:

>>> import matplotlib.pyplot as plt
>>> plt.ion()

This alternate form of the import statement shouldn’t be overused (it can make code harder to read by masking the
origin of functions), but is conventional for matplotlib.

ion() turns on interactive mode so plots appear and are updated as they’re created.

>>> plt.semilogy(esp_times, 10 ** esp_flux_av, 'b')
>>> plt.draw()
>>> plt.draw()

semilogy() creates a semilog plot, log on the Y axis. The first two arguments are a list of X and Y values; after
that there are many options to specify formatting (such as the color, used here.)

The ESP fluxes are stored as the log of the flux; ** is the exponentiation operator so the (geometric!) average is
plotted properly.

draw() draws the updated plot; sometimes it needs to be called repeatedly. Use it whenever you want the plot
updated; it will not be included from here on.

>>> plt.xlabel('Year', weight='bold')
>>> plt.ylabel('Electron Flux\n1.8-3.5 MeV', color='blue', weight='bold')
>>> plt.ylim(1e-2, 10)
(0.01, 10)

xlabel() and ylabel() set the labels for the axes. Note the newline (\n) in the string for the Y label. ylim()
sets the lower and upper limits for the Y axis; there is, of course, xlim() as well.

These are the simplest, although not most flexible, ways to work with plots. To produce the full Figure 1, we’ll move
out of interactive mode:

>>> plt.ioff()
>>> plt.show()

ioff() turns off interactive mode. Once interactive mode is off, show() displays the full plot, including controls
for panning, zooming, etc. Until the plot is closed, nothing further can happen in the Python window.

>>> fig = plt.figure(figsize=[11, 8.5])

figure() creates a new Figure; the size specified here is US-letter paper, landscape orientation.

>>> ax = fig.add_subplot(111)

add_subplot() creates an Axes object, which can contain an actual plot. 111 here means that the figure will
have 1 subplot and the new subplot should be in position (1, 1); more on this later.

38 Chapter 2. SpacePy Documents

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ion.html#matplotlib.pyplot.ion
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogy.html#matplotlib.pyplot.semilogy
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xlabel.html#matplotlib.pyplot.xlabel
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ylabel.html#matplotlib.pyplot.ylabel
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ylim.html#matplotlib.pyplot.ylim
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xlim.html#matplotlib.pyplot.xlim
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ioff.html#matplotlib.pyplot.ioff
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.add_subplot
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

SpacePy Documentation, Release 0.2.2

>>> fluxline = ax.plot(esp_times, 10 ** esp_flux_av, 'b')

plot() puts the relevant data into the plot; again specifying a blue line. It returns a list of Line2D objects, which
we save for later use.

>>> ax.set_yscale('log')

set_yscale() switches the Y axis between log and linear (set_xscale() for the X axis).

>>> ax.set_ylim(1e-2, 10)
>>> ax.set_xlabel('Year', weight='bold')
>>> ax.set_ylabel('Electron Flux\n1.8-3.5 MeV', color='b', weight='bold')

set_ylim() (and set_xlim()), set_xlabel(), and set_ylabel() function much as above, but operate
on a particular Axes object.

>>> ax2 = ax.twinx()

twinx() establishes a second Y axis (two values twinned on one X axis) on the same plot.

>>> vswline = ax2.plot(vsw_times, vsw_av, 'r')
>>> ax2.set_ylim(300, 650)
>>> ax2.set_ylabel('Solar Wind Speed', color='r', rotation=270, weight='bold')

The resulting Axes object has all the methods that we’ve used before. Note rotation on set_ylabel() to make
the text run top-to-bottom rather than bottom-to-top.

>>> ax.set_xlim(esp_times[0], esp_times[-1])

Since the solar wind data extends beyond the ESP data, this sets the X axis to match the ESP data. Note -1 to refer to
the last element of the array.

>>> leg = ax.legend([fluxline[0], vswline[0]], ['Flux', 'Vsw'],
... loc='upper left', frameon=False)

legend(), as may be expected, creates a Legend on the axes. The first parameter is a list of the matplotlib objects
to make a legend for; since the plotting commands return these, we can pass them back in. Each plotting command
returns a list. In this case we just take the 0th element of each list since we know there’s only one line from each
plotting command. The second parameter is the text used to annotate each line.

>>> fluxtext, vswtext = leg.get_texts()
>>> fluxtext.set_color(fluxline[0].get_color())
>>> vswtext.set_color(vswline[0].get_color())

The default text color is black, so we use get_texts() to get the Text objects for the annotations. Again, we
know there are two (we just created the legend). Then set_color() sets the color based on the the existing color
for each line (get_color()).

To see the results:

>>> plt.show()

Close the window when done. Now we want to save the output:

>>> fig_fname = os.path.join('..', 'plots', 'fig1a.eps')
>>> fig.savefig(fig_fname)

2.3. SpacePy Case Studies 39

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_yscale.html#matplotlib.axes.Axes.set_yscale
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_xscale.html#matplotlib.axes.Axes.set_xscale
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_ylim.html#matplotlib.axes.Axes.set_ylim
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_xlim.html#matplotlib.axes.Axes.set_xlim
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_xlabel.html#matplotlib.axes.Axes.set_xlabel
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.twinx.html#matplotlib.axes.Axes.twinx
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/api/legend_api.html#matplotlib.legend.Legend
https://matplotlib.org/api/legend_api.html#matplotlib.legend.Legend.get_texts
https://matplotlib.org/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/api/text_api.html#matplotlib.text.Text.set_color
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D.get_color

SpacePy Documentation, Release 0.2.2

savefig() saves the figure, in this case as an encapsulated PostScript file (to the plots directory).

Let’s tweak a few things. For one, there’s a lot of padding around the figure, which can make it difficult to properly
scale for publication. The way around this is to specify a Bbox (bounding box), basically the lower left and upper
right corners (in inches) to include in the saved figure. Getting this right tends to be a matter of trial and error.
(get_tightbbox() is supposed to help with this, but it doesn’t quite work yet.)

>>> import matplotlib.transforms
>>> bob = matplotlib.transforms.Bbox([[0.52, 0.35], [10.5, 7.95]])
>>> fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

Better, but all the text is awfully small. Once the figure is fit in the paper it’ll be really small. And the font isn’t that
great.

>>> import matplotlib
>>> matplotlib.rcParams['axes.unicode_minus'] = False
>>> matplotlib.rcParams['text.usetex']= True
>>> matplotlib.rcParams['font.family'] = 'serif'
>>> matplotlib.rcParams['font.size'] = 14
>>> bob = matplotlib.transforms.Bbox([[0.4, 0.35], [10.7, 7.95]])
>>> fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

Now the font is bigger and it’s rendered using TeX, which should match the body of the paper better (assuming the
paper is in LaTeX). The larger font means tweaking the bounding box. unicode_minus fixes a problem where
negative numbers on the axis don’t render properly in TeX. Matplotlib has many more options for customization.

The end result is a nice figure that can be printed full-size, put in a PDF, or included directly in a paper.

Now we need the bottom half of Figure 1. From SIDC, download the “Monthly mean total sunspot number”
(monthssn.dat). Put it in the data directory.

>>> import bisect
>>> import datetime
>>> monthfile = os.path.join(common.datadir, 'monthssn.dat')
>>> convert = lambda x: datetime.datetime.strptime(x, '%Y%m')
>>> ssn_data = numpy.genfromtxt(monthfile, skip_header=2400, usecols=[0, 2, 3],
... converters={0: convert}, dtype=numpy.object,
... skip_footer=24)
>>> idx = bisect.bisect_left(ssn_data[:, 0], datetime.datetime(1989, 1, 1))
>>> ssn_data = ssn_data[idx:]
>>> ssn_times = ssn_data[:, 0]
>>> ssn = numpy.asarray(ssn_data[:, 1], dtype=numpy.float64)
>>> smooth_ssn = numpy.asarray(ssn_data[:, 2], dtype=numpy.float64)
>>> ssn_times += datetime.timedelta(days=15)

Much of this should be familiar. genfromtxt() is a little more flexible than loadtxt(); here it allows the
skipping of lines at the end as well as the beginning (skipping 200 years at the start, 2 at the end, where data are
provisional.) Here we load both times and the sunspot numbers in the same command so that if any lines don’t load,
they will not wind up in any of the arrays.

bisect provides fast functions for searching in sorted data; bisect_left() is roughly a find-the-position-of
function. Having found the position of the start of 1989, we then keep times from then on (specifying a start index
without a stop index in Python means “from start to end of the list.”) Note that, although bisect is meant to work on
lists, it also works fine on numpy arrays; this is a common feature of Python known as duck typing.

We then use asarray() to convert the ssn and smooth_ssn columns to float arrays. Note the slice notation:
[:, 0] means take all indices of the first dimension (line number) and only the 0th index of the second dimension
(column in the line). Finally, we use timedelta to shift the date associated with a month from the beginning to
roughly the middle of the month. Adding a scalar to an array does an element-wise addition.

40 Chapter 2. SpacePy Documents

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.savefig
https://matplotlib.org/api/transformations.html#matplotlib.transforms.Bbox
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.get_tightbbox
http://matplotlib.sourceforge.net/users/customizing.html
http://www.sidc.be/silso/versionarchive
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://docs.python.org/3/library/bisect.html#module-bisect
https://docs.python.org/3/library/bisect.html#bisect.bisect_left
http://en.wikipedia.org/wiki/Duck_typing#In_Python
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray
https://docs.python.org/3/library/datetime.html#datetime.timedelta

SpacePy Documentation, Release 0.2.2

>>> import matplotlib.figure
>>> fig = plt.figure(figsize=[11, 8.5],
... subplotpars=matplotlib.figure.SubplotParams(hspace=0.1))
>>> ax = fig.add_subplot(211)

When creating the figure this time, we use SubplotParams to choose a slightly smaller vertical spacing between
adjacent subplots. Tweaking SubplotParams also provides an alternative to tweaking bounding boxes.

Then we create a subplot with the information that there will be 2 rows, 1 column, and this is the first subplot. Now
everything acting on ax, above, can be repeated, although we skip setting the xlabel since only the bottom axis will be
labeled.

>>> fluxline = ax.plot(esp_times, 10 ** esp_flux_av, 'b')
>>> ax.set_yscale('log')
>>> ax.set_ylim(1e-2, 10)
>>> ax.set_ylabel('Electron Flux\n1.8-3.5 MeV', color='b', weight='bold')
>>> ax2 = ax.twinx()
>>> vswline = ax2.plot(vsw_times, vsw_av, 'r')
>>> ax2.set_ylim(300, 650)
>>> ax2.set_ylabel('Solar Wind Speed', color='r', rotation=270, weight='bold')
>>> ax.set_xlim(esp_times[0], esp_times[-1])
>>> leg = ax.legend([fluxline[0], vswline[0]], ['Flux', 'Vsw'],
... loc='upper left', frameon=False)
>>> fluxtext, vswtext = leg.get_texts()
>>> fluxtext.set_color(fluxline[0].get_color())
>>> vswtext.set_color(vswline[0].get_color())

Then we move on to adding the solar wind:

>>> ax3 = fig.add_subplot(212, sharex=ax)

This adds another subplot, the second in the 2x1 array. Its x axis is shared with the existing ax. (This is poorly
documented; see this example)

>>> plt.setp(ax.get_xticklabels(), visible=False)
>>> plt.setp(ax2.get_xticklabels(), visible=False)

setp() sets a property. get_xticklabels() returns all the tick labels (Text) for the x axis; setp then sets
visible to False for all of them. This hides the labeling on the axis for the upper subfigure.

>>> ax3.set_xlabel('Year', weight='bold')
>>> ax3.set_ylabel('Sunspot Number', weight='bold')
>>> smoothline = ax3.plot(ssn_times, smooth_ssn, lw=2.0, color='k')
>>> ssnline = ax3.plot(ssn_times, ssn, color='k', linestyle='dotted')

There is nothing new here except for the specifications of linewidth and linestyle; see plot() for details.
Note k as the abbreviation for black (to avoid confusion with blue.)

>>> leg2 = ax3.legend([ssnline[0], smoothline[0]],
... ['Sunspot Number', 'Smoothed SSN'],
... loc='upper right', frameon=False)
>>> ax3.set_ylim(0, 200)
>>> ax3.set_xlim(esp_times[0], esp_times[-1])

>>> fig_fname = os.path.join('..', 'plots', 'fig1.eps')
>>> fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

2.3. SpacePy Case Studies 41

https://matplotlib.org/api/_as_gen/matplotlib.figure.SubplotParams.html#matplotlib.figure.SubplotParams
http://matplotlib.sourceforge.net/examples/pylab_examples/shared_axis_demo.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.setp.html#matplotlib.pyplot.setp
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.get_xticklabels.html#matplotlib.axes.Axes.get_xticklabels
https://matplotlib.org/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot

SpacePy Documentation, Release 0.2.2

All of this has been seen for the top half of figure 1.

Following is the complete code to reproduce Figure 1.

import bisect
import datetime
import os.path

import common
import matplotlib
import matplotlib.figure
import matplotlib.pyplot as plt
import matplotlib.transforms
import numpy
import scipy
import scipy.stats
import spacepy.omni
import spacepy.time

matplotlib.rcParams['axes.unicode_minus'] = False
matplotlib.rcParams['text.usetex']= True
matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['font.size'] = 14
bob = matplotlib.transforms.Bbox([[0.4, 0.35], [10.7, 7.95]])

times = spacepy.time.tickrange('1989-01-01', '2011-01-01',
datetime.timedelta(hours=1))

d = spacepy.omni.get_omni(times)
vsw = d['velo']
vsw_times = d['UTC']
esp_times, esp_flux = common.load_esp()
esp_flux_av = numpy.empty(shape=esp_flux.shape, dtype=esp_flux.dtype)
for i in range(len(esp_flux_av)):

esp_flux_av[i] = scipy.stats.nanmean(esp_flux[max(i - 13, 0):i + 14])
vsw_av = numpy.fromiter((scipy.stats.nanmean(vsw[max(0, i - 324):i + 324])

for i in range(len(vsw))),
count=len(vsw), dtype=vsw.dtype)

monthfile = os.path.join(common.datadir, 'monthssn.dat')
convert = lambda x: datetime.datetime.strptime(x, '%Y%m')
ssn_data = numpy.genfromtxt(monthfile, skip_header=2400, usecols=[0, 2, 3],

converters={0: convert}, dtype=numpy.object,
skip_footer=24)

idx = bisect.bisect_left(ssn_data[:, 0], datetime.datetime(1989, 1, 1))
ssn_data = ssn_data[idx:]
ssn_times = ssn_data[:, 0]
ssn = numpy.asarray(ssn_data[:, 1], dtype=numpy.float64)
smooth_ssn = numpy.asarray(ssn_data[:, 2], dtype=numpy.float64)
ssn_times += datetime.timedelta(days=15)

fig = plt.figure(figsize=[11, 8.5],
subplotpars=matplotlib.figure.SubplotParams(hspace=0.1))

ax = fig.add_subplot(211)
fluxline = ax.plot(esp_times, 10 ** esp_flux_av, 'b')
ax.set_yscale('log')
ax.set_ylim(1e-2, 10)
ax.set_ylabel('Electron Flux\n1.8-3.5 MeV', color='b', weight='bold')
ax2 = ax.twinx()

(continues on next page)

42 Chapter 2. SpacePy Documents

SpacePy Documentation, Release 0.2.2

(continued from previous page)

vswline = ax2.plot(vsw_times, vsw_av, 'r')
ax2.set_ylim(300, 650)
ax2.set_ylabel('Solar Wind Speed', color='r', rotation=270, weight='bold')
ax.set_xlim(esp_times[0], esp_times[-1])
leg = ax.legend([fluxline[0], vswline[0]], ['Flux', 'Vsw'],

loc='upper left', frameon=False)
fluxtext, vswtext = leg.get_texts()
fluxtext.set_color(fluxline[0].get_color())
vswtext.set_color(vswline[0].get_color())

ax3 = fig.add_subplot(212, sharex=ax)
plt.setp(ax.get_xticklabels(), visible=False)
plt.setp(ax2.get_xticklabels(), visible=False)
ax3.set_xlabel('Year', weight='bold')
ax3.set_ylabel('Sunspot Number', weight='bold')
smoothline = ax3.plot(ssn_times, smooth_ssn, lw=2.0, color='k')
ssnline = ax3.plot(ssn_times, ssn, color='k', linestyle='dotted')
leg2 = ax3.legend([ssnline[0], smoothline[0]],

['Sunspot Number', 'Smoothed SSN'],
loc='upper right', frameon=False)

ax3.set_ylim(0, 200)
ax3.set_xlim(esp_times[0], esp_times[-1])

fig_fname = os.path.join('..', 'plots', 'fig1.eps')
fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

Appendix: Fixing the ESP data file

This appendix provides a detailed explanation of the script that fixes the ESP data file.

First set up a variable to hold the location of the data, as above:

>>> import os.path
>>> datadir = os.path.join('..', 'data')

Examining the data file, it is clear that something is odd: lines appear to have been broken inappropriately; for example,
the data for 1989-10-12 are split across two lines. So the first task is to fix this file, first opening the original (broken)
file and an output (fixed) file:

>>> in_name = os.path.join(datadir, 'jgra20797-sup-0003-ds01.txt')
>>> out_name = os.path.join(datadir, 'jgra20797-sup-0003-ds01_FIXED.txt')
>>> infile = open(in_name, 'r')
>>> outfile = open(out_name, 'w')

These lines open() the original file for reading (r), and a new file for writing (w). Note that opening a file for writing
will destroy any existing contents.

The file happens to contain a mixture of carriage returns and proper newlines, so to begin all the carriage returns need
to be rewritten as newlines:

>>> data = infile.read()
>>> infile.close()
>>> data = data.replace('\r', '\n')
>>> data = data.replace('\n\n', '\n')

2.3. SpacePy Case Studies 43

https://docs.python.org/3/library/functions.html#open

SpacePy Documentation, Release 0.2.2

read() reads all data from the file at once, so this is not recommended for large files. In this case it makes things
easier. Once the data are read, close() the file. Calling the replace() method on data replaces all instances
of the first parameter ('\r') with the second ('\n'). \r is the special code indicating a carriage return; \n, a
newline. For a literal backslash, use \\. Once the carriage returns have been replaced with newlines, a second round
of replacement eliminates duplicates.

Now that the line endings have been cleaned up, it’s time to rejoin the erroneously split lines. First copy over the 15
lines of header verbatim:

>>> data = data.split('\n')
>>> for i in range(15):
... outfile.write(data.pop(0) + '\n')

split() splits a string into a list, with the split between elements happening wherever the provided parameter occurs.
A simple example:

>>> foo = 'a.b.c'.split('.')
>>> print(foo)
['a', 'b', 'c']

The splitting character is not present in the output.

The advantage of a list is that it makes it easy to access individual elements: >>> print(foo[1]) b

The first element of a Python list is numbered zero.

range() returns a list of numbers, starting from 0, with the parameter specifying how many elements are in the list:

>>> print(range(5))
[0, 1, 2, 3, 4]

The last number is 4 (not 5 as might be expected), but there are 5 elements in the list.

The for executes the following indented statement once for every element in the in list:

>>> for i in ['a', 'b', 'c']:
... print i
a
b
c

Indentation is significant in Python! Normally indents are four spaces and the tab key will do the job. (In the above
example, you may need to hit enter twice after the print statement, the second to terminate the indentation.)

pop returns one element from a list, and deletes it from the list. Using 0 pops off the first element, and write()
writes a string to a file. + can be used to concatenate two strings together. Since split() removed the newlines,
they need to be readded.

So this little block of code splits the data into a list on newlines and, repeating fifteen times, takes the first element of
that list and writes it, with a newline, to the output. Now data contains only the actual lines of data.

>>> oldline = None
>>> for line in data:
... if line[0:2] in ['19', '20', '2']:
... if not oldline is None:
... outfile.write(oldline + '\n')
... oldline = line
... else:
... oldline += line

(continues on next page)

44 Chapter 2. SpacePy Documents

https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str.split
http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/controlflow.html#for-statements
http://docs.python.org/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/library/stdtypes.html#str.split

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> outfile.write(oldline + '\n')
>>> outfile.close()

None is a special Python value specifically indicating nothing; it’s used here to mark the first time around the loop.

line[0:2] gets the first two characters in the string line, and the in operator compares the resulting string to see if
it is present in the following list. This will return True if the line begins with 19 or 20. The if statement executes the
following indented block if the condition is True. So, if this is True, the previous line probably ended properly and it
can be written out. First there is an additional check that this isn’t the first time around the loop, and then the previous
line (which we know ended cleanly) is written out. The currently-read line then becomes the new “previous” line.

The 2 is a special case: if the line is less than two characters long, line[0:2] will return the entire line, and it so
happens that these cases always correspond to the previous line being whole.

If this test fails, everything under else is executed. Here the assumption is that the previous line didn’t end cleanly
and the current line is actually a continuation of it, so the current line is appended to the previous. a += b is a
shortcut for a = a + b.

Once the loop terminates, the last line is written out, and the file closed.

2.4 Publication List

The following publications have been prepared using SpacePy. If you have published a paper using SpacePy, contact
the SpacePy team to be added to this list. Please also provide a citation or acknowledgment, as appropriate, in your
paper.

2.4.1 Papers using SpacePy

Peer-reviewed papers

• Jordanova, V. K., Y. Yu, J. T. Niehof, R. M. Skoug, G. D. Reeves, C. A. Kletzing, J. F. Fennell, and H. E. Spence
(2014), Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons
with Van Allen Probes observations, Geopys. Res. Lett., 41 (8), 2687-2695, doi:10.1002/2014GL059533

• Niehof, J. T., S. K. Morley, and R. H. W. Friedel (2012), Association of cusp energetic ions with geomagnetic
storms and substorms, Ann. Geophys., 30 (12), 1633-1643, doi:10.5194/angeo-30-1633-2012.

• Turner, D. L., V. Angelopoulos, Y. Shprits, A. Kellerman, P. Cruce and D. Larson (2012), Radial distribu-
tions of equatorial phase space density for outer radiation belt electrons, Geophys. Res. Lett., 39, L09101,
doi:10.1029/2012GL051722.

• Welling, D. T. and A. J. Ridley (2010), Exploring sources of magnetospheric plasma using multispecies MHD,
Journal of Geophysical Research, 115, 4201, doi:10.1029/2009JA014596.

• Morley, S. K., R. H. W. Friedel, E. L. Spanswick, G. D. Reeves, J. T. Steinberg, J. Koller, T. Cayton and E.
Noveroske (2010), Dropouts of the outer electron radiation belt in response to solar wind stream interfaces:
Global Positioning System observations, Proceedings of the Royal Society A, doi:10.1098/rspa.2010.0078.

2.4. Publication List 45

http://docs.python.org/tutorial/controlflow.html#if-statements
https://doi.org/10.1002/2014GL059533
http://dx.doi.org/10.5194/angeo-30-1633-2012
http://dx.doi.org/10.1029/2012GL051722
http://dx.doi.org/10.1029/2009JA014596
http://dx.doi.org/10.1098/rspa.2010.0078

SpacePy Documentation, Release 0.2.2

Other publications and presentations

• Niehof, J. T. and S. K. Morley (2012), Determining the significance of associations between two series of
discrete events: bootstrap methods, Tech Report LA-14453, Los Alamos National Laboratory, Los Alamos,
NM, doi:10.2172/1035497.

2.4.2 Papers about SpacePy

Peer-reviewed papers

• Morley, S. K., D. T. Welling, J. Koller, B. A. Larsen, M. G. Henderson and J. Niehof (2010), SpacePy - A
Python-based library of tools for the space sciences, Proceedings of the 9th Python in Science Conference
(SciPy 2010), presented in Austin, TX, June 30 - July 1, 2010 pdf. full proceedings

Other publications and presentations

• Niehof, J. T., M. G. Henderson, J. Koller, B. A. Larsen, S. Morley, D. T. Welling, Y. Yu (2012), Space Science
with the SpacePy Toolkit, Abstract IN53C-1746 presented at 2012 Fall Meeting, AGU, San Francisco, Calif.,
3-7 Dec. (pdf)

• The SpacePy Developer Team (2010), SpacePy - Python-Based of Tools for the Space Science Community, A
Tri-Fold pdf.

• Morley, S. K., D. T. Welling, J. Koller, B. A. Larsen, M. G. Henderson (2010), SpacePy - Data Analysis and
Visualization Tools for the Space Sciences, presented at GEM 2010 Summer Workshop, Snowmass, CO, June
20-25. (pdf)

2.5 Python 2 End of Support

Python 3 is fully supported by SpacePy and used in daily work by most of the SpacePy team.

On January 1, 2020, Python 2 reached end of life. Most of the scientific Python stack has committed to ending Python
2 support by 2020. This includes numpy.

As a result, the SpacePy team will phase out Python 2 support over the course of 2020 and early 2021. This process is
managed through SpacePy issue 26.

2.5.1 0.2 series: full support

The last release of the SpacePy 0.2 series will be 0.2.3, by the end of 2020. This will be the last release where all
functionality works with Python 2 and that has binary installers provided for Python 2. 0.2 will not be supported past
this release (this will not be a “long-term support” release.)

46 Chapter 2. SpacePy Documents

http://dx.doi.org/10.2172/1035497
http://conference.scipy.org/proceedings/scipy2010/pdfs/morley.pdf
http://conference.scipy.org/proceedings/scipy2010/
http://spacepy.lanl.gov/publications/spacepy_agu_2012.pdf
http://spacepy.lanl.gov/publications/spacepy_trifold.pdf
http://spacepy.lanl.gov/publications/spacepy.poster.final.pdf
https://www.python.org/doc/sunset-python-2/
https://python3statement.org/
https://numpy.org/neps/nep-0014-dropping-python2.7-proposal.html
https://github.com/spacepy/spacepy/issues/26

SpacePy Documentation, Release 0.2.2

2.5.2 0.3 series: no feature support

Starting with 0.3.0 in early 2021, the SpacePy team will:

• Provide no prebuilt packages for Python 2. We will attempt to ensure the last 0.2.x version will still install from
pip on Python 2.

• Allow new features that do not support Python 2 as long as they do not break existing functionality.

• Provide no workarounds for dependencies that no longer support Python 2.

SpacePy 0.3.x will still function on Python 2 for those who install “by hand”.

2.5.3 0.4 series: no bugfix support

Starting with 0.4.0, no later than mid-2021, the SpacePy team will provide no fixes for bugs that cannot be reproduced
on Python 3.

SpacePy 0.4.x will still function on Python 2 for those who install “by hand”.

2.5.4 0.5 series: remove support

Starting with 0.5.0, mid-2021, SpacePy developers will begin removing code that exists only to support Python 2.
SpacePy 0.5.x will not function on Python 2.

Release 0.2.2

Doc generation date Dec 29, 2020

2.6 SpacePy Configuration

SpacePy has a few tunable options that can be altered through the spacepy.rc configuration file. All options have
defaults which will be used if not specified in the configuration file. These defaults are usually fine for most people and
may change between SpacePy releases, so we do not recommend changing the configuration file without substantial
reason.

spacepy.rc lives in the per-user SpacePy directory, called .spacepy. You can find this directory by:

>>> import spacepy
>>> spacepy.DOT_FLN
'/home/username/.spacepy'

On Unix-like operating systems, it is in a user’s home directory; on Windows, in the user’s Documents and Settings
folder. If it doesn’t exist, this directory (and spacepy.rc) is automatically created when SpacePy is imported.

spacepy.rc has an INI-style format, parsed by ConfigParser. It contains a single section, [spacepy].

• The spacepy directory

• Available configuration options

• Developer documentation

2.6. SpacePy Configuration 47

SpacePy Documentation, Release 0.2.2

2.6.1 The spacepy directory

If you prefer a different location for the SpacePy directory, set the environment variable $SPACEPY to a location of
your choice. For example, with a csh, or tcsh you would:

setenv SPACEPY /a/different/dir

for the bash shell you would:

export SPACEPY=/a/different/dir

If you change the default location, make sure you add the environment variable $SPACEPY to your .cshrc, .
tcshrc, or .bashrc script.

This directory contains the configuration file and also SpacePy-related data, which can be updated with update().

2.6.2 Available configuration options

enable_deprecation_warning SpacePy raises DeprecationWarning when deprecated functions are called.
Starting in Python 2.7, these are ignored. SpacePy adds a warnings filter to force display of deprecation warn-
ings from SpacePy the first time a deprecated function is called. Set this option to False to retain the default
Python behavior. (See warnings module for details on custom warning filters.)

enable_old_data_warning SpacePy maintains certain databases from external sources, notably the leapsecond
database used by time. By default UserWarning is issued if the leap second database is out of date. Set
this option to False to suppress this warning (and warnings about out-of-date data which may be added in the
future.)

keepalive True to attempt to use HTTP keepalives when downloading data in update() (default). This is faster
when downloading many small files but may be fragile (e.g. if a proxy server is required). Set to False for a
more robust and flexible, but slower, codepath.

leapsec_url URL of the leapsecond database used by time conversions. update() will download from the URL.
The default should almost always be acceptable.

ncpus Number of CPUs to use for computations that can be multithreaded/multiprocessed. By default, they will use
the number of CPUs reported by multiprocessing.cpu_count(). You may wish to set this to a lower
number if you need to reserve other processors on your machine.

notice True to display the SpacePy license and other information on import (default); False to omit.

omni2_url URL containing the OMNI2 data. update() will download from the URL. The default should almost
always be acceptable.

qindenton_url URL containing Qin-Denton packaging of OMNI data as as single file. update() will download
from the URL. The default should almost always be acceptable.

qd_daily_url URL containing Qin-Denton packaging of OMNI data in daily files, supplemental to
qindenton_url. update() will download from the URL. The default should almost always be accept-
able.

psddata_url URL containing PSD data. update() will download from the URL if requested. The default should
almost always be acceptable.

support_notice True to display a notice on import if not a release version of SpacePy (default); False to omit. Those
regularly installing from git instead of a release may want to set this to False.

user_agent User Agent for network access. If this is set, update() will use this User Agent string on all HTTP
requests. Normally leaving this unset should be fine.

48 Chapter 2. SpacePy Documents

https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count

SpacePy Documentation, Release 0.2.2

2.6.3 Developer documentation

spacepy.rc is loaded into a dictionary (spacepy.config) by SpacePy’s main __init__.py. All options
from the [spacepy] section are loaded, with no developer intervention needed. Each key is the option’s name;
the associated value is the option’s value. To specify a default, add to the defaults dictionary at the top of
_read_config; each default, if not overridden by the config file, will be included in the config dict. Values are
assumed to be strings. The caster dictionary is keyed by option name; the value for each key is a function to be
applied to the value with the same key to produce a different type from a string.

Release 0.2.2

Doc generation date Dec 29, 2020

For additions or fixes to this page, contact the SpacePy Team at Los Alamos.

2.7 SpacePy Scripts

Some scripts using SpacePy are included in the scripts directory of the source distribution. At the moment they
are not installed by the installer.

2.7.1 istp_checks.py

Checks for various ISTP compliance issues in a file and prints any issues found. This script is supplemental to the
checker included with the ISTP skeleton editor; it primarily checks for errors that the skeleton editor does not.

Badly noncompliant files generally result in the error “Test x did not complete”. This means the test crashed due to
some failure in the assumptions about the CDF structure. Please run the individual test to get a traceback and open an
issue.

This is just a thin wrapper to spacepy.pycdf.istp.FileChecks.all(); that documentation (plus other
methods in the class) describes the actual checks.

cdffile
Name of the CDF file to check (required)

2.7. SpacePy Scripts 49

https://spdf.gsfc.nasa.gov/skteditor/
https://github.com/spacepy/spacepy/issues
https://github.com/spacepy/spacepy/issues

SpacePy Documentation, Release 0.2.2

50 Chapter 2. SpacePy Documents

CHAPTER

THREE

DEVELOPER GUIDE

For those developing SpacePy, plus tips for all Python developers.

3.1 Writing Pythonic Code

Code is often described as “Pythonic” or “not Pythonic” (with the implication that “Pythonic” is better.) The descrip-
tion is often applied to refer to code that reflects best practices which have emerged from the Python community and
have become almost second nature to experienced programmers.

Reading lots of Python code (particularly from well-respected long maintained community projects) is the best way to
develop this sense, but some principles are described here.

3.1.1 Good coding practice

Familiarity with modern coding practices that apply across most languages is a good start:

• Compact but descriptive names for variables, functions, etc.

• Succinct comments where necessary

• Encapsulation of data and abstraction through functions and classes

• Use of existing libraries rather than reimplementing

3.1.2 Using language features

Where Python or its standard library provides a means of accomplishing a task, it is generally preferred to use that
means rather than reimplementing the wheel. The canonical example is using list comprehensions rather than for loops
to transform a list:

>>> newlist = [i + 1 for i in oldlist]

not:

>>> newlist = []
>>> for i in range(len(oldlist)):
... newlist.append(oldlist[i] + 1)

Note there are several non-Pythonic ways to perform this task.

For those not familiar with the features of the lanaguage and the standard library, this does represent a barrier to entry.
However once that knowledge is built, using the features of the language makes one’s intention much more clear. It
often also results in shorter code that is easier to comprehend.

51

SpacePy Documentation, Release 0.2.2

See several examples in SpacePy Python Programming Tips.

3.1.3 Idiom and communication

Because “code is more often read than written,” anything that improves clarity is beneficial. A list comprehension and
a for loop may have the same result, but the use of a list comprehension immediately makes it apparent to the reader
that the code is intended to create a new list based on some element-by-element translation of the input list. It is a
pattern with a common solution, and sticking to the common solution helps make the pattern apparent so the reader of
the code understands the underlying problem.

Generally this choice of the common way is referred to as “idiomatic Python.” This can be expanded to conventions
such as the use of “self” as the first argument in instance methods, even though such choice is generally free.

3.1.4 Further Reading

A web search for “pythonic” will give a wealth of opinions. These references are a good starting point.

• Python Style Guide (PEP 8)

• Zen of Python (PEP 20)

• What is Pythonic?

• Examples of idiomatic and nonidiomatic Python

• Idomatic Python from Wikibooks

Release 0.2.2

Doc generation date Dec 29, 2020

3.2 SpacePy Python Programming Tips

One often hears that interpreted languages are too slow for whatever task someone needs to do. In many cases this
belief is unfounded. As the time spent programming and debugging in an interpreted language is of far less than for a
compiled language, the programmer has more time to identify bottlenecks in the code and optimize it where necessary.
This page is dedicated to that idea, providing examples of code speedup and best practices.

One often neglected way to speed up development time is to use established libraries, and the time spent finding
existing code that does what you want can be more productive than trying to write and optimize your own algorithms.
We recommend exploring the SpacePy documentation, as well as taking the time to learn some of the vast functionality
already in numpy and the Python standard library.

• Basic examples

• Lists, for loops, and arrays

• Zip

• External links

52 Chapter 3. Developer Guide

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://blog.startifact.com/posts/older/what-is-pythonic.html
https://medium.com/the-andela-way/idiomatic-python-coding-the-smart-way-cc560fa5f1d6
https://en.wikibooks.org/wiki/Python_Programming/Idioms
http://docs.scipy.org/doc/numpy/reference/

SpacePy Documentation, Release 0.2.2

3.2.1 Basic examples

Though there are some similarities, Python does not look like (or work like) Matlab or IDL. As (most of us) are, or
have been, Matlab or IDL programmers, we have to rethink how we do things – what is efficient in one language may
not be the most efficient in another. One truth that Python shares with these other languages, however, is that if you
are using a for loop there is likely to be a faster way. . .

Take the simple case of a large data array where you want to add one to each element. Here wa show four of the
possible ways to do this, and by using a profiling tool, we can show that the speeds of the different methods can vary
substantially.

Create the data

>>> data = range(10000000)

The most C-like way is just a straight up for loop

>>> for i in range(len(data)):
>>> data[i] += 1

This is 6 function calls in 2.590 CPU seconds (from cProfile)

The next, more Pythonic, way is with a list comprehension

>>> data = [val+1 for val in data]

This is 4 function calls in 1.643 CPU seconds (~1.6x)

Next we introduce numpy and change our list to an array then add one

>>> data = np.asarray(data)
>>> data += 1

This is 6 function calls in 1.959 CPU seconds (~1.3x), better than the for loop but worse than the list comprehension

Next we do this the right way and just create it in numpy and never leave

>>> data = np.arange(10000000)
>>> data += 1

this is 4 function calls in 0.049 CPU seconds (~53x).

While this is a really simple example it shows the basic premise, if you need to work with numpy, start in numpy and
stay in numpy. This will usually be true for array-based manipulations.

If in doubt, and speed is not a major consideration, use the most human-readable form. This will make your code more
maintainable and encourage its use by others.

3.2.2 Lists, for loops, and arrays

This example teaches the lesson that most advanced IDL or Matlab programmers already know; do everything in
arrays and never use a for loop if there is another choice. The language has optimized array manipulation and it is
unlikely that you will find a faster way with your own code.

The following bit of code takes in a series of coordinates, computes their displacement, and drops the largest 100 of
them.

This is how the code started out, Shell_x0_y0_z0 is an Nx3 numpy array, ShellCenter is a 3 element list or array, and
Num_Pts_Removed is the number of points to drop:

3.2. SpacePy Python Programming Tips 53

https://docs.python.org/3/library/profile.html#module-cProfile
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://www.ittvis.com/language/en-us/productsservices/idl.aspx
http://www.mathworks.com/products/matlab/

SpacePy Documentation, Release 0.2.2

import numpy as np
def SortRemove_HighFluxPts_(Shell_x0_y0_z0, ShellCenter, Num_Pts_Removed):

#Sort the Shell Points based on radial distance (Flux prop to 1/R^2) and remove
→˓Num_Pts_Removed points with the highest flux

Num_Pts_Removed = np.abs(Num_Pts_Removed) #make sure the number is positive
#Generate an array of radial distances of points from origin
R = []
for xyz in Shell_x0_y0_z0:

R.append(1/np.linalg.norm(xyz + ShellCenter)) #Flux prop to 1/r^2, but don't
→˓need the ^2

R = np.asarray(R)
ARG = np.argsort(R) # array of sorted indies based on flux in 1st column
Shell_x0_y0_z0 = np.take(Shell_x0_y0_z0, ARG, axis = 0) # sort based on index

→˓order
return Shell_x0_y0_z0[:-Num_Pts_Removed,:] #remove last points that have the

→˓"anomalously" high flux

A cProfile of this yields a lot of time spent just in the function itself; this is the for loop (list comprehension is a little
faster but not much in this case):

Tue Jun 14 10:10:56 2011 SortRemove_HighFluxPts_.prof

700009 function calls in 4.209 seconds

Ordered by: cumulative time
List reduced from 14 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.002 0.002 4.209 4.209 <string>:1(<module>)
1 2.638 2.638 4.207 4.207 test1.py:235(SortRemove_HighFluxPts_)

100000 0.952 0.000 1.529 0.000 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/linalg/linalg.py:1840(norm)

100001 0.099 0.000 0.240 0.000 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/numeric.
→˓py:167(asarray)

100000 0.229 0.000 0.229 0.000 {method 'reduce' of 'numpy.ufunc'
→˓objects}

100001 0.141 0.000 0.141 0.000 {numpy.core.multiarray.array}
100000 0.082 0.000 0.082 0.000 {method 'ravel' of 'numpy.ndarray'

→˓objects}
100000 0.042 0.000 0.042 0.000 {method 'conj' of 'numpy.ndarray'

→˓objects}
100000 0.016 0.000 0.016 0.000 {method 'append' of 'list' objects}

1 0.000 0.000 0.005 0.005 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/fromnumeric.
→˓py:45(take)

Simply moving the addition outside the for-loop gives a factor of 2.3 speedup. We believe that the difference arising
from moving the addition lets numpy (which works primarily in C) operate once only. This massively reduces the
calling overhead as array operations are done as for loops in C, and not in element-wise in python:

def SortRemove_HighFluxPts_(Shell_x0_y0_z0, ShellCenter, Num_Pts_Removed):
#Sort the Shell Points based on radial distance (Flux prop to 1/R^2) and remove

→˓Num_Pts_Removed points with the highest flux
Num_Pts_Removed = np.abs(Num_Pts_Removed) #make sure the number is positive
#Generate an array of radial distances of points from origin
R = []

(continues on next page)

54 Chapter 3. Developer Guide

SpacePy Documentation, Release 0.2.2

(continued from previous page)

Shell_xyz = Shell_x0_y0_z0 + ShellCenter
for xyz in Shell_xyz:

R.append(1/np.linalg.norm(xyz)) #Flux prop to 1/r^2, but don't need the ^2
R = np.asarray(R)
ARG = np.argsort(R) # array of sorted indies based on flux in 1st column
Shell_x0_y0_z0 = np.take(Shell_x0_y0_z0, ARG, axis = 0) # sort based on index

→˓order
return Shell_x0_y0_z0[:-Num_Pts_Removed,:] #remove last points that have the

→˓"anomalously" high flux

A quick profile:

Tue Jun 14 10:18:39 2011 SortRemove_HighFluxPts_.prof

700009 function calls in 1.802 seconds

Ordered by: cumulative time
List reduced from 14 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 1.802 1.802 <string>:1(<module>)
1 0.402 0.402 1.801 1.801 test1.py:235(SortRemove_HighFluxPts_)

100000 0.862 0.000 1.361 0.000 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/linalg/linalg.py:1840(norm)

100000 0.207 0.000 0.207 0.000 {method 'reduce' of 'numpy.ufunc'
→˓objects}

100001 0.080 0.000 0.199 0.000 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/numeric.
→˓py:167(asarray)

100001 0.120 0.000 0.120 0.000 {numpy.core.multiarray.array}
100000 0.067 0.000 0.067 0.000 {method 'ravel' of 'numpy.ndarray'

→˓objects}
100000 0.041 0.000 0.041 0.000 {method 'conj' of 'numpy.ndarray'

→˓objects}
100000 0.014 0.000 0.014 0.000 {method 'append' of 'list' objects}

1 0.000 0.000 0.005 0.005 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/fromnumeric.
→˓py:45(take)

A closer look here reveals that all of this can be done on the arrays without the for loop (or list comprehension):

def SortRemove_HighFluxPts_(Shell_x0_y0_z0, ShellCenter, Num_Pts_Removed):
#Sort the Shell Points based on radial distance (Flux prop to 1/R^2) and remove #

→˓points with the highest flux
Num_Pts_Removed = np.abs(Num_Pts_Removed) #make sure the number is positive
#Generate an array of radial distances of points from origin
R = 1 / np.sum((Shell_x0_y0_z0 + ShellCenter) ** 2, 1)
ARG = np.argsort(R) # array of sorted indies based on flux in 1st column
Shell_x0_y0_z0 = np.take(Shell_x0_y0_z0, ARG, axis = 0) # sort based on index

→˓order
return Shell_x0_y0_z0[:-Num_Pts_Removed,:] #remove last points that have the

→˓"anomalously" high flux

The answer is exactly the same and comparing to the initial version of this code we have managed a speedup of 382x:

Tue Jun 14 10:21:54 2011 SortRemove_HighFluxPts_.prof

(continues on next page)

3.2. SpacePy Python Programming Tips 55

SpacePy Documentation, Release 0.2.2

(continued from previous page)

10 function calls in 0.011 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.011 0.011 <string>:1(<module>)
1 0.002 0.002 0.011 0.011 test1.py:236(SortRemove_HighFluxPts_)
1 0.000 0.000 0.004 0.004 /opt/local/Library/Frameworks/Python.

→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/fromnumeric.
→˓py:598(argsort)

1 0.004 0.004 0.004 0.004 {method 'argsort' of 'numpy.ndarray'
→˓objects}

1 0.000 0.000 0.003 0.003 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/fromnumeric.
→˓py:45(take)

1 0.003 0.003 0.003 0.003 {method 'take' of 'numpy.ndarray'
→˓objects}

1 0.000 0.000 0.002 0.002 /opt/local/Library/Frameworks/Python.
→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/fromnumeric.
→˓py:1379(sum)

1 0.002 0.002 0.002 0.002 {method 'sum' of 'numpy.ndarray'
→˓objects}

1 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'

→˓objects}

In summary, when working on arrays it’s worth taking the time to think about whether you can get the results you
need without for-loops or list comprehensions. The small amount of development time will likely be recouped very
quickly.

3.2.3 Zip

The zip() function is extremely useful, but it is really slow. If you find yourself using it on large amounts of data
then significant time-savings might be achieved by re-writing your code to make the zip() operation unnecessary. A
good alternative, if you do need the functionality of zip(), is in itertools.izip(). This is far more efficient
as it builds an interator.

This example generates N points, evenly distributed on the unit sphere centered at (0,0,0) using the “Golden Spiral”
method.

The original code:

import numpy as np
def PointsOnSphere(N):
Generate evenly distributed N points on the unit sphere centered at (0,0,0)
Uses "Golden Spiral" method

x0 = np.array((N,), dtype= float)
y0 = np.array((N,), dtype= float)
z0 = np.array((N,), dtype= float)
phi = (1 + np.sqrt(5)) / 2. # the golden ratio
long_incr = 2.0*np.pi / phi # how much to increment the longitude
dz = 2.0 / float(N) # a unit sphere has diameter 2
bands = np.arange(0, N, 1) # each band will have one point placed on it
z0 = bands * dz - 1 + (dz/2) # the z location of each band/point
r = np.sqrt(1 - z0*z0) # the radius can be directly determined from height

(continues on next page)

56 Chapter 3. Developer Guide

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip

SpacePy Documentation, Release 0.2.2

(continued from previous page)

az = bands * long_incr # the azimuth where to place the point
x0 = r * np.cos(az)
y0 = r * np.sin(az)
x0_y0_z0 = np.array(zip(x0,y0,z0)) #combine into 3 column (x,y,z) file
return (x0_y0_z0)

Profiling this with cProfile shows that a lot of time is spent in zip():

Tue Jun 14 09:54:41 2011 PointsOnSphere.prof

9 function calls in 8.132 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.010 0.010 8.132 8.132 <string>:1(<module>)
1 0.470 0.470 8.122 8.122 test1.py:192(PointsOnSphere)
4 6.993 1.748 6.993 1.748 {numpy.core.multiarray.array}
1 0.654 0.654 0.654 0.654 {zip}
1 0.005 0.005 0.005 0.005 {numpy.core.multiarray.arange}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'

→˓objects}

So lets try and do a few simple rewrites to make this faster. Using numpy.vstack is the first one that came to mind. The
change here is to replace building up the array from the elements made by zip() to just concatenating the arrays we
already have:

def PointsOnSphere(N):
Generate evenly distributed N points on the unit sphere centered at (0,0,0)
Uses "Golden Spiral" method

x0 = np.array((N,), dtype= float)
y0 = np.array((N,), dtype= float)
z0 = np.array((N,), dtype= float)
phi = (1 + np.sqrt(5)) / 2. # the golden ratio
long_incr = 2.0*np.pi / phi # how much to increment the longitude
dz = 2.0 / float(N) # a unit sphere has diameter 2
bands = np.arange(0, N, 1) # each band will have one point placed on it
z0 = bands * dz - 1 + (dz/2) # the z location of each band/point
r = np.sqrt(1 - z0*z0) # the radius can be directly determined from height
az = bands * long_incr # the azimuth where to place the point
x0 = r * np.cos(az)
y0 = r * np.sin(az)
x0_y0_z0 = np.vstack((x0, y0, z0)).transpose()
return (x0_y0_z0)

Profiling this with cProfile one can see that this is now fast enough for me, no more work to do. We picked up a
48x speed increase, I’m sure this can still be made better and let the SpacePy team know if you rewrite it and it will
be included:

Tue Jun 14 09:57:41 2011 PointsOnSphere.prof

32 function calls in 0.168 seconds

Ordered by: cumulative time
List reduced from 13 to 10 due to restriction <10>

(continues on next page)

3.2. SpacePy Python Programming Tips 57

https://docs.python.org/3/library/profile.html#module-cProfile
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/profile.html#module-cProfile

SpacePy Documentation, Release 0.2.2

(continued from previous page)

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.010 0.010 0.168 0.168 <string>:1(<module>)
1 0.123 0.123 0.159 0.159 test1.py:217(PointsOnSphere)
1 0.000 0.000 0.034 0.034 /opt/local/Library/Frameworks/Python.

→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/shape_base.
→˓py:177(vstack)

1 0.034 0.034 0.034 0.034 {numpy.core.multiarray.concatenate}
1 0.002 0.002 0.002 0.002 {numpy.core.multiarray.arange}
1 0.000 0.000 0.000 0.000 {map}
3 0.000 0.000 0.000 0.000 /opt/local/Library/Frameworks/Python.

→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/shape_base.
→˓py:58(atleast_2d)

6 0.000 0.000 0.000 0.000 {numpy.core.multiarray.array}
3 0.000 0.000 0.000 0.000 /opt/local/Library/Frameworks/Python.

→˓framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/numeric.
→˓py:237(asanyarray)

1 0.000 0.000 0.000 0.000 {method 'transpose' of 'numpy.ndarray'
→˓objects}

3.2.4 External links

To learn about NumPy from a MatLab user’s perspective

• NumPy for MatLab users

• Mathesaurus

And if you’re coming from an IDL, or R, background

• Mathesaurus

Here is a collection of links that serve as a decent reference for Python and speed

• PythonSpeed PerformanceTips

• scipy array tip sheet

• Python Tips, Tricks, and Hacks

Release 0.2.2

Doc generation date Dec 29, 2020

For additions or fixes to this page contact the SpacePy team at Los Alamos.

3.3 Dependency version support

SpacePy will occasionally drop support for old versions of dependencies. Failures with older versions will not be
treated as SpacePy bugs. Dependency support is based on these principles:

1. SpacePy supports released versions of a dependency that meet a minimum version requirement; there is no
maximum supported version.

2. Support for old versions of dependencies will be dropped only for reason, e.g. if a new version is required to
support a new feature or fix a bug. Maintenance of convoluted workarounds is included in this category.

58 Chapter 3. Developer Guide

http://www.scipy.org/NumPy_for_Matlab_Users
http://mathesaurus.sourceforge.net/
http://mathesaurus.sourceforge.net/
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://pages.physics.cornell.edu/~myers/teaching/ComputationalMethods/python/arrays.html
http://www.siafoo.net/article/52

SpacePy Documentation, Release 0.2.2

3. Support will be maintained for versions included in the second-most-recent Ubuntu Long Term Support (LTS)
release, e.g. upon release of Ubuntu 20.04 LTS, support will be maintained for at least the versions in 18.04 LTS

4. Support will also be maintained for Python and NumPy versions in the spirit of NEP 29.

1. A SpacePy release will support at least all minor versions of Python released in the prior 42 months, and
at least the two latest minor versions.

2. SpacePy will support all minor versions of NumPy and, where possible, other Python dependencies re-
leased in the prior 24 months, and at least the three latest minor versions.

3. Non-Python dependencies that use a similar versioning system will be supported similarly where possible.

4. This support is based on minor releases (x.y.0), not subsequent subminor releases (x.y.z for the same x.y).
Where x.y.0 is supported, so is x.y.z for all z.

5. All versions of all dependencies and all combinations thereof will not necessarily be tested in continuous
integration.

5. No support will be provided for conflicting versions of dependencies. E.g. SciPy 1.4 requires NumPy 1.13.
Although SpacePy supports SciPy 1.4 and Numpy 1.6, it contains no workarounds for using them in that com-
bination.

6. Support for a particular version of a dependency does not imply a commitment to work around bugs in that
version.

7. Support for even earlier versions will be maintained as necessary for Python 2 compatibility as long as Python
2 support is maintained.

8. A release of SpacePy that requires new dependency versions will always have a subminor version of 0, e.g. if
the release that follows 0.5.2 requires updated dependencies, it will be numbered 0.6.0.

9. The commit that requires a newer version of a dependency must also update the requirements.txt,
SpacePy Dependencies, and the table below. The commit message must include the reason for the dependency
requirement.

This table summarizes the versions to be supported according to the above policy, as well as the minimum version
currently supported by SpacePy. Where available, the dependency name links to its version history. The oldest version
supported according to this policy is in bold.

3.3. Dependency version support 59

https://numpy.org/neps/nep-0029-deprecation_policy.html

SpacePy Documentation, Release 0.2.2

Table 1: SpacePy dependency versions (2020/9/17)
Dependency Current Re-

lease
Ubuntu
18.04LTS

Ubuntu
20.04LTS

NEP 29
(42/24 mo.)

NEP 29
(2/3 minor
versions)

SpacePy
current
minimum

CPython 3.8.5
(2020/7/20)

3.6.5
(2018/2/5)

3.8.2
(2020/2/24)

3.8.0
(2019/10/14)

3.7.0
(2018/6/27)

3.2.0
(2011/2/20)
or 2.7.0
(2010/7/3)

AstroPy 4.0.1
(2020/3/27)

1.1.1
(2016/1/8)

2.0.4
(2018/2/6)

3.0
(2018/2/12)

3.2
(2019/6/14)

1.0
(2015/2/18)

CDF 3.8.0.1
(2020/7/7)

N/A N/A 3.8.0
(2019/10/27)

3.6.0
(2015/2/5)

2.7.0
(1999/9/27)

dateutil 2.8.1
(2019/11/3)

2.6.1
(2017/7/10)

2.7.3
(2018/5/9)

2.8.0
(2019/2/5)

2.6.0
(2016/11/8)

tested
from 1.4
(2008/2/27)

ffnet 0.8.4
(2018/10/28)

N/A N/A 0.8.4
(2018/10/28)

0.6.0
(2007/3/22)

tested
from 0.7
(2011/8/8)

h5py 2.10.0
(2019/9/6)

2.7.1
(2017/9/1)

2.10.0
(2019/9/6)

2.9.0
(2018/12/19)

2.8.0
(2018/5/13)

tested
from 2.6
(2017/3/18)

matplotlib 3.3.2
(2020/9/15)

2.1.1
(2017/12/9)

3.1.2
(2019/12/4)

3.0.0
(2018/9/17)

3.1.0
(2019/5/17)

1.5.0
(2015/10/29)

networkx 2.5
(2020/8/22)

1.11
(2016/1/30)

2.4
(2019/10/16)

2.2
(2018/9/19)

2.3
(2019/4/11)

tested
from 1.0
(2010/1/7)

numpy 1.19.2
(2020/9/10)

1.13.1
(2017/7/6)

1.17.4
(2019/11/10)

1.16.0
(2019/1/13)

1.17.0
(2019/7/26)

1.10.0
(2015/10/5)

scipy 1.5.2
(2020/7/23)

0.19.1
(2017/6/23)

1.3.3
(2019/11/23)

1.2.0
(2018/12/17)

1.3.0
(2019/5/17)

0.11.0
(2012/9/24)

3.4 Documentation Standard

SpacePy aims to be a high quality product, and as such we (the SpacePy Team) encourage a a high degree of uniformity
in the documentation across included modules. If you are contributing to SpacePy, or hope to, please take the time to
make your code compliant with the documentation standard.

SpacePy uses Sphinx to generate its documentation. This allows most of the documentation to be built from docstrings
in the code, with additional information being provided in reStructured Text files. This allows easy generation of high-
quality, searchable HTML documentation.

In addition to Sphinx, SpacePy uses the following extensions:

• ‘sphinx.ext.autodoc’

• ‘sphinx.ext.doctest”

• ‘sphinx.ext.intersphinx’

• ‘sphinx.ext.todo’

• ‘sphinx.ext.imgmath’ (falls back to ‘sphinx.ext.pngmath’ if imgmath is not available)

• ‘sphinx.ext.ifconfig’

60 Chapter 3. Developer Guide

https://www.python.org/downloads/
https://docs.astropy.org/en/stable/changelog.html#changelog
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/latest-release/unix/CHANGES.txt
https://github.com/dateutil/dateutil/releases
https://github.com/mrkwjc/ffnet/releases
https://github.com/h5py/h5py/releases
https://github.com/matplotlib/matplotlib/releases
https://github.com/networkx/networkx/releases
https://github.com/numpy/numpy/releases
https://github.com/scipy/scipy/releases
http://sphinx.pocoo.org/

SpacePy Documentation, Release 0.2.2

• ‘sphinx.ext.viewcode’

• ‘numpydoc’

• ‘sphinx.ext.inheritance_diagram’

• ‘sphinx.ext.autosummary’

• ‘sphinx.ext.extlinks’

3.4.1 So what do I need to do in my code?

Since we are using the ‘numpydoc’ extension there are fixed headings that may appear in your documentation block.
There are a few things to note: * No other headings can appear in your docstrings * Most reStructuredText commands
cannot appear in your docstrings either (e.g. .. Note:) * Since ‘numpydoc’ is not well documented, the best way of
finding out what you can do in your docstrings is to look at the source for the SpacePy documentation or the numpy
documentation.

Allowed headings

Always use

• Parameters

• Returns

Use as needed

• Attributes

• Raises

• Warns

• Other Parameters

• See Also

• Notes

• Warnings

• References

• Examples

• Methods

No need to use

• Summary

• Extended Summary

• index

Do not use

• Signature

Examples

• Use them, but they must be fully stand alone; the user should be able to type the exact code in the example
and it should work as shown (doctest can help with this)

3.4. Documentation Standard 61

SpacePy Documentation, Release 0.2.2

3.4.2 Function Example

This code from toolbox shows what a function should look like in your code

def logspace(min, max, num, **kwargs):
"""
Returns log spaced bins. Same as numpy logspace except the min and max

→˓are the ,min and max
not log10(min) and log10(max)

Parameters
==========
min : float

minimum value
max : float

maximum value
num : integer

number of log spaced bins

Other Parameters
================
kwargs : dict

additional keywords passed into matplotlib.dates.num2date

Returns
=======
out : array

log spaced bins from min to max in a numpy array

Notes
=====
This function works on both numbers and datetime objects

Examples
========
>>> import spacepy.toolbox as tb
>>> tb.logspace(1, 100, 5)
array([1. , 3.16227766, 10. , 31.6227766 , 100.

→˓])
"""
from numpy import logspace, log10
if isinstance(min, datetime.datetime):

from matplotlib.dates import date2num, num2date
return num2date(logspace(log10(date2num(min)), log10(date2num(max)),

→˓num, **kwargs))
else:

return logspace(log10(min), log10(max), num, **kwargs)

Which then renders as:

spacepy.toolbox.logspace(min, max, num, **kwargs)
Returns log-spaced bins. Same as numpy.logspace except the min and max are the min and max not
log10(min) and log10(max)

Parameters

min [float] minimum value

max [float] maximum value

62 Chapter 3. Developer Guide

SpacePy Documentation, Release 0.2.2

num [integer] number of log spaced bins

Returns

out [array] log-spaced bins from min to max in a numpy array

Other Parameters

kwargs [dict] additional keywords passed into matplotlib.dates.num2date

See also:

geomspace

linspace

Notes

This function works on both numbers and datetime objects

Examples

>>> import spacepy.toolbox as tb
>>> tb.logspace(1, 100, 5)
array([1. , 3.16227766, 10. , 31.6227766 , 100.
→˓])

3.4. Documentation Standard 63

SpacePy Documentation, Release 0.2.2

64 Chapter 3. Developer Guide

CHAPTER

FOUR

SPACEPY MODULE REFERENCE

Description of all functions within SpacePy, by module.

4.1 spacepy - main SpacePy module

SpacePy: Space Science Tools for Python

SpacePy is a package of tools primarily aimed at the space science community. This __init__.py file sets the parameters
for import statements.

If running the ipython shell, simply type ‘?’ after any command for help. ipython also offers tab completion, so hitting
tab after ‘<module name>.’ will list all available functions, classes and variables.

Detailed HTML documentation is available locally in the spacepy/doc directory and can be launched by typing:

>>> spacepy.help()

Most functionality is in spacepy’s submodules. Each module has specific help available:

Submodules

coordinates Implementation of Coords class functions for coordi-
nate transformations

data_assimilation
datamodel The datamodel classes constitute a data model imple-

mentation meant to mirror the functionality of the data
model output from pycdf, though implemented slightly
differently.

empiricals Module with some useful empirical models (plasma-
pause, magnetopause, Lmax)

irbempy module wrapper for irbem_lib Reference for this library
https://sourceforge.net/projects/irbem/ D.

LANLstar Lstar and Lmax calculation using artificial neural net-
work (ANN) technique.

omni Tools to read and process omni data (Qin-Denton, etc.)
poppy PoPPy – Point Processes in Python.
pybats PyBats! An open source Python-based interface for

reading, manipulating, and visualizing BATS-R-US and
SWMF output.

continues on next page

65

https://sourceforge.net/projects/irbem/

SpacePy Documentation, Release 0.2.2

Table 1 – continued from previous page
pycdf This package provides a Python interface to the Com-

mon Data Format (CDF) library used for many NASA
missions, available at http://cdf.gsfc.nasa.gov/.

radbelt Functions supporting radiation belt diffusion codes
seapy SeaPy – Superposed Epoch in Python.
time Time conversion, manipulation and implementation of

Ticktock class
toolbox Toolbox of various functions and generic utilities.
ae9ap9 Module for reading and dealing with AE9AP9 data files.

Functions

deprecated(version, message[, docstring]) Decorator to deprecate a function/method
help() Launches web browser with local HTML help

spacepy.deprecated(version, message, docstring=None)
Decorator to deprecate a function/method

Modifies a function so that calls to it raise DeprecationWarning and the docstring has a deprecation note
added in accordance with numpydoc format

Parameters

version [str] What is the first version where this was deprecated?

message [str] Message to include in the deprecation warning and in the docstring.

Other Parameters

docstring [str] New in version 0.2.2.

If specified, docstring will be added to the modified function’s docstring instead of
message (which will only be used in the deprecation warning.) It can be a multi-line
string (separated with \n). It will be indented to match the existing docstring.

Notes

On Python 2, the deprecated function’s signature won’t be preserved. The function will work but will not have
proper argument names listed in e.g. help.

Examples

>>> import spacepy
>>> @spacepy.deprecated('0.2.1', 'Use a different function instead',
... docstring='A different function is better\n'
... 'because of reasons xyz')
... def foo(x):
... '''This is a test function
...
... It may do many useful things.
... '''
... return x + 1
>>> help(foo)

(continues on next page)

66 Chapter 4. SpacePy Module Reference

http://cdf.gsfc.nasa.gov/
https://numpydoc.readthedocs.io/en/latest/format.html#sections

SpacePy Documentation, Release 0.2.2

(continued from previous page)

Help on function foo in module __main__:
foo(x)

This is a test function
.. deprecated:: 0.2.1

A different function is better
because of reasons xyz

It may do many useful things.
>>> foo(2)
DeprecationWarning: Use a different function instead
3

spacepy.help()
Launches web browser with local HTML help

Copyright 2010-2016 Los Alamos National Security, LLC.

4.2 ae9ap9 - Handle AE9/AP9 data files

Module for reading and dealing with AE9AP9 data files.

See https://www.vdl.afrl.af.mil/programs/ae9ap9/ to download the model. This is not a AE9AP9 runner.

Authors: Brian Larsen, Steve Morley Institution: Los Alamos National Laboratory Contact: balarsen@lanl.gov

Copyright 2015 Los Alamos National Security, LLC.

This module provides a convenient class for handling data from AE9/AP9 (and legacy models provided by the soft-
ware).

Class

Ae9Data(*args, **kwargs) Dictionary-like container for AE9/AP9/SPM data, de-
rived from SpacePy’s datamodel

4.2.1 spacepy.ae9ap9.Ae9Data

class spacepy.ae9ap9.Ae9Data(*args, **kwargs)
Dictionary-like container for AE9/AP9/SPM data, derived from SpacePy’s datamodel

To inspect the variables within this class, use the tree method. To export the data to a CDF, HDF5 or JSON-
headed ASCII file use the relevant “to” method (toCDF, toHDF5, toJSONheadedASCII).

getLm([alpha, model]) Calculate McIlwain L for the imported AE9/AP9 run
and add to object

plotOrbit([timerange, coord_sys, landscape,
. . .])

Plot X-Y and X-Z projections of satellite orbit in re-
quested coordinate system

plotSummary([timerange, coord_sys, . . .]) Generate summary plot of AE9/AP9/SPM data
loaded

plotSpectrogram([ecol, pvars]) Plot a spectrogram of the flux along the requested
orbit, as a function of Lm and time

setUnits([per]) Set units of energy and flux/fluence

4.2. ae9ap9 - Handle AE9/AP9 data files 67

https://www.vdl.afrl.af.mil/programs/ae9ap9/
mailto:balarsen@lanl.gov

SpacePy Documentation, Release 0.2.2

getLm(alpha=[90], model='T89')
Calculate McIlwain L for the imported AE9/AP9 run and add to object

plotOrbit(timerange=None, coord_sys=None, landscape=True, fig_target=None)
Plot X-Y and X-Z projections of satellite orbit in requested coordinate system

plotSummary(timerange=None, coord_sys=None, fig_target=None, spec=False, or-
bit_params=(False, True), **kwargs)

Generate summary plot of AE9/AP9/SPM data loaded

spec : if True, plot spectrogram instead of flux/fluence lineplot, requires ‘ecol’ keyword

plotSpectrogram(ecol=0, pvars=None, **kwargs)
Plot a spectrogram of the flux along the requested orbit, as a function of Lm and time

Other Parameters

zlim [list] 2-element list with upper and lower bounds for color scale

colorbar_label [string] text to appear next to colorbar (default is ‘Flux’ plus the units)

ylabel [string] text to label y-axis (default is ‘Lm’ plus the field model name)

title [string] text to appear above spectrogram (default is climatology model name, data type
and energy)

pvars [list] list of plotting variable names in order [Epoch-like (X axis), Flux-like (Z axis),
Energy (Index var for Flux-like)]

ylim [list] 2-element list with upper and lower bounds for y axis

setUnits(per=None)
Set units of energy and flux/fluence

If keyword ‘per’ is set to None, this method reports the units currently set. To set energy in MeV and
flux/fluence in ‘per MeV’, set ‘per=MeV’. Valid options are ‘eV’, ‘keV’, ‘Mev’ and ‘GeV’.

Other Parameters

per [string (optional)] Energy units for both energy and flux/fluence

Though the class is derived from SpacePy’s SpaceData, the class also provides several methods targeted at the
AE9/AP9 output. Additional functions for working with the data are provided.

Functions

readFile(fname[, comments]) read a model generated file into a datamodel.SpaceData
object

parseHeader(fname) given an AE9AP9 output test file parse the header and
return the information in a dictionary

68 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.2.2 spacepy.ae9ap9.readFile

spacepy.ae9ap9.readFile(fname, comments='#')
read a model generated file into a datamodel.SpaceData object

Parameters

fname [str] filename of the file

Returns

out [SpaceData] Data contained in the file

Other Parameters

comments [str (optional)] String that is the comments in the data file

Examples

>>> from spacepy import ae9ap9
>>> ae9ap9.readFile('ephem_sat.dat').tree(verbose=1)
+
|____Epoch (spacepy.datamodel.dmarray (121,))
|____Coords (spacepy.datamodel.dmarray (121, 3))
|____MJD (spacepy.datamodel.dmarray (121,))
|____posComp (spacepy.datamodel.dmarray (3,))

4.2.3 spacepy.ae9ap9.parseHeader

spacepy.ae9ap9.parseHeader(fname)
given an AE9AP9 output test file parse the header and return the information in a dictionary

Parameters

fname [str] filename of the file

Returns

out [dict] Dictionary of the header information in the file

4.3 coordinates - module for coordinate transforms

Implementation of Coords class functions for coordinate transformations

Authors: Josef Koller and Steven Morley Institution: Los ALamos National Laboratory Contact: smorley@lanl.gov

Copyright 2010 Los Alamos National Security, LLC.

4.3. coordinates - module for coordinate transforms 69

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.2.2

Classes

Coords(data, dtype, carsph, [units, ticks]) A class holding spatial coordinates in Carte-
sian/spherical in units of Re and degrees

4.3.1 spacepy.coordinates.Coords

class spacepy.coordinates.Coords(data, dtype, carsph[, units, ticks])
A class holding spatial coordinates in Cartesian/spherical in units of Re and degrees

Coordinate transforms are based on the IRBEM library; its manual may prove useful. For a good reference on
heliospheric and magnetospheric coordinate systems, see Franz & Harper, “Heliospheric Coordinate Systems”,
Planet. Space Sci., 50, pp 217-233, 2002 (https://doi.org/10.1016/S0032-0633(01)00119-2).

Parameters

data [list or ndarray, dim = (n,3)] coordinate points [X,Y,Z] or [rad, lat, lon]

dtype [string] coordinate system; possible values are:

• GDZ (Geodetic; WGS84),

• GEO (Geographic Coordinate System),

• GSM (Geocentric Solar Magnetospheric),

• GSE (Geocentric Solar Ecliptic),

• SM (Solar Magnetic),

• GEI (Geocentric Equatorial Inertial; True-of-Date),

• MAG (Geomagnetic Coordinate System),

• SPH (Spherical Coordinate System),

• RLL (Radius, Latitude, Longitude; Geodetic)

carsph [string] Cartesian or spherical, ‘car’ or ‘sph’

units [list of strings, optional] standard are [‘Re’, ‘Re’, ‘Re’] or [‘Re’, ‘deg’, ‘deg’] depending
on the carsph content

ticks [Ticktock instance, optional] used for coordinate transformations (see a.convert)

Returns

out [Coords instance] instance with a.data, a.carsph, etc.

See also:

spacepy.time.Ticktock

70 Chapter 4. SpacePy Module Reference

http://svn.code.sf.net/p/irbem/code/trunk/manual/user_guide.html
https://doi.org/10.1016/S0032-0633(01)00119-2

SpacePy Documentation, Release 0.2.2

Examples

>>> from spacepy import coordinates as coord
>>> cvals = coord.Coords([[1,2,4],[1,2,2]], 'GEO', 'car')
>>> cvals.x # returns all x coordinates
array([1, 1])
>>> from spacepy.time import Ticktock
>>> cvals.ticks = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:00:00'], 'ISO')
→˓# add ticks
>>> newcoord = cvals.convert('GSM', 'sph')
>>> newcoord

append(other) Append another Coords instance to the current one
convert(returntype, returncarsph) Create a new Coords instance with new coordinate

types

append(other)
Append another Coords instance to the current one

Parameters

other [Coords instance] Coords instance to append

convert(returntype, returncarsph)
Create a new Coords instance with new coordinate types

Parameters

returntype [string] coordinate system, possible are GDZ, GEO, GSM, GSE, SM, GEI,
MAG, SPH, RLL

returncarsph [string] coordinate type, possible ‘car’ for Cartesian and ‘sph’ for spherical

Returns

out [Coords object] Coords object in the new coordinate system

Examples

>>> from spacepy.coordinates import Coords
>>> y = Coords([[1,2,4],[1,2,2]], 'GEO', 'car')
>>> from spacepy.time import Ticktock
>>> y.ticks = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:00:00'], 'ISO')
>>> x = y.convert('SM','car')
>>> x
Coords([[0.81134097 2.6493305 3.6500375]
[0.92060408 2.30678864 1.68262126]]), dtype=SM,car, units=['Re', 'Re',
→˓'Re']

4.3. coordinates - module for coordinate transforms 71

SpacePy Documentation, Release 0.2.2

Functions

quaternionRotateVector(Qin, Vin[, . . .]) Given quaternions and vectors, return the vectors ro-
tated by the quaternions

quaternionNormalize(Qin[, scalarPos]) Given an input quaternion (or array of quaternions), re-
turn the unit quaternion

quaternionMultiply(Qin1, Qin2[, scalarPos]) Given quaternions, return the product, i.e. Qin1*Qin2.
quaternionConjugate(Qin[, scalarPos]) Given an input quaternion (or array of quaternions), re-

turn the conjugate
quaternionFromMatrix(matrix[, scalarPos]) Given an input rotation matrix, return the equivalent

quaternion
quaternionToMatrix(Qin[, scalarPos, normal-
ize])

Given an input quaternion, return the equivalent rotation
matrix.

4.3.2 spacepy.coordinates.quaternionRotateVector

spacepy.coordinates.quaternionRotateVector(Qin, Vin, scalarPos='last', normalize=True)
Given quaternions and vectors, return the vectors rotated by the quaternions

Parameters

Qin [array_like] input quaternion to rotate by

Vin [array-like] input vector to rotate

Returns

out [array_like] rotated vector

See also:

quaternionMultiply

Examples

>>> import spacepy.coordinates
>>> import numpy as np
>>> vec = [1, 0, 0]
>>> quat_wijk = [np.sin(np.pi/4), 0, np.sin(np.pi/4), 0.0]
>>> quat_ijkw = [0.0, np.sin(np.pi/4), 0, np.sin(np.pi/4)]
>>> spacepy.coordinates.quaternionRotateVector(quat_ijkw, vec)
array([0., 0., -1.])
>>> spacepy.coordinates.quaternionRotateVector(
... quat_wijk, vec, scalarPos='first')
array([0., 0., -1.])

72 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.3.3 spacepy.coordinates.quaternionNormalize

spacepy.coordinates.quaternionNormalize(Qin, scalarPos='last')
Given an input quaternion (or array of quaternions), return the unit quaternion

Parameters

vec [array_like] input quaternion to normalize

Returns

out [array_like] normalized quaternion

Examples

>>> import spacepy.coordinates
>>> spacepy.coordinates.quaternionNormalize([0.707, 0, 0.707, 0.2])
array([0.69337122, 0. , 0.69337122, 0.19614462])

4.3.4 spacepy.coordinates.quaternionMultiply

spacepy.coordinates.quaternionMultiply(Qin1, Qin2, scalarPos='last')
Given quaternions, return the product, i.e. Qin1*Qin2

Parameters

Qin1 [array_like] input quaternion, first position

Qin2 [array-like] input quaternion, second position

Returns

out [array_like] quaternion product

Examples

>>> import spacepy.coordinates
>>> import numpy as np
>>> vecX = [1, 0, 0] #shared X-axis
>>> vecZ = [0, 0, 1] #unshared, but similar, Z-axis
>>> quat_eci_to_gsm = [-0.05395384, 0.07589845, -0.15172533, 0.98402634]
>>> quat_eci_to_gse = [0.20016056, 0.03445775, -0.16611386, 0.96496352]
>>> quat_gsm_to_eci = spacepy.coordinates.quaternionConjugate(
... quat_eci_to_gsm)
>>> quat_gse_to_gsm = spacepy.coordinates.quaternionMultiply(
... quat_gsm_to_eci, quat_eci_to_gse)
>>> spacepy.coordinates.quaternionRotateVector(quat_gse_to_gsm, vecX)
array([1.00000000e+00, 1.06536725e-09, -1.16892107e-08])
>>> spacepy.coordinates.quaternionRotateVector(quat_gse_to_gsm, vecZ)
array([1.06802834e-08, -4.95669027e-01, 8.68511494e-01])

4.3. coordinates - module for coordinate transforms 73

SpacePy Documentation, Release 0.2.2

4.3.5 spacepy.coordinates.quaternionConjugate

spacepy.coordinates.quaternionConjugate(Qin, scalarPos='last')
Given an input quaternion (or array of quaternions), return the conjugate

Parameters

Qin [array_like] input quaternion to conjugate

Returns

out [array_like] conjugate quaternion

See also:

quaternionMultiply

Examples

>>> import spacepy.coordinates
>>> spacepy.coordinates.quaternionConjugate(
... [0.707, 0, 0.707, 0.2], scalarPos='last')
array([-0.707, -0. , -0.707, 0.2])

4.3.6 spacepy.coordinates.quaternionFromMatrix

spacepy.coordinates.quaternionFromMatrix(matrix, scalarPos='last')
Given an input rotation matrix, return the equivalent quaternion

The output has one fewer axis than the input (the last axis) and the shape is otherwise unchanged, allowing
multi-dimensional matrix input.

Parameters

matrix [array_like] input rotation matrix or array of matrices

Returns

out [array_like] Quaternions representing the same rotation as the input rotation matrices.

Other Parameters

scalarPos [str] Location of the scalar component of the output quaternion, either ‘last’ (default)
or ‘first’.

Raises

NotImplementedError for invalid values of scalarPos

ValueError for inputs which are obviously not valid 3D rotation matrices or arrays thereof: if
the size doesn’t end in (3, 3), if the matrix is not orthogonal, or not a proper rotation.

See also:

quaternionToMatrix

74 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Notes

New in version 0.2.2.

No attempt is made to resolve the sign ambiguity; in particular, conversions of very similar matrices may result
in equivalent quaternions with the opposite sign. This may have implications for interpolating a sequence of
quaternions.

The conversion of a rotation matrix to a quaternion suffers from some of the same disadvantages inherent to
rotation matrices, such as potential numerical instabilities. Working in quaternion space as much as possible is
recommended.

There are several algorithms; the most well-known algorithm for this conversion is Shepperd’s1, although the
many “rediscoveries” indicate it is not sufficiently well-known. This function uses the method of Bar-Itzhack2

(version 3), which should be resistant to small errors in the rotation matrix. As a result, the input checking is
quite coarse and will likely accept many matrices that do not represent valid rotations.

Also potentially of interest, although not implemented here, is Sarabandi and Thomas3.

References

Examples

>>> import spacepy.coordinates
>>> spacepy.coordinates.quaternionFromMatrix(
... [[0., 0., 1.],
... [1., 0., 0.],
... [0., 1., 0.]])
array([0.5, 0.5, 0.5, 0.5])

4.3.7 spacepy.coordinates.quaternionToMatrix

spacepy.coordinates.quaternionToMatrix(Qin, scalarPos='last', normalize=True)
Given an input quaternion, return the equivalent rotation matrix.

The output has one more axis than the input (the last axis) and the shape is otherwise unchanged, allowing
multi-dimensional quaternion input.

Parameters

Qin [array_like] input quaternion or array of quaternions, must be normalized.

Returns

out [array_like] Rotation matrix

Other Parameters

scalarPos [str] Location of the scalar component of the input quaternion, either ‘last’ (default)
or ‘first’.

normalize [True] Normalize input quaternions before conversion (default). If False, raises error
for non-normalized.

1 S.W. Shepperd, “Quaternion from rotation matrix,” Journal of Guidance and Control, Vol. 1, No. 3, pp. 223-224, 1978, doi:10.2514/3.55767b
2 I. Y. Bar-Itzhack, “New method for extracting the quaternion from a rotation matrix”, AIAA Journal of Guidance, Control and Dynamics, 23

(6): 1085–1087, doi:10.2514/2.4654
3 S. Sarabandi and F. Thomas, “Accurate Computation of Quaternions from Rotation Matrices”, In: Lenarcic J., Parenti-Castelli V. (eds) Ad-

vances in Robot Kinematics 2018, Springer. doi:10.1007/978-3-319-93188-3_5

4.3. coordinates - module for coordinate transforms 75

https://doi.org/10.2514/3.55767b
https://doi.org/10.2514/2.4654
https://doi.org/10.1007/978-3-319-93188-3_5

SpacePy Documentation, Release 0.2.2

Raises

NotImplementedError for invalid values of scalarPos.

ValueError for inputs which are not valid normalized quaternions or arrays thereof: if the size
doesn’t end in (4), if the quaternion is not normalized and normalize is False.

See also:

quaternionFromMatrix

Notes

New in version 0.2.2.

Implementation of the Euler–Rodrigues formula.

Examples

>>> import spacepy.coordinates
>>> spacepy.coordinates.quaternionToMatrix([0.5, 0.5, 0.5, 0.5])
array([[0., 0., 1.],

[1., 0., 0.],
[0., 1., 0.]])

4.4 datamanager - easy access to and manipulation of data

The datamanager classes and functions are useful for locating the correct data file for a particular day and manipulating
data and subsets in a generic way.

Authors: Jon Niehof

Institution: University of New Hampshire

Contact: Jonathan.Niehof@unh.edu

Copyright 2015-2020 contributors

4.4.1 About datamanager

4.4.2 Examples

Examples go here

76 Chapter 4. SpacePy Module Reference

mailto:Jonathan.Niehof@unh.edu

SpacePy Documentation, Release 0.2.2

Classes

DataManager(directories, file_fmt[, . . .]) THIS CLASS IS NOT YET COMPLETE, doesn’t do
much useful.

Functions

apply_index(data, idx) Apply an array of indices to data.
array_interleave(array1, array2, idx) Create an array containing all elements of both array1

and array2
axis_index(shape[, axis]) Returns array of indices along axis, for all other axes
flatten_idx(idx[, axis]) Convert multidimensional index into index on flattened

array.
insert_fill(times, data[, fillval, tol, . . .]) Populate gaps in data with fill.
rebin(data, bindata, bins[, axis, bintype, . . .]) Rebin one axis of input data based on values of another

array
rev_index(idx[, axis]) From an index, return an index that reverses the action

of that index
values_to_steps(array[, axis]) Transform values along an axis to their order in a unique

sequence.

class spacepy.datamanager.DataManager(directories, file_fmt, descend=False, period=None)
THIS CLASS IS NOT YET COMPLETE, doesn’t do much useful.

Will have to do something that allows the config file to specify regex and other things, and then just the directory
to be changed (since regex, etc.

Parameters

directories [list] A list of directories that might contain the data

file_fmt [string] Regular expression that matches the files desired. Will also recognize strf-
time parameters %w %d %m %y %Y %H %M %s %j %U %W, all zero-pad. https://docs.
python.org/2/library/datetime.html#strftime-strptime-behavior Can have subdirectory refer-
ence, but separator should be unix-style, with no leading slash.

period [string] Size of file; can be a number followed by one of d, m, y, H, M, s. Anything else
is assumed to be “irregular” and files treated as if there are neither gaps nor overlaps in the
sequence. If not specified, will be assumed to match one count of the smallest unit in the
format string.

Examples

=======

files_matching(dt=None)
Return all the files matching this file format

Parameters

dt [datetime] Optional; if specified, match only files for this date.

Returns

out [generator] Iterates over every file matching the format specified at creation. Note this
is specified in native path format!

4.4. datamanager - easy access to and manipulation of data 77

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

SpacePy Documentation, Release 0.2.2

get_filename(dt)
Returns the filename corresponding to a particular point in time

spacepy.datamanager.apply_index(data, idx)
Apply an array of indices to data.

Most useful in dealing with the output from numpy.argsort(), and best explained by the example.

Parameters

data [array] Input data, at least two dimensional. The 0th dimension is treated as a “time” or
“record” dimension.

idx [sequence] 2D index to apply to the import data. The 0th dimension must be the same size
as data’s 0th dimension. Dimension 1 must be the same size as one other dimension in
data (the first match found is used); this is referred to as the “index dimension.”

Returns

data [sequence] View of data, with index applied. For each index of the 0th dimension, the
values along the index dimension are obtained by applying the value of idx at the same
index in the 0th dimension. This is repeated across any other dimensions in data.

Warning: No guarantee is made whether the returned data is a copy of the input data.
Modifying values in the input may change the values of the input. Call copy() if a
copy is required.

Raises

ValueError [if can’t match the shape of data and indices]

Examples

Assume flux is a 3D array of fluxes, with a value for each of time, pitch angle, and energy. Assume energy is
not necessarily constant in time, nor is ordered in the energy dimension. If energy is a 2D array of the energies
as a function of energy step for each time, then the following will sort the flux at each time and pitch angle in
energy order.

>>> idx = numpy.argsort(energy, axis=1)
>>> flux_sorted = spacepy.datamanager.apply_index(flux, idx)

spacepy.datamanager.array_interleave(array1, array2, idx)
Create an array containing all elements of both array1 and array2

idx is an index on the output array which indicates which elements will be populated from array1, i.e.,
out[idx] == array1 (in order.) The other elements of out will be filled, in order, from array2.

Parameters

array1 [array] Input data.

array2 [array] Input data. Must have same number of dimensions as array1, and all dimen-
sions except the zeroth must also have the same length.

idx [array] A 1D array of indices on the zeroth dimension of the output array. Must have the
same length as the zeroth dimension of array1.

Returns

out [array] All elements from array1 and array2, interleaved according to idx.

78 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy

SpacePy Documentation, Release 0.2.2

Examples

>>> import numpy
>>> import spacepy.datamanager
>>> a = numpy.array([10, 20, 30])
>>> b = numpy.array([1, 2])
>>> idx = numpy.array([1, 2, 4])
>>> spacepy.datamanager.array_interleave(a, b, idx)
array([1, 10, 20, 2, 30])

spacepy.datamanager.axis_index(shape, axis=- 1)
Returns array of indices along axis, for all other axes

Parameters

shape [tuple] Shape of the output array

Returns

idx [array] An array of indices. The value of each element is that element’s index along axis.

Other Parameters

axis [int] Axis along which to return indices, defaults to the last axis.

See also:

numpy.mgrid This function is a special case

Examples

For a shape of (i, j, k, l) and axis = -1, idx[i, j, k, :] = range(l) for all i, j, k.

Similarly, for the same shape and axis = 1, idx[i, :, k, l] = range(j) for all i, k, l.

>>> import numpy
>>> import spacepy.datamanager
>>> spacepy.datamanager.axis_index((5, 3))
array([[0, 1, 2],

[0, 1, 2],
[0, 1, 2],
[0, 1, 2],
[0, 1, 2]])

>>> spacepy.datamanager.axis_index((5, 3), 0)
array([[0, 0, 0],

[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4]])

spacepy.datamanager.flatten_idx(idx, axis=- 1)
Convert multidimensional index into index on flattened array.

Convert a multidimensional index, that is values along a particular axis, so that it can derefence the flattened
array properly. Note this is not the same as ravel_multi_index().

Parameters

idx [array] Input index, i.e. a list of elements along a particular axis, in the style of
argsort().

4.4. datamanager - easy access to and manipulation of data 79

https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid
https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

SpacePy Documentation, Release 0.2.2

Returns

flat [array] A 1D array of indices suitable for indexing the flat version of the array

Other Parameters

axis [int] Axis along which idx operates, defaults to the last axis.

See also:

apply_index

Examples

>>> import numpy
>>> import spacepy.datamanager
>>> data = numpy.array([[3, 1, 2], [3, 2, 1]])
>>> idx = numpy.argsort(data, -1)
>>> idx_flat = spacepy.datamanager.flatten_idx(idx)
>>> data.ravel() #flat array
array([3, 1, 2, 3, 2, 1])
>>> idx_flat #indices into the flat array
array([1, 2, 0, 5, 4, 3])
>>> data.ravel()[idx_flat] #index applied to the flat array
array([1, 2, 3, 1, 2, 3])

spacepy.datamanager.insert_fill(times, data, fillval=nan, tol=1.5, absolute=None,
doTimes=True)

Populate gaps in data with fill.

Continuous data are often treated differently from discontinuous data, e.g., matplotlib will draw lines connecting
data points but break the line at fill. Often data will be irregularly sampled but also contain large gaps that are
not explicitly marked as fill. This function adds a single record of explicit fill to each gap, defined as places
where the spacing between input times is a certain multiple of the median spacing.

Parameters

times [sequence] Values representing when the data were taken. Must be one-dimensional, i.e.,
each value must be scalar. Not modified

data [sequence] Input data.

Returns

times, data [tuple of sequence] Copies of input times and data, fill added in gaps (doTimes
True)

data [sequence] Copy of input data, with fill added in gaps (doTimes False)

Other Parameters

fillval : Fill value, same type as data. Default is numpy.nan. If scalar, will be repeated to
match the shape of data (minus the time axis).

Note: The default value of nan will not produce good results with integer input.

tol [float] Tolerance. A single fill value is inserted between adjacent values where the spacing
in times is strictly greater than tol times the median of the spacing across all times.
The inserted time for fill is halfway between the time on each side. (Default 1.5)

80 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

absolute : An absolute value for maximum spacing, of a type that would result from a difference
in times. If specified, tol is ignored and any gap strictly larger than absolutewill have
fill inserted.

doTimes [boolean] If True (default), will return a tuple of the times (with new values inserted
for the fill records) and the data with new fill values. If False, will only return the data –
useful for applying fill to multiple arrays of data on the same timebase.

Raises

ValueError [if can’t identify the time axis of data] Try using numpy.rollaxis() to put the
time axis first in both data and times.

Examples

This example shows simple hourly data with a gap, populated with fill. Note that only a single fill value is
inserted, to break the sequence of valid data rather than trying to match the existing cadence.

>>> import datetime
>>> import numpy
>>> import spacepy.datamanager
>>> t = [datetime.datetime(2012, 1, 1, 0),

datetime.datetime(2012, 1, 1, 1),
datetime.datetime(2012, 1, 1, 2),
datetime.datetime(2012, 1, 1, 5),
datetime.datetime(2012, 1, 1, 6)]

>>> temp = [30.0, 28, 27, 32, 35]
>>> filled_t, filled_temp = spacepy.datamanager.insert_fill(t, temp)
>>> filled_t
array([datetime.datetime(2012, 1, 1, 0, 0),

datetime.datetime(2012, 1, 1, 1, 0),
datetime.datetime(2012, 1, 1, 2, 0),
datetime.datetime(2012, 1, 1, 3, 30),
datetime.datetime(2012, 1, 1, 5, 0),
datetime.datetime(2012, 1, 1, 6, 0)], dtype=object)

>>> filled_temp
array([30., 28., 27., nan, 32., 35.])

This example plots “gappy” data with and without explicit fill values.

>>> import matplotlib.pyplot as plt
>>> import numpy
>>> import spacepy.datamanager
>>> x = numpy.append(numpy.arange(0, 6, 0.1), numpy.arange(12, 18, 0.1))
>>> y = numpy.sin(x)
>>> xf, yf = spacepy.datamanager.insert_fill(x, y)
>>> fig = plt.figure()
>>> ax0 = fig.add_subplot(211)
>>> ax0.plot(x, y)
>>> ax1 = fig.add_subplot(212)
>>> ax1.plot(xf, yf)
>>> plt.show()

spacepy.datamanager.rebin(data, bindata, bins, axis=- 1, bintype='mean', weights=None,
clip=False, bindatadelta=None)

Rebin one axis of input data based on values of another array

This is clearest with an example. Consider a flux as a function of time, energy, and the look direction of a
detector (could be multiple detectors, or spin sectors.) The flux is then 3-D, dimensioned Nt x Ne x Nl. Now

4.4. datamanager - easy access to and manipulation of data 81

https://numpy.org/doc/stable/reference/generated/numpy.rollaxis.html#numpy.rollaxis

SpacePy Documentation, Release 0.2.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1.0

0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1.0

0.5

0.0

0.5

1.0

82 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

consider that each look direction has an associated pitch angle that is a function of time and thus stored in an
array Nt x Nl. Then this function will redimension the flux into pitch angle bins (rather than tags.)

So consider the PA bins to have dimension Np + 1 (because it represents the edges, the number of bins is one
less than the dimension.) Then the output will be dimensioned Nt x Ne x Np.

bindata must be same or lesser dimensionality than data. Any axes which are present must be either of size
1, or the same size as data. So for data 100x5x20, bindata may be 100x5x20, or 100, or 100x1x20, but
not 100x20x5. This function will insert axes of size 1 as needed to match dimensionality.

Parameters

data [ndarray] N-dimensional array of data to be rebinned. nan are ignored.

bindata [ndarray] M-dimensional (M<=N) array of values to be compared to the bins.

bins [ndarray] 1-D array of bin edges. Output dimension will be this size minus 1. Any
values in bindata that don’t fall in the bins will be omitted from the output. (See clip
to change this behavior).

Returns

ndarray data with one axis redimensioned, from its original dimension to the bin dimen-
sion.

Other Parameters

axis [int] Axis of data to rebin. This axis will disappear in the output and be replaced with an
axis of the size of bins less one. (Default -1, last axis)

bintype [str]

Type of rebinning to perform:

mean Return the mean of all values in the bin (default)

unc Return the quadrature mean of all values in the bin, for propagating uncertainty

count Return the count of values that fall in each bin.

weights [ndarray] Relative weight of each sample in bindata. Must be same shape as
bindata. Purely relative, i.e. the output is only affected based on the total of weights if
bintype is count. Note if weights is specified, count returns the sum of the weights,
not the count of individual samples.

clip [boolean] Clip data to the bins. If true, all input data will be assigned a bin and data outside
the range of the bin edges will be assigned to the extreme bins. If false (default), input data
outside the bin ranges will be ignored.

bindatadelta [ndarray] By default, the bindata are treated as point values. If
bindatadelta is specified, it is treated as the half-width of the bindata, allowing a
single input value to be split between output bins. Must be scalar, or same shape as bindata.
Note that input values are not weighted by the bin width, but by number of input values or by
weights. (Combining weights with bindatadelta is not comprehensively tested.)

4.4. datamanager - easy access to and manipulation of data 83

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SpacePy Documentation, Release 0.2.2

Examples

Consider a particle flux distribution that’s a function of energy and pitch angle. For simplicity, assume that
the energy dependence is a simple power law and the pitch angle dependence is Gaussian, with a peak whose
position oscillates in time over a period of about one hour. This is fairly non-physical but illustrative.

First making the relevant imports:

>>> import matplotlib.pyplot
>>> import numpy
>>> import spacepy.datamanager
>>> import spacepy.plot

The functional form of the flux is then:

>>> def j(e, t, a):
... return e ** -2 * (1 / (90 * numpy.sqrt(2 * numpy.pi))) \
... * numpy.exp(
... -0.5 * ((a - 90 + 90 * numpy.sin(t / 573.)) / 90.) ** 2)

Illustrating the flux at one energy as a function of pitch angle:

>>> times = numpy.arange(0., 7200, 5)
>>> alpha = numpy.arange(0, 181., 2)
Add a dimension so the flux is a 2D array
>>> flux = j(1., numpy.expand_dims(times, 1),
... numpy.expand_dims(alpha, 0))
>>> spacepy.plot.simpleSpectrogram(times, alpha, flux, cb=False,
... ylog=False)
>>> matplotlib.pyplot.ylabel('Pitch angle (deg)')
>>> matplotlib.pyplot.xlabel('Time (sec)')
>>> matplotlib.pyplot.title('Flux at 1 MeV')

Or the flux at one pitch angle as a function of energy:

>>> energies = numpy.logspace(0, 3, 50)
>>> flux = j(numpy.expand_dims(energies, 0),
... numpy.expand_dims(times, 1), 90.)
>>> spacepy.plot.simpleSpectrogram(times, energies, flux, cb=False)
>>> matplotlib.pyplot.ylabel('Energy (MeV)')
>>> matplotlib.pyplot.xlabel('Time (sec)')
>>> matplotlib.pyplot.title('Flux at 90 degrees')

The measurement is usually not aligned with a pitch angle grid, and the detector pointing in pitch angle space
usually varies with time. Taking a very simple case of eight detectors that sweep through pitch angle space in
an organized fashion at ten degrees per minute, the measured pitch angle as a function of detector and time is:

>>> def pa(d, t):
... return (d * 22.5 + t * (2 * (d % 2) - 1)) % 180
>>> lines = matplotlib.pyplot.plot(
... times, pa(numpy.arange(8).reshape(1, -1), times.reshape(-1, 1)),
... marker='o', ms=1, linestyle='')
>>> matplotlib.pyplot.legend(lines,
... ['Detector {}'.format(i) for i in range(4)], loc='best')
>>> matplotlib.pyplot.xlabel('Time (sec)')
>>> matplotlib.pyplot.ylabel('Pitch angle (deg)')
>>> matplotlib.pyplot.title('Measured pitch angle by detector')

84 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

0

20

40

60

80

100

120

140

160

180

Pi
tc

h
an

gl
e

(d
eg

)

Flux at 1 MeV

4.4. datamanager - easy access to and manipulation of data 85

SpacePy Documentation, Release 0.2.2

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

100

101

102

103

En
er

gy
 (M

eV
)

Flux at 90 degrees

86 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

0

20

40

60

80

100

120

140

160

180

Pi
tc

h
an

gl
e

(d
eg

)

Measured pitch angle by detector
Detector 0
Detector 1
Detector 2
Detector 3
Detector 4
Detector 5
Detector 6
Detector 7

4.4. datamanager - easy access to and manipulation of data 87

SpacePy Documentation, Release 0.2.2

Assuming a coarser measurement in time and energy than used to illustrate the distribution above, the measured
flux as a function of time, detector, and energy is constructed:

>>> times = numpy.arange(0., 7200, 300) #5 min cadence
>>> alpha = pa(numpy.arange(8).reshape(1, -1), times.reshape(-1, 1))
>>> energies = numpy.logspace(0, 3, 10) #10 energy channels (3/decade)
Every dimension (t, detector, e) gets its own numpy axis
>>> flux = j(numpy.reshape(energies, (1, 1, -1)),

numpy.reshape(times, (-1, 1, 1)),
numpy.expand_dims(alpha, -1))

>>> flux.shape
(24, 8, 10)

The flux at an energy as a function of detector is not very useful:

>>> spacepy.plot.simpleSpectrogram(times, numpy.arange(8),
... flux[..., 0], cb=False, ylog=False)
>>> matplotlib.pyplot.ylabel('Detector')
>>> matplotlib.pyplot.xlabel('Time (sec)')
>>> matplotlib.pyplot.title('Flux at 1 MeV')

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

0

1

2

3

4

5

6

7

De
te

ct
or

Flux at 1 MeV

As a function of energy for one detector, the energy dependence is apparent but time and pitch angle effects are
confounded:

88 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

>>> spacepy.plot.simpleSpectrogram(times, energies, flux[:, 0, :],
... cb=False)
>>> matplotlib.pyplot.ylabel('Energy (MeV)')
>>> matplotlib.pyplot.xlabel('Time (sec)')
>>> matplotlib.pyplot.title('Flux in detector 0')

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

100

101

102

103

En
er

gy
 (M

eV
)

Flux in detector 0

What is needed is to recover the array of flux dimensioned by time, pitch angle, and energy, with appropriate
pitch angle bins. The assumption is that the pitch angle as a function of time and detector is measured and thus
the alpha array is available. Using that array, rebin can change flux from time, detector, energy bins to time,
pitch angle, energy bins. The axis 1 changes from a detector dimension to pitch angle:

>>> pa_bins = numpy.arange(0, 181, 36)
>>> flux_by_pa = spacepy.datamanager.rebin(
... flux, alpha, pa_bins, axis=1)
>>> flux_by_pa.shape
(24, 6, 10)

This can then be visualized. The pitch angle coverage is not perfect, but the original shape of the distribution is
apparent, and further analysis can be performed on the regular pitch angle grid:

>>> spacepy.plot.simpleSpectrogram(times, pa_bins, flux_by_pa[..., 0],
... cb=False, ylog=False)
>>> matplotlib.pyplot.ylabel('Pitch angle (deg)')
>>> matplotlib.pyplot.xlabel('Time (sec)')

(continues on next page)

4.4. datamanager - easy access to and manipulation of data 89

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> matplotlib.pyplot.title('Flux at 1MeV')

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

0

20

40

60

80

100

120

140

160

180

Pi
tc

h
an

gl
e

(d
eg

)

Flux at 1MeV

Or by energy:

>>> spacepy.plot.simpleSpectrogram(times, energies, flux_by_pa[:, 2, :],
... cb=False)
>>> matplotlib.pyplot.ylabel('Energy (MeV)')
>>> matplotlib.pyplot.xlabel('Time (sec)')
>>> matplotlib.pyplot.title('Flux at 90 degrees')

rebin can be used for higher dimension data, if the pitch angle itself depends on energy (e.g. if an energy
sweep takes substantial time), and to propagate uncertainties through the rebinning. It can also be used to rebin
on the time axis, e.g. for transforming time base.

spacepy.datamanager.rev_index(idx, axis=- 1)
From an index, return an index that reverses the action of that index

Essentially, a[idx][rev_index(idx)] == a

Note: This becomes more complicated in multiple dimensions, due to the vagaries of applying a multidimen-
sional index.

Parameters

90 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

100

101

102

103

En
er

gy
 (M

eV
)

Flux at 90 degrees

4.4. datamanager - easy access to and manipulation of data 91

SpacePy Documentation, Release 0.2.2

idx [array] Indices onto an array, often the output of argsort().

Returns

rev_idx [array] Indices that, when applied to an array after idx, will return the original array
(before the application of idx).

Other Parameters

axis [int] Axis along which to return indices, defaults to the last axis.

See also:

apply_index

Examples

>>> import numpy
>>> import spacepy.datamanager
>>> data = numpy.array([7, 2, 4, 6, 3])
>>> idx = numpy.argsort(data)
>>> data[idx] #sorted
array([2, 3, 4, 6, 7])
>>> data[idx][spacepy.datamanager.rev_index(idx)] #original
array([7, 2, 4, 6, 3])

spacepy.datamanager.values_to_steps(array, axis=- 1)
Transform values along an axis to their order in a unique sequence.

Useful in, e.g., converting a list of energies to their steps.

Parameters

array [array] Input data.

Returns

steps [array] An array, the same size as array, with values along axis corresponding to the
position of the value in array in a unique, sorted, set of the values in array along that
axis. Differs from argsort() in that identical values will have identical step numbers in
the output.

Other Parameters

axis [int] Axis along which to find the steps.

Examples

>>> import numpy
>>> import spacepy.datamanager
>>> data = [[10., 12., 11., 9., 10., 12., 11., 9.],

[10., 12., 11., 9., 14., 16., 15., 13.]]
>>> spacepy.datamanager.values_to_steps(data)
array([[1, 3, 2, 0, 1, 3, 2, 0],

[1, 3, 2, 0, 5, 7, 6, 4]])

92 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

SpacePy Documentation, Release 0.2.2

4.5 datamodel - easy to use general data model

The datamodel classes constitute a data model implementation meant to mirror the functionality of the data model
output from pycdf, though implemented slightly differently.

This contains the following classes:

• dmarray - numpy arrays that support .attrs for information about the data

• SpaceData - base class that extends dict, to be extended by others

Authors: Steve Morley and Brian Larsen

Additional Contributors: Charles Kiyanda and Miles Engel

Institution: Los Alamos National Laboratory

Contact: smorley@lanl.gov; balarsen@lanl.gov

Copyright 2010-2016 Los Alamos National Security, LLC.

4.5.1 About datamodel

The SpacePy datamodel module implements classes that are designed to make implementing a standard data model
easy. The concepts are very similar to those used in standards like HDF5, netCDF and NASA CDF.

The basic container type is analogous to a folder (on a filesystem; HDF5 calls this a group): Here we implement
this as a dictionary-like object, a datamodel.SpaceData object, which also carries attributes. These attributes can be
considered to be global, i.e. relevant for the entire folder. The next container type is for storing data and is based on a
numpy array, this class is datamodel.dmarray and also carries attributes. The dmarray class is analogous to an HDF5
dataset.

In fact, HDF5 can be loaded directly into a SpacePy datamodel, carrying across all attributes, using the function
fromHDF5:

>>> import spacepy.datamodel as dm
>>> data = dm.fromHDF5('test.h5')

Functions are also available to directly load data and metadata into a SpacePy datamodel from NASA CDF as
well as JSON-headed ASCII. Writers also exist to output a SpacePy datamodel directly to HDF5 or JSON-headed
ASCII. See datamodel.fromCDF(), datamodel.readJSONheadedASCII(), datamodel.toHDF5(),
and datamodel.toJSONheadedASCII() for more details.

4.5.2 Examples

Imagine representing some satellite data within the global attributes might be the mission name and the instrument
PI, the variables might be the instrument counts [n-dimensional array], timestamps[1-dimensional array and an orbit
number [scalar]. Each variable will have one attribute (for this example).

>>> import spacepy.datamodel as dm
>>> mydata = dm.SpaceData(attrs={'MissionName': 'BigSat1'})
>>> mydata['Counts'] = dm.dmarray([[42, 69, 77], [100, 200, 250]], attrs={'Units':
→˓'cnts/s'})
>>> mydata['Epoch'] = dm.dmarray([1, 2, 3], attrs={'units': 'minutes'})
>>> mydata['OrbitNumber'] = dm.dmarray(16, attrs={'StartsFrom': 1})
>>> mydata.attrs['PI'] 'Prof. Big Shot'

4.5. datamodel - easy to use general data model 93

mailto:smorley@lanl.gov
mailto:balarsen@lanl.gov

SpacePy Documentation, Release 0.2.2

This has now populated a structure that can map directly to a NASA CDF, HDF5 or JSON-headed ASCII file. To visu-
alize our datamodel, we can use tree method (which can be applied to any dictionary-like object using dictree()).

>>> mydata.tree(attrs=True)

+
:|____MissionName
:|____PI
|____Counts

:|____Units
|____Epoch

:|____units
|____OrbitNumber

:|____StartsFrom

4.5.3 Guide for NASA CDF users

By definition, a NASA CDF only has a single ‘layer’. That is, a CDF contains a series of records (stored variables
of various types) and a set of attributes that are either global or local in scope. Thus to use SpacePy’s datamodel
to capture the functionality of CDF the two basic data types are all that is required, and the main constraint is that
datamodel.SpaceData objects cannot be nested (more on this later, if conversion from a nested datamodel to a flat
datamodel is required).

Opening a CDF and working directly with the contents can be easily done using the PyCDF module, however, if you
wish to load the entire contents of a CDF directly into a datamodel (complete with attributes) the following will make
life easier:

>>> import spacepy.datamodel as dm
>>> data = dm.fromCDF('inFile.cdf')

4.5.4 A quick guide to JSON-headed ASCII

In many cases it is preferred to have a human-readable ASCII file, rather than a binary file like CDF or HDF5. To
make it easier to carry all the same metadata that is available in HDF5 or CDF we have developed an ASCII data
storage format that encodes the metadata using JSON (JavaScript Object Notation). This notation supports two basic
datatypes: key/value collections (like a SpaceData) and ordered lists (which can represent arrays). JSON is human-
readable, but if large arrays are stored in metadata is quickly becomes difficult to read. For this reason we use JSON
to encode the metadata (usually smaller datasets) and store the data in a standard flat-ASCII format. The metadata is
provided as a header that describes the contents of the file.

To use JSON for storing only metadata associated with the data to be written to an ASCII file a minimal metadata
standard must be implemented. We use the following attribute names: DIMENSION and START_COLUMN. We also
recommend using the NASA ISTP metadata standard to assign attribute names. The biggest limitation of flat ASCII is
that sensibly formatting datasets of more than 2-dimensions (i.e. ranks greater than 2) is not possible. For this reason
if you have datasets of rank 3 or greater then we recommend using HDF5. If text is absolutely required then it is
possible to encode multi-dimensional arrays in the JSON metadata, but this is not recommended.

This format is best understood by illustration. The following example builds a toy SpacePy datamodel and writes it to
a JSON-headed ASCII file. The contents of the file are then shown.

>>> import spacepy.datamodel as dm
>>> data = dm.SpaceData()
>>> data.attrs['Global'] = 'A global attribute'
>>> data['Var1'] = dm.dmarray([1,2,3,4,5], attrs={'Local1': 'A local attribute'})

(continues on next page)

94 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> data['Var2'] = dm.dmarray([[8,9],[9,1],[3,4],[8,9],[7,8]])
>>> data['MVar'] = dm.dmarray([7.8], attrs={'Note': 'Metadata'})
>>> dm.toJSONheadedASCII('outFile.txt', data, depend0='Var1', order=['Var1'])
#Note that not all field names are required, those not given will be listed
#alphabetically after those that are specified

The file looks like:

#{
"MVar": {
"Note": "Metadata",
"VALUES": [7.8]
},
"Global": "A global attribute",
"Var1": {
"Local1": "A local attribute",
"DIMENSION": [1],
"START_COLUMN": 0
},
"Var2": {
"DIMENSION": [2],
"START_COLUMN": 2
}
#}
1 8 9
2 9 1
3 3 4
4 8 9
5 7 8

Classes

SpaceData(*args, **kwargs) Datamodel class extending dict by adding attributes.
dmarray(input_array[, attrs, dtype]) Container for data within a SpaceData object
DMWarning Warnings class for datamodel, subclassed so it can be

set to always

4.5.5 spacepy.datamodel.SpaceData

class spacepy.datamodel.SpaceData(*args, **kwargs)
Datamodel class extending dict by adding attributes.

flatten() Method to collapse datamodel to one level deep
tree(**kwargs) Print the contents of the SpaceData object in a visual

tree

flatten()
Method to collapse datamodel to one level deep

4.5. datamodel - easy to use general data model 95

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.datamodel as dm
>>> import spacepy.toolbox as tb
>>> a = dm.SpaceData()
>>> a['1'] = dm.SpaceData(dog = 5, pig = dm.SpaceData(fish=dm.SpaceData(a=
→˓'carp', b='perch')))
>>> a['4'] = dm.SpaceData(cat = 'kitty')
>>> a['5'] = 4
>>> a.tree()
+
|____1

|____dog
|____pig

|____fish
|____a
|____b

|____4
|____cat

|____5

>>> b = dm.flatten(a)
>>> b.tree()
+
|____1<--dog
|____1<--pig<--fish<--a
|____1<--pig<--fish<--b
|____4<--cat
|____5

>>> a.flatten()
>>> a.tree()
+
|____1<--dog
|____1<--pig<--fish<--a
|____1<--pig<--fish<--b
|____4<--cat
|____5

tree(**kwargs)
Print the contents of the SpaceData object in a visual tree

Other Parameters

verbose [boolean (optional)] print more info

spaces [string (optional)] string will added for every line

levels [integer (optional)] number of levels to recurse through (True means all)

attrs [boolean (optional)] display information for attributes

See also:

toolbox.dictree

96 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.datamodel as dm
>>> import spacepy.toolbox as tb
>>> a = dm.SpaceData()
>>> a['1'] = dm.SpaceData(dog = 5)
>>> a['4'] = dm.SpaceData(cat = 'kitty')
>>> a['5'] = 4
>>> a.tree()
+
|____1

|____dog
|____4

|____cat
|____5

4.5.6 spacepy.datamodel.dmarray

class spacepy.datamodel.dmarray(input_array, attrs=None, dtype=None)
Container for data within a SpaceData object

Raises

NameError raised is the request name was not added to the allowed attributes list

Examples

>>> import spacepy.datamodel as datamodel
>>> position = datamodel.dmarray([1,2,3], attrs={'coord_system':'GSM'})
>>> position
dmarray([1, 2, 3])
>>> position.attrs
{'coord_system': 'GSM'}a

The dmarray, like a numpy ndarray, is versatile and can store any datatype; dmarrays are not just for arrays.

>>> name = datamodel.dmarray('TestName')
dmarray('TestName')

To extract the string (or scalar quantity), use the tolist method

>>> name.tolist()
'TestName'

addAttribute(name[, value]) Method to add an attribute to a dmarray
equivalent to a = datamodel.dmarray([1,2,3])
a.Allowed_Attributes = a.Allowed_Attributes +
[‘blabla’]

addAttribute(name, value=None)
Method to add an attribute to a dmarray equivalent to a = datamodel.dmarray([1,2,3]) a.Allowed_Attributes
= a.Allowed_Attributes + [‘blabla’]

4.5. datamodel - easy to use general data model 97

SpacePy Documentation, Release 0.2.2

4.5.7 spacepy.datamodel.DMWarning

class spacepy.datamodel.DMWarning
Warnings class for datamodel, subclassed so it can be set to always

Functions

convertKeysToStr(SDobject)
createISTPattrs(datatype[, ndims, vartype, . . .]) Return set of unpopulated attributes for ISTP compliant

variable
dmcopy(dobj) Generic copy utility to return a copy of a (datamodel)

object
dmfilled(shape[, fillval, dtype, order, attrs]) Return a new dmarray of given shape and type, filled

with a specified value (default=0).
flatten(dobj) Collapse datamodel to one level deep
fromCDF(fname, **kwargs) Create a SpacePy datamodel representation of a NASA

CDF file
fromHDF5(fname, **kwargs) Create a SpacePy datamodel representation of an HDF5

file or netCDF4 file which is HDF5 compliant
fromRecArray(recarr) Takes a numpy recarray and returns each field as a dmar-

ray in a SpaceData container
toCDF(fname, SDobject, **kwargs) Create a CDF file from a SpacePy datamodel represen-

tation
toHDF5(fname, SDobject, **kwargs) Create an HDF5 file from a SpacePy datamodel repre-

sentation
toHTML(fname, SDobject[, attrs, varLinks, . . .]) Create an HTML dump of the structure of a spacedata
toJSONheadedASCII(fname, insd[, metadata, . . .]) Write JSON-headed ASCII file of data with metadata

from SpaceData object
toRecArray(sdo) Takes a SpaceData and creates a numpy recarray
unflatten(dobj[, marker]) Collapse datamodel to one level deep
readJSONMetadata(fname, **kwargs) Read JSON metadata from an ASCII data file
readJSONheadedASCII(fname[, mdata, comment,
. . .])

read JSON-headed ASCII data files into a SpacePy data-
model

resample(data[, time, winsize, overlap, . . .]) resample a SpaceData to a new time interval
writeJSONMetadata(fname, insd[, depend0, . . .]) Scrape metadata from SpaceData object and make a

JSON header

4.5.8 spacepy.datamodel.convertKeysToStr

spacepy.datamodel.convertKeysToStr(SDobject)

98 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.5.9 spacepy.datamodel.createISTPattrs

spacepy.datamodel.createISTPattrs(datatype, ndims=1, vartype=None, units=' ', NRV=False)
Return set of unpopulated attributes for ISTP compliant variable

Parameters

datatype [{‘data’, ‘support_data’, ‘metadata’}] datatype of variable to create metadata for.

ndims [int] number of dimensions, default=1

vartype [{‘float’, ‘char’, ‘int’, ‘epoch’, ‘tt2000’}] The type of the variable, default=float

units [str] The units of the variable, default=’ ‘

NRV [bool] Is the variable NRV (non-record varying), default=False

Returns

attrs [dict] dictionary of attributes for the variable

Examples

>>> import spacepy.datamodel as dm
>>> dm.createISTPattrs('data', ndims=2, vartype='float', units='MeV')
{'CATDESC': '',
'DISPLAY_TYPE': 'spectrogram',
'FIELDNAM': '',
'FILLVAL': -1e+31,
'FORMAT': 'F18.6',
'LABLAXIS': '',
'SI_CONVERSION': ' > ',
'UNITS': 'MeV',
'VALIDMIN': '',
'VALIDMAX': '',
'VAR_TYPE': 'data',
'DEPEND_0': 'Epoch',
'DEPEND_1': ''}

4.5.10 spacepy.datamodel.dmcopy

spacepy.datamodel.dmcopy(dobj)
Generic copy utility to return a copy of a (datamodel) object

Parameters

dobj [object] object to return a copy of

Returns

copy_obj: object (same type as input) copy of input oibject

4.5. datamodel - easy to use general data model 99

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.datamodel as dm
>>> dat = dm.dmarray([2,3], attrs={'units': 'T'})
>>> dat1 = dm.dmcopy(dat)
>>> dat1.attrs['copy': True]
>>> dat is dat1
False
>>> dat1.attrs
{'copy': True, 'units': 'T'}
>>> dat.attrs
{'units': 'T'}

4.5.11 spacepy.datamodel.dmfilled

spacepy.datamodel.dmfilled(shape, fillval=0, dtype=None, order='C', attrs=None)
Return a new dmarray of given shape and type, filled with a specified value (default=0).

See also:

numpy.ones

Examples

>>> import spacepy.datamodel as dm
>>> dm.dmfilled(5, attrs={'units': 'nT'})
dmarray([0., 0., 0., 0., 0.])

>>> dm.dmfilled((5,), fillval=1, dtype=np.int)
dmarray([1, 1, 1, 1, 1])

>>> dm.dmfilled((2, 1), fillval=np.nan)
dmarray([[nan],

[nan]])

>>> a = dm.dmfilled((2, 1), np.nan, attrs={'units': 'nT'})
>>> a
dmarray([[nan],

[nan]])
>>> a.attrs
{'units': 'nT'}

4.5.12 spacepy.datamodel.flatten

spacepy.datamodel.flatten(dobj)
Collapse datamodel to one level deep

See also:

unflatten

SpaceData.flatten

100 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.datamodel as dm
>>> import spacepy.toolbox as tb
>>> a = dm.SpaceData()
>>> a['1'] = dm.SpaceData(dog = 5, pig = dm.SpaceData(fish=dm.SpaceData(a='carp',
→˓b='perch')))
>>> a['4'] = dm.SpaceData(cat = 'kitty')
>>> a['5'] = 4
>>> a.tree()
+
|____1

|____dog
|____pig

|____fish
|____a
|____b

|____4
|____cat

|____5

>>> b = dm.flatten(a)
>>> b.tree()
+
|____1<--dog
|____1<--pig<--fish<--a
|____1<--pig<--fish<--b
|____4<--cat
|____5

>>> a.flatten()
>>> a.tree()
+
|____1<--dog
|____1<--pig<--fish<--a
|____1<--pig<--fish<--b
|____4<--cat
|____5

4.5.13 spacepy.datamodel.fromCDF

spacepy.datamodel.fromCDF(fname, **kwargs)
Create a SpacePy datamodel representation of a NASA CDF file

Parameters

file [string] the name of the cdf file to be loaded into a datamodel

Returns

out [spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

See also:

spacepy.pycdf.CDF.copy

4.5. datamodel - easy to use general data model 101

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.datamodel as dm
>>> data = dm.fromCDF('test.cdf')

4.5.14 spacepy.datamodel.fromHDF5

spacepy.datamodel.fromHDF5(fname, **kwargs)
Create a SpacePy datamodel representation of an HDF5 file or netCDF4 file which is HDF5 compliant

Parameters

file [string] the name of the HDF5/netCDF4 file to be loaded into a datamodel

Returns

out [spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

Notes

Zero-sized datasets will break in h5py. This is kluged by returning a dmarray containing a None.

This function is expected to work with any HDF5-compliant files, including netCDF4 (not netCDF3) and Mat-
Lab save files from v7.3 or later, but some datatypes are not supported, e.g., non-string vlen datatypes, and will
raise a warning.

Examples

>>> import spacepy.datamodel as dm
>>> data = dm.fromHDF5('test.hdf')

4.5.15 spacepy.datamodel.fromRecArray

spacepy.datamodel.fromRecArray(recarr)
Takes a numpy recarray and returns each field as a dmarray in a SpaceData container

Parameters

recarr [numpy record array] object to parse into SpaceData container

Returns

sd: spacepy.datamodel.SpaceData dict-like containing arrays of named records in recarr

102 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

>>> import numpy as np
>>> import spacepy.datamodel as dm
>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> print(x, x.dtype)
array([(1.0, 2), (3.0, 4)], dtype=[('x', '<f8'), ('y', '<i4')])
>>> sd = dm.fromRecArray(x)
>>> sd.tree(verbose=1)
+
|____x (spacepy.datamodel.dmarray (2,))
|____y (spacepy.datamodel.dmarray (2,))

4.5.16 spacepy.datamodel.toCDF

spacepy.datamodel.toCDF(fname, SDobject, **kwargs)
Create a CDF file from a SpacePy datamodel representation

Parameters

fname [str] Filename to write to

SDobject [spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables
in dmarrays

Returns

None

Other Parameters

skeleton [str (optional)] create new CDF from a skeleton file (default ‘’)

flatten [bool (optional)] flatten incoming datamodel - if SpaceData objects are nested (default
False)

overwrite [bool (optional)] allow overwrite of an existing target file (default False)

autoNRV [bool (optional)] attempt automatic identification of non-record varying entries in
CDF

backward [bool (optional)] create CDF in backward-compatible format (default is v3+ com-
patibility only)

TT2000 [bool (optional)] write variables beginning with ‘Epoch’ as datatype CDF_TT2000
(default is automatic selection of EPOCH or EPOCH16)

verbose [bool (optional)] verbosity flag

4.5.17 spacepy.datamodel.toHDF5

spacepy.datamodel.toHDF5(fname, SDobject, **kwargs)
Create an HDF5 file from a SpacePy datamodel representation

Parameters

fname [str] Filename to write to

SDobject [spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables
in dmarrays

4.5. datamodel - easy to use general data model 103

SpacePy Documentation, Release 0.2.2

Returns

None

Other Parameters

overwrite [bool (optional)] allow overwrite of an existing target file (default True)

mode [str (optional)] HDF5 file open mode (a, w, r) (default ‘a’)

compression [str (optional)] compress all the variables using this method (default None) (gzip,
shuffle, fletcher32, szip, lzf)

compression_opts [str (optional)] options to the compression, see h5py documentation for
more details

Examples

>>> import spacepy.datamodel as dm
>>> a = dm.SpaceData()
>>> a['data'] = dm.dmarray(range(100000), dtype=float)
>>> dm.toHDF5('test_gzip.h5', a, overwrite=True, compression='gzip')
>>> dm.toHDF5('test.h5', a, overwrite=True)
>>> # test_gzip.h5 was 118k, test.h5 was 785k

4.5.18 spacepy.datamodel.toHTML

spacepy.datamodel.toHTML(fname, SDobject, attrs=(), varLinks=False, linkFormat=None,
echo=False, tableTag='<table border="1">')

Create an HTML dump of the structure of a spacedata

Parameters

fname [str] Filename to write to

SDobject [spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables
in dmarrays

Other Parameters

overwrite [bool (optional)] allow overwrite of an existing target file (default True)

mode [str (optional)] HDF5 file open mode (a, w, r) (default ‘a’)

echo [bool] echo the html to the screen

varLinks [bool] make the variable name a link to a stub page

4.5.19 spacepy.datamodel.toJSONheadedASCII

spacepy.datamodel.toJSONheadedASCII(fname, insd, metadata=None, depend0=None, or-
der=None, **kwargs)

Write JSON-headed ASCII file of data with metadata from SpaceData object

Parameters

fname [str] Filename to write to (can also use a file-like object) None can be given in conjunc-
tion with the returnString keyword to skip writing output

104 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

insd [spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in
dmarrays

Returns

None

Other Parameters

depend0 [str (optional)] variable name to use to indicate parameter on which other data depend
(e.g. Time)

order [list (optional)] list of key names in order of start column in output JSON file

metadata: str or file-like (optional) filename with JSON header to use (or file-like with JSON
metadata)

delimiter: str delimiter to use in ASCII output (default is whitespace), for tab, use ‘ ‘

Examples

>>> import spacepy.datamodel as dm
>>> data = dm.SpaceData()
>>> data.attrs['Global'] = 'A global attribute'
>>> data['Var1'] = dm.dmarray([1,2,3,4,5], attrs={'Local1': 'A local attribute'})
>>> data['Var2'] = dm.dmarray([[8,9],[9,1],[3,4],[8,9],[7,8]])
>>> data['MVar'] = dm.dmarray([7.8], attrs={'Note': 'Metadata'})
>>> dm.toJSONheadedASCII('outFile.txt', data, depend0='Var1', order=['Var1'])
#Note that not all field names are required, those not given will be listed
#alphabetically after those that are specified

4.5.20 spacepy.datamodel.toRecArray

spacepy.datamodel.toRecArray(sdo)
Takes a SpaceData and creates a numpy recarray

Parameters

sdo [SpaceData] SpaceData to change to a numpy recarray

Returns

recarr: numpy record array numpy.recarray object with the same values (attributes are lost)

Examples

>>> import numpy as np
>>> import spacepy.datamodel as dm
>>> sd = dm.SpaceData()
>>> sd['x'] = dm.dmarray([1.0, 2.0])
>>> sd['y'] = dm.dmarray([2,4])
>>> sd.tree(verbose=1)
+
|____x (spacepy.datamodel.dmarray (2,))
|____y (spacepy.datamodel.dmarray (2,))
>>> ra = dm.toRecArray(sd)
>>> print(ra, ra.dtype)
[(2, 1.0) (4, 2.0)] (numpy.record, [('y', '<i8'), ('x', '<f8')])

4.5. datamodel - easy to use general data model 105

SpacePy Documentation, Release 0.2.2

4.5.21 spacepy.datamodel.unflatten

spacepy.datamodel.unflatten(dobj, marker='<--')
Collapse datamodel to one level deep

Examples

>>> import spacepy.datamodel as dm
>>> import spacepy.toolbox as tb
>>> a = dm.SpaceData()
>>> a['1'] = dm.SpaceData(dog = 5, pig = dm.SpaceData(fish=dm.SpaceData(a='carp',
→˓b='perch')))
>>> a['4'] = dm.SpaceData(cat = 'kitty')
>>> a['5'] = 4
>>> a.tree()
+
|____1

|____dog
|____pig

|____fish
|____a
|____b

|____4
|____cat

|____5

>>> b = dm.flatten(a)
>>> b.tree()
+
|____1<--dog
|____1<--pig<--fish<--a
|____1<--pig<--fish<--b
|____4<--cat
|____5

>>> c = dm.unflatten(b)
>>> c.tree()
+
|____1

|____dog
|____pig

|____fish
|____a
|____b

|____4
|____cat

|____5

106 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.5.22 spacepy.datamodel.readJSONMetadata

spacepy.datamodel.readJSONMetadata(fname, **kwargs)
Read JSON metadata from an ASCII data file

Parameters

fname [str] Filename to read metadata from

Returns

mdata: spacepy.datamodel.SpaceData SpaceData with the metadata from the file

Other Parameters

verbose [bool (optional)] set verbose output so metadata tree prints on read (default False)

4.5.23 spacepy.datamodel.readJSONheadedASCII

spacepy.datamodel.readJSONheadedASCII(fname, mdata=None, comment='#', convert=False, re-
strict=None)

read JSON-headed ASCII data files into a SpacePy datamodel

Parameters

fname [str or list] Filename(s) to read data from

Returns

mdata: spacepy.datamodel.SpaceData SpaceData with the data and metadata from the file

Other Parameters

mdata [spacepy.datamodel.SpaceData (optional)] supply metadata object, otherwise is read
from fname (default None)

comment: str (optional) comment string in file to be read; lines starting with comment are
ignored (default ‘#’)

convert: bool or dict-like (optional) If True, uses common names to try conversion from
string. If a dict- like then uses the functions specified as the dict values to convert each
element of ‘key’ to a non-string

restrict: list of strings (optional) If present, restrict the variables stored to only those on this
list

4.5.24 spacepy.datamodel.resample

spacepy.datamodel.resample(data, time=[], winsize=0, overlap=0, st_time=None, outtime-
name='Epoch')

resample a SpaceData to a new time interval

Parameters

data [SpaceData or dmarray] SpaceData with data to resample or dmarray with data to resam-
ple, variables can only be 1d or 2d, if time is specified only variables the same length as
time are resampled, otherwise only variables with length equal to the longest length are
resampled

time [array-like] dmarray of times the correspond to the data

winsize [datetime.timedelta] Time frame to average the data over

4.5. datamodel - easy to use general data model 107

SpacePy Documentation, Release 0.2.2

overlap [datetime.timedelta] Overlap in the moving average

st_time [datetime.datetime] Starting time for the resample, if not specified the time of the first
data point is used (see spacepy.toolbox.windowMean)

Returns

ans [SpaceData] Resampled data, included keys are in the input keys (with the data caveats
above) and Epoch which contains the output time

Examples

>>> import datetime
>>> import spacepy.datamodel as dm
>>> a = dm.SpaceData()
>>> a.attrs['foo'] = 'bar'
>>> a['a'] = dm.dmarray(range(10*2)).reshape(10,2)
>>> a['b'] = dm.dmarray(range(10)) + 4
>>> a['c'] = dm.dmarray(range(3)) + 10
>>> times = [datetime.datetime(2010, 1, 1) + datetime.timedelta(hours=i) for i in
→˓range(10)]
>>> out = dm.resample(a, times, winsize=datetime.timedelta(hours=2),
→˓overlap=datetime.timedelta(hours=0))
>>> out.tree(verbose=1, attrs=1)
+
:|____foo (str [3])
|____Epoch (spacepy.datamodel.dmarray (4,))
|____a (spacepy.datamodel.dmarray (4, 2))
:|____DEPEND_0 (str [5])
#
Things to note:
- attributes are preserved
- the output variables have their DEPEND_0 changed to Epoch (or outtimename)
- each dimension of a 2d array is resampled individually

4.5.25 spacepy.datamodel.writeJSONMetadata

spacepy.datamodel.writeJSONMetadata(fname, insd, depend0=None, order=None, ver-
bose=False, returnString=False)

Scrape metadata from SpaceData object and make a JSON header

Parameters

fname [str] Filename to write to (can also use a file-like object) None can be given in conjunc-
tion with the returnString keyword to skip writing output

insd [spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in
dmarrays

Returns

None (unless returnString keyword is True)

Other Parameters

depend0 [str (optional)] variable name to use to indicate parameter on which other data depend
(e.g. Time)

order [list (optional)] list of key names in order of start column in output JSON file

108 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

verbose: bool (optional) verbose output

returnString: bool (optional) return JSON header as string instead of returning None

4.6 data assimilation - data assimilation module

Classes

ensemble([ensembles]) Ensemble-based data assimilation subroutines for the
Radiation Belt Model

4.6.1 spacepy.data_assimilation.ensemble

class spacepy.data_assimilation.ensemble(ensembles=50)
Ensemble-based data assimilation subroutines for the Radiation Belt Model

EnKF(A, Psi, Inn, HAp) analysis subroutine after code example in Evensen
2003 this will take the prepared matrices and calcu-
late the analysis most efficiently, A will be returned

EnKF_oneobs(A, Psi, Inn, HAp) analysis subroutine for a single observations with the
EnKF.

add_model_error(model, A, PSDdata) this routine will add a standard error to the ensemble
states

add_model_error_obs(model, A, Lobs, y) this routine will add a standard error to the ensemble
states

getHA(model, Lobs, A) compute HA provided L vector of observations and
ensemble matrix A

getHAprime(HA) calculate ensemble perturbation of HA HA’ = HA-
HA_mean

getHPH(Lobs, Pfxx) compute HPH
getInnovation(y, Psi, HA) compute innovation ensemble D’
getperturb(model, y) compute perturbations of observational vector

EnKF(A, Psi, Inn, HAp)
analysis subroutine after code example in Evensen 2003 this will take the prepared matrices and calculate
the analysis most efficiently, A will be returned

Parameters

A :

Psi :

Inn :

HAp :

Returns

out :

EnKF_oneobs(A, Psi, Inn, HAp)
analysis subroutine for a single observations with the EnKF. This is a special case.

4.6. data assimilation - data assimilation module 109

SpacePy Documentation, Release 0.2.2

Parameters

A :

Psi :

Inn :

HAp :

Returns

out :

add_model_error(model, A, PSDdata)
this routine will add a standard error to the ensemble states

Parameters

model :

A :

PSDdata :

Returns

out :

add_model_error_obs(model, A, Lobs, y)
this routine will add a standard error to the ensemble states

Parameters

model :

A :

Lobs :

y :

Returns

out :

getHA(model, Lobs, A)
compute HA provided L vector of observations and ensemble matrix A

Parameters

model :

Lobs :

A :

Returns

out :

getHAprime(HA)
calculate ensemble perturbation of HA HA’ = HA-HA_mean

Parameters

HA :

Returns

110 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

out :

getHPH(Lobs, Pfxx)
compute HPH

Parameters

Lobs

Pfxx

Returns

out

getInnovation(y, Psi, HA)
compute innovation ensemble D’

Parameters

y :

Psi :

HA :

Returns

out :

getperturb(model, y)
compute perturbations of observational vector

Parameters

model :

y :

Returns

out :

Functions

average_window(PSDdata, Lgrid) combine observations on same L shell in
getobs4window(dd, Tnow) get observations in time window [Tnow - Twindow,

Tnow] from all satellites lumped together into one y
vector

output(init, result) write results to file and be done
forecast(Tnow+Twindow)
assimilate_JK(dd) this version is currently not working main function to

assimilate all data provided in init
addmodelerror_old2(dd, A, y, L) this routine will add a standard error to the ensemble

states
addmodelerror_old(dd, A, y, L) this routine will add a standard error to the ensemble

states

4.6. data assimilation - data assimilation module 111

SpacePy Documentation, Release 0.2.2

4.6.2 spacepy.data_assimilation.average_window

spacepy.data_assimilation.average_window(PSDdata, Lgrid)
combine observations on same L shell in

Parameters

model :

PSDdata :

HAp :

Returns

out :

4.6.3 spacepy.data_assimilation.getobs4window

spacepy.data_assimilation.getobs4window(dd, Tnow)
get observations in time window [Tnow - Twindow, Tnow] from all satellites lumped together into one y vector

Parameters

model :

PSDdata :

HAp :

Returns

out :

4.6.4 spacepy.data_assimilation.output

spacepy.data_assimilation.output(init, result)
write results to file and be done

Parameters

model :

PSDdata :

HAp :

Returns

out :

112 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.6.5 spacepy.data_assimilation.forecast

spacepy.data_assimilation.forecast(Tnow+Twindow)

4.6.6 spacepy.data_assimilation.assimilate_JK

spacepy.data_assimilation.assimilate_JK(dd)
this version is currently not working main function to assimilate all data provided in init

Parameters

model :

PSDdata :

HAp :

Returns

out :

4.6.7 spacepy.data_assimilation.addmodelerror_old2

spacepy.data_assimilation.addmodelerror_old2(dd, A, y, L)
this routine will add a standard error to the ensemble states

4.6.8 spacepy.data_assimilation.addmodelerror_old

spacepy.data_assimilation.addmodelerror_old(dd, A, y, L)
this routine will add a standard error to the ensemble states

4.7 empiricals - module with heliospheric empirical modules

Module with some useful empirical models (plasmapause, magnetopause, Lmax)

Authors: Steve Morley, Josef Koller Institution: Los Alamos National Laboratory Contact: smorley@lanl.gov

Copyright 2010 Los Alamos National Security, LLC.

getDststar(ticks[, model, dbase]) Calculate the pressure-corrected Dst index, Dst*
getExpectedSWTemp(velo[, model, units]) Return the expected solar wind temperature based on

the bulk velocity
getLmax(ticks[, model, dbase]) calculate a simple empirical model for Lmax - last

closed drift-shell
getMPstandoff(ticks[, dbase, alpha]) Calculates the Shue et al. (1997) subsolar magne-

topause radius.
getPlasmaPause(ticks[, model, LT, omnivals]) Plasmapause location model(s)
getSolarProtonSpectra([norm, gamma, E0,
. . .])

Returns a SpaceData with energy and fluence spectra of
solar particle events

getSolarRotation(ticks[, rtype, fp, reverse]) Calculates solar rotation number (Carrington or Bartels)
for a given date/time

continues on next page

4.7. empiricals - module with heliospheric empirical modules 113

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.2.2

Table 18 – continued from previous page
getVampolaOrder(L) Empirical lookup of power for sin^n pitch angle model

from Vampola (1996)
omniFromDirectionalFlux(fluxarr, alphas[,
norm])

Calculate omnidirectional flux [(s cm^2 kev)^-1] from
directional flux [(s sr cm^2 keV)^-1] array

vampolaPA(omniflux, **kwargs) Pitch angle model of sin^n form

4.7.1 spacepy.empiricals.getDststar

spacepy.empiricals.getDststar(ticks, model='OBrien', dbase='QDhourly')
Calculate the pressure-corrected Dst index, Dst*

We need to add in the references to the models here!

Parameters

ticks [spacepy.time.Ticktock] TickTock object of desired times (will be interpolated from
hourly OMNI data) OR dictionary including ‘Pdyn’ and ‘Dst’ keys where data are lists
or arrays and Dst is in [nT], and Pdyn is in [nPa]

Returns

out [float] Dst* - the pressure corrected Dst index from OMNI [nT]

Examples

Coefficients are applied to the standard formulation e.g. Burton et al., 1975 of Dst* = Dst - b*sqrt(Pdyn) + c
The default is the O’Brien and McPherron model (2002). Other options are Burton et al. (1975) and Borovsky
and Denton (2010)

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> import spacepy.empiricals as emp
>>> ticks = spt.tickrange('2000-10-16T00:00:00', '2000-10-31T12:00:00', 1/24.)
>>> dststar = emp.getDststar(ticks)
>>> dststar[0]
-21.317220132108943

User-determined coefficients can also be supplied as a two-element list or tuple of the form (b,c), e.g.

>>> dststar = emp.getDststar(ticks, model=(2,11)) #b is extreme driving from O
→˓'Brien

We have chosen the OBrien model as the default here as this was rigorously determined from a very long data
set and is pertinent to most conditions. It is, however, the most conservative correction. Additionally, Siscoe,
McPherron and Jordanova (2005) argue that the pressure contribution to Dst diminishes during magnetic storms.

To show the relative differences, run the following example:

>>> import matplotlib.pyplot as plt
>>> params = [('Burton','k-'), ('OBrien','r-'), ('Borovsky','b-')]
>>> for model, col in params:

dststar = getDststar(ticks, model=model)
plt.plot(ticks.UTC, dststar, col)

114 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.7.2 spacepy.empiricals.getExpectedSWTemp

spacepy.empiricals.getExpectedSWTemp(velo, model='XB15', units='K')
Return the expected solar wind temperature based on the bulk velocity

The formulations used by this function are those given by, L87 – Lopez, R.E., J. Geophys. Res., 92, 11189-
11194, 1987 BS06 – Borovsky, J.E. and J.T. Steinberg, Geophysical Monograph Series 167, 59-76, 2006 XB15
– Xu, F. and J.E. Borovsky, J. Geophys. Res., 120, 70-100, 2015

Parameters

velo [array-like] Array like of solar wind bulk velocity values [km/s]

model [str [optional]] Name of model to use. Valid choices are L87, BS06 and XB15. Default
is XB15

units [str [optional]] Units for output temperature, options are eV or K. Default is Kelvin [K]

Returns

Texp [array-like] The expected solar wind temperature given the bulk velocity [K] or [eV]

4.7.3 spacepy.empiricals.getLmax

spacepy.empiricals.getLmax(ticks, model='JKemp', dbase='QDhourly')
calculate a simple empirical model for Lmax - last closed drift-shell

Uses the parametrized Lmax from: Koller and Morley (2010) ‘Magnetopause shadowing effects for radiation
belt models during high-speed solar wind streams’ American Geophysical Union, Fall Meeting 2010, abstract
#SM13A-1787

Parameters

ticks [spacepy.time.Ticktock] Ticktock object of desired times

model [string, optional] ‘JKemp’ (default - empirical model of J. Koller)

Returns

out [np.ndarray] Lmax - L* of last closed drift shell

See also:

spacepy.LANLstar.LANLmax

Examples

>>> from spacepy.empiricals import getLmax
>>> import spacepy.time as st
>>> import datetime
>>> ticks = st.tickrange(datetime.datetime(2000, 1, 1), datetime.datetime(2000, 1,
→˓ 3), deltadays=1)
array([7.4928412, 8.3585632, 8.6463423])

4.7. empiricals - module with heliospheric empirical modules 115

SpacePy Documentation, Release 0.2.2

4.7.4 spacepy.empiricals.getMPstandoff

spacepy.empiricals.getMPstandoff(ticks, dbase='QDhourly', alpha=[])
Calculates the Shue et al. (1997) subsolar magnetopause radius

Shue et al. (1997), A new functional form to study the solar wind control of the magnetopause size and shape,
J. Geophys. Res., 102(A5), 9497–9511, doi:10.1029/97JA00196.

Parameters

ticks [spacepy.time.Ticktock] TickTock object of desired times (will be interpolated from
hourly OMNI data) OR dictionary of form {‘P’: [], ‘Bz’: []} Where P is SW ram pres-
sure [nPa] and Bz is IMF Bz (GSM) [nT]

alpha [list] Used as an optional return value to obtain the flaring angles. To use, assign an
empty list and pass to this function through the keyword argument. The list will be modified
in place, adding the flaring angles for each time step.

Returns

out [float] Magnetopause (sub-solar point) standoff distance [Re]

Examples

>>> import spacepy.time as spt
>>> import spacepy.empiricals as emp
>>> ticks = spt.tickrange('2002-01-01T12:00:00','2002-01-04T00:00:00',.25)
>>> emp.getMPstandoff(ticks)
array([10.57319537, 10.91327764, 10.75086873, 10.77577207,

9.78180261, 11.0374474 , 11.4065 , 11.27555451,
11.47988573, 11.8202582 , 11.23834814])

>>> data = {'P': [2,4], 'Bz': [-2.4, -2.4]}
>>> emp.getMPstandoff(data)
array([9.96096838, 8.96790412])

4.7.5 spacepy.empiricals.getPlasmaPause

spacepy.empiricals.getPlasmaPause(ticks, model='M2002', LT='all', omnivals=None)
Plasmapause location model(s)

CA1992 – Carpenter, D. L., and R. R. Anderson, An ISEE/whistler model of equatorial electron density in the
magnetosphere, J. Geophys. Res., 97, 1097, 1992. M2002 – Moldwin, M. B., L. Downward, H. K. Rassoul,
R. Amin, and R. R. Anderson, A new model of the location of the plasmapause: CRRES results, J. Geophys.
Res., 107(A11), 1339, doi:10.1029/2001JA009211, 2002. RT1970 – Rycroft, M. J., and J. O. Thomas, The
magnetospheric plasmapause and the electron density trough at the alouette i orbit, Planetary and Space Science,
18(1), 65-80, 1970

Parameters

ticks [spacepy.time.Ticktock] TickTock object of desired times

Lpp_model [string, optional] ‘CA1992’ or ‘M2002’ (default) CA1992 returns the Carpenter
and Anderson model, M2002 returns the Moldwin et al. model

LT [int, float] requested local time sector, ‘all’ is valid option

omnivals [spacepy.datamodel.SpaceData, dict] dict-like containing UTC (datetimes) and Kp
keys

116 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Returns

out [float] Plasmapause radius in Earth radii

Examples

>>> import spacepy.time as spt
>>> import spacepy.empiricals as emp
>>> ticks = spt.tickrange('2002-01-01T12:00:00','2002-01-04T00:00:00',.25)
>>> emp.getPlasmaPause(ticks)
array([6.42140002, 6.42140002, 6.42140002, 6.42140002, 6.42140002,

6.42140002, 6.42140002, 6.26859998, 5.772 , 5.6574 ,
5.6574])

4.7.6 spacepy.empiricals.getSolarProtonSpectra

spacepy.empiricals.getSolarProtonSpectra(norm=32000000.0, gamma=- 0.96, E0=15.0,
Emin=0.1, Emax=600, nsteps=100)

Returns a SpaceData with energy and fluence spectra of solar particle events

The formulation follows that of: Ellison and Ramaty ApJ 298: 400-408, 1985 dJ/dE = K^{-gamma}exp(-E/E0)

and the defualt values are the 10/16/2003 SEP event of: Mewaldt, R. A., et al. (2005), J. Geophys. Res., 110,
A09S18, doi:10.1029/2005JA011038.

Returns

data [dm.SpaceData] SpaceData with the energy and fluence values

Other Parameters

norm [float] Normilization factor for the intensity of the SEP event

gamma [float] Power law index

E0 [float] Expoential scaling factor

Emin [float] Minimum energy for fit

Emax [float] Maximum energy for fit

nsteps [int] The number of log spaced energy steps to return

4.7.7 spacepy.empiricals.getSolarRotation

spacepy.empiricals.getSolarRotation(ticks, rtype='carrington', fp=False, reverse=False)
Calculates solar rotation number (Carrington or Bartels) for a given date/time

Parameters

ticks [spacepy.time.Ticktock or datetime.datetime]

Returns

rnumber [integer or array] Carrington (or Bartels) rotation number

4.7. empiricals - module with heliospheric empirical modules 117

SpacePy Documentation, Release 0.2.2

4.7.8 spacepy.empiricals.getVampolaOrder

spacepy.empiricals.getVampolaOrder(L)
Empirical lookup of power for sin^n pitch angle model from Vampola (1996)

Vampola, A.L. Outer zone energetic electron environment update, Final Report of ESA/ESTEC/WMA/P.O.
151351, ESA-ESTEC, Noordwijk, The Netherlands, 1996.

Parameters

L [arraylike or float]

Returns

order [array] coefficient for sin^n model corresponding to McIlwain L (computed for OP77?)

Examples

Apply Vampola pitch angle model at L=[4, 6.6]

>>> from spacepy.empiricals import vampolaPA, getVampolaOrder
>>> order = getVampolaOrder([4,6.6])
>>> order
array([3.095 , 1.6402])
>>> vampolaPA([3000, 3000], alpha=[45, 90], order=order)
(array([[140.08798878, 192.33572182],

[409.49143136, 339.57417256]]), [45, 90])

4.7.9 spacepy.empiricals.omniFromDirectionalFlux

spacepy.empiricals.omniFromDirectionalFlux(fluxarr, alphas, norm=True)
Calculate omnidirectional flux [(s cm^2 kev)^-1] from directional flux [(s sr cm^2 keV)^-1] array

J = 2.pi integ(j sin(a) da) If kwarg ‘norm’ is True (default), the omni flux is normalized by 4.pi to make it per
steradian, in line with the PRBEM guidelines

Parameters

fluxarr [arraylike] Array of directional flux values

alphas [arraylike] Array of pitch angles corresponding to fluxarr

Returns

omniflux [float] Omnidirectional flux value

Examples

Roundtrip from omni flux, to directional flux (Vampola model), integrate to get back to omni flux.

>>> from spacepy.empiricals import vampolaPA, omniFromDirectionalFlux
>>> dir_flux, pa = vampolaPA(3000, alpha=range(0,181,2), order=4)
>>> dir_flux[:10], pa[:10]
(array([0.00000000e+00, 6.64032473e-04, 1.05986545e-02,

5.34380898e-02, 1.67932162e-01, 4.06999226e-01,
8.36427502e-01, 1.53325140e+00, 2.58383611e+00,
4.08170975e+00]), [0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

(continues on next page)

118 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> omniFromDirectionalFlux(dir_flux, pa, norm=False)
3000.0000008112293

Calculate “spin-averaged” flux, giving answer per steradian

>>> omniFromDirectionalFlux(dir_flux, pa, norm=True)
238.73241470239859

4.7.10 spacepy.empiricals.vampolaPA

spacepy.empiricals.vampolaPA(omniflux, **kwargs)
Pitch angle model of sin^n form

Parameters

omniflux [arraylike or float] omnidirectional number flux data

order [integer or float (optional)] order of sin^n functional form for distribution (default=2)

alphas [arraylike (optional)] pitch angles at which to evaluate the differential number flux (de-
fault is 5 to 90 degrees in 36 steps)

Returns

dnflux [array] differential number flux corresponding to pitch angles alphas

alphas [array] pitch angles at which the differential number flux was evaluated

Notes

Directional number flux integrated over pitch angle from 0 to 90 degrees is a factor of 4*pi lower than omnidi-
rectional number flux.

Examples

Omnidirectional number flux of [3000, 6000]

>>> from spacepy.empiricals import vampolaPA
>>> vampolaPA(3000, alpha=[45, 90])
(array([179.04931098, 358.09862196]), [45, 90])
>>> data, pas = vampolaPA([3000, 6000], alpha=[45, 90])
>>> pas
[45, 90]
>>> data
array([[179.04931098, 358.09862196],

[358.09862196, 716.19724391]])

4.7. empiricals - module with heliospheric empirical modules 119

SpacePy Documentation, Release 0.2.2

4.8 irbempy - Python interface to irbem/ONERA library

module wrapper for irbem_lib Reference for this library https://sourceforge.net/projects/irbem/ D. Boscher, S. Bour-
darie, P. O’Brien, T. Guild, IRBEM library V4.3, 2004-2008

Most functions in this module use an options list to define the models used and the settings that define the quality level
of the result. The options list is a 5-element list and is defined as follows.

4.8.1 Options

• 1st element: 0 - don’t compute L* or phi ; 1 - compute L*; 2- compute phi

• 2nd element: 0 - initialize IGRF field once per year (year.5); n - n is the frequency (in days) starting on Jan-
uary 1st of each year (i.e. if options(2nd element)=15 then IGRF will be updated on the following days of
the year: 1, 15, 30, 45 . . .)

• 3rd element: resolution to compute L* (0 to 9) where 0 is the recomended value to ensure a good ratio
precision/computation time (i.e. an error of ~2% at L=6). The higher the value the better will be the
precision, the longer will be the computing time. Generally there is not much improvement for values
larger than 4. Note that this parameter defines the integration step (theta) along the field line such as
dtheta=(2pi)/(720*[options(3rd element)+1])

• 4th element: resolution to compute L* (0 to 9). The higher the value the better will be the precision, the
longer will be the computing time. It is recommended to use 0 (usually sufficient) unless L* is not com-
puted on a LEO orbit. For LEO orbit higher values are recommended. Note that this parameter defines the
integration step (phi) along the drift shell such as dphi=(2pi)/(25*[options(4th element)+1])

• 5th element: allows to select an internal magnetic field model (default is set to IGRF)

– 0 = IGRF

– 1 = Eccentric tilted dipole

– 2 = Jensen&Cain 1960

– 3 = GSFC 12/66 updated to 1970

– 4 = User-defined model (Default: Centred dipole + uniform [Dungey open model])

– 5 = Centred dipole

The routines also require specification of the external magnetic field model. The default is the Tsyganenko 2001
storm-time model. The external model is always specified using the extMag keyword and the following options exist.

4.8.2 extMag

• ‘0’ = No external field model

• ‘MEAD’ = Mead and Fairfield

• ‘T87SHORT’ = Tsyganenko 1987 short (inner magnetosphere)

• ‘T87LONG’ = Tsyganenko 1987 long (valid in extended tail region)

• ‘T89’ = Tsyganenko 1989

• ‘OPQUIET’ = Olsen-Pfitzer static model for quiet conditions

• ‘OPDYN’ = Olsen-Pfitzer static model for active conditions

• ‘T96’ = Tsyganenko 1996

120 Chapter 4. SpacePy Module Reference

https://sourceforge.net/projects/irbem/

SpacePy Documentation, Release 0.2.2

• ‘OSTA’ = Ostapenko and Maltsev

• ‘T01QUIET’ = Tsyganenko 2001 model for quiet conditions

• ‘T01STORM’ = Tsyganenko 2001 model for active conditions

• ‘T05’ = Tsyganenko and Sitnov 2005 model

• ‘ALEX’ = Alexeev model

• ‘TS07’ = Tsyganenko and Sitnov 2007 model

4.8.3 Authors

Josef Koller, Steve Morley

Copyright 2010 Los Alamos National Security, LLC.

This module provides a Python interface to the IRBEM library

Reference for this library https://sourceforge.net/projects/irbem/

D. Boscher, S. Bourdarie, P. O’Brien, T. Guild, IRBEM library V4.3, 2004-2008

Authors: Josef Koller, Steve Morley

Copyright 2010 Los Alamos National Security, LLC.

get_AEP8(energy, loci[, model, fluxtype, . . .]) will return the flux from the AE8-AP8 model
get_Bfield(ticks, loci[, extMag, options, . . .]) call get_bfield in irbem lib and return a dictionary with

the B-field vector and strenght.
get_Lm(ticks, loci, alpha[, extMag, intMag, . . .]) Return the MacIlwain L value for a given location, time

and model
get_Lstar(ticks, loci[, alpha, extMag, . . .]) This will call make_lstar1 or

make_lstar_shell_splitting_1 from the irbem li-
brary and will lookup omni values for given time if not
provided (optional).

find_Bmirror(ticks, loci, alpha[, extMag, . . .]) call find_mirror_point from irbem library and return a
dictionary with values for Blocal, Bmirr and the GEO
(cartesian) coordinates of the mirror point

find_magequator(ticks, loci[, extMag, . . .]) call find_magequator from irbem library and return a
dictionary with values for Bmin and the GEO (cartesian)
coordinates of the magnetic equator

car2sph(CARin) coordinate transformation from cartesian to spherical
sph2car(SPHin) coordinate transformation from spherical to cartesian
coord_trans(loci, returntype, returncarsph) thin layer to call coor_trans1 from irbem lib this will

convert between systems GDZ, GEO, GSM, GSE, SM,
GEI, MAG, SPH, RLL

get_sysaxes(dtype, carsph) will return the sysaxes according to the irbem library
get_dtype(sysaxes) will return the coordinate system type as string
prep_irbem([ticks, loci, alpha, extMag, . . .]) Prepare inputs for direct IRBEM-LIB calls.

4.8. irbempy - Python interface to irbem/ONERA library 121

https://sourceforge.net/projects/irbem/

SpacePy Documentation, Release 0.2.2

4.8.4 spacepy.irbempy.get_AEP8

spacepy.irbempy.get_AEP8(energy, loci, model='min', fluxtype='diff', particles='e')
will return the flux from the AE8-AP8 model

Parameters

- energy (float) [center energy in MeV; if fluxtype=RANGE, then needs to be a list [Emin,
Emax]]

• loci (Coords) [a Coords instance with the location inside the magnetosphere] optional
instead of a Coords instance, one can also provide a list with [BBo, L] combination

• model (str) : MIN or MAX for solar cycle dependence

• fluxtype (str) : DIFF, RANGE, INT are possible types

• particles (str): e or p or electrons or protons

Returns

- float [flux from AE8/AP8 model]

Examples

>>> spacepy.irbempy.get_aep8()

>>> import spacepy.time as spt
>>> import spacepy.coordinates as spc
>>> import spacepy.irbempy as ib
>>> t = spt.Ticktock(['2017-02-02T12:00:00'], 'ISO')
>>> y = spc.Coords([3,0,0], 'GEO', 'car')
>>> y.ticks = t
>>> energy = 1.0 #MeV
>>> ib.get_AEP8(energy, y, model='max')
1932209.4427359989

4.8.5 spacepy.irbempy.get_Bfield

spacepy.irbempy.get_Bfield(ticks, loci, extMag='T01STORM', options=[1, 0, 0, 0, 0], omni-
vals=None)

call get_bfield in irbem lib and return a dictionary with the B-field vector and strenght.

Parameters

- ticks (Ticktock class) [containing time information]

• loci (Coords class) : containing spatial information

• extMag (string) [optional; will choose the external magnetic field model] possible val-
ues [‘0’, ‘MEAD’, ‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’,
‘OSTA’, ‘T01QUIET’, ‘T01STORM’, ‘T05’, ‘ALEX’, ‘TS07’]

• options (optional list or array of integers length=5) : explained in Lstar

• omni values as dictionary (optional) : if not provided, will use lookup table

• (see Lstar documentation for further explanation)

Returns

122 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

- results (dictionary) [containing keys: Bvec, and Blocal]

See also:

get_Lstar, find_Bmirror, find_magequator

Examples

>>> import spacepy.time as spt
>>> import spacepy.coordinates as spc
>>> import spacepy.irbempy as ib
>>> t = spt.Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO')
>>> y = spc.Coords([[3,0,0],[2,0,0]], 'GEO', 'car')
>>> ib.get_Bfield(t,y)
{'Blocal': array([976.42565251, 3396.25991675]),

'Bvec': array([[-5.01738885e-01, -1.65104338e+02, 9.62365503e+02],
[3.33497974e+02, -5.42111173e+02, 3.33608693e+03]])}

4.8.6 spacepy.irbempy.get_Lm

spacepy.irbempy.get_Lm(ticks, loci, alpha, extMag='T01STORM', intMag='IGRF', IGRFset=0, omni-
vals=None)

Return the MacIlwain L value for a given location, time and model

Parameters

- ticks (Ticktock class) [containing time information]

• loci (Coords class) : containing spatial information

• alpha (list or ndarray) : pitch angles in degrees

• extMag (string) [optional; will choose the external magnetic field model] possible val-
ues [‘0’, ‘MEAD’, ‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’,
‘OSTA’, ‘T01QUIET’, ‘T01STORM’, ‘T05’, ‘ALEX’, ‘TS07’]

• intMag (string) [optional: select the internal field model] possible values
[‘IGRF’,’EDIP’,’JC’,’GSFC’,’DUN’,’CDIP’] For full details see get_Lstar

• omni values as dictionary (optional) : if not provided, will use lookup table

Returns

- results (dictionary) [containing keys: Lm, Bmin, Blocal (or Bmirr), Xj, MLT] if pitch angles
provided in “alpha” then drift shells are calculated and “Bmirr” is returned if not provided,
then “Blocal” at spacecraft is returned. A negative value for Lm indicates the field line is
closed but particles are lost to the atmosphere; the absolute value indicates the L value.

4.8. irbempy - Python interface to irbem/ONERA library 123

SpacePy Documentation, Release 0.2.2

4.8.7 spacepy.irbempy.get_Lstar

spacepy.irbempy.get_Lstar(ticks, loci, alpha=90, extMag='T01STORM', options=[1, 0, 0, 0, 0], om-
nivals=None, landi2lstar=False)

This will call make_lstar1 or make_lstar_shell_splitting_1 from the irbem library and will lookup omni values
for given time if not provided (optional). If pitch angles are provided, drift shell splitting will be calculated
and “Bmirr” will be returned. If they are not provided, then no drift shell splitting is calculated and “Blocal” is
returned.

Parameters

- ticks (Ticktock class) [containing time information]

• loci (Coords class) : containing spatial information

• alpha (list or ndarray) [optional pitch angles in degrees (default is 90);] if provided will
calculate shell splitting; max 25 values

• extMag (string) [optional; will choose the external magnetic field model] possible val-
ues [‘0’, ‘MEAD’, ‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’,
‘OSTA’, ‘T01QUIET’, ‘T01STORM’, ‘T05’, ‘ALEX’, ‘TS07’]

• options (optional list or array of integers length=5) : explained below

• omni values as dictionary (optional) : if not provided, will use lookup table

• landi2lstar [if True, will use the faster landi2lstar routine if possible. This] routine can
only be used with OPQUIET+IGRF magnetic field models.

Returns

- results (dictionary) [containing keys: Lm, Lstar, Bmin, Blocal (or Bmirr), Xj, MLT] if pitch
angles provided in “alpha” then drift shells are calculated and “Bmirr” is returned if not
provided, then “Blocal” at spacecraft is returned. A negative value for Lm indicates the
field line is closed but particles are lost to the atmosphere; the absolute value indicates the
L value. A negative value for Lstar indicates the field line is closed but particles are lost to
the atmosphere before completing a drift orbit; the absolute value indicates the drift shell.

Notes

External Field

• 0 : no external field

• MEAD : Mead & Fairfield [1975] (uses 0<=Kp<=9 - Valid for rGEO<=17. Re)

• T87SHORT: Tsyganenko short [1987] (uses 0<=Kp<=9 - Valid for rGEO<=30. Re)

• T87LONG : Tsyganenko long [1987] (uses 0<=Kp<=9 - Valid for rGEO<=70. Re)

• T89 : Tsyganenko [1989] (uses 0<=Kp<=9 - Valid for rGEO<=70. Re)

• OPQUIET : Olson & Pfitzer quiet [1977] (default - Valid for rGEO<=15. Re)

• OPDYN [Olson & Pfitzer dynamic [1988] (uses 5.<=dens<=50., 300.<=velo<=500.,] -
100.<=Dst<=20. - Valid for rGEO<=60. Re)

• T96 [Tsyganenko [1996] (uses -100.<=Dst (nT)<=20., 0.5<=Pdyn (nPa)<10.,] abs(ByIMF)
(nT)<1=0., abs(BzIMF) (nT)<=10. - Valid for rGEO<=40. Re)

• OSTA [Ostapenko & Maltsev [1997] (uses dst,Pdyn,BzIMF, Kp)] T01QUIET: Tsyganenko [2002a,b]
(uses -50.<Dst (nT)<20., 0.5<Pdyn (nPa)<=5., abs(ByIMF) (nT)<=5., abs(BzIMF) (nT)<=5.,
0.<=G1<=10., 0.<=G2<=10. - Valid for xGSM>=-15. Re)

124 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

• T01STORM: Tsyganenko, Singer & Kasper [2003] storm (uses Dst, Pdyn, ByIMF, BzIMF, G2, G3 -
there is no upper or lower limit for those inputs - Valid for xGSM>=-15. Re)

• T05 [Tsyganenko & Sitnov [2005] storm (uses Dst, Pdyn, ByIMF, BzIMF,] W1, W2, W3, W4, W5,
W6 - no upper or lower limit for inputs - Valid for xGSM>=-15. Re)

OMNI contents

• Kp: value of Kp as in OMNI2 files but has to be double instead of integer type

• Dst: Dst index (nT)

• dens: Solar Wind density (cm-3)

• velo: Solar Wind velocity (km/s)

• Pdyn: Solar Wind dynamic pressure (nPa)

• ByIMF: GSM y component of IMF mag. field (nT)

• BzIMF: GSM z component of IMF mag. field (nT)

• G1: G1=< Vsw*(Bperp/40)2/(1+Bperp/40)*sin3(theta/2) > where the <> mean an average over the
previous 1 hour, Vsw is the solar wind speed, Bperp is the transverse IMF component (GSM)
and theta it’s clock angle.

• G2: G2=< a*Vsw*Bs > where the <> mean an average over the previous 1 hour, Vsw is solar
wind speed, Bs=|IMF Bz| when IMF Bz < 0 and Bs=0 when IMF Bz > 0, a=0.005.

• G3: G3=< Vsw*Dsw*Bs /2000.> where the <> mean an average over the previous 1 hour, Vsw
is the solar wind speed, Dsw is the solar wind density, Bs=|IMF Bz| when IMF Bz < 0 and Bs=0
when IMF Bz > 0.

• W1 - W6: see definition in (JGR-A, v.110(A3), 2005.) (PDF 1.2MB)

• AL: the auroral index

Options

• 1st element: 0 - don’t compute L* or phi ; 1 - compute L*; 2- compute phi

• 2nd element: 0 - initialize IGRF field once per year (year.5); n - n is the frequency (in days) start-
ing on January 1st of each year (i.e. if options(2nd element)=15 then IGRF will be updated on
the following days of the year: 1, 15, 30, 45 . . .)

• 3rd element: resolution to compute L* (0 to 9) where 0 is the recomended value to ensure a
good ratio precision/computation time (i.e. an error of ~2% at L=6). The higher the value the
better will be the precision, the longer will be the computing time. Generally there is not much
improvement for values larger than 4. Note that this parameter defines the integration step (theta)
along the field line such as dtheta=(2pi)/(720*[options(3rd element)+1])

• 4th element: resolution to compute L* (0 to 9). The higher the value the better will be the pre-
cision, the longer will be the computing time. It is recommended to use 0 (usually suffi-
cient) unless L* is not computed on a LEO orbit. For LEO orbit higher values are recom-
mended. Note that this parameter defines the integration step (phi) along the drift shell such
as dphi=(2pi)/(25*[options(4th element)+1])

• 5th element: allows to select an internal magnetic field model (default is set to IGRF)

– 0 = IGRF

– 1 = Eccentric tilted dipole

– 2 = Jensen&Cain 1960

– 3 = GSFC 12/66 updated to 1970

4.8. irbempy - Python interface to irbem/ONERA library 125

SpacePy Documentation, Release 0.2.2

– 4 = User-defined model (Default: Centred dipole + uniform [Dungey open model])

– 5 = Centred dipole

Examples

>>> t = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO')
>>> y = Coords([[3,0,0],[2,0,0]], 'GEO', 'car')
>>> spacepy.irbempy.Lstar(t,y)
{'Blocal': array([1020.40493286, 3446.08845227]),

'Bmin': array([1019.98404311, 3437.63865243]),
'Lm': array([3.08948304, 2.06022102]),
'Lstar': array([2.97684043, 1.97868577]),
'MLT': array([23.5728333 , 23.57287944]),
'Xj': array([0.00112884, 0.00286955])}

4.8.8 spacepy.irbempy.find_Bmirror

spacepy.irbempy.find_Bmirror(ticks, loci, alpha, extMag='T01STORM', options=[1, 0, 0, 0, 0], om-
nivals=None)

call find_mirror_point from irbem library and return a dictionary with values for Blocal, Bmirr and the GEO
(cartesian) coordinates of the mirror point

Parameters

ticks [Ticktock class] containing time information

loci [Coords class] containing spatial information

alpha [array-like] containing the pitch angles

extMag [str] optional; will choose the external magnetic field model possible values [‘0’,
‘MEAD’, ‘T87SHORT’, ‘T87LONG’, ‘T89’, OPQUIET’, ‘OPDYN’, ‘T96’, ‘OSTA’,
‘T01QUIET’, ‘T01STORM’, ‘T05’, ‘ALEX’, ‘TS07’]

options [array-like (optional)] length=5 : explained in Lstar

omnivals [dict (optional)] if not provided, will use lookup table (see get_Lstar documentation
for further explanation)

Returns

results [dictionary] containing keys: Blocal, Bmirr, GEOcar

See also:

get_Lstar, get_Bfield, find_magequator

126 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

>>> t = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO')
>>> y = Coords([[3,0,0],[2,0,0]], 'GEO', 'car')
>>> ib.find_Bmirror(t,y,[90,80,60,10])
{'Blocal': array([0., 0.]),
'Bmirr': array([0., 0.]),
'loci': Coords([[NaN NaN NaN]
[NaN NaN NaN]]), dtype=GEO,car, units=['Re', 'Re', 'Re']}

4.8.9 spacepy.irbempy.find_magequator

spacepy.irbempy.find_magequator(ticks, loci, extMag='T01STORM', options=[1, 0, 0, 0, 0], omni-
vals=None)

call find_magequator from irbem library and return a dictionary with values for Bmin and the GEO (cartesian)
coordinates of the magnetic equator

Parameters

- ticks (Ticktock class) [containing time information]

• loci (Coords class) : containing spatial information

• extMag (string) [optional; will choose the external magnetic field model] possible val-
ues [‘0’, ‘MEAD’, ‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’,
‘OSTA’, ‘T01QUIET’, ‘T01STORM’, ‘T05’, ‘ALEX’, ‘TS07’]

• options (optional list or array of integers length=5) : explained in Lstar

• omni values as dictionary (optional) : if not provided, will use lookup table

• (see Lstar documentation for further explanation)

Returns

- results (dictionary) [containing keys: Bmin, Coords instance with GEO coordinates of] the
magnetic equator

See also:

get_Lstar, get_Bfield, find_Bmirr

Examples

>>> t = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO')
>>> y = Coords([[3,0,0],[2,0,0]], 'GEO', 'car')
>>> op.find_magequator(t,y)
{'Bmin': array([945.63652413, 3373.64496167]),

'loci': Coords([[2.99938371 0.00534151 -0.03213603]
[2.00298822 -0.0073077 0.04584859]]), dtype=GEO,car, units=['Re', 'Re',

→˓'Re']}

4.8. irbempy - Python interface to irbem/ONERA library 127

SpacePy Documentation, Release 0.2.2

4.8.10 spacepy.irbempy.car2sph

spacepy.irbempy.car2sph(CARin)
coordinate transformation from cartesian to spherical

Parameters

- CARin (list or ndarray) [coordinate points in (n,3) shape with n coordinate points in] units
of [Re, Re, Re] = [x,y,z]

Returns

- results (ndarray) [values after conversion to spherical coordinates in] radius, latitude, longi-
tude in units of [Re, deg, deg]

See also:

sph2car

Examples

>>> sph2car([1,45,0])
array([0.70710678, 0. , 0.70710678])

4.8.11 spacepy.irbempy.sph2car

spacepy.irbempy.sph2car(SPHin)
coordinate transformation from spherical to cartesian

Parameters

- SPHin (list or ndarray) [coordinate points in (n,3) shape with n coordinate points in] units
of [Re, deg, deg] = [r, latitude, longitude]

Returns

- results (ndarray) [values after conversion to cartesian coordinates x,y,z]

See also:

car2sph

Examples

>>> sph2car([1,45,45])
array([0.5 , 0.5 , 0.70710678])

128 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.8.12 spacepy.irbempy.coord_trans

spacepy.irbempy.coord_trans(loci, returntype, returncarsph)
thin layer to call coor_trans1 from irbem lib this will convert between systems GDZ, GEO, GSM, GSE, SM,
GEI, MAG, SPH, RLL

Parameters

- loci (Coords instance) [containing coordinate information, can contain n points]

• returntype (str) : describing system as GDZ, GEO, GSM, GSE, SM, GEI, MAG, SPH,
RLL

• returncarsph (str) : cartesian or spherical units ‘car’, ‘sph’

Returns

- xout (ndarray) [values after transformation in (n,3) dimensions]

See also:

sph2car, car2sph

Examples

>>> c = Coords([[3,0,0],[2,0,0]], 'GEO', 'car')
>>> c.ticks = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO')
>>> coord_trans(c, 'GSM', 'car')
array([[2.8639301 , -0.01848784, 0.89306361],
[1.9124434 , 0.07209424, 0.58082929]])

4.8.13 spacepy.irbempy.get_sysaxes

spacepy.irbempy.get_sysaxes(dtype, carsph)
will return the sysaxes according to the irbem library

Parameters

- dtype (str) [coordinate system, possible values: GDZ, GEO, GSM, GSE, SM,] GEI, MAG,
SPH, RLL

- carsph (str) [cartesian or spherical, possible values: ‘sph’, ‘car’]

Returns

- sysaxes (int) [value after oner_desp library from 0-8 (or None if not available)]

See also:

get_dtype

4.8. irbempy - Python interface to irbem/ONERA library 129

SpacePy Documentation, Release 0.2.2

Examples

>>> get_sysaxes('GSM', 'car')
2

4.8.14 spacepy.irbempy.get_dtype

spacepy.irbempy.get_dtype(sysaxes)
will return the coordinate system type as string

Parameters

- sysaxes (int) [number according to the irbem, possible values: 0-8]

Returns

- dtype (str) [coordinate system GDZ, GEO, GSM, GSE, SM, GEI, MAG, SPH, RLL]

• carsph (str) : cartesian or spherical ‘car’, ‘sph’

See also:

get_sysaxes

Examples

>>> get_dtype(3)
('GSE', 'car')

4.8.15 spacepy.irbempy.prep_irbem

spacepy.irbempy.prep_irbem(ticks=None, loci=None, alpha=[], extMag='T01STORM', options=[1,
0, 0, 0, 0], omnivals=None)

Prepare inputs for direct IRBEM-LIB calls. Not expected to be called by the user.

4.9 lanlstar - module to calculate Lstar or Lmax using artificial neural
network

Lstar and Lmax calculation using artificial neural network (ANN) technique.

This module requires the ffnet package.

Authors: Josef Koller, Yiqun Yu Institution: Los Alamos National Laboratory Contact: jkoller@lanl.gov,
yiqun@lanl.gov

Copyright 2012 Los Alamos National Security, LLC.

LANLstar(inputdict, extMag) Calculate Lstar
LANLmax(inputdict, extMag) Calculate last closed drift shell (Lmax)

130 Chapter 4. SpacePy Module Reference

http://ffnet.sourceforge.net/
mailto:jkoller@lanl.gov
mailto:yiqun@lanl.gov

SpacePy Documentation, Release 0.2.2

4.9.1 spacepy.LANLstar.LANLstar

spacepy.LANLstar.LANLstar(inputdict, extMag)
Calculate Lstar

Based on the L* artificial neural network (ANN) trained from different magnetospheric field models.

Parameters

extMag [list of string(s)] containing one or more of the following external magnetic field mod-
els: ‘OPDYN’, ‘OPQUIET’, ‘T89’, ‘T96’, ‘T01QUIET’, ‘T01STORM’, ‘T05’

inputdict [dictionary]

containing the following keys, each entry is a list or array. Note the keys for the above
models are different.

—For OPDYN: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘Lm’, ‘Bmirr’,
‘PA’, ‘rGSM’, ‘latGSM’, ‘lonGSM’]

– For OPQUIET: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘Lm’,
‘Bmirr’, ‘PA’, ‘rGSM’, ‘latGSM’, ‘lonGSM’]

—For T89: [‘Year’, ‘DOY’, ‘Hr’, ‘Kp’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘Lm’, ‘Bmirr’,
‘PA’, ‘rGSM’, ‘latGSM’, ‘lonGSM’]

– For T96: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘Lm’, ‘Bmirr’,
‘PA’, ‘rGSM’, ‘latGSM’, ‘lonGSM’]

—For T01QUIET: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G1’,
‘G2’, ‘Lm’, ‘Bmirr’, ‘PA’, ‘rGSM’, ‘latGSM’, ‘lonGSM’]

– For T01STORM: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G2’,
‘G3’, ‘Lm’, ‘Bmirr’, ‘PA’, ‘rGSM’, ‘latGSM’, ‘lonGSM’]

—For T05: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’,
‘W1’,’W2’,’W3’,’W4’,’W5’,’W6’, ‘Lm’, ‘Bmirr’, ‘PA’, ‘rGSM’, ‘latGSM’,

‘lonGSM’]

– For RAMSCB: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘PA’,
‘SMx’,’SMy’,’SMz’]

Dictionaries with numpy vectors are allowed.

Returns

out [dictionary] Lstar array for each key which corresponds to the specified magnetic field
model.

4.9. lanlstar - module to calculate Lstar or Lmax using artificial neural network 131

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.LANLstar as LS
>>>
>>> inputdict = {}
>>> inputdict['Kp'] = [2.7] # Kp index
>>> inputdict['Dst'] = [7.7777] # Dst index (nT)
>>> inputdict['dens'] = [4.1011] # solar wind density (/cc)
>>> inputdict['velo'] = [400.1011] # solar wind velocity (km/s)
>>> inputdict['Pdyn'] = [4.1011] # solar wind dynamic pressure
→˓(nPa)
>>> inputdict['ByIMF'] = [3.7244] # GSM y component of IMF
→˓magnetic field (nT)
>>> inputdict['BzIMF'] = [-0.1266] # GSM z component of IMF
→˓magnetic field (nT)
>>> inputdict['G1'] = [1.029666] # as defined in Tsganenko 2003
>>> inputdict['G2'] = [0.549334]
>>> inputdict['G3'] = [0.813999]
>>> inputdict['W1'] = [0.122444] # as defined in Tsyganenko and
→˓Sitnov 2005
>>> inputdict['W2'] = [0.2514]
>>> inputdict['W3'] = [0.0892]
>>> inputdict['W4'] = [0.0478]
>>> inputdict['W5'] = [0.2258]
>>> inputdict['W6'] = [1.0461]
>>>
>>> inputdict['Year'] = [1996]
>>> inputdict['DOY'] = [6]
>>> inputdict['Hr'] = [1.2444]
>>>
>>> inputdict['Lm'] = [4.9360] # McIllwain L
>>> inputdict['Bmirr'] = [315.6202] # magnetic field strength at
→˓the mirror point
>>> inputdict['rGSM'] = [4.8341] # radial coordinate in GSM [Re]
>>> inputdict['lonGSM'] = [-40.2663] # longitude coodrinate in GSM
→˓[deg]
>>> inputdict['latGSM'] = [36.44696] # latitude coordiante in GSM
→˓[deg]
>>> inputdict['PA'] = [57.3874] # pitch angle [deg]
>>> inputdict['SMx'] = [3.9783]
>>> inputdict['SMy'] = [-2.51335]
>>> inputdict['SMz'] = [1.106617]
>>>
>>> LS.LANLstar(inputdict, ['OPDYN','OPQUIET','T01QUIET','T01STORM','T89','T96',
→˓'T05','RAMSCB'])
{'OPDYN': array([4.7171]),
'OPQUIET': array([4.6673]),
'T01QUIET': array([4.8427]),
'T01STORM': array([4.8669]),
'T89': array([4.5187]),
'T96': array([4.6439]),
'TS05': array([4.7174]),
'RAMSCB','array([5.9609])}

132 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.9.2 spacepy.LANLstar.LANLmax

spacepy.LANLstar.LANLmax(inputdict, extMag)
Calculate last closed drift shell (Lmax)

Based on the L* artificial neural network (ANN) trained from different magnetospheric field models.

Parameters

extMag [list of string(s)] containing one or more of the following external Magnetic field mod-
els: ‘OPDYN’, ‘OPQUIET’, ‘T89’, ‘T96’, ‘T01QUIET’, ‘T01STORM’, ‘T05’

inputdict [dictionary] containing the following keys, each entry is a list or array. Note the keys
for the above models are different.

– For OPDYN: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘PA’]

– For OPQUIET: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘PA’]

– For T89: [‘Year’, ‘DOY’, ‘Hr’, ‘Kp’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘PA’]

– For T96: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’,’PA’]

– For T01QUIET: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G1’,
‘G2’,’PA’]

– For T01STORM: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G2’, ‘G3’,
‘PA’]

– For T05: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’,
‘W1’,’W2’,’W3’,’W4’,’W5’,’W6’, ‘PA’]

Dictionaries with numpy vectors are allowed.

Returns

out [dictionary] Lmax array for each key which corresponds to the specified magnetic field
model.

Examples

>>> import spacepy.LANLstar as LS
>>>
>>> inputdict = {}
>>> inputdict['Kp'] = [2.7] # Kp index
>>> inputdict['Dst'] = [7.7777] # Dst index (nT)
>>> inputdict['dens'] = [4.1011] # solar wind density (/cc)
>>> inputdict['velo'] = [400.1011] # solar wind velocity (km/s)
>>> inputdict['Pdyn'] = [4.1011] # solar wind dynamic pressure
→˓(nPa)
>>> inputdict['ByIMF'] = [3.7244] # GSM y component of IMF
→˓magnetic field (nT)
>>> inputdict['BzIMF'] = [-0.1266] # GSM z component of IMF
→˓magnetic field (nT)
>>> inputdict['G1'] = [1.029666] # as defined in Tsganenko 2003
>>> inputdict['G2'] = [0.549334]
>>> inputdict['G3'] = [0.813999]
>>> inputdict['W1'] = [0.122444] # as defined in Tsyganenko and
→˓Sitnov 2005
>>> inputdict['W2'] = [0.2514]
>>> inputdict['W3'] = [0.0892]

(continues on next page)

4.9. lanlstar - module to calculate Lstar or Lmax using artificial neural network 133

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> inputdict['W4'] = [0.0478]
>>> inputdict['W5'] = [0.2258]
>>> inputdict['W6'] = [1.0461]
>>>
>>> inputdict['Year'] = [1996]
>>> inputdict['DOY'] = [6]
>>> inputdict['Hr'] = [1.2444]
>>>
>>> inputdict['PA'] = [57.3874] # pitch angle [deg]
>>>
>>> LS.LANLmax(inputdict, ['OPDYN','OPQUIET','T01QUIET','T01STORM','T89','T96',
→˓'T05'])
{'OPDYN': array([10.6278]),
'OPQUIET': array([9.3352]),
'T01QUIET': array([10.0538]),
'T01STORM': array([9.9300]),
'T89': array([8.2888]),
'T96': array([9.2410]),
'T05': array([9.9295])}

4.10 omni - module to read and process NASA OMNIWEB data

Tools to read and process omni data (Qin-Denton, etc.)

Authors: Steve Morley, Josef Koller Institution: Los Alamos National Laboratory Contact: smorley@lanl.gov

Copyright 2010-2014 Los Alamos National Security, LLC.

4.10.1 About omni

The omni module primarily manages the hourly OMNI2 and Qin-Denton data, which are sourced from the Virtual
Radiation Belt Observatory (ViRBO), who maintain these data sources. The data can be kept up-to-date in SpacePy
using the update() function in the spacepy.toolbox module.

The OMNI2 data combines data from a variety of satellites that sample the solar wind (notably ACE and Wind), and
propagates the data to Earth’s bow shock nose. The Qin-Denton data is derived from the OMNI2 data and is designed
for providing input to the Tsyganenko magnetic field models. The later Tsyganenko magnetic field models require
subsidiary parameters (G- and W-parameters) that are pre-calculated in the Qin-Denton data. Further, the Qin-Denton
data contains no data gaps – all gaps are filled (for details on the gap filling, see the paper by Qin et al..)

4.10.2 Advanced features

Higher resolution data, or custom data sources, can also be managed/accessed with this module, although this is
considered an advanced use for this module. This is achieved using custom names for the dbase keyword in get_omni,
which must be defined in the SpacePy configuration file (for a user-install on linux, this is ~/.spacepy/spacepy.rc; see
SpacePy Configuration). An example of the formatting required is

qd1min: /usr/somedir/QinDenton/YYYY/QinDenton_YYYYMMDD_1min.txt

In this example the custom data source name is qd1min. Wildcard substitutions can be made for the year (YYYY),
month (MM) and day (DD). Future updates will give more flexibility in data storage model, but currently we assume
that all custom data sources follow a convention in which the data files are daily, and the files are organized into folders
by year. The year, month and day must all be specified in the filename.

134 Chapter 4. SpacePy Module Reference

mailto:smorley@lanl.gov
http://virbo.org
http://virbo.org/QinDenton
http://dx.doi.org/10.1029/2006SW000296

SpacePy Documentation, Release 0.2.2

Currently there are some restrictions on the data format for custom data sources. The stored data must currently be
stored as JSON-headed ASCII. If data conversions are required, then a valid dictionary of conversion functions must be
supplied via the convert keyword argument. See readJSONheadedASCII() for details. Additionally, by default
this will interpolate the data to the requested time ticks. To return only the actual recorded data values for the specified
time range set the keyword argument interp to False.

get_omni(ticks[, dbase]) Returns Qin-Denton OMNI values, interpolated to any
time-base from a default hourly resolution

omnirange([dbase]) Returns datetimes giving start and end times in the
OMNI/Qin-Denton data

4.10.3 spacepy.omni.get_omni

spacepy.omni.get_omni(ticks, dbase='QDhourly', **kwargs)
Returns Qin-Denton OMNI values, interpolated to any time-base from a default hourly resolution

The update function in toolbox retrieves all available hourly Qin-Denton data, and this function accesses that
and interpolates to the given times, returning the OMNI values as a SpaceData (dict-like) with Kp, Dst, dens,
velo, Pdyn, ByIMF, BzIMF, G1, G2, G3, etc. (see also http://www.dartmouth.edu/~rdenton/magpar/index.html
and http://www.agu.org/pubs/crossref/2007/2006SW000296.shtml)

Parameters

ticks [Ticktock class or array-like of datetimes] time values for desired output

dbase [str (optional)] Select data source, options are ‘QDhourly’, ‘OMNI2hourly’, ‘Merged-
hourly’ Note - Custom data sources can be specified in the spacepy config file as described
in the module documentation.

Returns

out [spacepy.datamodel.SpaceData] containing all Qin-Denton values at times given by ticks

Notes

Note about Qbits: If the status variable is 2, the quantity you are using is fairly well determined. If it is 1, the
value has some connection to measured values, but is not directly measured. These values are still better than
just using an average value, but not as good as those with the status variable equal to 2. If the status variable
is 0, the quantity is based on average quantities, and the values listed are no better than an average value. The
lower the status variable, the less confident you should be in the value.

Examples

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> ticks = spt.Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO')
>>> d = om.get_omni(ticks)
>>> d.tree(levels=1)
+
|____ByIMF
|____Bz1
|____Bz2
|____Bz3
|____Bz4

(continues on next page)

4.10. omni - module to read and process NASA OMNIWEB data 135

http://www.dartmouth.edu/~rdenton/magpar/index.html
http://www.agu.org/pubs/crossref/2007/2006SW000296.shtml

SpacePy Documentation, Release 0.2.2

(continued from previous page)

|____Bz5
|____Bz6
|____BzIMF
|____DOY
|____Dst
|____G1
|____G2
|____G3
|____Hr
|____Kp
|____Pdyn
|____Qbits
|____RDT
|____UTC
|____W1
|____W2
|____W3
|____W4
|____W5
|____W6
|____Year
|____akp3
|____dens
|____ticks
|____velo

4.10.4 spacepy.omni.omnirange

spacepy.omni.omnirange(dbase='QDhourly')
Returns datetimes giving start and end times in the OMNI/Qin-Denton data

The update function in toolbox retrieves all available hourly Qin-Denton data, and this function accesses that
and looks up the start and end times, returning them as datetime objects.

Parameters

dbase [string (optional)] name of omni database to check. Currently ‘QDhourly’ and
‘OMNI2hourly’

Returns

omnirange [tuple] containing two datetimes giving the start and end times of the available data

Examples

>>> import spacepy.omni as om
>>> om.omnirange()
(datetime.datetime(1963, 1, 1, 0, 0), datetime.datetime(2011, 11, 30, 23, 0))
>>> om.omnirange(dbase='OMNI2hourly')
(datetime.datetime(1963, 1, 1, 0, 0), datetime.datetime(2011, 11, 30, 23, 0))

136 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.11 plot - Plot, various specialized plotting functions and associated
utilities

plot: SpacePy plotting routines

This package aims to make getting publication ready plots easier. It provides classes and functions for different types
of plot (e.g. Spectrogram, levelPlot), for helping make plots more cleanly (e.g. set_target, dual_half_circle), and for
making plots convey information more cleanly, with less effort (e.g. applySmartTimeTicks, style).

This plot module now provides style sheets. For most standard plotting we recommend the default style sheet (aka
spacepy). To auto-apply the default plot style the following should be added to your spacepy.rc file:

apply_plot_styles: True

Different plot types may not work well with this style, so we have provided alternatives. For polar plots, spectrograms,
or anything with larger blocks of color, it may be better to use one of the alternatives:

import spacepy.plot as splot
splot.style('altgrid') # inverts background from default so it's white
splot.style('polar') # designed for filled polar plots
splot.revert_style() # put the style back to matplotlib defaults

For those constrained by institutional computing, we also provide the new colormaps developed for matplotlib v2.
These colormaps are designed to be perceptually uniform, and hence colorblind-friendly.

Authors: Brian Larsen and Steve Morley Institution: Los Alamos National Laboratory Contact: balarsen@lanl.gov

Copyright 2011-2016 Los Alamos National Security, LLC.

add_logo(img[, fig, pos, margin]) Add an image (logo) to one corner of a plot.
annotate_xaxis(txt[, ax]) Write text in-line and to the right of the x-axis tick labels
applySmartTimeTicks(ax, time[, dolimit, dola-
bel])

Given an axis ax and a list/array of datetime objects,
time, use the smartTimeTicks function to build smart
time ticks and then immediately apply them to the given
axis.

available([returnvals]) List the available plot styles provided by spacepy.plot
collapse_vertical(combine[, others,
leave_axis])

Collapse the vertical spacing between two or more sub-
plots.

dual_half_circle([center, radius, . . .]) Plot two half circles to a plot with the specified face
colors and rotation.

levelPlot(data[, var, time, levels, target, . . .]) Draw a step-plot with up to 5 levels following a color
cycle (e.g.

plot(*args, **kwargs) Convenience wrapper for matplotlib’s plot function
revert_style() Revert plot style settings to those in use prior to import-

ing spacepy.plot
set_target(target[, figsize, loc, polar]) Given a target on which to plot a figure, determine if

that target is None or a matplotlib figure or axes object.
shared_ylabel(axes, txt, *args, **kwargs) Create a ylabel that spans several subplots
solarRotationPlot(ticks, data[, targ_ax, . . .]) Plots a 1-D time series as a Carrington or Bartels plot
Spectrogram(data, **kwargs) This class rebins data to produce a 2D data map that can

be plotted as a spectrogram
style([look, cmap]) Apply SpacePy’s matplotlib style settings from a known

style sheet.
timestamp([position, size, draw, strnow, . . .]) print a timestamp on the current plot, vertical lower right

continues on next page

4.11. plot - Plot, various specialized plotting functions and associated utilities 137

mailto:balarsen@lanl.gov

SpacePy Documentation, Release 0.2.2

Table 22 – continued from previous page
add_arrows(lines[, n, size, style, . . .]) Add directional arrows along a plotted line.

4.11.1 spacepy.plot.add_logo

spacepy.plot.add_logo(img, fig=None, pos='br', margin=0.05)
Add an image (logo) to one corner of a plot.

The provided image will be placed in a corner of the plot and sized to maintain its aspect ratio and be as large as
possible without overlapping any existing elements of the figure. Thus this should be the last call in constructing
a figure.

Parameters

img [str or numpy.ndarray] The image to place on the figure. If a string, assumed to be a
filename to be read with imread(); if a numpy array, assumed to be the image itself (in a
simliar format).

Returns

(axes, axesimg) [tuple of Axes and AxesImage] The Axes object created to hold the iamge,
and the AxesImage object for the image itself.

Other Parameters

fig [matplotlib.figure.Figure] The figure on which to place the logo; if not specified, the gcf()
function will be used.

pos [str] The position to place the logo. br: bottom right; bl: bottom left; tl: top left; tr: top
right

margin [float] Margin to include on each side of figure, as a fraction of the larger dimension of
the figure (width or height). Default is 0.05 (5%).

Notes

Calls draw() to ensure locations are up to date.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax0 = fig.add_subplot(211)
>>> ax0.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> ax1 = fig.add_subplot(212)
>>> ax1.plot([1, 2, 3], [2, 1, 2])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> spacepy.plot.utils.add_logo('logo.png', fig)
(<matplotlib.axes.Axes at 0x00000000>,
<matplotlib.image.AxesImage at 0x00000000>)

138 Chapter 4. SpacePy Module Reference

https://matplotlib.org/api/image_api.html#matplotlib.image.imread
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/image_api.html#matplotlib.image.AxesImage
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

SpacePy Documentation, Release 0.2.2

4.11.2 spacepy.plot.annotate_xaxis

spacepy.plot.annotate_xaxis(txt, ax=None)
Write text in-line and to the right of the x-axis tick labels

Annotates the x axis of an Axes object with text placed in-line with the tick labels and immediately to the right
of the last label. This is formatted to match the existing tick marks.

Parameters

txt [str] The annotation text.

Returns

out [matplotlib.text.Text] The Text object for the annotation.

Other Parameters

ax [matplotlib.axes.Axes] The axes to annotate; if not specified, the gca() function will be
used.

Notes

The annotation is placed immediately to the right of the last tick label. Generally the first character of txt
should be a space to allow some room.

Calls draw() to ensure tick marker locations are up to date.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> import datetime
>>> times = [datetime.datetime(2010, 1, 1) + datetime.timedelta(hours=i)
... for i in range(0, 48, 3)]
>>> plt.plot(times, range(16))
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> spacepy.plot.utils.annotate_xaxis(' UT') #mark that times are UT
<matplotlib.text.Text object at 0x0000000>

4.11.3 spacepy.plot.applySmartTimeTicks

spacepy.plot.applySmartTimeTicks(ax, time, dolimit=True, dolabel=False)
Given an axis ax and a list/array of datetime objects, time, use the smartTimeTicks function to build smart time
ticks and then immediately apply them to the given axis. The first and last elements of the time list will be used
as bounds for the x-axis range.

The range of the time input value will be used to set the limits of the x-axis as well. Set kwarg ‘dolimit’ to False
to override this behavior.

Parameters

ax [matplotlib.pyplot.Axes] A matplotlib Axis object.

time [list] list of datetime objects

dolimit [boolean (optional)] The range of the time input value will be used to set the limits of
the x-axis as well. Setting this overrides this behavior.

4.11. plot - Plot, various specialized plotting functions and associated utilities 139

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

SpacePy Documentation, Release 0.2.2

01-01 0001-01 0601-01 1201-01 1801-02 0001-02 0601-02 1201-02 18

0

2

4

6

8

10

12

14

 UT

140 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

dolabel [boolean (optional)] Sets autolabeling of the time axis with “Time from” time[0]

See also:

smartTimeTicks

4.11.4 spacepy.plot.available

spacepy.plot.available(returnvals=False)
List the available plot styles provided by spacepy.plot

Note that some of the available styles have multiple aliases. To apply an available style, use spacepy.plot.style.

4.11.5 spacepy.plot.collapse_vertical

spacepy.plot.collapse_vertical(combine, others=(), leave_axis=False)
Collapse the vertical spacing between two or more subplots.

Useful for a multi-panel plot where most subplots should have space between them but several adjacent ones
should not (i.e., appear as a single plot.) This function will remove all the vertical space between the subplots
listed in combine and redistribute the space between all of the subplots in both combine and others in
proportion to their current size, so that the relative size of the subplots does not change.

Parameters

combine [sequence] The Axes objects (i.e. subplots) which should be placed together with no
vertical space.

Other Parameters

others [sequence] The Axes objects (i.e. subplots) which will keep their vertical spacing, but
will be expanded with the space taken away from between the elements of combine.

leave_axis [bool] If set to true, will leave the axis lines and tick marks between the collapsed
subplots. By default, the axis line (“spine”) is removed so the two subplots appear as one.

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

This may require some clean-up of the y axis labels, as they are likely to overlap.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> #Make three stacked subplots
>>> ax0 = fig.add_subplot(311)
>>> ax1 = fig.add_subplot(312)
>>> ax2 = fig.add_subplot(313)
>>> ax0.plot([1, 2, 3], [1, 2, 1]) #just make some lines
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax1.plot([1, 2, 3], [1, 2, 1])

(continues on next page)

4.11. plot - Plot, various specialized plotting functions and associated utilities 141

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

SpacePy Documentation, Release 0.2.2

(continued from previous page)

[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax2.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> #Collapse space between top two plots, leave bottom one alone
>>> spacepy.plot.utils.collapse_vertical([ax0, ax1], [ax2])

1.0

1.5

2.0

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
1.0

1.5

2.0

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
1.0

1.5

2.0

4.11.6 spacepy.plot.dual_half_circle

spacepy.plot.dual_half_circle(center=(0, 0), radius=1.0, sun_direction='right', ax=None, col-
ors=('w', 'k'), **kwargs)

Plot two half circles to a plot with the specified face colors and rotation. This is normal to use to denote the sun
direction in magnetospheric science plots.

Returns

out [tuple] Tuple of the two wedge objects

Other Parameters

center [array-like, 2 elements] Center in data coordinates of the circles, default (0,0)

radius [float] Radius of the circles, defualt 1.0

sun_direction [string or float] The rotation direction of the first (white) circle. Options are
[‘down’, ‘down right’, ‘right’, ‘up left’, ‘up right’, ‘up’, ‘down left’, ‘left’] or an angle in

142 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

degrees counter-clockwise from up. Default right.

ax [matplotlib.axes] Axis to plot the circles on.

colors [array-like, 2 elements] The two colors for the circle fill. The First number is the light
and second is the dark.

**kwargs [other keywords] Other keywords to pass to matplotlib.patches.Wedge

Examples

>>> import spacepy.plot
>>> spacepy.plot.dual_half_circle()

4.11.7 spacepy.plot.levelPlot

spacepy.plot.levelPlot(data, var=None, time=None, levels=(3, 5), target=None, colors=None,
**kwargs)

Draw a step-plot with up to 5 levels following a color cycle (e.g. Kp index “stoplight”)

Parameters

data [array-like, or dict-like] Data for plotting. If dict-like, the key providing an array-like to
plot must be given to var keyword argument.

Returns

binned [tuple] Tuple of the binned data and bins

Other Parameters

var [string] Name of key in dict-like input that contains data

time [array-like or string] Name of key in dict-like that contains time, or arraylike of datetimes

levels [array-like, up to 5 levels] Breaks between levels in data that should be shown as distinct
colors

target [figure or axes] Target axes or figure window

colors [array-like] Colors to use for the color sequence (if insufficient colors, will use as a cycle)

**kwargs [other keywords] Other keywords to pass to spacepy.toolbox.binHisto

Examples

>>> import spacepy.plot as splot
>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> tt = spt.tickrange('2012/09/28','2012/10/2', 3/24.)
>>> omni = om.get_omni(tt)
>>> splot.levelPlot(omni, var='Kp', time='UTC', colors=['seagreen', 'orange',
→˓'crimson'])

4.11. plot - Plot, various specialized plotting functions and associated utilities 143

SpacePy Documentation, Release 0.2.2

4.11.8 spacepy.plot.plot

spacepy.plot.plot(*args, **kwargs)
Convenience wrapper for matplotlib’s plot function

As with matplotlib’s plot function, args is a variable length argument, allowing for multiple x, y pairs, each with
optional format string. For full details, see matplotlib.pyplot.plot

Other Parameters

smartTimeTicks [boolean] If True then use applySmartTimeTicks to set x-axis labeling

figsize [array-like, 2 elements] Set figure size directly on call to plot, (width, height)

**kwargs [other keywords] Other keywords to pass to matplotlib.pyplot.plot

4.11.9 spacepy.plot.revert_style

spacepy.plot.revert_style()
Revert plot style settings to those in use prior to importing spacepy.plot

4.11.10 spacepy.plot.set_target

spacepy.plot.set_target(target, figsize=None, loc=None, polar=False)
Given a target on which to plot a figure, determine if that target is None or a matplotlib figure or axes object.
Based on the type of target, a figure and/or axes will be either located or generated. Both the figure and axes
objects are returned to the caller for further manipulation. This is used in nearly all add_plot-type methods.

Parameters

target [object] The object on which plotting will happen.

Returns

fig [object] A matplotlib figure object on which to plot.

ax [object] A matplotlib subplot object on which to plot.

Other Parameters

figsize [tuple] A two-item tuple/list giving the dimensions of the figure, in inches. Defaults to
Matplotlib defaults.

loc [integer] The subplot triple that specifies the location of the axes object. Defaults to mat-
plotlib default (111).

polar [bool] Set the axes object to polar coodinates. Defaults to False.

Examples

>>> import matplotlib.pyplot as plt
>>> from spacepy.pybats import set_target
>>> fig = plt.figure()
>>> fig, ax = set_target(target=fig, loc=211)

144 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.11.11 spacepy.plot.shared_ylabel

spacepy.plot.shared_ylabel(axes, txt, *args, **kwargs)
Create a ylabel that spans several subplots

Useful for a multi-panel plot where several subplots have the same units/quantities on the y axis.

Parameters

axes [list] The Axes objects (i.e. subplots) which should share a single label

txt [str] The label to place in the middle of all the axes objects.

Returns

out [matplotlib.text.Text] The Text object for the label.

Other Parameters

Additional arguments and keywords are passed through to

:meth:`~matplotlib.axes.Axes.set_ylabel`

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

The label is associated with the bottommost subplot in axes.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> #Make three stacked subplots
>>> ax0 = fig.add_subplot(311)
>>> ax1 = fig.add_subplot(312)
>>> ax2 = fig.add_subplot(313)
>>> ax0.plot([1, 2, 3], [1, 2, 1]) #just make some lines
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax1.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax2.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> #Create a green label across all three axes
>>> spacepy.plot.utils.shared_ylabel([ax0, ax1, ax2],
... 'this is a very long label that spans all three axes', color='g')

4.11. plot - Plot, various specialized plotting functions and associated utilities 145

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/text_api.html#matplotlib.text.Text

SpacePy Documentation, Release 0.2.2

4.11.12 spacepy.plot.solarRotationPlot

spacepy.plot.solarRotationPlot(ticks, data, targ_ax=None, rtype='bartels', nbins=27)
Plots a 1-D time series as a Carrington or Bartels plot

4.11.13 spacepy.plot.Spectrogram

spacepy.plot.Spectrogram(data, **kwargs)
This class rebins data to produce a 2D data map that can be plotted as a spectrogram

It is meant to be used on arbitrary data series. The first series “x” is plotted on the abscissa and second series
“y” is plotted on the ordinate and the third series “z” is plotted in color.

The series are not passed in independently but instead inside a SpaceData container.

Parameters

data [SpaceData] The data for the spectrogram, the variables to be used default to “Epoch”
for x, “Energy” for y, and “Flux” for z. Other names are specified using the ‘variables’
keyword. All keywords override .attrs contents.

Other Parameters

variables [list] keyword containing the names of the variables to use for the spectrogram the
list is a list of the SpaceData keys in x, y, z, order

bins [list] if the name “bins” is not specified in the .attrs of the dmarray variable this specifies
the bins for each variable in a [[xbins], [ybins]] format

xlim [list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies
the limit for the x variable [xlow, xhigh]

ylim [list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies
the limit for the y variable [ylow, yhigh]

zlim [list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies
the limit for the z variable [zlow, zhigh]

extended_out [bool (optional)] if this is True add more information to the output data model
(default True)

Notes

Helper routines are planned to facilitate the creation of the SpaceData container if the data are not in the format.

Examples

>>> import spacepy.datamodel as dm
>>> import numpy as np
>>> import spacepy.plot as splot
>>> sd = dm.SpaceData()
>>> sd['radius'] = dm.dmarray(2*np.sin(np.linspace(0,30,500))+4, attrs={'units':
→˓'km'})
>>> sd['day_of_year'] = dm.dmarray(np.linspace(74,77,500))
>>> sd['1D_dataset'] = dm.dmarray(np.random.normal(10,3,500)*sd['radius'])

(continues on next page)

146 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

(continued from previous page)

>>> spec = splot.Spectrogram(sd, variables=['day_of_year', 'radius', '1D_dataset
→˓'])
>>> ax = spec.plot()

plot([target, loc, figsize]) Plot the spectrogram

4.11.14 spacepy.plot.style

spacepy.plot.style(look=None, cmap='plasma')
Apply SpacePy’s matplotlib style settings from a known style sheet.

Parameters

look [str]

Name of style. For a list of available style names, see `spacepy.plot.available`.

4.11.15 spacepy.plot.timestamp

spacepy.plot.timestamp(position=(1.003, 0.01), size='xx-small', draw=True, strnow=None, rota-
tion='vertical', ax=None, **kwargs)

print a timestamp on the current plot, vertical lower right

Parameters

position [list] position for the timestamp

size [string (optional)] text size

draw [Boolean (optional)] call draw to make sure it appears

kwargs [keywords] other keywords to axis.annotate

Examples

>>> import spacepy.plot.utils
>>> from pylab import plot, arange
>>> plot(arange(11))
[<matplotlib.lines.Line2D object at 0x49072b0>]
>>> spacepy.plot.utils.timestamp()

4.11.16 spacepy.plot.add_arrows

spacepy.plot.add_arrows(lines, n=3, size=12, style='->', dorestrict=False, positions=False)
Add directional arrows along a plotted line. Useful for plotting flow lines, magnetic field lines, or other direc-
tional traces.

lines can be either Line2D, a list or tuple of lines, or a LineCollection object.

For each line, arrows will be added using :method:`~matplotlib.axes.Axes.annotate`. Arrows will be spread
evenly over the line using the number of points in the line as the metric for spacing. For example, if a line has
120 points and 3 arrows are requested, an arrow will be added at point number 30, 60, and 90. Arrow color and
alpha is obtained from the parent line.

4.11. plot - Plot, various specialized plotting functions and associated utilities 147

https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/api/collections_api.html#matplotlib.collections.LineCollection

SpacePy Documentation, Release 0.2.2

Parameters

lines [Line2D, a list/tuple, or LineCollection] A single line or group of lines on which
to place the arrows. Arrows inherent color and transparency (alpha) from the line on which
they are placed.

Returns

None

Other Parameters

n [integer] Number of arrows to add to each line; defaults to 3.

size [integer] The size of the arrows in points. Defaults to 12.

style [string] Set the style of the arrow via ArrowStyle, e.g. ‘->’ (default) or ‘-|>’

dorestrict [boolean] If True (default), only points along the line within the current limits of the
axes will be considered when distributing arrows.

positions [Nx2 array] N must be the number of lines provided via the argument lines. If pro-
vided, only one arrow will be placed per line. positions sets the explicit location of each
arrow for each line as X-Y space in Axes coordinates.

Notes

The algorithm works by dividing the line in to n*+1 segments and placing an arrow between each segment,
endpoints excluded. Arrows span the shortest distance possible, i.e., two adjacent points along a line. For lines
that are long spatially but sparse in points, the arrows will have long tails that may extend beyond axes bounds.
For explicit positions, the arrow is placed at the point on the curve closest to that position and the exact position
is not always attainable. A maximum number of arrows equal to one-half of the number of points in a line per
line will be created, so not all lines will receive *n arrows.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> x = np.arange(1, 10, .01)
>>> y = np.sin(x)
>>> line = plt.plot(x,y)
>>> add_arrows(line, n=15, style='-|>')

Most of the functionality in the plot module is made available directly through the plot namespace. However, the plot
module does contain several submodules listed below

carrington Module for plotting data by Carrington or Bartels rota-
tion

colourmaps
spectrogram(*args, **kwargs) Deprecated variant of Spectrogram
utils Utility routines for plotting and related activities

148 Chapter 4. SpacePy Module Reference

https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/api/collections_api.html#matplotlib.collections.LineCollection
https://matplotlib.org/api/_as_gen/matplotlib.patches.ArrowStyle.html#matplotlib.patches.ArrowStyle

SpacePy Documentation, Release 0.2.2

4.11.17 spacepy.plot.carrington

Module for plotting data by Carrington or Bartels rotation

Authors: Steve Morley Institution: Los Alamos National Laboratory Contact: smorley@lanl.gov Los Alamos National
Laboratory

Copyright 2011-2015 Los Alamos National Security, LLC.

4.11.18 spacepy.plot.colourmaps

4.11.19 spacepy.plot.spectrogram

Create and plot generic ‘spectrograms’ for space science. This is not a signal processing routine and does not apply
Fourier transforms (or similar) to the data. The functionality provided here is the binning (and averaging) of multi-
dimensional to provide a 2D output map of some quantity as a function of two parameters. An example would be
particle data from a satellite mission: electron flux, at a given energy, can be binned as a function of both time and
McIlwain L, then plotted as a 2D color-map, colloquially known as a spectrogram.

In many other settings ‘spectrogram’ refers to a transform of data from the time domain to the frequency domain,
and the subsequent plotting of some quantity (e.g., power spectral density) as a function of time and frequency. To
approximate this functionality for, e.g., time-series magnetic field data you would first calculate a the power spectral
density and then use Spectrogram to rebin the data for visualization.

Authors: Brian Larsen and Steve Morley Institution: Los Alamos National Laboratory Contact: balarsen@lanl.gov,
smorley@lanl.gov Los Alamos National Laboratory

Copyright 2011 Los Alamos National Security, LLC.

Class

Spectrogram(data, **kwargs) This class rebins data to produce a 2D data map that can
be plotted as a spectrogram

Function

simpleSpectrogram(*args, **kwargs) Plot a spectrogram given Z or X,Y,Z.

4.11.20 spacepy.plot.utils

Utility routines for plotting and related activities

Authors: Jonathan Niehof, Steven Morley, Daniel Welling

Institution: Los Alamos National Laboratory

Contact: jniehof@lanl.gov

Copyright 2012-2014 Los Alamos National Security, LLC.

4.11. plot - Plot, various specialized plotting functions and associated utilities 149

mailto:smorley@lanl.gov
mailto:balarsen@lanl.gov
mailto:smorley@lanl.gov
mailto:jniehof@lanl.gov

SpacePy Documentation, Release 0.2.2

Classes

EventClicker([ax, n_phases, interval, . . .]) Presents a provided figure (normally a time series) and
provides an interface to mark events shown in the plot.

spacepy.plot.utils.EventClicker

class spacepy.plot.utils.EventClicker(ax=None, n_phases=1, interval=None,
auto_interval=None, auto_scale=True, ymin=None,
ymax=None, line=None)

Presents a provided figure (normally a time series) and provides an interface to mark events shown in the plot.
The user interface is explained in analyze() and results are returned by get_events()

Other Parameters

ax [maplotlib.axes.AxesSubplot] The subplot to display and grab data from. If not provided,
the current subplot is grabbed from gca() (Lookup of the current subplot is done when
analyze() is called.)

n_phases [int (optional, default 1)] number of phases to an event, i.e. number of subevents to
mark. E.g. for a storm where one wants the onset and the minimum, set n_phases to 2 and
double click on the onset, then minimum, and then the next double-click will be onset of the
next storm.

interval [(optional)] Size of the X window to show. This should be in units that can be added
to/subtracted from individual elements of x (e.g. timedelta if x is a series of datetime.)
Defaults to showing the entire plot.

auto_interval [boolean (optional)] Automatically adjust interval based on the average distance
between selected events. Default is True if interval is not specified; False if interval is
specified.

auto_scale [boolean (optional, default True):] Automatically adjust the Y axis to match the data
as the X axis is panned.

ymin [(optional, default None)] If auto_scale is True, the bottom of the autoscaled Y axis will
never be above ymin (i.e. ymin will always be shown on the plot). This prevents the au-
toscaling from blowing up very small features in mostly flat portions of the plot. The user
can still manually zoom in past this point. The autoscaler will always zoom out to show the
data.

ymax [(optional, default None)] Similar to ymin, but the top of the Y axis will never be below
ymax.

line [matplotlib.lines.Line2D (optional)] Specify the matplotlib line object to use for autoscal-
ing the Y axis. If this is not specified, the first line object on the provided subplot will be
used. This should usually be correct.

150 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.plot.utils
>>> import numpy
>>> import matplotlib.pyplot as plt
>>> x = numpy.arange(630) / 100.0 * numpy.pi
>>> y = numpy.sin(x)
>>> clicker = spacepy.plot.utils.EventClicker(
... n_phases=2, #Two picks per event
... interval=numpy.pi * 2) #Display one cycle at a time
>>> plt.plot(x, y)
>>> clicker.analyze() #Double-click on max and min of each cycle; close
>>> e = clicker.get_events()
>>> peaks = e[:, 0, 0] #x value of event starts
>>> peaks -= 2 * numpy.pi * numpy.floor(peaks / (2 * numpy.pi)) #mod 2pi
>>> max(numpy.abs(peaks - numpy.pi / 2)) < 0.2 #Peaks should be near pi/2
True
>>> troughs = e[:, 1, 0] #x value of event ends
>>> troughs -= 2 * numpy.pi * numpy.floor(troughs / (2 * numpy.pi))
>>> max(numpy.abs(troughs - 3 * numpy.pi / 2)) < 0.2 #troughs near 3pi/2
True
>>> d = clicker.get_events_data() #snap-to-data of events
>>> peakvals = d[:, 0, 1] #y value, snapped near peaks
>>> max(peakvals) <= 1.0 #should peak at 1
True
>>> min(peakvals) > 0.9 #should click near 1
True
>>> troughvals = d[:, 1, 1] #y value, snapped near peaks
>>> max(troughvals) <= -0.9 #should click near -1
True
>>> min(troughvals) <= -1.0 #should bottom-out at -1
True

>>> import spacepy.plot.utils
>>> import spacepy.time
>>> import datetime
>>> import matplotlib.pyplot as plt
>>> import numpy
>>> t = spacepy.time.tickrange('2019-01-01', #get a range of days
... '2019-12-31',
... deltadays=datetime.timedelta(days=1))
>>> y = numpy.linspace(0, 100, 1001)
>>> seconds = t.TAI - t.TAI[0]
>>> seconds = numpy.asarray(seconds) #normal ndarray so reshape (in meshgrid)
→˓works
>>> tt, yy = numpy.meshgrid(seconds, y) #use TAI to get seconds
>>> z = 1 + (numpy.exp(-(yy - 20)**2 / 625) #something like a spectrogram
... * numpy.sin(1e-7 * numpy.pi**2 * tt)**2) #pi*1e7 seconds per year
>>> plt.pcolormesh(t.UTC, y, z)
>>> clicker = spacepy.plot.utils.EventClicker(n_phases=1)
>>> clicker.analyze() #double-click on center of peak; close
>>> events = clicker.get_events() #returns an array of the things clicked
>>> len(events) == 10 #10 if you click on the centers, including the last one
True
>>> clicker.get_events_data() is None #should be nothing
True

4.11. plot - Plot, various specialized plotting functions and associated utilities 151

SpacePy Documentation, Release 0.2.2

analyze() Displays the figure provided and allows the user to
select events.

get_events() Get back the list of events.
get_events_data() Get a list of events, “snapped” to the data.

analyze()
Displays the figure provided and allows the user to select events.

All matplot lib controls for zooming, panning, etc. the figure remain active.

Double left click Mark this point as an event phase. One-phase events are the simplest: they occur at a
particular time. Two-phase events have two times associated with them; an example is any event with
a distinct start and stop time. In that case, the first double-click would mark the beginning, the second
one, the end; the next double-click would mark the beginning of the next event. Each phase of an
event is annotated with a vertical line on the plot; the color and line style is the same for all events,
but different for each phase.

After marking the final phase of an event, the X axis will scroll and zoom to place that phase near the
left of the screeen and include one full interval of data (as defined in the constructor). The Y axis will
be scaled to cover the data in that X range.

Double right click or delete button Remove the last marked event phase. If an entire event (i.e., the first
phase of an event) is removed, the X axis will be scrolled left to the previous event and the Y axis will
be scaled to cover the data in the new range.

Space bar Scroll the X axis by one interval. Y axis will be scaled to cover the data.

When finished, close the figure window (if necessary) and call get_events() to get the list of events.

get_events()
Get back the list of events.

Call after analyze().

Returns

out [array] 3-D array of (x, y) values clicked on. Shape is (n_events, n_phases, 2), i.e.
indexed by event number, then phase of the event, then (x, y).

get_events_data()
Get a list of events, “snapped” to the data.

For each point selected as a phase of an event, selects the point from the original data which is closest
to the clicked point. Distance from point to data is calculated based on the screen distance, not in data
coordinates.

Note that this snaps to data points, not to the closest point on the line between points.

Call after analyze().

Returns

out [array] 3-D array of (x, y) values in the data which are closest to each point clicked on.
Shape is (n_events, n_phases, 2), i.e. indexed by event number, then phase of the event,
then (x, y).

152 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Functions

add_logo(img[, fig, pos, margin]) Add an image (logo) to one corner of a plot.
annotate_xaxis(txt[, ax]) Write text in-line and to the right of the x-axis tick labels
applySmartTimeTicks(ax, time[, dolimit, dola-
bel])

Given an axis ax and a list/array of datetime objects,
time, use the smartTimeTicks function to build smart
time ticks and then immediately apply them to the given
axis.

collapse_vertical(combine[, others,
leave_axis])

Collapse the vertical spacing between two or more sub-
plots.

printfig(fignum[, saveonly, pngonly, clean, . . .]) save current figure to file and call lpr (print).
set_target(target[, figsize, loc, polar]) Given a target on which to plot a figure, determine if

that target is None or a matplotlib figure or axes object.
shared_ylabel(axes, txt, *args, **kwargs) Create a ylabel that spans several subplots
show_used([fig]) Show the areas of a figure which are used/occupied by

plot elements.
smartTimeTicks(time) Returns major ticks, minor ticks and format for time-

based plots
timestamp([position, size, draw, strnow, . . .]) print a timestamp on the current plot, vertical lower right
add_arrows(lines[, n, size, style, . . .]) Add directional arrows along a plotted line.

spacepy.plot.utils.add_logo

spacepy.plot.utils.add_logo(img, fig=None, pos='br', margin=0.05)
Add an image (logo) to one corner of a plot.

The provided image will be placed in a corner of the plot and sized to maintain its aspect ratio and be as large as
possible without overlapping any existing elements of the figure. Thus this should be the last call in constructing
a figure.

Parameters

img [str or numpy.ndarray] The image to place on the figure. If a string, assumed to be a
filename to be read with imread(); if a numpy array, assumed to be the image itself (in a
simliar format).

Returns

(axes, axesimg) [tuple of Axes and AxesImage] The Axes object created to hold the iamge,
and the AxesImage object for the image itself.

Other Parameters

fig [matplotlib.figure.Figure] The figure on which to place the logo; if not specified, the gcf()
function will be used.

pos [str] The position to place the logo. br: bottom right; bl: bottom left; tl: top left; tr: top
right

margin [float] Margin to include on each side of figure, as a fraction of the larger dimension of
the figure (width or height). Default is 0.05 (5%).

4.11. plot - Plot, various specialized plotting functions and associated utilities 153

https://matplotlib.org/api/image_api.html#matplotlib.image.imread
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/image_api.html#matplotlib.image.AxesImage
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf

SpacePy Documentation, Release 0.2.2

Notes

Calls draw() to ensure locations are up to date.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax0 = fig.add_subplot(211)
>>> ax0.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> ax1 = fig.add_subplot(212)
>>> ax1.plot([1, 2, 3], [2, 1, 2])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> spacepy.plot.utils.add_logo('logo.png', fig)
(<matplotlib.axes.Axes at 0x00000000>,
<matplotlib.image.AxesImage at 0x00000000>)

spacepy.plot.utils.annotate_xaxis

spacepy.plot.utils.annotate_xaxis(txt, ax=None)
Write text in-line and to the right of the x-axis tick labels

Annotates the x axis of an Axes object with text placed in-line with the tick labels and immediately to the right
of the last label. This is formatted to match the existing tick marks.

Parameters

txt [str] The annotation text.

Returns

out [matplotlib.text.Text] The Text object for the annotation.

Other Parameters

ax [matplotlib.axes.Axes] The axes to annotate; if not specified, the gca() function will be
used.

Notes

The annotation is placed immediately to the right of the last tick label. Generally the first character of txt
should be a space to allow some room.

Calls draw() to ensure tick marker locations are up to date.

154 Chapter 4. SpacePy Module Reference

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> import datetime
>>> times = [datetime.datetime(2010, 1, 1) + datetime.timedelta(hours=i)
... for i in range(0, 48, 3)]
>>> plt.plot(times, range(16))
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> spacepy.plot.utils.annotate_xaxis(' UT') #mark that times are UT
<matplotlib.text.Text object at 0x0000000>

01-01 0001-01 0601-01 1201-01 1801-02 0001-02 0601-02 1201-02 18

0

2

4

6

8

10

12

14

 UT

spacepy.plot.utils.applySmartTimeTicks

spacepy.plot.utils.applySmartTimeTicks(ax, time, dolimit=True, dolabel=False)
Given an axis ax and a list/array of datetime objects, time, use the smartTimeTicks function to build smart time
ticks and then immediately apply them to the given axis. The first and last elements of the time list will be used
as bounds for the x-axis range.

The range of the time input value will be used to set the limits of the x-axis as well. Set kwarg ‘dolimit’ to False
to override this behavior.

Parameters

4.11. plot - Plot, various specialized plotting functions and associated utilities 155

SpacePy Documentation, Release 0.2.2

ax [matplotlib.pyplot.Axes] A matplotlib Axis object.

time [list] list of datetime objects

dolimit [boolean (optional)] The range of the time input value will be used to set the limits of
the x-axis as well. Setting this overrides this behavior.

dolabel [boolean (optional)] Sets autolabeling of the time axis with “Time from” time[0]

See also:

smartTimeTicks

spacepy.plot.utils.collapse_vertical

spacepy.plot.utils.collapse_vertical(combine, others=(), leave_axis=False)
Collapse the vertical spacing between two or more subplots.

Useful for a multi-panel plot where most subplots should have space between them but several adjacent ones
should not (i.e., appear as a single plot.) This function will remove all the vertical space between the subplots
listed in combine and redistribute the space between all of the subplots in both combine and others in
proportion to their current size, so that the relative size of the subplots does not change.

Parameters

combine [sequence] The Axes objects (i.e. subplots) which should be placed together with no
vertical space.

Other Parameters

others [sequence] The Axes objects (i.e. subplots) which will keep their vertical spacing, but
will be expanded with the space taken away from between the elements of combine.

leave_axis [bool] If set to true, will leave the axis lines and tick marks between the collapsed
subplots. By default, the axis line (“spine”) is removed so the two subplots appear as one.

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

This may require some clean-up of the y axis labels, as they are likely to overlap.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> #Make three stacked subplots
>>> ax0 = fig.add_subplot(311)
>>> ax1 = fig.add_subplot(312)
>>> ax2 = fig.add_subplot(313)
>>> ax0.plot([1, 2, 3], [1, 2, 1]) #just make some lines
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax1.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax2.plot([1, 2, 3], [1, 2, 1])

(continues on next page)

156 Chapter 4. SpacePy Module Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

SpacePy Documentation, Release 0.2.2

(continued from previous page)

[<matplotlib.lines.Line2D object at 0x0000000>]
>>> #Collapse space between top two plots, leave bottom one alone
>>> spacepy.plot.utils.collapse_vertical([ax0, ax1], [ax2])

1.0

1.5

2.0

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
1.0

1.5

2.0

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
1.0

1.5

2.0

spacepy.plot.utils.printfig

spacepy.plot.utils.printfig(fignum, saveonly=False, pngonly=False, clean=False, file-
name=None)

save current figure to file and call lpr (print).

This routine will create a total of 3 files (png, ps and c.png) in the current working directory with a sequence
number attached. Also, a time stamp and the location of the file will be imprinted on the figure. The file ending
with c.png is clean and no directory or time stamp are attached (good for PowerPoint presentations).

Parameters

fignum [integer] matplotlib figure number

saveonly [boolean (optional)] True (don’t print and save only to file) False (print and save)

pngolny [boolean (optional)] True (only save png files and print png directly) False (print ps
file, and generate png, ps; can be slow)

clean [boolean (optional)] True (print and save only clean files without directory info) False
(print and save directory location as well)

4.11. plot - Plot, various specialized plotting functions and associated utilities 157

SpacePy Documentation, Release 0.2.2

filename [string (optional)] None (If specified then the filename is set and code does not use the
sequence number)

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> p = plt.plot([1,2,3],[2,3,2])
>>> spacepy.plot.utils.printfig(1, pngonly=True, saveonly=True)

spacepy.plot.utils.set_target

spacepy.plot.utils.set_target(target, figsize=None, loc=None, polar=False)
Given a target on which to plot a figure, determine if that target is None or a matplotlib figure or axes object.
Based on the type of target, a figure and/or axes will be either located or generated. Both the figure and axes
objects are returned to the caller for further manipulation. This is used in nearly all add_plot-type methods.

Parameters

target [object] The object on which plotting will happen.

Returns

fig [object] A matplotlib figure object on which to plot.

ax [object] A matplotlib subplot object on which to plot.

Other Parameters

figsize [tuple] A two-item tuple/list giving the dimensions of the figure, in inches. Defaults to
Matplotlib defaults.

loc [integer] The subplot triple that specifies the location of the axes object. Defaults to mat-
plotlib default (111).

polar [bool] Set the axes object to polar coodinates. Defaults to False.

Examples

>>> import matplotlib.pyplot as plt
>>> from spacepy.pybats import set_target
>>> fig = plt.figure()
>>> fig, ax = set_target(target=fig, loc=211)

spacepy.plot.utils.shared_ylabel

spacepy.plot.utils.shared_ylabel(axes, txt, *args, **kwargs)
Create a ylabel that spans several subplots

Useful for a multi-panel plot where several subplots have the same units/quantities on the y axis.

Parameters

axes [list] The Axes objects (i.e. subplots) which should share a single label

txt [str] The label to place in the middle of all the axes objects.

158 Chapter 4. SpacePy Module Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

SpacePy Documentation, Release 0.2.2

Returns

out [matplotlib.text.Text] The Text object for the label.

Other Parameters

Additional arguments and keywords are passed through to

:meth:`~matplotlib.axes.Axes.set_ylabel`

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

The label is associated with the bottommost subplot in axes.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> #Make three stacked subplots
>>> ax0 = fig.add_subplot(311)
>>> ax1 = fig.add_subplot(312)
>>> ax2 = fig.add_subplot(313)
>>> ax0.plot([1, 2, 3], [1, 2, 1]) #just make some lines
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax1.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> ax2.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D object at 0x0000000>]
>>> #Create a green label across all three axes
>>> spacepy.plot.utils.shared_ylabel([ax0, ax1, ax2],
... 'this is a very long label that spans all three axes', color='g')

spacepy.plot.utils.show_used

spacepy.plot.utils.show_used(fig=None)
Show the areas of a figure which are used/occupied by plot elements.

This function will overplot each element of a plot with a rectangle showing the full bounds of that element, to
see for example the margins and such used by a text label.

Returns

boxes [list of Rectangle] The Rectangle objects used for the overplot.

Other Parameters

fig [matplotlib.figure.Figure] The figure to mark up; if not specified, the gcf() function will
be used.

4.11. plot - Plot, various specialized plotting functions and associated utilities 159

https://matplotlib.org/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf

SpacePy Documentation, Release 0.2.2

Notes

Calls draw() to ensure locations are up to date.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax0 = fig.add_subplot(211)
>>> ax0.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> ax1 = fig.add_subplot(212)
>>> ax1.plot([1, 2, 3], [2, 1, 2])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> spacepy.plot.utils.show_used(fig)
[<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>]

160 Chapter 4. SpacePy Module Reference

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

SpacePy Documentation, Release 0.2.2

spacepy.plot.utils.smartTimeTicks

spacepy.plot.utils.smartTimeTicks(time)
Returns major ticks, minor ticks and format for time-based plots

smartTimeTicks takes a list of datetime objects and uses the range to calculate the best tick spacing and format.
Returned to the user is a tuple containing the major tick locator, minor tick locator, and a format string – all
necessary to apply the ticks to an axis.

It is suggested that, unless the user explicitly needs this info, to use the convenience function applySmartTimeT-
icks to place the ticks directly on a given axis.

Parameters

time [list] list of datetime objects

Returns

out [tuple] tuple of Mtick - major ticks, mtick - minor ticks, fmt - format

See also:

applySmartTimeTicks

spacepy.plot.utils.timestamp

spacepy.plot.utils.timestamp(position=(1.003, 0.01), size='xx-small', draw=True, strnow=None,
rotation='vertical', ax=None, **kwargs)

print a timestamp on the current plot, vertical lower right

Parameters

position [list] position for the timestamp

size [string (optional)] text size

draw [Boolean (optional)] call draw to make sure it appears

kwargs [keywords] other keywords to axis.annotate

Examples

>>> import spacepy.plot.utils
>>> from pylab import plot, arange
>>> plot(arange(11))
[<matplotlib.lines.Line2D object at 0x49072b0>]
>>> spacepy.plot.utils.timestamp()

4.11. plot - Plot, various specialized plotting functions and associated utilities 161

SpacePy Documentation, Release 0.2.2

spacepy.plot.utils.add_arrows

spacepy.plot.utils.add_arrows(lines, n=3, size=12, style='->', dorestrict=False, posi-
tions=False)

Add directional arrows along a plotted line. Useful for plotting flow lines, magnetic field lines, or other direc-
tional traces.

lines can be either Line2D, a list or tuple of lines, or a LineCollection object.

For each line, arrows will be added using :method:`~matplotlib.axes.Axes.annotate`. Arrows will be spread
evenly over the line using the number of points in the line as the metric for spacing. For example, if a line has
120 points and 3 arrows are requested, an arrow will be added at point number 30, 60, and 90. Arrow color and
alpha is obtained from the parent line.

Parameters

lines [Line2D, a list/tuple, or LineCollection] A single line or group of lines on which
to place the arrows. Arrows inherent color and transparency (alpha) from the line on which
they are placed.

Returns

None

Other Parameters

n [integer] Number of arrows to add to each line; defaults to 3.

size [integer] The size of the arrows in points. Defaults to 12.

style [string] Set the style of the arrow via ArrowStyle, e.g. ‘->’ (default) or ‘-|>’

dorestrict [boolean] If True (default), only points along the line within the current limits of the
axes will be considered when distributing arrows.

positions [Nx2 array] N must be the number of lines provided via the argument lines. If pro-
vided, only one arrow will be placed per line. positions sets the explicit location of each
arrow for each line as X-Y space in Axes coordinates.

Notes

The algorithm works by dividing the line in to n*+1 segments and placing an arrow between each segment,
endpoints excluded. Arrows span the shortest distance possible, i.e., two adjacent points along a line. For lines
that are long spatially but sparse in points, the arrows will have long tails that may extend beyond axes bounds.
For explicit positions, the arrow is placed at the point on the curve closest to that position and the exact position
is not always attainable. A maximum number of arrows equal to one-half of the number of points in a line per
line will be created, so not all lines will receive *n arrows.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> x = np.arange(1, 10, .01)
>>> y = np.sin(x)
>>> line = plt.plot(x,y)
>>> add_arrows(line, n=15, style='-|>')

162 Chapter 4. SpacePy Module Reference

https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/api/collections_api.html#matplotlib.collections.LineCollection
https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/api/collections_api.html#matplotlib.collections.LineCollection
https://matplotlib.org/api/_as_gen/matplotlib.patches.ArrowStyle.html#matplotlib.patches.ArrowStyle

SpacePy Documentation, Release 0.2.2

4.12 PoPPy - Point Processes in Python

PoPPy – Point Processes in Python.

This module contains point process class types and a variety of functions for association analysis. The routines given
here grew from work presented by Morley and Freeman (Geophysical Research Letters, 34, L08104, doi:10.1029/
2006GL028891, 2007), which were originally written in IDL. This module is intended for application to discrete
time series of events to assess statistical association between the series and to calculate confidence limits. Any mis-
application or mis-interpretation by the user is the user’s own fault.

>>> import datetime as dt
>>> import spacepy.time as spt

Since association analysis is rather computationally expensive, this example shows timing.

>>> t0 = dt.datetime.now()
>>> onsets = spt.Ticktock(onset_epochs, 'CDF')
>>> ticksR1 = spt.Ticktock(tr_list, 'CDF')

Each instance must be initialized

>>> lags = [dt.timedelta(minutes=n) for n in range(-400,401,2)]
>>> halfwindow = dt.timedelta(minutes=10)
>>> pp1 = poppy.PPro(onsets.UTC, ticksR1.UTC, lags, halfwindow)

To perform association analysis

>>> pp1.assoc()
Starting association analysis
calculating association for series of length [3494, 1323] at 401 lags
>>> t1 = dt.datetime.now()
>>> print("Elapsed: " + str(t1-t0))
Elapsed: 0:35:46.927138

Note that for calculating associations between long series at a large number of lags is SLOW!!

To plot

>>> pp1.plot(dpi=80)
Error: No confidence intervals to plot - skipping

To add 95% confidence limits (using 4000 bootstrap samples)

>>> pp1.aa_ci(95, n_boots=4000)

The plot method will then add the 95% confidence intervals as a semi- transparent patch.

Authors: Steve Morley and Jon Niehof Institution: Los Alamos National Laboratory Contact: smorley@lanl.gov,
jniehof@lanl.gov

Copyright 2010 Los Alamos National Security, LLC.

4.12. PoPPy - Point Processes in Python 163

mailto:smorley@lanl.gov
mailto:jniehof@lanl.gov

SpacePy Documentation, Release 0.2.2

Classes

PPro(process1, process2[, lags, winhalf, . . .]) PoPPy point process object

4.12.1 spacepy.poppy.PPro

class spacepy.poppy.PPro(process1, process2, lags=None, winhalf=None, verbose=False)
PoPPy point process object

Initialize object with series1 and series2. These should be timeseries of events, given as lists, arrays, or lists of
datetime objects. Includes method to perform association analysis of input series

Output can be nicely plotted with plot().

aa_ci(inter[, n_boots, seed]) Get bootstrap confidence intervals for association
number

assoc([u, h]) Perform association analysis on input series
assoc_mult(windows[, inter, n_boots, seed]) Association analysis w/confidence interval on multi-

ple windows
plot([figsize, dpi, asympt, show, norm, . . .]) Create basic plot of association analysis.
plot_mult(windows, data[, min, max, . . .]) Plots a 2D function of window size and lag
swap() Swaps process 1 and process 2

aa_ci(inter, n_boots=1000, seed=None)
Get bootstrap confidence intervals for association number

Requires input of desired confidence interval, e.g.:

>>> obj.aa_ci(95)

Upper and lower confidence limits are added to ci.

After calling, conf_above will contain the confidence (in percent) that the association number at that
lag is above the asymptotic association number. (The confidence of being below is 100 - conf_above) For
minor variations in conf_above to be meaningful, a large number of bootstraps is required. (Rougly, 1000
to be meaningful to the nearest percent; 10000 to be meaningful to a tenth of a percent.) A conf_above of
100 usually indicates an insufficient sample size to resolve, not perfect certainty.

Note also that a 95% chance of being above indicates an exclusion from the 90% confidence interval!

Parameters

inter [float] percentage confidence interval to calculate

n_boots [int, optional] number of bootstrap iterations to run

seed [int, optional] seed for the random number generator. If not specified, Python code will
use numpy’s RNG and its current seed; C code will seed from the clock.

Warning: If seed is specified, results may not be reproducible between systems with different sizes
for C long type. Note that 64-bit Windows uses a 32-bit long and so results will be the same between
64 and 32-bit Windows, but not between 64-bit Windows and other 64-bit operating systems. If seed
is not specified, results are not reproducible anyhow.

164 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

assoc(u=None, h=None)
Perform association analysis on input series

Parameters

u [list, optional] the time lags to use

h : association window half-width, same type as process1

assoc_mult(windows, inter=95, n_boots=1000, seed=None)
Association analysis w/confidence interval on multiple windows

Using the time sequence and lags stored in this object, perform full association analysis, including boot-
strapping of confidence intervals, for every listed window half-size

Parameters

windows [sequence] window half-size for each analysis

inter [float, optional] desired confidence interval, default 95

n_boots [int, optional] number of bootstrap iterations, default 1000

seed [int, optional] Random number generator seed. It is STRONGLY recommended not to
specify (i.e. leave None) to permit multithreading.

Returns

out [three numpy array] Three numpy arrays, (windows x lags), containing (in order) low
values of confidence interval, high values of ci, percentage confidence above the asymp-
totic association number

Warning: This function is likely to take a LOT of time.

ci
Contains the upper and lower confidence limits for the association number as a function of lag. The first
element is the array of lower limits; the second, the array of upper limits. Not available until after calling
aa_ci().

conf_above
Contains the confidence that the association number, as a function of lag, is above the asymptotic associ-
ation number. (The confidence of being below is 100 - conf_above.) Not available until after calling
aa_ci().

plot(figsize=None, dpi=80, asympt=True, show=True, norm=True, xlabel='Time lag', xscale=None,
ylabel=None, title=None, transparent=True)

Create basic plot of association analysis.

Uses object attributes created by assoc() and, optionally, aa_ci().

Parameters

figsize [, optional] passed through to matplotlib.pyplot.figure

dpi [int, optional] passed through to matplotlib.pyplot.figure

asympt [boolean, optional] True to overplot the line of asymptotic association number

show [boolean, optional] Show the plot? (if false, will create without showing)

norm [boolean, optional] Normalize plot to the asymptotic association number

title [string, optional] label/title for the plot

4.12. PoPPy - Point Processes in Python 165

SpacePy Documentation, Release 0.2.2

xlabel [string, optional] label to put on the X axis of the resulting plot

xscale [float, optional] scale x-axis by this factor (e.g. 60.0 to convert seconds to minutes)

ylabel [string, optional] label to put on the Y axis of the resulting plot

transparent [boolean, optional] make c.i. patch transparent (default)

plot_mult(windows, data, min=None, max=None, cbar_label=None, figsize=None, dpi=80, xla-
bel='Lag', ylabel='Window Size')

Plots a 2D function of window size and lag

Parameters

windows [list] list of window sizes (y axis)

data [list] list of data, dimensioned (windows x lags)

min [float, optional] clip L{data} to this minimum value

max [float, optional] clip L{data} to this maximum value

swap()
Swaps process 1 and process 2

Functions

plot_two_ppro(pprodata, pproref[, ratio, . . .]) Overplots two PPro objects
boots_ci(data, n, inter, func[, seed, . . .]) Construct bootstrap confidence interval
value_percentile(sequence, target) Find the percentile of a particular value in a sequence

4.12.2 spacepy.poppy.plot_two_ppro

spacepy.poppy.plot_two_ppro(pprodata, pproref, ratio=None, norm=False, title=None, xs-
cale=None, figsize=None, dpi=80, ylim=[None, None], log=False,
xticks=None, yticks=None)

Overplots two PPro objects

Parameters

pprodata [PPro] first point process to plot (in blue)

pproref [PPro] second process to plot (in red)

ratio [float] multiply L{pprodata} by this ratio before plotting, useful for comparing processes
of different magnitude

norm [boolean] normalize everything to L{pproref}, i.e. the association number for L{pproref}
will always plot as 1.

title [string] title to put on the plot

xscale [float] scale x-axis by this factor (e.g. 60.0 to convert seconds to minutes)

figsize : passed through to matplotlib.pyplot.figure

dpi [int] passed through to matplotlib.pyplot.figure

ylim [list] [minimum, maximum] values of y for the axis

log [bollean] True for a log plot

166 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

xticks [sequence or float] if provided, a list of tickmarks for the X axis

yticks [sequance or float] if provided, a list of tickmarks for the Y axis

4.12.3 spacepy.poppy.boots_ci

spacepy.poppy.boots_ci(data, n, inter, func, seed=None, target=None, sample_size=None,
usepy=False, nretvals=1)

Construct bootstrap confidence interval

The bootstrap is a statistical tool that uses multiple samples derived from the original data (called surrogates)
to estimate a parameter of the population from which the sample was drawn. This assumes that the sample is
randomly drawn and hence is representative of the underlying distribution. The benefit of the bootstrap is that
it is non-parametric and can be applied in situations where there is reasonable doubt about the characteristics of
the underlying distribution. This routine uses the boot- strap for its most common application - the estimation
of confidence intervals.

Parameters

data [array like] data to bootstrap

n [int] number of surrogate series to select, i.e. number of bootstrap iterations.

inter [numerical] desired percentage confidence interval

func [callable] Function to apply to each surrogate series

sample_size [int] number of samples in the surrogate series, default length of L{data}. This will
change the statistical properties of the bootstrap and should only be used for good reason!

seed [int] Optional seed for the random number generator. If not specified, numpy generator
will not be reseeded; C generator will be seeded from the clock.

target [same as data] a ‘target’ value. If specified, will also calculate percentage confidence of
being at or above this value.

nretvals [int] number of return values from input function

Returns

out [sequence of float] inter percent confidence interval on value derived from func applied to
the population sampled by data. If target is specified, also the percentage confidence of
being above that value.

Examples

>>> data, n = numpy.random.lognormal(mean=5.1, sigma=0.3, size=3000), 4000.
>>> myfunc = lambda x: numpy.median(x)
>>> ci_low, ci_high = poppy.boots_ci(data, n, 95, myfunc)
>>> ci_low, numpy.median(data), ci_high
(163.96354196633686, 165.2393331896551, 166.60491435416566) iter. 1
... repeat
(162.50379144492726, 164.15218265100233, 165.42840588032755) iter. 2

For comparison

>>> data = numpy.random.lognormal(mean=5.1, sigma=0.3, size=90000)
>>> numpy.median(data)
163.83888237895815

4.12. PoPPy - Point Processes in Python 167

SpacePy Documentation, Release 0.2.2

Note that the true value of the desired quantity may lie outside the 95% confidence interval one time in 20
realizations. This occurred for the first iteration here.

For the lognormal distribution, the median is found exactly by taking the exponential of the “mean” parameter.
Thus here, the theoretical median is 164.022 (6 s.f.) and this is well captured by the above bootstrap confidence
interval.

4.12.4 spacepy.poppy.value_percentile

spacepy.poppy.value_percentile(sequence, target)
Find the percentile of a particular value in a sequence

Parameters

sequence [sequence] a sequence of values, sorted in ascending order

target [same type as sequence] a target value

Returns

out [float] the percentile of target in sequence

4.13 PyBats - SWMF & BATS-R-US Analysis Tools

PyBats! An open source Python-based interface for reading, manipulating, and visualizing BATS-R-US and SWMF
output. For more information on the SWMF, please visit the Center for Space Environment Modeling.

4.13.1 Introduction

At its most fundamental level, PyBats provides access to output files written by the Space Weather Modeling Frame-
work and the codes contained within. The key task performed by PyBats is loading simulation data into a Spacepy
data model object so that the user can move on to the important tasks of analyzing and visualizing the values. The
secondary goal of PyBats is to make common tasks performed with these data as easy as possible. The result is that
most SWMF output can be opened and visualized using only a few lines of code. Many complicated tasks, such as
field line integration, is included as well.

4.13.2 Organization

Many output files in the SWMF share a common format. Objects to handle broad formats like these are found in the
base module. The base module has classes to handle SWMF input files, as well.

The rest of the classes are organized by code, i.e. classes and functions specifically relevant to BATS-R-US can be
found in spacepy.pybats.bats. Whenever a certain code included in the SWMF requires a independent class
or a subclass from the PyBats base module, it will receive its own submodule.

168 Chapter 4. SpacePy Module Reference

http://csem.engin.umich.edu

SpacePy Documentation, Release 0.2.2

4.13.3 Conventions and Prefixes

Nearly every class in PyBats inherits from spacepy.datamodel.SpaceData, so it is important for users to
understand how to employ and explore SpaceData objects. There are a few exceptions, so always pay close attention
to the docstrings and examples. Legacy code that does not adhere to this pattern is slowly being brought up-to-date
with each release.

Visualization methods have two prefixes: plot_ and add_. Whenever a method begins with plot_, a quick-look product
will be created that is not highly- configurable. These methods are meant to yeild either simple diagnostic plots
or static, often-used products. There are few methods that use this prefix. The prefix add_ is always followed by
plot_type; it indicates a plotting method that is highly configurable and meant to be combined with other add_-like
methods and matplotlib commands.

Common calculations, such as calculating Alfven wave speeds of MHD results, are strewn about PyBats’ classes.
They are always given the method prefix calc_, i.e. calc_alfven. Methods called calc_all will search for all class
methods with the calc_ prefix and call them.

Copyright ©2010 Los Alamos National Security, LLC.

4.13.4 Submodules

There are submodules for most models included within the SWMF. The classes and methods contained within are
code-specific, yielding power and convenience at the cost of flexibility. A few of the submodules are helper modules-
they are not code specific, but rather provide functionality not related to an SWMF-included code.

bats A PyBats module for handling input, output, and visual-
ization of binary SWMF output files taylored to BATS-
R-US-type data.

dgcpm The PyBats submodule for handling input and output for
the Dynamic Global Core Plasma Model (DGCPM), a
plasmasphere module of the SWMF.

dipole Some functions for the generation of a dipole field.
gitm PyBats submodule for handling input/output for the

Global Ionosphere-Thermosphere Model (GITM), one
of the choices for the UA module in the SWMF.

kyoto kyoto is a tool set for obtaining and handling geomag-
netic indices stored at the Kyoto World Data Center
(WDC) website.

pwom PyBats submodule for handling input/output for the Po-
lar Wind Outflow Model (PWOM), one of the choices
for the PW module in the SWMF.

ram A module for reading, handling, and plotting RAM-
SCB output.

rim Classes, functions, and methods for reading, writing,
and plotting output from the Ridley Ionosphere Model
(RIM) and the similar legacy code, Ridley Serial.

trace2d A set of routines for fast field line tracing.

4.13. PyBats - SWMF & BATS-R-US Analysis Tools 169

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html

SpacePy Documentation, Release 0.2.2

spacepy.pybats.bats

A PyBats module for handling input, output, and visualization of binary SWMF output files taylored to BATS-R-US-
type data.

Classes

BatsLog(filename[, starttime, keep_case]) A specialized version of LogFile that includes spe-
cial methods for plotting common BATS-R-US log file
values, such as D$_{ST}$.

Stream(bats, xstart, ystart, xfield, yfield) A class for streamlines.
Bats2d(filename[, format]) A child class of IdlFile taylored to BATS-R-US out-

put.
Mag(nlines, time[, gmvars, ievars]) A container for data from a single BATS-R-US virtual

magnetometer.
MagFile(filename[, ie_name, find_ie]) BATS-R-US magnetometer files are powerful tools for

both research and operations.
GeoIndexFile(filename[, keep_case]) Geomagnetic Index files are a specialized BATS-R-US

output that contain geomagnetic indices calculated from
simulated ground-based magnetometers.

VirtSat(*args, **kwargs) A spacepy.pybats.LogFile object tailored to
virtual satellite output; includes special satellite-specific
plotting methods.

spacepy.pybats.bats.BatsLog

class spacepy.pybats.bats.BatsLog(filename, starttime=(2000, 1, 1, 0, 0, 0), keep_case=True,
*args, **kwargs)

A specialized version of LogFile that includes special methods for plotting common BATS-R-US log file
values, such as D$_{ST}$.

add_dst_quicklook([target, loc, plot_obs,
. . .])

Create a quick-look plot of Dst (if variable present in
file) and compare against observations.

add_dst_quicklook(target=None, loc=111, plot_obs=False, epoch=None, add_legend=True,
plot_sym=False, dstvar=None, obs_kwargs={'c': 'k', 'ls': '--'}, **kwargs)

Create a quick-look plot of Dst (if variable present in file) and compare against observations.

Like all add_* * methods in Pybats, the *target kwarg determines where to place the plot. If kwarg target
is None (default), a new figure is generated from scratch. If target is a matplotlib Figure object, a new axis
is created to fill that figure at subplot location loc (defaults to 111). If target is a matplotlib Axes object,
the plot is placed into that axis at subplot location loc.

With newer versions of BATS-R-US, new dst-like variables are included, named ‘dst’, ‘dst-sm’, ‘dstflx’,
etc. This subroutine will attempt to first use ‘dst-sm’ as it is calculated consistently with observations. If
not found, ‘dst’ is used. Users may choose which value to use via the dstvar kwarg.

Observed Dst and SYM-H is automatically fetched from the Kyoto World Data Center via the spacepy.
pybats.kyoto module. The associated spacepy.pybats.kyoto.KyotoDst or spacepy.
pybats.kyoto.KyotoSym object, which holds the observed Dst/SYM-H, is stored as self.obs_dst
for future use. The observed line can be customized via the obs_kwargs kwarg, which is a dictionary of
plotting keyword arguments.

170 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

If kwarg epoch is set to a datetime object, a vertical dashed line will be placed at that time.

The figure and axes objects are returned to the user.

spacepy.pybats.bats.Stream

class spacepy.pybats.bats.Stream(bats, xstart, ystart, xfield, yfield, style='mag',
type='streamline', method='rk4', var_list='all', ex-
tract=False, maxPoints=20000, *args, **kwargs)

A class for streamlines. Contains all of the information about the streamline, including extracted variables.

Upon instantiation, the object will trace through the vector field determined by the “[x/y]field” values and the
Bats object “bats”.

Parameters

bats [Bats] Bats2d object through which to trace.

xstart [float] X value of location to start the trace.

ystart [float] Y value of location to start the trace.

xfield [str] Name of variable in bats which contains X values of the field

yfield [str] Name of variable in bats which contains Y values of the field

Other Parameters

style [str] Sets line style, including colors. See set_style() for details. (Default ‘mag’)

type [str] (Default ‘streamline’)

method [str] Integration method. The default is Runge-Kutta 4 (‘rk4’) which gives a good blend
of speed and accuracy. See the test functions in trace2d for more info. The other option
is a simple Euler’s method approach (‘eul’). (Default ‘rk4’)

extract [bool] (Default: False) Extract variables along stream trace and save within object.

maxPoints [int] (Default : 20000) Maximum number of integration steps to take.

var_list [string or sequence of strings] (Default : ‘all’) List of values to extract from dataset.
Defaults to ‘all’, for all values within bats.

Notes

Methods

set_style(style) Set the line style either using a simple matplotlib-
type style string or using a preset style type.

treetrace(bats[, maxPoints]) Trace through the vector field using the quad tree.
trace(bats) Trace through the vector field.
plot(ax, *args, **kwargs) Add streamline to axes object “ax”.

set_style(style)
Set the line style either using a simple matplotlib-type style string or using a preset style type. Current
types include:

‘mag’ [treat line as a magnetic field line. Closed lines are] white, other lines are black.

treetrace(bats, maxPoints=20000)

4.13. PyBats - SWMF & BATS-R-US Analysis Tools 171

SpacePy Documentation, Release 0.2.2

Trace through the vector field using the quad tree.

trace(bats)
Trace through the vector field.

plot(ax, *args, **kwargs)
Add streamline to axes object “ax”.

spacepy.pybats.bats.Bats2d

class spacepy.pybats.bats.Bats2d(filename, format='binary')
A child class of IdlFile taylored to BATS-R-US output.

spacepy.pybats.bats.Mag

class spacepy.pybats.bats.Mag(nlines, time, gmvars=(), ievars=(), *args, **kwargs)
A container for data from a single BATS-R-US virtual magnetometer. These work just like a typical spacepy.
pybats.PbData object. Beyond raw magnetometer data, additional values are calculated and stored, includ-
ing total pertubations (the sum of all global and ionospheric pertubations as measured by the magnetometer).
Users will be interested in methods add_comp_plot() and calc_dbdt().

Instantiation is best done through :class: spacepy.pybats.MagFile objects, which load and parse organize many
virtual magnetometers from a single output file into a single object. However, they can be created manually,
though painfully. Users must instantiate by handing the new object the number of lines that will be parsed (rather,
the number of data points that will be needed), a time vector, and (optionally) the list of variables coming from
the GM and IE module. While the latter two are keyword arguments, at least one should be provided. Next,
the arrays whose keys were given by the gmvars and ievars keyword arguments in the instantiation step can
either be filled manually or by using the parse_gmline() and parse_ieline() methods to parse lines
of ascii data from a magnetometer output file. Finally, the recalc() method should be called to calculate total
perturbation.

spacepy.pybats.bats.MagFile

class spacepy.pybats.bats.MagFile(filename, ie_name=None, find_ie=False, *args, **kwargs)
BATS-R-US magnetometer files are powerful tools for both research and operations. MagFile objects open,
parse, and visualize such output.

The $delta B$ calculated by the SWMF requires two components: GM (BATSRUS) and IE (Ridley_serial).
The data is spread across two files: GM_mag*.dat and IE_mag*.dat. The former contains $delta B$ caused by
gap-region (i.e., inside the inner boundary) FACs and the changing global field. The latter contains the $delta
B$ caused by Pederson and Hall currents in the ionosphere. MagFile objects can open one or both of these
files at a time; when both are opened, the total $delta B$ is calculated and made available to the user.

Usage:

>>> # Open up the GM magnetometer file only.
>>> obj = spacepy.pybats.bats.MagFile('GM_file.mag')
>>>
>>> # Open up both the GM and IE file [LEGACY SWMF ONLY]
>>> obj = spacepy.pybats.bats.MagFile('GM_file.mag', 'IE_file.mag')
>>>
>>> # Open up the GM magnetometer file; search for the IE file.
>>> obj = spacepy.pybats.bats.MagFile('GM_file.mag', find_ie=True)

172 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Note that the find_ie kwarg uses a simple search assuming the data remain in a typical SWMF-output organi-
zational tree (i.e., if the results of a simulation are in folder results, the GM magnetometer file can be found in
results/GM/ or results/GM/IO2/ while the IE file can be found in results/IE/ or results/IE/ionosphere/). It will
also search the present working directory. This method is not robust; the user must take care to ensure that the
two files correspond to each other.

spacepy.pybats.bats.GeoIndexFile

class spacepy.pybats.bats.GeoIndexFile(filename, keep_case=True, *args, **kwargs)
Geomagnetic Index files are a specialized BATS-R-US output that contain geomagnetic indices calculated from
simulated ground-based magnetometers. Currently, the only index instituted is Kp through the faKe_p setup.
Future work will expand the system to include Dst, AE, etc.

GeoIndFiles are a specialized subclass of pybats.LogFile. It includes additional methods to quickly visualize
the output, perform data-model comparisons, and more.

spacepy.pybats.bats.VirtSat

class spacepy.pybats.bats.VirtSat(*args, **kwargs)
A spacepy.pybats.LogFile object tailored to virtual satellite output; includes special satellite-specific
plotting methods.

spacepy.pybats.dgcpm

The PyBats submodule for handling input and output for the Dynamic Global Core Plasma Model (DGCPM), a
plasmasphere module of the SWMF.

spacepy.pybats.dipole

Some functions for the generation of a dipole field.

Copyright 2010 Los Alamos National Security, LLC.

spacepy.pybats.gitm

PyBats submodule for handling input/output for the Global Ionosphere-Thermosphere Model (GITM), one of the
choices for the UA module in the SWMF.

spacepy.pybats.kyoto

kyoto is a tool set for obtaining and handling geomagnetic indices stored at the Kyoto World Data Center (WDC)
website. Indices can be loaded from file or fetched from the web.

Instantiation of objects from this module should be done through the constructor functions fetch() and load().
Use help on these objects for more information.

4.13. PyBats - SWMF & BATS-R-US Analysis Tools 173

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html

SpacePy Documentation, Release 0.2.2

spacepy.pybats.pwom

PyBats submodule for handling input/output for the Polar Wind Outflow Model (PWOM), one of the choices for the
PW module in the SWMF.

spacepy.pybats.ram

A module for reading, handling, and plotting RAM-SCB output.

spacepy.pybats.rim

Classes, functions, and methods for reading, writing, and plotting output from the Ridley Ionosphere Model (RIM)
and the similar legacy code, Ridley Serial.

Copyright 2010 Los Alamos National Security, LLC.

Classes

Iono(infile, *args, **kwargs) A class for handling 2D output from the Ridley Iono-
sphere Model.

OvalDebugFile(infile, *args, **kwargs) The auroral oval calculations in RIM may spit out spe-
cial debug files that are extremely useful.

spacepy.pybats.rim.Iono

class spacepy.pybats.rim.Iono(infile, *args, **kwargs)
A class for handling 2D output from the Ridley Ionosphere Model. Instantiate an object as follows:

>>> iono = rim.Iono('filename.idl')

. . . where filename.idl is the name of a RIM 2D output file.

spacepy.pybats.rim.OvalDebugFile

class spacepy.pybats.rim.OvalDebugFile(infile, *args, **kwargs)
The auroral oval calculations in RIM may spit out special debug files that are extremely useful. This class
handles reading and plotting the data contained within those files.

Functions

fix_format(filename[, finalize]) Some 2D output files for RIM/RidleySerial have a bro-
ken format: values for the same lat-lon entry are split
across two lines.

get_iono_cb([ct_name]) Several custom colorbars used by RIM and AMIE have
become standard when visualizing data from these mod-
els.

continues on next page

174 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Table 39 – continued from previous page
tex_label(varname) Many variable names used in the Ridley Ionosphere

Model look much better in LaTeX format with their
proper Greek letters.

spacepy.pybats.rim.fix_format

spacepy.pybats.rim.fix_format(filename, finalize=True)
Some 2D output files for RIM/RidleySerial have a broken format: values for the same lat-lon entry are split
across two lines. This function detects and fixes such files in-place.

Deprecated since version 0.2.2: Functionality integrated into rim.Iono.

The original file will not be overwritten if kwarg finalize is set to False.

Parameters

filename [str] The file to repair.

Other Parameters

finalize [bool] If True, overwrite the original file. If False, perform a dry run for testing pur-
poses. Defaults to True.

spacepy.pybats.rim.get_iono_cb

spacepy.pybats.rim.get_iono_cb(ct_name='bwr')
Several custom colorbars used by RIM and AMIE have become standard when visualizing data from these
models. These are ‘blue_white_red’ and ‘white_red’, used for data that have positive and negative values and
for data that have only positive values, respectively. This function builds and returns these colorbars when called
with the initials of the color table name as the only argument.

Other Parameters

ct_name [str] Select the color table. Can be ‘bwr’ for blue-white-red or ‘wr’ for white-red.
Defaults to ‘bwr’.

Examples

>>> bwr_map = get_iono_cb('bwr')
>>> wr_map = get_iono_cb('wr')

spacepy.pybats.rim.tex_label

spacepy.pybats.rim.tex_label(varname)
Many variable names used in the Ridley Ionosphere Model look much better in LaTeX format with their proper
Greek letters. This function takes a variable name, and if it is recognized, returns a properly formatted string that
uses MatPlotLib’s MathText functionality to display the proper characters. If it is not recognized, the varname
is returned.

Parameters

varname [string] The variable to convert to a LaTeX label.

4.13. PyBats - SWMF & BATS-R-US Analysis Tools 175

SpacePy Documentation, Release 0.2.2

Examples

>>>tex_label(‘n_phi’) ‘Phi_{Ionosphere}’ >>>tex_label(‘Not Recognized’) ‘Not Recognized’

spacepy.pybats.trace2d

A set of routines for fast field line tracing. “Number crunching” is performed in C for speed.

Copyright 2010-2014 Los Alamos National Security, LLC.

4.13.5 Top-Level Classes & Functions

Top-level PyBats classes handle common-format input and output from the SWMF and are very flexible. However,
they do little beyond open files for the user.

There are several functions found in the top-level module. These are mostly convenience functions for customizing
plots.

Classes

IdlFile(filename[, format, header, keep_case]) An object class that reads/parses an IDL-formatted out-
put file from the SWMF and places it into a spacepy.
pybats.PbData object.

ImfInput([filename, load, npoints]) A class to read, write, manipulate, and visualize solar
wind upstream input files for SWMF simulations.

LogFile(filename[, starttime, keep_case]) An object to read and handle SWMF-type logfiles.
NgdcIndex([filename, load]) Many models incorporated into the SWMF rely on Na-

tional Geophysical Data Center (NGDC) provided index
files (especially F10.7 and Kp).

PbData(*args, **kwargs) The base class for all PyBats data container classes.
SatOrbit([filename]) An class to load, read, write, and handle BATS-R-US

satellite orbit input files.

spacepy.pybats.IdlFile

class spacepy.pybats.IdlFile(filename, format=None, header='units', keep_case=True, *args,
**kwargs)

An object class that reads/parses an IDL-formatted output file from the SWMF and places it into a spacepy.
pybats.PbData object.

Usage: >>>data = spacepy.pybats.IdlFile(‘binary_file.out’)

See spacepy.pybats.PbData for information on how to explore data contained within the returned object.

This class serves as a parent class to SWMF component-specific derivative classes that do more preprocessing
of the data before returning the object. Hence, using this class to read binary files is typically not the most
efficient way to proceed. Look for a PyBats sub module that suits your specific needs, or use this base object to
write your own.

A note on byte-swapping: PyBats assumes little endian byte ordering because this is what most machines use.
However, there is an autodetect feature such that, if PyBats doesn’t make sense of the first read (a record length
entry, or RecLen), it will proceed using big endian ordering. If this doesn’t work, the error will manifest itself
through the “struct” package as an “unpack requires a string of argument length ‘X’”.

176 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.pybats.ImfInput

class spacepy.pybats.ImfInput(filename=False, load=True, npoints=0, *args, **kwargs)
A class to read, write, manipulate, and visualize solar wind upstream input files for SWMF simulations. More
about such files can be found in the SWMF/BATS-R-US documentation for the #SOLARWINDFILE command.

Creating an ImfInput object is simple:

>>> from spacepy import pybats
>>> obj=pybats.ImfInput(filename='test.dat', load=True)

Upon instantiation, if filename is a valid file AND kwarg load is set to boolean True, the contents of filename
are loaded into the object and no other work needs to be done.

If filename is False or load is False, a blank ImfInput file is created for the user to manipulate. The user
can set the time array and the associated data values (see obj.attrs[‘var’] for a list) to any values desired and use
the method obj.write() to dump the contents to an SWMF formatted input file. See the documentation for the
write method for more details.

Like most pybats objects, you may interact with ImfInput objects as if they were specialized dictionaries.
Access data like so:

>>> obj.keys()
['bx', 'by', 'bz', 'vx', 'vy', 'vz', 'rho', 'temp']
>>> density=obj['rho']

Adding new data entries is equally simple so long as you have the values and the name for the values:

>>> import numpy as np
>>> v = np.sqrt(obj['vx']**2 + obj['vy']**2 + obj['vz']**2)
>>> obj['v']=v

Kwarg Description
filename Set the input/output file name.
load Read file upon instantiation? Defaults to True
npoints For empty data sets, sets number of points (default is 0)

spacepy.pybats.LogFile

class spacepy.pybats.LogFile(filename, starttime=(2000, 1, 1, 0, 0, 0), keep_case=True, *args,
**kwargs)

An object to read and handle SWMF-type logfiles.

LogFile objects read and hold all information in an SWMF ascii time-varying logfile. The file is read upon
instantiation. Many SWMF codes produce flat ascii files that can be read by this class; the most frequently used
ones have their own classes that inherit from this.

See spacepy.pybats.PbData for information on how to explore data contained within the returned object.

Usage: >>>data = spacepy.pybats.LogFile(‘filename.log’)

kwarg Description
starttime Manually set the start time of the data.

Time is handled by Python’s datetime package. Given that time may or may not be given in the logfile, there are
three options for how time is returned:

4.13. PyBats - SWMF & BATS-R-US Analysis Tools 177

SpacePy Documentation, Release 0.2.2

1. if the full date and time are listed in the file, self['time'] is an array of datetime objects
corresponding to the entries. The starttime kwarg is ignored.

2. If only the runtime (seconds from start of simulation) is given, self[‘time’] is an array of datetime
objects that starts from the given starttime kwarg which defaults to 1/1/1 00:00UT.

3. If neither of the above are given, the time is assumed to advance one second per line starting from
either the starttime kwarg or from 2000/1/1 00:00UT + the first iteration (if given in file.) As you can
imagine, this is sketchy at best.

This time issue is output dependent: some SWMF models place the full date and time into the log by default
while others will almost never include the full date and time. The variable self['runtime'] contains the
more generic seconds from simulation start values.

Example usage:

>>> import spacepy.pybats as pb
>>> import pylab as plt
>>> import datetime as dt
>>> time1 = dt.datetime(2009,11,30,9,0)
>>> file1 = pb.logfile('satfile_n000000.dat', starttime=time1)
>>> plt.plot(file1['time'], file1['dst'])

spacepy.pybats.NgdcIndex

class spacepy.pybats.NgdcIndex(filename=None, load=True, *args, **kwargs)
Many models incorporated into the SWMF rely on National Geophysical Data Center (NGDC) provided index
files (especially F10.7 and Kp). These files, albeit simple ascii, have a unique format and expansive header that
can be cumbersome to handle. Data files can be obtained from http://spidr.ngdc.noaa.gov .

NgdcIndex objects aid in reading, creating, and visualizing these files.

Creating an NgdcIndex object is simple:

>>> from spacepy import pybats
>>> obj=pybats.NgdcIndex(filename='ngdc_example.dat')

Upon instantiation, if filename is a valid file AND kwarg load is set to boolean True, the contents of filename
are loaded into the object and no other work needs to be done.

If filename is False or load is False, a blank NgdcIndex is created for the user to manipulate. The user can set
the time array and the ssociated data values to any values desired and use the method obj.write() to dump the
contents to an NGDC formatted input file. See the documentation for the write method for more details.

This class is a work-in-progress. It is especially tuned for SWMF-needs and cannot be considered a general
function for the handling of generic NGDC files.

Kwarg Description
filename Set the input/output file name.
load Read file upon instantiation? Defaults to True

178 Chapter 4. SpacePy Module Reference

http://spidr.ngdc.noaa.gov

SpacePy Documentation, Release 0.2.2

spacepy.pybats.PbData

class spacepy.pybats.PbData(*args, **kwargs)
The base class for all PyBats data container classes. Inherits from spacepy.datamodel.SpaceData but
has additional methods for quickly exploring an SWMF dataset.

Just like spacepy.datamodel.SpaceData objects, PbData objects work just like dictionaries except
they have special attr dictionary attributes for both the top-level object and most values. This means that the
following syntax can be used to explore a generic PbData object:

>>>print obj.keys() >>>print obj.attrs >>>value = obj[key]

Printing PbData objects will produce a tree of contents and attributes; calling self.listunits() will print
all values that have the ‘units’ attribute and the associated units. Hence, it is often most instructive to use the
following two lines to quickly learn a PbData’s contents:

>>>print obj >>>obj.listunits()

PbData is the main organizational tool for Pybats datasets, so the information here is applicable to nearly all
Pybats classes.

spacepy.pybats.SatOrbit

class spacepy.pybats.SatOrbit(filename=None, *args, **kwargs)
An class to load, read, write, and handle BATS-R-US satellite orbit input files. These files are used to fly virtual
satellites through the MHD domain. Note that the output files should be handled by the LogFile and not this
satorbit object. The object’s required and always present attributes are:

Attribute Description
head A list of header lines for the file that contain comments.
coor The three-letter code (see SWMF doc) of the coord system.
file Location of the file to read/write.

The object should always have the following two data keys:

Key Description
time A list or numpy vector of datetime objects
xyz A 3 x len(time) numpy array of x,y,z coordinates associated with the time vector.

A “blank” instantiation will create an empty object for the user to fill. This is desired if the user wants to create
a new orbit, either from data or from scratch, and save it in a properly formatted file. Here’s an example with a
“stationary probe” type orbit where the attributes are filled and then dropped to file:

>>> from spacepy.pybats import SatOrbit
>>> import datetime as dt
>>> import numpy as np
>>> sat = SatOrbit()
>>> sat['time'] = [dt.datetime(2000,1,1), dt.datetime(2000,1,2)]
>>> pos = np.zeros((3,2))
>>> pos[:,0]=[6.6, 0, 0]
>>> pos[:,1]=[6.6, 0, 0]
>>> sat['xyz'] = pos
>>> sat.attrs['coor'] = 'SMG'
>>> sat.attrs['file'] = 'noon_probe.dat'
>>> sat.write()

4.13. PyBats - SWMF & BATS-R-US Analysis Tools 179

SpacePy Documentation, Release 0.2.2

If instantiated with a file name, the name is loaded into the object. For example,

>>> sat=SatOrbit('a_sat_orbit_file.dat')

. . . will populate all fields with the data in a_sat_orbit_file.dat.

Functions

add_body(ax[, rad, facecolor, show_planet, . . .]) Creates a circle of radius=self.attrs[‘rbody’] and returns
the MatPlotLib Ellipse patch object for plotting.

add_planet(ax[, rad, ang, add_night, zorder]) Creates a circle of radius=self.
para['rbody'] and returns the MatPlotLib
Ellipse patch object for plotting.

parse_tecvars(line) Parse the VARIABLES line from a TecPlot-formatted
ascii data file.

spacepy.pybats.add_body

spacepy.pybats.add_body(ax, rad=2.5, facecolor='lightgrey', show_planet=True, ang=0.0,
add_night=True, zorder=1000, **extra_kwargs)

Creates a circle of radius=self.attrs[‘rbody’] and returns the MatPlotLib Ellipse patch object for plotting. If
an axis is specified using the “ax” keyword, the patch is added to the plot. Default color is light grey; extra
keywords are handed to the Ellipse generator function.

Because the body is rarely the size of the planet at the center of the modeling domain, add_planet is automatically
called. This can be negated by using the show_planet kwarg.

Parameters

ax [Matplotlib Axes object] Set the axes on which to place planet.

Other Parameters

rad [float] Set radius of the inner boundary. Defaults to 2.5.

facecolor [string] Set color of face of inner boundary circle via Matplotlib color selectors
(name, hex, etc.) Defaults to ‘lightgrey’.

show_planet [boolean] Turns on/off planet indicator inside inner boundary. Defaults to True

ang [float] Set the rotation of the day-night terminator from the y-axis, in degrees. Defaults to
zero (terminator is aligned with Y-axis.)

add_night [boolean] Add night hemisphere. Defaults to True

zorder [int] Set the matplotlib zorder of the patch to set how other plot elements order with
the inner boundary patch. Defaults to 1000. If a planet is added, it is given a zorder of
zorder+5.

180 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.pybats.add_planet

spacepy.pybats.add_planet(ax, rad=1.0, ang=0.0, add_night=True, zorder=1000, **extra_kwargs)
Creates a circle of radius=self.para['rbody'] and returns the MatPlotLib Ellipse patch object for
plotting. If an axis is specified using the ax keyword, the patch is added to the plot.

Unlike the add_body method, the circle is colored half white (dayside) and half black (nightside) to coincide
with the direction of the sun. Additionally, because the size of the planet is not intrinsically known to the MHD
file, the kwarg “rad”, defaulting to 1.0, sets the size of the planet. add_night can turn off this behavior.

Extra keywords are handed to the Ellipse generator function.

Parameters

ax [Matplotlib Axes object] Set the axes on which to place planet.

Other Parameters

rad [float] Set radius of planet. Defaults to 1.

ang [float] Set the rotation of the day-night terminator from the y-axis, in degrees. Defaults to
zero (terminator is aligned with Y-axis.)

add_night [boolean] Add night hemisphere. Defaults to True

zorder [int] Set the matplotlib zorder of the patch to set how other plot elements order with the
inner boundary patch. Defaults to 1000, nightside patch is given zorder of zorder+5.

spacepy.pybats.parse_tecvars

spacepy.pybats.parse_tecvars(line)
Parse the VARIABLES line from a TecPlot-formatted ascii data file. Create a list of name-unit tuples for each
variable.

4.14 pycdf - Python interface to CDF files

This package provides a Python interface to the Common Data Format (CDF) library used for many NASA missions,
available at http://cdf.gsfc.nasa.gov/. It is targeted at Python 2.6+ and should work without change on either Python 2
or Python 3.

The interface is intended to be ‘pythonic’ rather than reproducing the C interface. To open or close a CDF and access
its variables, see the CDF class. Accessing data within the variables is via the Var class. The lib object provides
access to some routines that affect the functionality of the library in general. The const module contains constants
useful for accessing the underlying library.

The CDF C library must be properly installed in order to use this package. The CDF distribution provides scripts meant
to be called in a user’s login scripts, definitions.B for bash and definitions.C for C-shell derivatives. (See
the installation instructions which come with the CDF library.) These will set environment variables specifying the
location of the library; pycdf will respect these variables if they are set. Otherwise it will search the standard system
library path and the default installation locations for the CDF library.

If pycdf has trouble finding the library, try setting CDF_LIB before importing the module, e.g. if the library is in
CDF/lib in the user’s home directory:

>>> import os
>>> os.environ["CDF_LIB"] = "~/CDF/lib"
>>> from spacepy import pycdf

4.14. pycdf - Python interface to CDF files 181

http://cdf.gsfc.nasa.gov/

SpacePy Documentation, Release 0.2.2

If this works, make the environment setting permanent. Note that on OSX, using plists to set the environment may not
carry over to Python terminal sessions; use .cshrc or .bashrc instead.

Authors: Jon Niehof

Institution: University of New Hampshire

Contact: Jonathan.Niehof@unh.edu

Copyright 2010-2015 Los Alamos National Security, LLC.

4.14.1 Contents

• Quickstart

– Create a CDF

– Read a CDF

– Modify a CDF

– Non record-varying

– Slicing and indexing

• Classes

• Functions

• Submodules

• Data

4.14.2 Quickstart

Create a CDF

This example presents the entire sequence of creating a CDF and populating it with some data; the parts are explained
individually below.

>>> from spacepy import pycdf
>>> import datetime
>>> time = [datetime.datetime(2000, 10, 1, 1, val) for val in range(60)]
>>> import numpy as np
>>> data = np.random.random_sample(len(time))
>>> cdf = pycdf.CDF('MyCDF.cdf', '')
>>> cdf['Epoch'] = time
>>> cdf['data'] = data
>>> cdf.attrs['Author'] = 'John Doe'
>>> cdf.attrs['CreateDate'] = datetime.datetime.now()
>>> cdf['data'].attrs['units'] = 'MeV'
>>> cdf.close()

Import the pycdf module.

>>> from spacepy import pycdf

Make a data set of datetime. These will be converted into CDF_EPOCH types.

182 Chapter 4. SpacePy Module Reference

mailto:Jonathan.Niehof@unh.edu
https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.2.2

>>> import datetime
>>> # make a dataset every minute for a hour
>>> time = [datetime.datetime(2000, 10, 1, 1, val) for val in range(60)]

Warning: If you create a CDF in backwards compatibility mode (default), then datetime objects are degraded
to CDF_EPOCH (millisecond resolution), not CDF_EPOCH16 (microsecond resolution).

Create some random data.

>>> import numpy as np
>>> data = np.random.random_sample(len(time))

Create a new empty CDF. The empty string, ‘’, is the name of the CDF to use as a master; given an empty string, an
empty CDF will be created, rather than copying from a master CDF. If a master is used, data in the master will be
copied to the new CDF.

>>> cdf = pycdf.CDF('MyCDF.cdf', '')

Note: You cannot create a new CDF with a name that already exists on disk. It will throw a NameError

To put data into a CDF, assign it directly to an element of the CDF. CDF objects behave like Python dictionaries.

>>> # put time into CDF variable Epoch
>>> cdf['Epoch'] = time
>>> # and the same with data (the smallest data type that fits the data is used by
→˓default)
>>> cdf['data'] = data

Adding attributes is done similarly. CDF attributes are also treated as dictionaries.

>>> # add some attributes to the CDF and the data
>>> cdf.attrs['Author'] = 'John Doe'
>>> cdf.attrs['CreateDate'] = datetime.datetime.now()
>>> cdf['data'].attrs['units'] = 'MeV'

Closing the CDF ensures the new data are written to disk:

>>> cdf.close()

CDF files, like standard Python files, act as context managers

>>> with cdf.CDF('filename.cdf', '') as cdf_file:
... #do brilliant things with cdf_file
>>> #cdf_file is automatically closed here

4.14. pycdf - Python interface to CDF files 183

https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.2.2

Read a CDF

Reading a CDF is very similar: the CDF object behaves like a dictionary. The file is only accessed when data are
requested. A full example using the above CDF:

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('MyCDF.cdf')
>>> print(cdf)

Epoch: CDF_EPOCH [60]
data: CDF_FLOAT [60]

>>> cdf['data'][4]
0.8609974384307861

>>> data = cdf['data'][...] # don't forget the [...]
>>> cdf_dat = cdf.copy()
>>> cdf_dat.keys()

['Epoch', 'data']
>>> cdf.close()

Again import the pycdf module

>>> from spacepy import pycdf

Then open the CDF, this looks the same and creation, but without mention of a master CDF.

>>> cdf = pycdf.CDF('MyCDF.cdf')

The default __str__() and __repr__() behavior explains the contents, type, and size but not the data.

>>> print(cdf)
Epoch: CDF_EPOCH [60]
data: CDF_FLOAT [60]

To access the data one has to request specific elements of the variable, similar to a Python list.

>>> cdf['data'][4]
0.8609974384307861

>>> data = cdf['data'][...] # don't forget the [...]

CDF.copy() will return the entire contents of a CDF, including attributes, as a SpaceData object:

>>> cdf_dat = cdf.copy()

Since CDF objects behave like dictionaries they have a keys() method and iterations are over the names in keys()

>>> cdf_dat.keys()
['Epoch', 'data']

Close the CDF when finished:

>>> cdf.close()

184 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Modify a CDF

An example modifying the CDF created above:

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('MyCDF.cdf')
>>> cdf.readonly(False)

False
>>> cdf['newVar'] = [1.0, 2.0]
>>> print(cdf)

Epoch: CDF_EPOCH [60]
data: CDF_FLOAT [60]
newVar: CDF_FLOAT [2]

>>> cdf.close()

As before, each step in this example will now be individually explained. Existing CDF files are opened in read-only
mode and must be set to read-write before modification:

>>> cdf.readonly(False)
False

Then new variables can be added

>>> cdf['newVar'] = [1.0, 2.0]

Or contents can be changed

>>> cdf['data'][0] = 8675309

The new variables appear immediately:

>>> print(cdf)
Epoch: CDF_EPOCH [60]
data: CDF_FLOAT [60]
newVar: CDF_FLOAT [2]

Closing the CDF ensures changes are written to disk:

>>> cdf.close()

Non record-varying

Non record-varying (NRV) variables are usually used for data that does not vary with time, such as the energy channels
for an instrument.

NRV variables need to be created with CDF.new(), specifying the keyword ‘recVary’ as False.

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('MyCDF2.cdf', '')
>>> cdf.new('data2', [1], recVary=False)

<Var:
CDF_BYTE [1] NRV
>

>>> cdf['data2'][...]
[1]

4.14. pycdf - Python interface to CDF files 185

SpacePy Documentation, Release 0.2.2

Slicing and indexing

Subsets of data in a variable can be easily referenced with Python’s slicing and indexing notation.

This example uses bisect to read a subset of the data from the hourly data file created in earlier examples.

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('MyCDF.cdf')
>>> start = datetime.datetime(2000, 10, 1, 1, 9)
>>> stop = datetime.datetime(2000, 10, 1, 1, 35)
>>> import bisect
>>> start_ind = bisect.bisect_left(cdf['Epoch'], start)
>>> stop_ind = bisect.bisect_left(cdf['Epoch'], stop)
>>> # then grab the data we want
>>> time = cdf['Epoch'][start_ind:stop_ind]
>>> data = cdf['data'][start_ind:stop_ind]
>>> cdf.close()

The Var documentation has several additional examples.

Access to CDF constants and the C library

Constants defined in cdf.h and occasionally useful in accessing CDFs are available in the const module.

The underlying C library is represented by the lib variable.

4.14.3 Classes

CDF(pathname[, masterpath, create, readonly]) Python object representing a CDF file.
Var(cdf_file, var_name, *args) A CDF variable.
gAttrList(cdf_file[, special_entry]) Object representing all the gAttributes in a CDF.
zAttrList(zvar) Object representing all the zAttributes in a zVariable.
zAttr(cdf_file, attr_name[, create]) zAttribute for zVariables within a CDF.
gAttr(cdf_file, attr_name[, create]) Global Attribute for a CDF
AttrList(cdf_file[, special_entry]) Object representing a list of attributes.
Attr(cdf_file, attr_name[, create]) An attribute, g or z, for a CDF
Library([libpath, library]) Abstraction of the base CDF C library and its state.
CDFCopy(cdf) A dictionary-like copy of all data and attributes in a CDF
VarCopy(zVar) A list-like copy of the data and attributes in a Var
CDFError(status) Raised for an error in the CDF library.
CDFException(status) Base class for errors or warnings in the CDF library.
CDFWarning(status) Used for a warning in the CDF library.
EpochError Used for errors in epoch routines

186 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/bisect.html#module-bisect

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.CDF

class spacepy.pycdf.CDF(pathname, masterpath=None, create=None, readonly=None)
Python object representing a CDF file.

Open or create a CDF file by creating an object of this class.

Parameters

pathname [string] name of the file to open or create

masterpath [string] name of the master CDF file to use in creating a new file. If not provided,
an existing file is opened; if provided but evaluates to False (e.g., ''), an empty new CDF
is created.

create [bool] Create a new CDF even if masterpath isn’t provided

readonly [bool] Open the CDF read-only. Default True if opening an existing CDF; False
if creating a new one. A readonly CDF with many variables may be slow to close. See
readonly().

Raises

CDFError if CDF library reports an error

Warns

CDFWarning if CDF library reports a warning and interpreter is set to error on warnings.

Examples

Open a CDF by creating a CDF object, e.g.:

>>> cdffile = pycdf.CDF('cdf_filename.cdf')

Be sure to close() or save() when done.

Note: Existing CDF files are opened read-only by default, see readonly() to change.

CDF supports the with keyword, like other file objects, so:

>>> with pycdf.CDF('cdf_filename.cdf') as cdffile:
... #do brilliant things with the CDF

will open the CDF, execute the indented statements, and close the CDF when finished or when an error occurs.
The python docs include more detail on this ‘context manager’ ability.

CDF objects behave like a python dictionary, where the keys are names of variables in the CDF, and the values,
Var objects. As a dictionary, they are also iterable and it is easy to loop over all of the variables in a file. Some
examples:

1. List the names of all variables in the open CDF cdffile:

>>> cdffile.keys()
>>> for k in cdffile: #Alternate
... print(k)

2. Get a Var object for the variable named Epoch:

4.14. pycdf - Python interface to CDF files 187

http://docs.python.org/tutorial/inputoutput.html#methods-of-file-objects
http://docs.python.org/reference/compound_stmts.html#with
http://docs.python.org/tutorial/datastructures.html#dictionaries
http://docs.python.org/tutorial/classes.html#iterators

SpacePy Documentation, Release 0.2.2

>>> epoch = cdffile['Epoch']

3. Determine if a CDF contains a variable named B_GSE:

>>> if 'B_GSE' in cdffile:
... print('B_GSE is in the file')
... else:
... print('B_GSE is not in the file')

4. Find how many variables are in the file:

>>> print(len(cdffile))

5. Delete the variable Epoch from the open CDF file cdffile:

>>> del cdffile['Epoch']

6. Display a summary of variables and types in open CDF file cdffile:

>>> print(cdffile)

7. Open the CDF named cdf_filename.cdf, read all the data from all variables into dictionary data,
and close it when done or if an error occurs:

>>> with pycdf.CDF('cdf_filename.cdf') as cdffile:
... data = cdffile.copy()

This last example can be very inefficient as it reads the entire CDF. Normally it’s better to treat the CDF as a
dictionary and access only the data needed, which will be pulled transparently from disc. See Var for more
subtle examples.

Potentially useful dictionary methods and related functions:

• in

• keys

• len()

• list comprehensions

• sorted()

• dictree()

The CDF user’s guide section 2.2 has more background information on CDF files.

The attrs Python attribute acts as a dictionary referencing CDF attributes (do not confuse the two); all the
dictionary methods above also work on the attribute dictionary. See gAttrList for more on the dictionary of
global attributes.

Creating a new CDF from a master (skeleton) CDF has similar syntax to opening one:

>>> cdffile = pycdf.CDF('cdf_filename.cdf', 'master_cdf_filename.cdf')

This creates and opens cdf_filename.cdf as a copy of master_cdf_filename.cdf.

Using a skeleton CDF is recommended over making a CDF entirely from scratch, but this is possible by speci-
fying a blank master:

188 Chapter 4. SpacePy Module Reference

http://docs.python.org/reference/expressions.html#in
http://docs.python.org/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/library/functions.html#len
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/library/functions.html#sorted

SpacePy Documentation, Release 0.2.2

>>> cdffile = pycdf.CDF('cdf_filename.cdf', '')

When CDFs are created in this way, they are opened read-write, see readonly() to change.

By default, new CDFs (without a master) are created in version 2 (backward-compatible) format. To create a
version 3 CDF, use Library.set_backward():

>>> pycdf.lib.set_backward(False)
>>> cdffile = pycdf.CDF('cdf_filename.cdf', '')

Add variables by direct assignment, which will automatically set type and dimension based on the data provided:

>>> cdffile['new_variable_name'] = [1, 2, 3, 4]

or, if more control is needed over the type and dimensions, use new().

Although it is supported to assign Var objects to Python variables for convenience, there are some minor pitfalls
that can arise when changing a CDF that will not affect most users. This is only a concern when assigning a
zVar object to a Python variable, changing the CDF through some other variable, and then trying to use the zVar
object via the originally assigned variable.

Deleting a variable:

>>> var = cdffile['Var1']
>>> del cdffile['Var1']
>>> var[0] #fail, no such variable

Renaming a variable:

>>> var = cdffile['Var1']
>>> cdffile['Var1'].rename('Var2')
>>> var[0] #fail, no such variable

Renaming via the same variable works:

>>> var = cdffile['Var1']
>>> var.rename('Var2')
>>> var[0] #succeeds, aware of new name

Deleting a variable and then creating another variable with the same name may lead to some surprises:

>>> var = cdffile['Var1']
>>> var[...] = [1, 2, 3, 4]
>>> del cdffile['Var1']
>>> cdffile.new('Var1', data=[5, 6, 7, 8]
>>> var[...]
[5, 6, 7, 8]

attr_num(attrname) Get the attribute number and scope by attribute name
attrs Global attributes for this CDF in a dict-like format.
add_attr_to_cache(attrname, num, scope) Add an attribute to the name-to-number cache
add_to_cache(varname, num) Add a variable to the name-to-number cache
checksum([new_val]) Set or check the checksum status of this CDF.
clear_attr_from_cache(attrname) Mark an attribute deleted in the name-to-number

cache
clear_from_cache(varname) Mark a variable deleted in the name-to-number cache

continues on next page

4.14. pycdf - Python interface to CDF files 189

SpacePy Documentation, Release 0.2.2

Table 43 – continued from previous page
clone(zVar[, name, data]) Clone a zVariable (from another CDF or this) into

this CDF
close() Closes the CDF file
col_major([new_col]) Finds the majority of this CDF file
compress([comptype, param]) Set or check the compression of this CDF
copy() Make a copy of all data and attributes in this CDF
from_data(filename, sd) Create a new CDF file from a SpaceData object or

similar
new(name[, data, type, recVary, dimVarys, . . .]) Create a new zVariable in this CDF
raw_var(name) Get a “raw” Var object.
readonly([ro]) Sets or check the readonly status of this CDF
save() Saves the CDF file but leaves it open.
var_num(varname) Get the variable number of a particular variable name
version() Get version of library that created this CDF

attrs
Global attributes for this CDF in a dict-like format. See gAttrList for details.

backward
True if this CDF was created in backward-compatible mode (for opening with CDF library before 3.x)

add_to_cache(varname, num)
Add a variable to the name-to-number cache

This maintains a cache of name-to-number mappings for zVariables to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

varname [bytes] name of the zVariable. Not this is NOT a string in Python 3!

num [int] number of the variable

add_attr_to_cache(attrname, num, scope)
Add an attribute to the name-to-number cache

This maintains a cache of name-to-number mappings for attributes to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

varname [bytes] name of the zVariable. Not this is NOT a string in Python 3!

num [int] number of the variable

scope [bool] True if global scope; False if variable scope.

attr_num(attrname)
Get the attribute number and scope by attribute name

This maintains a cache of name-to-number mappings for attributes to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

attrname [bytes] name of the attribute. Not this is NOT a string in Python 3!

Returns

out [tuple] attribute number, scope (True for global) of this attribute

Raises

190 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

CDFError [if attribute is not found]

checksum(new_val=None)
Set or check the checksum status of this CDF. If checksums are enabled, the checksum will be verified
every time the file is opened.

Returns

out [boolean] True if the checksum is enabled or False if disabled

Other Parameters

new_val [boolean] True to enable checksum, False to disable, or leave out to simply check.

clear_from_cache(varname)
Mark a variable deleted in the name-to-number cache

Will remove a variable, and all variables with higher numbers, from the variable cache.

Does NOT delete the variable!

This maintains a cache of name-to-number mappings for zVariables to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

varname [bytes] name of the zVariable. Not this is NOT a string in Python 3!

clear_attr_from_cache(attrname)
Mark an attribute deleted in the name-to-number cache

Will remove an attribute, and all attributes with higher numbers, from the attribute cache.

Does NOT delete the variable!

This maintains a cache of name-to-number mappings for attributes to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

attrname [bytes] name of the attribute. Not this is NOT a string in Python 3!

clone(zVar, name=None, data=True)
Clone a zVariable (from another CDF or this) into this CDF

Parameters

zVar [Var] variable to clone

Returns

out [Var] The newly-created zVar in this CDF

Other Parameters

name [str] Name of the new variable (default: name of the original)

data [boolean (optional)] Copy data, or only type, dimensions, variance, attributes? (default:
True, copy data as well)

close()
Closes the CDF file

Although called on object destruction (__del__()), to ensure all data are saved, the user should explic-
itly call close() or save().

Raises

4.14. pycdf - Python interface to CDF files 191

SpacePy Documentation, Release 0.2.2

CDFError [if CDF library reports an error]

Warns

CDFWarning [if CDF library reports a warning]

col_major(new_col=None)
Finds the majority of this CDF file

Returns

out [boolean] True if column-major, false if row-major

Other Parameters

new_col [boolean] Specify True to change to column-major, False to change to row major,
or do not specify to check the majority rather than changing it. (default is check only)

compress(comptype=None, param=None)
Set or check the compression of this CDF

Sets compression on entire file, not per-variable.

See section 2.6 of the CDF user’s guide for more information on compression.

Returns

out [tuple] (comptype, param) currently in effect

Other Parameters

comptype [ctypes.c_long] type of compression to change to, see CDF C reference manual
section 4.10. Constants for this parameter are in const. If not specified, will not change
compression.

param [ctypes.c_long] Compression parameter, see CDF CRM 4.10 and const. If not
specified, will choose reasonable default (5 for gzip; other types have only one possible
parameter.)

See also:

Var.compress()

Examples

Set file cdffile to gzip compression, compression level 9:

>>> cdffile.compress(pycdf.const.GZIP_COMPRESSION, 9)

copy()
Make a copy of all data and attributes in this CDF

Returns

out [CDFCopy] SpaceData-like object of all data

classmethod from_data(filename, sd)
Create a new CDF file from a SpaceData object or similar

The CDF named filename is created, opened, filled with the contents of sd (including attributes), and
closed.

sd should be a dictionary-like object; each key will be made into a variable name. An attribute called
attrs, if it exists, will be made into global attributes for the CDF.

192 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Each value of sd should be array-like and will be used as the contents of the variable; an attribute called
attrs, if it exists, will be made into attributes for that variable.

Parameters

filename [string] name of the file to create

sd [spacepy.datamodel.SpaceData] data to put in the CDF. This structure cannot be nested,
i.e., it must contain only dmarray and no Spacedata objects.

new(name, data=None, type=None, recVary=None, dimVarys=None, dims=None, n_elements=None,
compress=None, compress_param=None)
Create a new zVariable in this CDF

Note: Either data or type must be specified. If type is not specified, it is guessed from data.

Parameters

name [str] name of the new variable

Returns

out [Var] the newly-created zVariable

Other Parameters

data data to store in the new variable. If this has a an attrs attribute (e.g., dmarray), it
will be used to populate attributes of the new variable. Similarly the CDF type, record
variance, etc. will, by default, be taken from data if it is a VarCopy . This can be
overridden by specifying other keywords.

type [ctypes.c_long] CDF type of the variable, from const. See section 2.5 of the CDF
user’s guide for more information on CDF data types.

recVary [boolean] record variance of the variable (default True)

dimVarys [list of boolean] dimension variance of each dimension, default True for all di-
mensions.

dims [list of int] size of each dimension of this variable, default zero-dimensional. Note this
is the dimensionality as defined by CDF, i.e., for record-varying variables it excludes the
leading record dimension. See Var.

n_elements [int] number of elements, should be 1 except for CDF_CHAR, for which it’s
the length of the string.

compress [ctypes.c_long] Compression to apply to this variable, default None. See Var.
compress().

compress_param [ctypes.c_long] Compression parameter if compression used; reasonable
default is chosen. See Var.compress().

Raises

ValueError [if neither data nor sufficient typing information] is provided.

Warns

DeprecationWarning if no type is provided and data is datetime, warning that the default
will change in the future.

New in version 0.2.2.

4.14. pycdf - Python interface to CDF files 193

SpacePy Documentation, Release 0.2.2

Notes

Any given data may be representable by a range of CDF types; if the type is not specified, pycdf will guess
which the CDF types which can represent this data. This breaks down to:

1. If input data is a numpy array, match the type of that array

2. Proper kind (numerical, string, time)

3. Proper range (stores highest and lowest number provided)

4. Sufficient resolution (EPOCH16 required if datetime has microseconds or below.)

If more than one value satisfies the requirements, types are returned in preferred order:

1. Type that matches precision of data first, then

2. integer type before float type, then

3. Smallest type first, then

4. signed type first, then

5. specifically-named (CDF_BYTE) vs. generically named (CDF_INT1)

So for example, EPOCH_16 is preferred over EPOCH if data specifies below the millisecond level (rule
1), but otherwise EPOCH is preferred (rule 2).

In the future, CDF_TIME_TT2000 will be the preferred EPOCH type if not specified.

For floats, four-byte is preferred unless eight-byte is required:

1. absolute values between 0 and 3e-39

2. absolute values greater than 1.7e38

This will switch to an eight-byte double in some cases where four bytes would be sufficient for IEEE 754
encoding, but where DEC formats would require eight.

raw_var(name)
Get a “raw” Var object.

Normally a Var will perform translation of values for certain types (to/from Unicode for CHAR variables
on Py3k, and to/from datetime for all time types). A “raw” object does not perform this translation, on
read or write.

This does not affect the data on disk, and in fact it is possible to maintain multiple Python objects with
access to the same zVariable.

Parameters

name [str] name or number of the zVariable

readonly(ro=None)
Sets or check the readonly status of this CDF

If the CDF has been changed since opening, setting readonly mode will have no effect.

Note: Closing a CDF that has been opened readonly, or setting readonly False, may take a substantial
amount of time if there are many variables in the CDF, as a (potentially large) cache needs to be cleared.
Consider specifying readonly=False when opening the file if this is an issue. However, this may
make some reading operations slower.

Returns

194 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

out [Boolean] True if CDF is read-only, else False

Other Parameters

ro [Boolean] True to set the CDF readonly, False to set it read/write, or leave out to check
only.

Raises

CDFError [if bad mode is set]

save()
Saves the CDF file but leaves it open.

If closing the CDF, close() is sufficient; there is no need to call save() before close().

Note: Relies on an undocumented call of the CDF C library, which is also used in the Java interface.

Raises

CDFError [if CDF library reports an error]

Warns

CDFWarning [if CDF library reports a warning]

var_num(varname)
Get the variable number of a particular variable name

This maintains a cache of name-to-number mappings for zVariables to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

varname [bytes] name of the zVariable. Not this is NOT a string in Python 3!

Returns

out [int] Variable number of this zvariable.

Raises

CDFError [if variable is not found]

version()
Get version of library that created this CDF

Returns

out [tuple] version of CDF library, in form (version, release, increment)

4.14. pycdf - Python interface to CDF files 195

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.Var

class spacepy.pycdf.Var(cdf_file, var_name, *args)
A CDF variable.

This object does not directly store the data from the CDF; rather, it provides access to the data in a format that
much like a Python list or numpy ndarray. General list information is available in the python docs: 1, 2, 3.

The CDF user’s guide, section 2.3, provides background on variables.

Note: Not intended to be created directly; use methods of CDF to gain access to a variable.

A record-varying variable’s data are viewed as a hypercube of dimensions n_dims+1 (the extra dimension is
the record number). They are indexed in row-major fashion, i.e. the last index changes most frequently / is
contiguous in memory. If the CDF is column-major, the data are transformed to row-major before return.

Non record-varying variables are similar, but do not have the extra dimension of record number.

Variables can be subscripted by a multidimensional index to return the data. Indices are in row-major order with
the first dimension representing the record number. If the CDF is column major, the data are reordered to row
major. Each dimension is specified by standard Python slice notation, with dimensions separated by commas.
The ellipsis fills in any missing dimensions with full slices. The returned data are lists; Python represents
multidimensional arrays as nested lists. The innermost set of lists represents contiguous data.

Note: numpy ‘fancy indexing’ is not supported.

Degenerate dimensions are ‘collapsed’, i.e. no list of only one element will be returned if a single subscript is
specified instead of a range. (To avoid this, specify a slice like 1:2, which starts with 1 and ends before 2).

Two special cases:

1. requesting a single-dimension slice for a record-varying variable will return all data for that record number
(or those record numbers) for that variable.

2. Requests for multi-dimensional variables may skip the record-number dimension and simply specify the
slice on the array itself. In that case, the slice of the array will be returned for all records.

In the event of ambiguity (e.g., single-dimension slice on a one-dimensional variable), case 1 takes priority.
Otherwise, mismatch between the number of dimensions specified in the slice and the number of dimensions in
the variable will cause an IndexError to be thrown.

This all sounds very complicated but it is essentially attempting to do the ‘right thing’ for a range of slices.

An unusual case is scalar (zero-dimensional) non-record-varying variables. Clearly they cannot be subscripted
normally. In this case, use the [...] syntax meaning ‘access all data.’:

>>> from spacepy import pycdf
>>> testcdf = pycdf.CDF('test.cdf', '')
>>> variable = testcdf.new('variable', recVary=False,
... type=pycdf.const.CDF_INT4)
>>> variable[...] = 10
>>> variable
<Var:
CDF_INT4 [] NRV
>
>>> variable[...]
10

196 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/stdtypes.html#typesseq
http://docs.python.org/tutorial/introduction.html#strings

SpacePy Documentation, Release 0.2.2

Reading any empty non-record-varying variable will return an empty with the same number of dimensions, but
all dimensions will be of zero length. The scalar is, again, a special case: due to the inability to have a numpy
array which is both zero-dimensional and empty, reading an NRV scalar variable with no data will return an
empty one-dimensional array. This is really not recommended.

As a list type, variables are also iterable; iterating over a variable returns a single complete record at a time.

This is all clearer with examples. Consider a variable B_GSM, with three elements per record (x, y, z compo-
nents) and fifty records in the CDF. Then:

1. B_GSM[0, 1] is the y component of the first record.

2. B_GSM[10, :] is a three-element list, containing x, y, and z components of the 11th record. As a
shortcut, if only one dimension is specified, it is assumed to be the record number, so this could also be
written B_GSM[10].

3. B_GSM[...] reads all data for B_GSM and returns it as a fifty-element list, each element itself being a
three-element list of x, y, z components.

Multidimensional example: consider fluxes stored as a function of pitch angle and energy. Such a variable may
be called Flux and stored as a two-dimensional array, with the first dimension representing (say) ten energy
steps and the second, eighteen pitch angle bins (ten degrees wide, centered from 5 to 175 degrees). Assume 100
records stored in the CDF (i.e. 100 different times).

1. Flux[4] is a list of ten elements, one per energy step, each element being a list of 18 fluxes, one per
pitch bin. All are taken from the fifth record in the CDF.

2. Flux[4, :, 0:4] is the same record, all energies, but only the first four pitch bins (roughly, field-
aligned).

3. Flux[..., 0:4] is a 100-element list (one per record), each element being a ten-element list (one per
energy step), each containing fluxes for the first four pitch bins.

This slicing notation is very flexible and allows reading specifically the desired data from the CDF.

Note: The C CDF library allows reading records which have not been written to a file, returning a pad value.
pycdf checks the size of a variable and will raise IndexError for most attempts to read past the end. If these
checks fail, a value is returned with a warning VIRTUAL_RECORD_DATA. Please open an issue if this occurs.
See pg. 39 and following of the CDF User’s Guide for more on virtual records.

All data are, on read, converted to appropriate Python data types; EPOCH, EPOCH16, and TIME_TT2000 types
are converted to datetime. Data are returned in numpy arrays.

Note: Although pycdf supports TIME_TT2000 variables, the Python datetime object does not support leap
seconds. Thus, on read, any seconds past 59 are truncated to 59.999999 (59 seconds, 999 milliseconds, 999
microseconds).

Potentially useful list methods and related functions:

• count

• in

• index

• len

• list comprehensions

4.14. pycdf - Python interface to CDF files 197

http://docs.python.org/tutorial/classes.html#iterators
https://github.com/spacepy/spacepy/issues/new
https://cdf.gsfc.nasa.gov/html/cdf_docs.html
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/reference/expressions.html#in
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/functions.html#len
http://docs.python.org/tutorial/datastructures.html#list-comprehensions

SpacePy Documentation, Release 0.2.2

• sorted

The topic of array majority can be very confusing; good background material is available at IDL Array Storage
and Indexing. In brief, regardless of the majority stored in the CDF, pycdf will always present the data in the
native Python majority, row-major order, also known as C order. This is the default order in NumPy. However,
packages that render image data may expect it in column-major order. If the axes seem ‘swapped’ this is likely
the reason.

The attrs Python attribute acts as a dictionary referencing zAttributes (do not confuse the two); all the dic-
tionary methods above also work on the attribute dictionary. See zAttrList for more on the dictionary of
attributes.

With writing, as with reading, every attempt has been made to match the behavior of Python lists. You can
write one record, many records, or even certain elements of all records. There is one restriction: only the record
dimension (i.e. dimension 0) can be resized by write, as all records in a variable must have the same dimensions.
Similarly, only whole records can be deleted.

Note: Unusual error messages on writing data usually mean that pycdf is unable to interpret the data as a regular
array of a single type matching the type and shape of the variable being written. A 5x4 array is supported; an
irregular array where one row has five columns and a different row has six columns is not. Error messages of
this type include:

• Data must be well-formed, regular array of number, string, or datetime

• setting an array element with a sequence.

• shape mismatch: objects cannot be broadcast to a single shape

For these examples, assume Flux has 100 records and dimensions [2, 3].

Rewrite the first record without changing the rest:

>>> Flux[0] = [[1, 2, 3], [4, 5, 6]]

Writes a new first record and delete all the rest:

>>> Flux[...] = [[1, 2, 3], [4, 5, 6]]

Write a new record in the last position and add a new record after:

>>> Flux[99:] = [[[1, 2, 3], [4, 5, 6]],
... [[11, 12, 13], [14, 15, 16]]]

Insert two new records between the current number 5 and 6:

>>> Flux[5:6] = [[[1, 2, 3], [4, 5, 6]], [[11, 12, 13],
... [14, 15, 16]]]

This operation can be quite slow, as it requires reading and rewriting the entire variable. (CDF does not directly
support record insertion.)

Change the first element of the first two records but leave other elements alone:

>>> Flux[0:2, 0, 0] = [1, 2]

Remove the first record:

198 Chapter 4. SpacePy Module Reference

http://docs.python.org/library/functions.html#sorted
http://www.idlcoyote.com/misc_tips/colrow_major.html
http://www.idlcoyote.com/misc_tips/colrow_major.html
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#internal-memory-layout-of-an-ndarray

SpacePy Documentation, Release 0.2.2

>>> del Flux[0]

Removes record 5 (the sixth):

>>> del Flux[5]

Due to the need to work around a bug in the CDF library, this operation can be quite slow.

Delete all data from Flux, but leave the variable definition intact:

>>> del Flux[...]

Note: Although this interface only directly supports zVariables, zMode is set on opening the CDF so rVars
appear as zVars. See p.24 of the CDF user’s guide; pyCDF uses zMode 2.

attrs zAttributes for this zVariable in a dict-like format.
compress([comptype, param]) Set or check the compression of this variable
copy() Copies all data and attributes from this variable
dtype Provide the numpy dtype equivalent to the CDF type

of this variable.
dv([new_dv]) Gets or sets dimension variance of each dimension

of variable.
insert(index, data) Inserts a single record before an index
name() Returns the name of this variable
nelems() Number of elements for each value in this variable
rename(new_name) Renames this variable
rv([new_rv]) Gets or sets whether this variable has record variance
shape Provides the numpy array-like shape of this variable.
type([new_type]) Returns or sets the CDF type of this variable

attrs
zAttributes for this zVariable in a dict-like format. See zAttrList for details.

compress(comptype=None, param=None)
Set or check the compression of this variable

Compression may not be changeable on variables with data already written; even deleting the data may
not permit the change.

See section 2.6 of the CDF user’s guide for more information on compression.

Returns

out [tuple] the (comptype, param) currently in effect

Other Parameters

comptype [ctypes.c_long] type of compression to change to, see CDF C reference manual
section 4.10. Constants for this parameter are in const. If not specified, will not change
compression.

param [ctypes.c_long] Compression parameter, see CDF CRM 4.10 and const. If not
specified, will choose reasonable default (5 for gzip; other types have only one possible
parameter.)

4.14. pycdf - Python interface to CDF files 199

SpacePy Documentation, Release 0.2.2

copy()
Copies all data and attributes from this variable

Returns

out [VarCopy] list of all data in record order

dtype
Provide the numpy dtype equivalent to the CDF type of this variable.

Data from this variable will be returned in numpy arrays of this type.

See also:

type

dv(new_dv=None)
Gets or sets dimension variance of each dimension of variable.

If the variance is unknown, True is assumed (this replicates the apparent behavior of the CDF library on
variable creation).

Parameters

new_dv [list of boolean] Each element True to change that dimension to dimension variance,
False to change to not dimension variance. (Unspecified to simply check variance.)

Returns

out [list of boolean] True if that dimension has variance, else false.

insert(index, data)
Inserts a single record before an index

Parameters

index [int] index before which to insert the new record

data : the record to insert

name()
Returns the name of this variable

Returns

out [str] variable’s name

nelems()
Number of elements for each value in this variable

This is the length of strings for CHAR and UCHAR, should be 1 otherwise.

Returns

int length of strings

rename(new_name)
Renames this variable

Parameters

new_name [str] the new name for this variable

rv(new_rv=None)
Gets or sets whether this variable has record variance

200 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

If the variance is unknown, True is assumed (this replicates the apparent behavior of the CDF library on
variable creation).

Returns

out [Boolean] True if record varying, False if NRV

Other Parameters

new_rv [boolean] True to change to record variance, False to change to NRV, unspecified to
simply check variance.

shape
Provides the numpy array-like shape of this variable.

Returns a tuple; first element is number of records (RV variable only) And the rest provide the dimension-
ality of the variable.

Note: Assigning to this attribute will not change the shape.

type(new_type=None)
Returns or sets the CDF type of this variable

Parameters

new_type [ctypes.c_long] the new type from const

Returns

out [int] CDF type

spacepy.pycdf.gAttrList

class spacepy.pycdf.gAttrList(cdf_file, special_entry=None)
Object representing all the gAttributes in a CDF.

Normally accessed as an attribute of an open CDF:

>>> global_attribs = cdffile.attrs

Appears as a dictionary: keys are attribute names; each value is an attribute represented by a gAttr object. To
access the global attribute TEXT:

>>> text_attr = cdffile.attrs['TEXT']

See also:

AttrList

4.14. pycdf - Python interface to CDF files 201

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.zAttrList

class spacepy.pycdf.zAttrList(zvar)
Object representing all the zAttributes in a zVariable.

Normally accessed as an attribute of a Var in an open CDF:

>>> epoch_attribs = cdffile['Epoch'].attrs

Appears as a dictionary: keys are attribute names, values are the value of the zEntry associated with the appro-
priate zVariable. Each vAttribute in a CDF may only have a single entry associated with each variable. The
entry may be a string, a single numerical value, or a series of numerical values. Entries with multiple values are
returned as an entire list; direct access to the individual elements is not possible.

Example: finding the first dependency of (ISTP-compliant) variable Flux:

>>> print cdffile['Flux'].attrs['DEPEND_0']

zAttributes are shared among zVariables, one zEntry allowed per zVariable. (pyCDF hides this detail.) Deleting
the last zEntry for a zAttribute will delete the underlying zAttribute.

zEntries are created and destroyed by the usual dict methods on the zAttrlist:

>>> epoch_attribs['new_entry'] = [1, 2, 4] #assign a list to new zEntry
>>> del epoch_attribs['new_entry'] #delete the zEntry

The type of the zEntry is guessed from data provided. The type is chosen to match the data; subject to that
constraint, it will try to match (in order):

1. existing zEntry corresponding to this zVar

2. other zEntries in this zAttribute

3. the type of this zVar

4. data-matching constraints described in CDF.new()

See also:

AttrList

spacepy.pycdf.zAttr

class spacepy.pycdf.zAttr(cdf_file, attr_name, create=False)
zAttribute for zVariables within a CDF.

Warning: Because zAttributes are shared across all variables in a CDF, directly manipulating them may
have unexpected consequences. It is safest to operate on zEntries via zAttrList.

Note: When accessing a zAttr, pyCDF exposes only the zEntry corresponding to the associated zVariable.

See also:

Attr

202 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.gAttr

class spacepy.pycdf.gAttr(cdf_file, attr_name, create=False)
Global Attribute for a CDF

Represents a CDF attribute, providing access to the gEntries in a format that looks like a Python list. General
list information is available in the python docs: 1, 2, 3.

Normally accessed by providing a key to a gAttrList:

>>> attribute = cdffile.attrs['attribute_name']
>>> first_gentry = attribute[0]

Each element of the list is a single gEntry of the appropriate type. The index to the elements is the gEntry
number.

A gEntry may be either a single string or a 1D array of numerical type. Entries of numerical type (everything
but CDF_CHAR and CDF_UCHAR) with a single element are returned as scalars; multiple-element entries are
returned as a list. No provision is made for accessing below the entry level; the whole list is returned at once
(but Python’s slicing syntax can be used to extract individual items from that list.)

Multi-dimensional slicing is not supported; an entry with multiple elements will have all elements returned (and
can thus be sliced itself). Example:

>>> first_three = attribute[5, 0:3] #will fail
>>> first_three = attribute[5][0:3] #first three elements of 5th Entry

gEntries are not necessarily contiguous; a gAttribute may have an entry 0 and entry 2 without an entry 1.
len() will return the number of gEntries; use max_idx() to find the highest defined gEntry number and
has_entry() to determine if a particular gEntry number exists. Iterating over all entries is also supported:

>>> entrylist = [entry for entry in attribute]

Deleting gEntries will leave a “hole”:

>>> attribute[0:3] = [1, 2, 3]
>>> del attribute[1]
>>> attribute.has_entry(1)
False
>>> attribute.has_entry(2)
True
>>> print attribute[0:3]
[1, None, 3]

Multi-element slices over nonexistent gEntries will return None where no entry exists. Single-element indices
for nonexistent gEntries will raise IndexError. Assigning None to a gEntry will delete it.

When assigning to a gEntry, the type is chosen to match the data; subject to that constraint, it will try to match
(in order):

1. existing gEntry of the same number in this gAttribute

2. other gEntries in this gAttribute

3. data-matching constraints described in CDF.new().

See also:

Attr

4.14. pycdf - Python interface to CDF files 203

http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/stdtypes.html#typesseq

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.AttrList

class spacepy.pycdf.AttrList(cdf_file, special_entry=None)
Object representing a list of attributes.

Warning: This class should not be used directly, but only via its subclasses, gAttrList and
zAttrList. Methods listed here are safe to use from the subclasses.

clone(master[, name, new_name]) Clones another attribute list, or one attribute from it,
into this list.

copy() Create a copy of this attribute list
from_dict(in_dict) Fill this list of attributes from a dictionary
new(name[, data, type]) Create a new Attr in this AttrList
rename(old_name, new_name) Rename an attribute in this list

clone(master, name=None, new_name=None)
Clones another attribute list, or one attribute from it, into this list.

Parameters

master [AttrList] the attribute list to copy from. This can be any dict-like object.

Other Parameters

name [str (optional)] name of attribute to clone (default: clone entire list)

new_name [str (optional)] name of the new attribute, default name

copy()
Create a copy of this attribute list

Returns

out [dict] copy of the entries for all attributes in this list

from_dict(in_dict)
Fill this list of attributes from a dictionary

Deprecated since version 0.1.5: Use clone() instead; it supports cloning from dictionaries.

Parameters

in_dict [dict] Attribute list is populated entirely from this dictionary; all existing attributes
are deleted.

new(name, data=None, type=None)
Create a new Attr in this AttrList

Parameters

name [str] name of the new Attribute

Other Parameters

data data to put into the first entry in the new Attribute

type CDF type of the first entry from const. Only used if data are specified.

Raises

KeyError [if the name already exists in this list]

204 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

rename(old_name, new_name)
Rename an attribute in this list

Renaming a zAttribute renames it for all zVariables in this CDF!

Parameters

old_name [str] the current name of the attribute

new_name [str] the new name of the attribute

spacepy.pycdf.Attr

class spacepy.pycdf.Attr(cdf_file, attr_name, create=False)
An attribute, g or z, for a CDF

Warning: This class should not be used directly, but only in its subclasses, gAttr and zAttr. The
methods listed here are safe to use in the subclasses.

Represents a CDF attribute, providing access to the Entries in a format that looks like a Python list. General list
information is available in the python docs: 1, 2, 3.

An introduction to CDF attributes can be found in section 2.4 of the CDF user’s guide.

Each element of the list is a single Entry of the appropriate type. The index to the elements is the Entry number.

Multi-dimensional slicing is not supported; an Entry with multiple elements will have all elements returned (and
can thus be sliced itself). Example:

>>> first_three = attribute[5, 0:3] #will fail
>>> first_three = attribute[5][0:3] #first three elements of 5th Entry

append(data) Add an entry to end of attribute
has_entry(number) Check if this attribute has a particular Entry number
insert(index, data) Insert an entry at a particular number
max_idx() Maximum index of Entries for this Attr
new(data[, type, number]) Create a new Entry in this Attribute
number() Find the attribute number for this attribute
rename(new_name) Rename this attribute
type(number[, new_type]) Find or change the CDF type of a particular Entry

number

append(data)
Add an entry to end of attribute

Puts entry after last defined entry (does not fill gaps)

Parameters

data : data for the new entry

has_entry(number)
Check if this attribute has a particular Entry number

Parameters

number [int] number of Entry to check or change

4.14. pycdf - Python interface to CDF files 205

http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/stdtypes.html#typesseq

SpacePy Documentation, Release 0.2.2

Returns

out [bool] True if number is a valid entry number; False if not

insert(index, data)
Insert an entry at a particular number

Inserts entry at particular number while moving all subsequent entries to one entry number later. Does not
close gaps.

Parameters

index [int] index where to put the new entry

data : data for the new entry

max_idx()
Maximum index of Entries for this Attr

Returns

out [int] maximum Entry number

new(data, type=None, number=None)
Create a new Entry in this Attribute

Note: If number is provided and an Entry with that number already exists, it will be overwritten.

Parameters

data data to put in the Entry

Other Parameters

type [int] type of the new Entry, from const (otherwise guessed from data)

number [int] Entry number to write, default is lowest available number.

number()
Find the attribute number for this attribute

Returns

out [int] attribute number

rename(new_name)
Rename this attribute

Renaming a zAttribute renames it for all zVariables in this CDF!

Parameters

new_name [str] the new name of the attribute

type(number, new_type=None)
Find or change the CDF type of a particular Entry number

Parameters

number [int] number of Entry to check or change

Returns

out [int] CDF variable type, see const

206 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Other Parameters

new_type type to change this Entry to, from const. Omit to only check type.

Notes

If changing types, old and new must be equivalent, see CDF User’s Guide section 2.5.5 pg. 57

spacepy.pycdf.Library

class spacepy.pycdf.Library(libpath=None, library=None)
Abstraction of the base CDF C library and its state.

Not normally intended for end-user use. An instance of this class is created at package load time as the lib
variable, providing access to the underlying C library if necessary. The CDF library itself is described in section
2.1 of the CDF user’s guide, as well as the CDF C reference manual.

Calling the C library directly requires knowledge of ctypes.

Instantiating this object loads the C library, see pycdf - Python interface to CDF files docs for details.

call(*args, **kwargs) Call the CDF internal interface
check_status(status[, ignore]) Raise exception or warning based on return status of

CDF call
datetime_to_epoch(dt) Converts a Python datetime to a CDF Epoch value
datetime_to_epoch16(dt) Converts a Python datetime to a CDF Epoch16 value
datetime_to_tt2000(dt) Converts a Python datetime to a CDF TT2000 value
epoch_to_datetime(epoch) Converts a CDF epoch value to a datetime
epoch_to_epoch16(epoch) Converts a CDF EPOCH to a CDF EPOCH16 value
epoch_to_num(epoch) Convert CDF EPOCH to matplotlib number.
epoch_to_tt2000(epoch) Converts a CDF EPOCH to a CDF TT2000 value
epoch16_to_datetime(epoch0, epoch1) Converts a CDF epoch16 value to a datetime
epoch16_to_epoch(epoch16) Converts a CDF EPOCH16 to a CDF EPOCH value
epoch16_to_tt2000(epoch0, epoch1) Converts a CDF epoch16 value to TT2000
get_minmax(cdftype) Find minimum, maximum possible value based on

CDF type.
set_backward([backward]) Set backward compatibility mode for new CDFs
tt2000_to_datetime(tt2000) Converts a CDF TT2000 value to a datetime
tt2000_to_epoch(tt2000) Converts a CDF TT2000 value to a CDF EPOCH
tt2000_to_epoch16(tt2000) Converts a CDF TT2000 value to a CDF EPOCH16

call(*args, **kwargs)
Call the CDF internal interface

Passes all parameters directly through to the CDFlib routine of the CDF library’s C internal interface.
Checks the return value with check_status().

Terminal NULL is automatically added to args.

Parameters

args [various, see ctypes] Passed directly to the CDF library interface. Useful constants
are defined in the const module.

Returns

4.14. pycdf - Python interface to CDF files 207

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes

SpacePy Documentation, Release 0.2.2

out [int] CDF status from the library

Other Parameters

ignore [sequence of CDF statuses] sequence of CDF statuses to ignore. If any of these is
returned by CDF library, any related warnings or exceptions will not be raised.

Raises

CDFError [if CDF library reports an error]

Warns

CDFWarning [if CDF library reports a warning]

check_status(status, ignore=())
Raise exception or warning based on return status of CDF call

Parameters

status [int] status returned by the C library

Returns

out [int] status (unchanged)

Other Parameters

ignore [sequence of ctypes.c_long] CDF statuses to ignore. If any of these is returned by
CDF library, any related warnings or exceptions will not be raised. (Default none).

Raises

CDFError [if status < CDF_WARN, indicating an error]

Warns

CDFWarning [if CDF_WARN <= status < CDF_OK, indicating a warning.]

datetime_to_epoch(dt)
Converts a Python datetime to a CDF Epoch value

Parameters

dt [datetime.datetime] date and time to convert

Returns

out [float] epoch corresponding to dt

See also:

v_datetime_to_epoch

datetime_to_epoch16(dt)
Converts a Python datetime to a CDF Epoch16 value

Parameters

dt [datetime.datetime] date and time to convert

Returns

out [list of float] epoch16 corresponding to dt

See also:

v_datetime_to_epoch16

208 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.2.2

datetime_to_tt2000(dt)
Converts a Python datetime to a CDF TT2000 value

Parameters

dt [datetime.datetime] date and time to convert

Returns

out [int] tt2000 corresponding to dt

See also:

v_datetime_to_tt2000

epoch_to_datetime(epoch)
Converts a CDF epoch value to a datetime

Parameters

epoch [float] epoch value from CDF

Returns

out [datetime.datetime] date and time corresponding to epoch. Invalid values are set
to usual epoch invalid value, i.e. last moment of year 9999.

See also:

v_epoch_to_datetime

epoch_to_epoch16(epoch)
Converts a CDF EPOCH to a CDF EPOCH16 value

Parameters

epoch [double] EPOCH to convert. Lists and numpy arrays are acceptable.

Returns

out [(double, double)] EPOCH16 corresponding to epoch

epoch_to_num(epoch)
Convert CDF EPOCH to matplotlib number.

Same output as date2num() and useful for plotting large data sets without converting the times through
datetime.

Parameters

epoch [double] EPOCH to convert. Lists and numpy arrays are acceptable.

Returns

out [double] Floating point number representing days since matplotlib epoch (usually 0001-
01-01 as day 1, or 1970-01-01 as day 0).

See also:

matplotlib.dates.date2num, matplotlib.dates.num2date

4.14. pycdf - Python interface to CDF files 209

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num
https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num
https://matplotlib.org/api/dates_api.html#matplotlib.dates.num2date

SpacePy Documentation, Release 0.2.2

Notes

This number is not portable between versions of matplotlib. The returned value is for the installed version
of matplotlib. If matplotlib is not found, the returned value is for matplotlib 3.2 and earlier.

epoch_to_tt2000(epoch)
Converts a CDF EPOCH to a CDF TT2000 value

Parameters

epoch [double] EPOCH to convert

Returns

out [int] tt2000 corresponding to epoch

See also:

v_epoch_to_tt2000

epoch16_to_datetime(epoch0, epoch1)
Converts a CDF epoch16 value to a datetime

Note: The call signature has changed since SpacePy 0.1.2. Formerly this method took a single argument
with two values; now it requires two arguments (one for each value). To convert existing code, replace
epoch16_to_datetime(epoch) with epoch16_to_datetime(*epoch).

Parameters

epoch0 [float] epoch16 value from CDF, first half

epoch1 [float] epoch16 value from CDF, second half

Returns

out [datetime.datetime] date and time corresponding to epoch. Invalid values are set
to usual epoch invalid value, i.e. last moment of year 9999.

Raises

EpochError [if input invalid]

See also:

v_epoch16_to_datetime

epoch16_to_epoch(epoch16)
Converts a CDF EPOCH16 to a CDF EPOCH value

Parameters

epoch16 [(double, double)] EPOCH16 to convert. Lists and numpy arrays are acceptable.
LAST dimension should be 2: the two pairs of EPOCH16

Returns

out [double] EPOCH corresponding to epoch16

210 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.2.2

epoch16_to_tt2000(epoch0, epoch1)
Converts a CDF epoch16 value to TT2000

Note: Because TT2000 does not support picoseconds, the picoseconds value in epoch is ignored (i.e.,
truncated.)

Parameters

epoch0 [float] epoch16 value from CDF, first half

epoch1 [float] epoch16 value from CDF, second half

Returns

out [long] TT2000 corresponding to epoch.

Raises

EpochError [if input invalid]

See also:

v_epoch16_to_tt2000

get_minmax(cdftype)
Find minimum, maximum possible value based on CDF type.

This returns the processed value (e.g. datetimes for Epoch types) because comparisons to EPOCH16s are
otherwise difficult.

Parameters

cdftype [int] CDF type number from const

Returns

out [tuple] minimum, maximum value supported by type (of type matching the CDF type).

Raises

ValueError [if can’t match the type]

set_backward(backward=True)
Set backward compatibility mode for new CDFs

Unless backward compatible mode is set, CDF files created by the version 3 library can not be read by V2.

Parameters

backward [boolean] Set backward compatible mode if True; clear it if False.

Raises

ValueError [if backward=False and underlying CDF library is V2]

supports_int8
True if this library supports INT8 and TIME_TT2000 types; else False.

tt2000_to_datetime(tt2000)
Converts a CDF TT2000 value to a datetime

4.14. pycdf - Python interface to CDF files 211

SpacePy Documentation, Release 0.2.2

Note: Although TT2000 values support leapseconds, Python’s datetime object does not. Any times after
23:59:59.999999 will be truncated to 23:59:59.999999.

Parameters

tt2000 [int] TT2000 value from CDF

Returns

out [datetime.datetime] date and time corresponding to epoch. Invalid values are set
to usual epoch invalid value, i.e. last moment of year 9999.

Raises

EpochError [if input invalid]

See also:

v_tt2000_to_datetime

tt2000_to_epoch(tt2000)
Converts a CDF TT2000 value to a CDF EPOCH

Note: Although TT2000 values support leapseconds, CDF EPOCH values do not. Times during leapsec-
onds are rounded up to beginning of the next day.

Parameters

tt2000 [int] TT2000 value from CDF

Returns

out [double] EPOCH corresponding to the TT2000 input time

Raises

EpochError [if input invalid]

See also:

v_tt2000_to_epoch

tt2000_to_epoch16(tt2000)
Converts a CDF TT2000 value to a CDF EPOCH16

Note: Although TT2000 values support leapseconds, CDF EPOCH16 values do not. Times during
leapseconds are rounded up to beginning of the next day.

Parameters

tt2000 [int] TT2000 value from CDF

Returns

out [double, double] EPOCH16 corresponding to the TT2000 input time

212 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.2.2

Raises

EpochError [if input invalid]

See also:

v_tt2000_to_epoch16

v_datetime_to_epoch(datetime)
A vectorized version of datetime_to_epoch() which takes a numpy array of datetimes as input and
returns an array of epochs.

v_datetime_to_epoch16(datetime)
A vectorized version of datetime_to_epoch16() which takes a numpy array of datetimes as input
and returns an array of epoch16.

v_datetime_to_tt2000(datetime)
A vectorized version of datetime_to_tt2000() which takes a numpy array of datetimes as input
and returns an array of TT2000.

v_epoch_to_datetime(epoch)
A vectorized version of epoch_to_datetime() which takes a numpy array of epochs as input and
returns an array of datetimes.

v_epoch_to_tt2000(epoch)
A vectorized version of epoch_to_tt2000()which takes a numpy array of epochs as input and returns
an array of tt2000s.

v_epoch16_to_datetime(epoch0, epoch1)
A vectorized version of epoch16_to_datetime() which takes a numpy array of epoch16 as input
and returns an array of datetimes. An epoch16 is a pair of doubles; the input array’s last dimension must
be two (and the returned array will have one fewer dimension).

v_epoch16_to_tt2000(epoch16)
A vectorized version of epoch16_to_tt2000() which takes a numpy array of epoch16 as input and
returns an array of tt2000s. An epoch16 is a pair of doubles; the input array’s last dimension must be two
(and the returned array will have one fewer dimension).

v_tt2000_to_datetime(tt2000)
A vectorized version of tt2000_to_datetime() which takes a numpy array of tt2000 as input and
returns an array of datetimes.

v_tt2000_to_epoch(tt2000)
A vectorized version of tt2000_to_epoch() which takes a numpy array of tt2000 as input and returns
an array of epochs.

v_tt2000_to_epoch16(tt2000)
A vectorized version of tt2000_to_epoch16() which takes a numpy array of tt2000 as input and
returns an array of epoch16.

libpath
The path where pycdf found the CDF C library, potentially useful in debugging. If this contains just the
name of a file (with no path information), then the system linker found the library for pycdf. On Linux,
ldconfig -p may be useful for displaying the system’s library resolution.

version
Version of the CDF library, (version, release, increment, subincrement)

4.14. pycdf - Python interface to CDF files 213

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.CDFCopy

class spacepy.pycdf.CDFCopy(cdf)
A dictionary-like copy of all data and attributes in a CDF

Data are VarCopy objects, keyed by variable name. CDF attributes are in attrs. (I.e., data are accessed
much like from a CDF).

Do not instantiate this class directly; use copy() on an existing CDF.

Examples

>>> from spacepy import pycdf
>>> with pycdf.CDF('test.cdf') as cdffile:
... data = cdffile.copy()

attrs
Python dictionary containing attributes copied from the CDF.

spacepy.pycdf.VarCopy

class spacepy.pycdf.VarCopy(zVar)
A list-like copy of the data and attributes in a Var

Data are in the list elements. CDF attributes are in a dict, accessed through attrs. (I.e., data and attributes are
accessed like in a Var.)

Do not instantiate this class directly; use copy() on an existing Var.

Several methods provide access to details about how the original variable was constructed. This is mostly for
making it easier to reproduce the variable by passing it to new(). Operations that e.g. change the dimensionality
of the copy may make this (or any) metadata out of date; see set() to update.

compress(*args, **kwargs) Gets compression of the variable this was copied
from.

dv() Gets dimension variance of the variable this was
copied from.

nelems() Gets number of elements of the variable this was
copied from.

rv() Gets record variance of the variable this was copied
from.

set(key, value) Set CDF metadata
type() Returns CDF type of the variable this was copied

from.

attrs
Python dictionary containing attributes copied from the zVar

compress(*args, **kwargs)
Gets compression of the variable this was copied from.

For details on CDF compression, see spacepy.pycdf.Var.compress().

If any arguments are specified, calls numpy.ndarray.compress() instead (as the names conflict)

Returns

214 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.compress.html#numpy.ndarray.compress

SpacePy Documentation, Release 0.2.2

tuple compression type, parameter currently in effect.

dv()
Gets dimension variance of the variable this was copied from.

Each dimension other than the record dimension may either vary or not.

Returns

list of boolean True if that dimension has variance, else False

nelems()
Gets number of elements of the variable this was copied from.

This is usually 1 except for strings, where it is the length of the string.

Returns

int Number of elements in parent variable

rv()
Gets record variance of the variable this was copied from.

Returns

boolean True if parent variable was record varying, False if NRV

set(key, value)
Set CDF metadata

Set the metadata describing the original variable this was copied from. Can be used to update the metadata
if transformation of the copy has made it out of date (e.g. by removing dimensions.) There is very little
checking done and this function should only be used with care.

Parameters

key [str] Which metadata to set; this matches the name of the method used to retrieve it (e.g.
use type to set the CDF type, which is returned by type()).

value Value to assign to key.

type()
Returns CDF type of the variable this was copied from.

Returns

int CDF type

spacepy.pycdf.CDFError

class spacepy.pycdf.CDFError(status)
Raised for an error in the CDF library.

4.14. pycdf - Python interface to CDF files 215

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.CDFException

class spacepy.pycdf.CDFException(status)
Base class for errors or warnings in the CDF library.

Not normally used directly, but in subclasses CDFError and CDFWarning.

Error messages provided by this class are looked up from the underlying C library.

spacepy.pycdf.CDFWarning

class spacepy.pycdf.CDFWarning(status)
Used for a warning in the CDF library.

spacepy.pycdf.EpochError

class spacepy.pycdf.EpochError
Used for errors in epoch routines

4.14.4 Functions

concatCDF(cdfs[, varnames, raw]) Concatenate data from multiple CDFs

spacepy.pycdf.concatCDF

spacepy.pycdf.concatCDF(cdfs, varnames=None, raw=False)
Concatenate data from multiple CDFs

Reads data from all specified CDFs in order and returns as if they were from a single CDF. The assumption is
that the CDFs all have the same structure (same variables, each with the same dimensions and variance.)

Parameters

cdfs [list of Var] Open CDFs, will be read from in order. Must be a list (cannot be an iterable,
as all files need to be open).

varnames [list of str] Names of variables to read (default: all variables in first CDF)

raw [bool] If True, read variables as raw (don’t convert epochs, etc.) Default False.

Returns

SpaceData data concatenated from each CDF, with all attributes from first. Non-record-
varying data is also only from first, and record variance is only checked on the first!

216 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

Read all data from all CDFs in the current directory. Note that CDFs are closed when their variable goes out of
scope.

>>> import glob
>>> import spacepy.pycdf
>>> data = spacepy.pycdf.concatCDF([
... spacepy.pycdf.CDF(f) for f in glob.glob('*.cdf')])

4.14.5 Submodules

const Various constants defined in cdf.h and used in pycdf.
istp Support for ISTP-compliant CDFs

spacepy.pycdf.const

Various constants defined in cdf.h and used in pycdf. Most constants referred to in the CDF manuals are provided by
this module. E.g., to create a CDF and add a variable of type EPOCH:

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('new.cdf', '')
>>> cdf.new('epoch', type=pycdf.const.CDF_EPOCH)

Copyright 2010-2012 Los Alamos National Security, LLC.

spacepy.pycdf.istp

Support for ISTP-compliant CDFs

The ISTP metadata standard specifies the interpretation of the attributes in a CDF to describe relationships between
the variables and their physical interpretation.

This module supports that subset of CDFs.

Authors: Jon Niehof

Additional Contributors: Lorna Ellis, Asher Merrill

Institution: University of New Hampshire

Contact: Jonathan.Niehof@unh.edu

Classes

FileChecks() ISTP compliance checks for a CDF file.
VarBundle(var) Collective handling of ISTP-compliant variable and its

dependencies.
VariableChecks() ISTP compliance checks for a single variable.

4.14. pycdf - Python interface to CDF files 217

https://spdf.gsfc.nasa.gov/sp_use_of_cdf.html
mailto:Jonathan.Niehof@unh.edu

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.istp.FileChecks

class spacepy.pycdf.istp.FileChecks
ISTP compliance checks for a CDF file.

Checks a file’s compliance with ISTP standards. This mostly performs checks that are not currently performed
by the ISTP skeleton editor. All tests return a list, one error string for every noncompliance found (empty list if
compliant). all() will perform all tests and concatenate all errors.

all(f[, catch]) Perform all variable and file-level tests
empty_entry(f) Check for attributes with empty string
filename(f) Compare filename to global attributes
time_monoton(f) Checks that times are monotonic
times(f) Compare filename to times

classmethod all(f, catch=False)
Perform all variable and file-level tests

In addition to calling every test in this class, will also call VariableChecks.all() for every variable
in the file.

Parameters

f [CDF] Open CDF file to check

catch [bool] Catch exceptions in tests (default False). If True, any exceptions in subtests
will result in an addition to the validation failures of the form “Test x did not complete.”
Calling the individual test will reveal the full traceback.

Returns

list of str Description of each validation failure.

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])
>>> spacepy.pycdf.istp.FileChecks.all(f)
['No Logical_source in global attrs.',
'No Logical_file_id in global attrs.',
'Cannot parse date from filename foo.cdf.',
'Var: No FIELDNAM attribute.']

classmethod empty_entry(f)
Check for attributes with empty string

Checks global attributes for this variable for any entries consisting of an empty string. These should be
replaced with a single space.

Parameters

f [CDF] Open CDF file to check

Returns

list of str Description of each validation failure.

218 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/skteditor/

SpacePy Documentation, Release 0.2.2

classmethod filename(f)
Compare filename to global attributes

Check global attribute Logical_file_id and Logical_source for consistency with CDF filename.

Parameters

f [CDF] Open CDF file to check

Returns

list of str Description of each validation failure.

classmethod time_monoton(f)
Checks that times are monotonic

Check that all Epoch variables are monotonically increasing.

Parameters

f [CDF] Open CDF file to check

Returns

list of str Description of each validation failure.

classmethod times(f)
Compare filename to times

Check that all Epoch variables only contain times matching filename.

Parameters

f [CDF] Open CDF file to check

Returns

list of str Description of each validation failure.

Notes

This function assumes daily files and should be extended based on the File_naming_convention global
attribute (which itself is another good check to have.)

spacepy.pycdf.istp.VarBundle

class spacepy.pycdf.istp.VarBundle(var)
Collective handling of ISTP-compliant variable and its dependencies.

Representation of an ISTP-compliant variable bundled together with its dependencies to enable aggregate oper-
ations. Normally used to copy a subset of data from one CDF to another by chaining operations.

Unusual or indecipherable error messages may indicate an ISTP compliance issue; see VariableChecks for
some checks.

Parameters

var [Var] Variable to process

4.14. pycdf - Python interface to CDF files 219

https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html#Logical_file_id
https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html#Logical_source
https://spdf.gsfc.nasa.gov/istp_guide/variables.html#support_data_eg1
https://spdf.gsfc.nasa.gov/istp_guide/variables.html#support_data_eg1

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> #https://rbsp-ect.newmexicoconsortium.org/data_pub/rbspa/hope/level3/
→˓pitchangle/2012/
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf')
>>> infile['FPDU']
<Var:
CDF_FLOAT [3228, 11, 72]
>
>>> infile['FPDU'].attrs
<zAttrList:
CATDESC: HOPE differential proton flux [CDF_CHAR]
DEPEND_0: Epoch_Ion [CDF_CHAR]
DEPEND_1: PITCH_ANGLE [CDF_CHAR]
DEPEND_2: HOPE_ENERGY_Ion [CDF_CHAR]
...
>
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> outfile = spacepy.pycdf.CDF('output.cdf', create=True)
>>> b.slice(1, 2, single=True).output(outfile)
<VarBundle:
FPDU: CDF_FLOAT [3228, 72]
Epoch_Ion: CDF_EPOCH [3228]

Epoch_Ion_DELTA: CDF_REAL4 [3228]
PITCH_ANGLE: CDF_FLOAT ---

Pitch_LABL: CDF_CHAR*5 ---
HOPE_ENERGY_Ion: CDF_FLOAT [3228, 72]

ENERGY_Ion_DELTA: CDF_FLOAT [3228, 72]
Energy_LABL: CDF_CHAR*3 [72] NRV

>
>>> outfile['FPDU']
<Var:
CDF_FLOAT [3228, 72]
>
>>> outfile['FPDU'].attrs
<zAttrList:
CATDESC: HOPE differential proton flux [CDF_CHAR]
DEPEND_0: Epoch_Ion [CDF_CHAR]
DEPEND_1: HOPE_ENERGY_Ion [CDF_CHAR]
...
>
>>> outfile.close()
>>> infile.close()

mean(dim) Take the mean of a dimension.
operations() Operations of this bundle
output(output[, suffix]) Output the variables as modified
slice(dim[, start, stop, step, single]) Slice on a single dimension
sum(dim) Sum across a dimension.
variables() Description of variable output from the bundle

mean(dim)
Take the mean of a dimension.

220 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Take mean of the main variable of the bundle across the given dimension. That dimension disappears from
the output and dependencies (including their uncertainties) are assumed to be constant across the summed
dimension. The uncertainty of the main variable, if any, is appropriately propagated.

Invalid values are excluded fromthe mean. This does not work well for variables that define multiple
VALIDMIN/VALIDMAX based on position within a dimension; the smallest VALIDMIN/largest VALID-
MAX rather than the position-specific value.

Averaging occurs after slicing, to allow averaging of a subset of a dimension. A single element slice (which
removes the dimension) is incompatible with averaging over that dimension.

There is not currently a way to “undo” a mean; create a new bundle instead.

Parameters

dim [int] CDF dimension to average. This is the dimension as specified in the CDF (0-
base for RV variables, 1-base for NRV) and does not change with successive slicing or
summing. This must be a positive number (no support for e.g. -1 for last dimension.)

Returns

VarBundle This bundle, for method chaining. This is not a copy: the original object is
updated.

Examples

See the VarBundle examples for creating output.

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf
→˓')
>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])
>>> #Average over dimension 1 (pitch angle)
>>> b.mean(1)
>>> #Get a new bundle (without the previous sum)
>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])
>>> #Average over first 10 elements of dimension 2 (energy bins)
>>> b.slice(2, 0, 10).mean(2)
>>> infile.close()

output(output, suffix=None)
Output the variables as modified

Parameters

output [CDF] Output CDF to receive the new data.

suffix [str] Suffix to append to the name of any variables that are changed for the output.
This allows the output to contain multiple variables derived from the same input variable.
The main variable and its DELTA variables will always have the suffix applied. Any
dependencies will have the suffix applied only if they have changed from the input CDF
(e.g. from slicing.)

Returns

VarBundle This bundle, for method chaining.

4.14. pycdf - Python interface to CDF files 221

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf
→˓')
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> outfile = spacepy.pycdf.CDF('output.cdf', create=True)
>>> #Output the low energy half in one variable
>>> b.slice(2, 0, 36).output(outfile, suffix='_LoE')
>>> #And the high energy half in another variable
>>> b.slice(2, 36, 72).output(outfile, suffix='_HiE')
>>> outfile.close()
>>> infile.close()

operations()
Operations of this bundle

Provides information describing the operations this bundle would perform.

Returns

list Each element is a tuple: first element is a string with the name of the operation (i.e.
method of VarBundle), next is also a tuple of positional arguments, and finally a dict of
keyword arguments.

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf
→˓')
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> b.slice(1, 2, single=True).operations()
[('slice', (1, 2), {'single': True})]

>>> #Apply same operations to a different variable
>>> b2 = spacepy.pycdf.istp.VarBundle(infile['FEDU'])
>>> for op, args, kwargs in b2.operations():
... getattr(b2, op)(*args, **kwargs)

slice(dim, start=None, stop=None, step=None, single=False)
Slice on a single dimension

Selects subset of a dimension to include in the output. Slicing is done with reference to the dimensions of
the main variable and the corresponding dimensions of all other variables are sliced similarly. The first non-
record dimension of the variable is always 1; 0 is the record dimension (and is ignored for NRV variables).
Multiple slices can be applied to select subsets of multiple dimensions; however, if one dimension is
indexed multiple times, only the last one in the chain takes effect.

Interpretation of the slice parameters is like normal Python slicing, including the ability to use negative
values, etc.

Passing in only a dimension “resets” the slice to include the entire dimension.

Parameters

dim [int] CDF dimension to slice on. This is the dimension as specified in the CDF (0-base
for RV variables, 1-base for NRV) and does not change with successive slicing. Each
dimension can only be sliced once.

222 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

single [bool] Treat start as a single index and return only that index (reducing dimension-
ality of the data by one.)

start [int] Index of first element of dim to include in the output. This can also be a sequence
of indices to include, in which case stop and step must not be specified. This can be
substantially slower than specifying stop and step.

stop [int] Index of first element of dim to exclude from the output.

step [int] Increment between elements to include in the output.

Returns

VarBundle This bundle, for method chaining. This is not a copy: the original object is
updated.

Examples

See the VarBundle examples for creating output from the slices.

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf
→˓')
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> #Select index 2 from axis 1
>>> b.slice(1, 2, single=True)
>>> #Select from index 5 to end for axis 2, keeping index 2 from axis 1
>>> b.slice(2, 5)
>>> #Select 10 through 15 on axis 2, but all of axis 1
>>> b.slice(1).slice(2, 10, 15)
>>> #Select just record 5 and 10
>>> b.slice(2).slice(0, [5, 10])
>>> infile.close()

sum(dim)
Sum across a dimension.

Total the main variable of the bundle across the given dimension. That dimension disappears from the
output and dependencies (including their uncertainties) are assumed to be constant across the summed
dimension. The uncertainty of the main variable, if any, is appropriately propagated (quadrature sum.)

An invalid value for any element summed over will result in a fill value on the output. This does not work
well for variables that define multiple VALIDMIN/VALIDMAX based on position within a dimension; the
smallest VALIDMIN/largest VALIDMAX rather than the position-specific value.

Summing occurs after slicing, to allow summing of a subset of a dimension. A single element slice (which
removes the dimension) is incompatible with summing over that dimension.

There is not currently a way to “undo” a sum; create a new bundle instead.

Parameters

dim [int] CDF dimension to total. This is the dimension as specified in the CDF (0-base for
RV variables, 1-base for NRV) and does not change with successive slicing or summing.
This must be a positive number (no support for e.g. -1 for last dimension.)

Returns

VarBundle This bundle, for method chaining. This is not a copy: the original object is
updated.

4.14. pycdf - Python interface to CDF files 223

SpacePy Documentation, Release 0.2.2

Examples

See the VarBundle examples for creating output.

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf
→˓')
>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])
>>> #Total over dimension 1 (pitch angle)
>>> b.sum(1)
>>> #Get a new bundle (without the previous sum)
>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])
>>> #Total over first 10 elements of dimension 2 (energy bins)
>>> b.slice(2, 0, 10).sum(2)
>>> infile.close()

variables()
Description of variable output from the bundle

Provides information describing the variables output from the bundle

Returns

list Each element is a list-of-tuples. The list corresponds to a dimension of the master var:
first the master var itself, then the uncertainties and labels associated with each dimension.
Each element of these sublists is then a tuple of variable name and shape on the output
(itself a tuple). If a variable isn’t included in the output (sliced away), its shape will be
None.

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf
→˓')
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> b.slice(1, 2, single=True).variables()
[[('FPDU', (100, 72))],
[('Epoch_Ion', (100,)), ('Epoch_Ion_DELTA', (100,))],
[('PITCH_ANGLE', None), ('Pitch_LABL', None)],
[('HOPE_ENERGY_Ion', (100, 72)),
('ENERGY_Ion_DELTA', (100, 72)),
('Energy_LABL', (72,))]]

spacepy.pycdf.istp.VariableChecks

class spacepy.pycdf.istp.VariableChecks
ISTP compliance checks for a single variable.

Checks a variable’s compliance with ISTP standards. This mostly performs checks that are not currently per-
formed by the ISTP skeleton editor. All tests return a list, one error string for every noncompliance found (empty
list if compliant). all() will perform all tests and concatenate all errors.

224 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/skteditor/

SpacePy Documentation, Release 0.2.2

all(v[, catch]) Perform all variable tests
deltas(v) Check DELTA variables
depends(v) Checks that DELTA, DEPEND, and LABL_PTR

variables exist
depsize(v) Checks that DEPEND has same shape as that dim
empty_entry(v) Check for attributes with empty string
fieldnam(v) Check that FIELDNAM attribute matches variable

name.
fillval(v) Check for FILLVAL presence, type, value
recordcount(v) Check that the DEPEND_0 has same record count as

variable
validdisplaytype(v) Check that plottype matches dimensions.
validrange(v) Check that all values are within VALID-

MIN/VALIDMAX, or FILLVAL
validscale(v) Check SCALEMIN<=SCALEMAX, and both in

range for CDF datatype.

classmethod all(v, catch=False)
Perform all variable tests

Parameters

v [Var] Variable to check

catch [bool] Catch exceptions in tests (default False). If True, any exceptions in subtests
will result in an addition to the validation failures of the form “Test x did not complete.”
Calling the individual test will reveal the full traceback.

Returns

list of str Description of each validation failure.

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])
>>> spacepy.pycdf.istp.VariableChecks.all(v)
['No FIELDNAM attribute.']

classmethod deltas(v)
Check DELTA variables

Check that variables specified in the variable attributes for DELTA match the type, size, and units of this
variable.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod depends(v)
Checks that DELTA, DEPEND, and LABL_PTR variables exist

4.14. pycdf - Python interface to CDF files 225

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DELTA

SpacePy Documentation, Release 0.2.2

Check that variables specified in the variable attributes for DELTA, DEPEND, and LABL_PTR exist in
the CDF.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod depsize(v)
Checks that DEPEND has same shape as that dim

Compares the size of variables specified in the variable attributes for DEPEND and compares to the size
of the corresponding dimension in this variable.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod empty_entry(v)
Check for attributes with empty string

Checks attributes for this variable for any entries consisting of an empty string. These should be replaced
with a single space.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod fieldnam(v)
Check that FIELDNAM attribute matches variable name.

Compare FIELDNAM attribute to the variable name; fail validation if they don’t match.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod fillval(v)
Check for FILLVAL presence, type, value

Checks variable for existence of FILLVAL attribute and makes sure it is the same type as variable and
matches ISTP value.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

See also:

226 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DELTA
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#LABL_PTR_1
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FIELDNAM
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL

SpacePy Documentation, Release 0.2.2

spacepy.pycdf.istp.fillval Automatic setting of this value.

classmethod recordcount(v)
Check that the DEPEND_0 has same record count as variable

Checks the record count of the variable specified in the variable attribute for DEPEND_0 and compares to
the record count for this variable.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod validdisplaytype(v)
Check that plottype matches dimensions.

Check DISPLAYTYPE of this variable and makes sure it is reasonable for the variable dimensions.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod validrange(v)
Check that all values are within VALIDMIN/VALIDMAX, or FILLVAL

Compare all values of this variable to VALIDMIN and VALIDMAX; fails validation if any values are below
VALIDMIN or above VALIDMAX unless equal to FILLVAL.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

classmethod validscale(v)
Check SCALEMIN<=SCALEMAX, and both in range for CDF datatype.

Compares SCALEMIN to SCALEMAX to make sure it isn’t larger and both are within range of the variable
CDF datatype.

Parameters

v [Var] Variable to check

Returns

list of str Description of each validation failure.

4.14. pycdf - Python interface to CDF files 227

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DISPLAY_TYPE
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#VALIDMIN
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#SCALEMIN

SpacePy Documentation, Release 0.2.2

Functions

fillval(v[, ret]) Set ISTP-compliant FILLVAL on a variable
format(v[, use_scaleminmax, dryrun]) Set ISTP-compliant FORMAT on a variable
nanfill(v) Set fill values to NaN

spacepy.pycdf.istp.fillval

spacepy.pycdf.istp.fillval(v, ret=False)
Set ISTP-compliant FILLVAL on a variable

Sets or returns a CDF variable’s FILLVAL attribute to the value required by ISTP (based on variable type).

Parameters

v [Var] CDF variable to update

Returns

various If ret is True, returns the correct value for variable type (which may be of various
Python types). Otherwise sets the value and returns None.

Other Parameters

ret [boolean] If True, return the value instead of setting it (Default False, set).

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])
>>> spacepy.pycdf.istp.fillval(v)
>>> v.attrs['FILLVAL']
-128

spacepy.pycdf.istp.format

spacepy.pycdf.istp.format(v, use_scaleminmax=False, dryrun=False)
Set ISTP-compliant FORMAT on a variable

Sets a CDF variable’s FORMAT attribute, which provides a Fortran-like format string that should be useable for
printing any valid value in the variable. Sets according to the VALIDMIN/VALIDMAX attributes (or, optionally,
SCALEMIN/SCALEMAX) if present, otherwise uses the full range of the type.

Parameters

v [Var] Variable to update

use_scaleminmax [bool, optional] Use SCALEMIN/MAX instead of VALIDMIN/MAX (de-
fault False). Note: istpchecks may complain about result.

dryrun [bool, optional] Print the decided format to stdout instead of modifying the CDF (for
use in command-line debugging) (default False).

228 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FORMAT

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])
>>> spacepy.pycdf.istp.format(v)
>>> v.attrs['FORMAT']
'I4'

spacepy.pycdf.istp.nanfill

spacepy.pycdf.istp.nanfill(v)
Set fill values to NaN

Finds all values which are equal to FILLVAL, greater than VALIDMAX, or less than VALIDMIN, and replace
with NaN (not-a-number). This is an update-in-place operation; does not return a copy.

Assumes a single value for VALIDMIN, VALIDMAX, FILLVAL (although if the attribute is not present, will
simply assume no restriction.)

Only applicable to floating-point types. Best applied to a VarCopy or dmarray rather than Var. Updating
a variable in a CDF requires one write per changed value, and also will result in a CDF that is no longer ISTP
compliant.

Because of floating-point comparison, the matching to FILLVAL may fail.

Parameters

v [Var or dmarray] CDF variable, data, or copy to update

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3, -1e31])
>>> spacepy.pycdf.istp.fillval(v)
>>> data = v.copy()
>>> data
VarCopy([1., 2., 3., -1.e31], dtype=float32)
>>> spacepy.pycdf.istp.nanfill(data)
>>> data
VarCopy([1., 2., 3., nan], dtype=float32)

4.14. pycdf - Python interface to CDF files 229

SpacePy Documentation, Release 0.2.2

4.14.6 Data

spacepy.pycdf.lib
Module global Library object.

Initalized at pycdf load time so all classes have ready access to the CDF library and a common state. E.g:

>>> from spacepy import pycdf
>>> pycdf.lib.version

(3, 3, 0, ' ')

4.15 radbelt - Functions supporting radiation belt diffusion codes

Functions supporting radiation belt diffusion codes

Authors: Josef Koller Institution: Los Alamos National Laboratory Contact: jkoller@lanl.gov

Copyright 2010 Los Alamos National Security, LLC.

Classes

RBmodel([grid, NL, const_kp]) 1-D Radial diffusion class

4.15.1 spacepy.radbelt.RBmodel

class spacepy.radbelt.RBmodel(grid='L', NL=91, const_kp=False)
1-D Radial diffusion class

This module contains a class for performing and visualizing 1-D radial diffusion simulations of the radiation
belts.

Here is an example using the default settings of the model. Each instance must be initialized with (assuming
import radbelt as rb):

>>> rmod = rb.RBmodel()

Next, set the start time, end time, and the size of the timestep:

>>> import datetime
>>> start = datetime.datetime(2003,10,14)
>>> end = datetime.datetime(2003,12,26)
>>> delta = datetime.timedelta(hours=1)
>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

Now, run the model over the entire time range using the evolve method:

>>> rmod.evolve()

Finally, visualize the results:

>>> rmod.plot_summary()

230 Chapter 4. SpacePy Module Reference

mailto:jkoller@lanl.gov

SpacePy Documentation, Release 0.2.2

Gaussian_source() Gaussian source term added to radiation belt model.
add_Lmax(Lmax_model) add last closed drift shell Lmax
add_Lpp(Lpp_model) add last closed drift shell Lmax
add_PSD_obs([time, PSD, Lstar, satlist]) add PSD observations
add_PSD_twin([dt, Lt]) add observations from PSD database using the ticks

list the arguments are the following:
add_omni([keylist]) add omni data to instance according to the tickrange

in ticks
add_source([source, A, mu, sigma]) add source parameters A, mu, and sigma for the

Gaussian source function
assimilate([method, inflation]) Assimilates data for the radiation belt model using

the Ensemble Kalman Filter.
evolve() calculate the diffusion in L at constant mu,K coordi-

nates
get_DLL(Lgrid, params[, DLL_model]) Calculate DLL as a simple power law function (al-

pha*L**Bbta) using alpha/beta values from popular
models found in the literature and chosen with the
kwarg “DLL_model”.

plot([Lmax, Lpp, Kp, Dst, clims, title, values]) Create a summary plot of the RadBelt object distri-
bution function.

plot_obs([Lmax, Lpp, Kp, Dst, clims, title, . . .]) Create a summary plot of the observations.
set_lgrid([NL]) Using NL grid points, create grid in L.
setup_ticks(start, end, delta[, dtype]) Add time information to the simulation by specify-

ing a start and end time, timestep, and time type (op-
tional).

Gaussian_source()
Gaussian source term added to radiation belt model. The source term is given by the equation:

S = A exp{-(L-mu)^2/(2*sigma^2)}

with A=10^(-8), mu=5.0, and sigma=0.5 as default values

add_Lmax(Lmax_model)
add last closed drift shell Lmax

add_Lpp(Lpp_model)
add last closed drift shell Lmax

add_PSD_obs(time=None, PSD=None, Lstar=None, satlist=None)
add PSD observations

Parameters

time [Ticktock datetime array] array of observation times

PSD [list of numpy arrays] PSD observational data for each time. Each entry in the list is a
numpy array with the observations for the corresponding time

Lstar [list of numpy arrays] Lstar location of each PSD observations. Each entry in the list
is a numpy array with the location of the observations for the corresponding time

satlist [list of satellite names]

Returns

out [list of dicts] Information of the observational data, where each entry contains the ob-
servations and locations of observations for each time specified in the time array. Each list

4.15. radbelt - Functions supporting radiation belt diffusion codes 231

SpacePy Documentation, Release 0.2.2

entry is a dictionary with the following information:

Ticks [Ticktock array] time of observations

Lstar [numpy array] location of observations

PSD [numpy array] PSD observation values

sat [list of strings] satellite names

MU [scalar value] Mu value for the observations

K [scalar value] K value for the observations

add_PSD_twin(dt=0, Lt=1)
add observations from PSD database using the ticks list the arguments are the following:

dt = observation time delta in seconds Lt = observation space delta

add_omni(keylist=None)
add omni data to instance according to the tickrange in ticks

add_source(source=True, A=1e-08, mu=5.0, sigma=0.5)
add source parameters A, mu, and sigma for the Gaussian source function

assimilate(method='EnKF', inflation=0)
Assimilates data for the radiation belt model using the Ensemble Kalman Filter. The algorithm used is the
SVD method presented by Evensen in 2003 (Evensen, G., Ocean dynamics, 53, pp.343–367, 2003). To
compensate for model errors, three inflation algorithms are implemented. The inflation methodology is
specified by the ‘inflation’ argument, and the options are the following:

inflation == 0: Add model error (perturbation for the ensemble) around model state values only
where observations are available (DEFAULT).

inflation == 1: Add model error (perturbation for the ensemble) around observation values only
where observations are available.

inflation == 2: Inflate around ensemble average for EnKF.

Prior to assimilation, a set of data values has to be speficied by setting the start and end dates, and time
step, using the setup_ticks funcion of the radiation belt model:

>>> import spacepy
>>> import datetime
>>> from spacepy import radbelt

>>> start = datetime.datetime(2002,10,23)
>>> end = datetime.datetime(2002,11,4)
>>> delta = datetime.timedelta(hours=0.5)
>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

Once the dates and time step are specified, the data is added using the add_PSD function:

>>> rmod.add_PSD()

The observations are averaged over the time windows, whose interval is give by the time step.

Once the dates and data are set, the assimiation is performed using the ‘assimilate’ function:

>>> rmod.assimilate(inflation=1)

This function will add the PSDa values, which are the analysis state of the radiation belt using the obser-
vations within the dates. To plot the analysis simply use the plot funtion:

232 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

>>> rmod.plot(values=rmod.PSDa,clims=[-10,-6],Lmax=False,Kp=False,Dst=False)

evolve()
calculate the diffusion in L at constant mu,K coordinates

get_DLL(Lgrid, params, DLL_model='BA2000')
Calculate DLL as a simple power law function (alpha*L**Bbta) using alpha/beta values from popular
models found in the literature and chosen with the kwarg “DLL_model”.

The calculated DLL is returned, as is the alpha and beta values used in the calculationp.

The output DLL is in units of units/day.

plot(Lmax=True, Lpp=False, Kp=True, Dst=True, clims=[0, 10], title=None, values=None)
Create a summary plot of the RadBelt object distribution function. For reference, the last closed drift shell,
Dst, and Kp are all included. These can be disabled individually using the corresponding Boolean kwargs.

The clims kwarg can be used to manually set the color bar range. To use, set it equal to a two-element list
containing minimum and maximum Log_10 value to plot. Default action is to use [0,10] as the log_10 of
the color range. This is good enough for most applications.

The title of the top most plot defaults to ‘Summary Plot’ but can be customized using the title kwarg.

The figure object and all three axis objects (PSD axis, Dst axis, and Kp axis) are all returned to allow the
user to further customize the plots as necessary. If any of the plots are excluded, None is returned in their
stead.

Examples

>>> rb.plot(Lmax=False, Kp=False, clims=[2,10], title='Good work!')

This command would create the summary plot with a color bar range of 100 to 10^10. The Lmax line and
Kp values would be excluded. The title of the topmost plot (phase space density) would be set to ‘Good
work!’.

plot_obs(Lmax=True, Lpp=False, Kp=True, Dst=True, clims=[0, 10], title=None, values=None)
Create a summary plot of the observations. For reference, the last closed drift shell, Dst, and Kp are all
included. These can be disabled individually using the corresponding boolean kwargs.

The clims kwarg can be used to manually set the color bar range. To use, set it equal to a two-element list
containing minimum and maximum Log_10 value to plot. Default action is to use [0,10] as the log_10 of
the color range. This is good enough for most applications.

The title of the top most plot defaults to ‘Summary Plot’ but can be customized using the title kwarg.

The figure object and all three axis objects (PSD axis, Dst axis, and Kp axis) are all returned to allow the
user to further customize the plots as necessary. If any of the plots are excluded, None is returned in their
stead.

4.15. radbelt - Functions supporting radiation belt diffusion codes 233

SpacePy Documentation, Release 0.2.2

Examples

>>> rb.plot_obs(Lmax=False, Kp=False, clims=[2,10], title='Observations Plot')

This command would create the summary plot with a color bar range of 100 to 10^10. The Lmax line and
Kp values would be excluded. The title of the topmost plot (phase space density) would be set to ‘Good
work!’.

set_lgrid(NL=91)
Using NL grid points, create grid in L. Default number of points is 91 (dL=0.1).

setup_ticks(start, end, delta, dtype='ISO')
Add time information to the simulation by specifying a start and end time, timestep, and time type (op-
tional).

Examples

>>> start = datetime.datetime(2003,10,14)
>>> end = datetime.datetime(2003,12,26)
>>> delta = datetime.timedelta(hours=1)
>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

Functions

get_modelop_L(f, L, Dm_old, Dm_new, Dp_old,
. . .)

Advance the distribution function, f, discretized into the
Lgrid, L, forward in time by a timestep, Tdelta.

diff_LL(r, grid, f, Tdelta, Telapsed[, params]) calculate the diffusion in L at constant mu,K coordinates
time units

get_local_accel(Lgrid, params[, SRC_model]) calculate the diffusion coefficient D_LL

4.15.2 spacepy.radbelt.get_modelop_L

spacepy.radbelt.get_modelop_L(f, L, Dm_old, Dm_new, Dp_old, Dp_new, Tdelta, NL)
Advance the distribution function, f, discretized into the Lgrid, L, forward in time by a timestep, Tdelta. The
off-grid current and next diffusion coefficients, D[m,p]_[old,new] will be used. The number of grid points is set
by NL.

This function performs the same calculation as the C-based code, spacepy.lib.solve_cnp. This code is very slow
and should only be used when the C code fails to compile.

4.15.3 spacepy.radbelt.diff_LL

spacepy.radbelt.diff_LL(r, grid, f, Tdelta, Telapsed, params=None)
calculate the diffusion in L at constant mu,K coordinates time units

234 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.15.4 spacepy.radbelt.get_local_accel

spacepy.radbelt.get_local_accel(Lgrid, params, SRC_model='JK1')
calculate the diffusion coefficient D_LL

4.16 SeaPy - Superposed Epoch in Python

SeaPy – Superposed Epoch in Python.

This module contains superposed epoch class types and a variety of functions for using on superposed epoch objects.
Each instance must be initialized with (assuming import seapy as se):

>>> obj = se.Sea(data, times, epochs)

To perform a superposed epoch analysis

>>> obj.sea()

To plot

>>> obj.plot()

If multiple SeaPy objects exist, these can be combined into a single object

>>> objdict = seadict([obj1, obj2],['obj1name','obj2name'])

and then used to create a multipanel plot

>>> multisea(objdict)

For two-dimensional superposed epoch analyses, initialize an Sea2d() instance

>>> obj = se.Sea2d(data, times, epochs, y=[4., 12.])

All object methods are the same as for the 1D object. Also, the multisea() function should accept both 1D and 2D
objects, even mixed together. Currently, the plot() method is recommended for 2D SEA.

–++– By Steve Morley –++–

smorley@lanl.gov Los Alamos National Laboratory

Copyright 2010 Los Alamos National Security, LLC.

Classes

Sea(data, times, epochs[, window, delta, . . .]) SeaPy Superposed epoch analysis object
Sea2d(data, times, epochs[, window, delta, . . .]) SeaPy 2D Superposed epoch analysis object

4.16. SeaPy - Superposed Epoch in Python 235

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.2.2

4.16.1 spacepy.seapy.Sea

class spacepy.seapy.Sea(data, times, epochs, window=3.0, delta=1.0, verbose=True)
SeaPy Superposed epoch analysis object

Initialize object with data, times, epochs, window (half-width) and delta (optional). ‘times’ and epochs should
be in some useful format Includes method to perform superposed epoch analysis of input data series

Parameters

data [array_like] list or array of data

times [array_like] list of datetime objects (or list of serial times)

epochs [array_like] list of datetime objects (or serial times) for zero epochs in SEA

window [datetime.timedelta] size of the half-window for the SEA (can also be given as serial
time)

delta [datetime.timedelta] resolution of the input data series, which must be uniform (can also
be given as serial time)

Notes

Output can be nicely plotted with plot(), or for multiple objects use the multisea() function

sea(**kwargs) Method called to perform superposed epoch analysis
on data in object.

plot([xquan, yquan, xunits, yunits, . . .]) Method called to create basic plot of superposed
epoch analysis.

sea(**kwargs)
Method called to perform superposed epoch analysis on data in object.

Uses object attributes obj.data, obj.times, obj.epochs, obj.delta, obj.window, all of which must be available
on instantiation.

Other Parameters

storedata [boolean] saves matrix of epoch windows as obj.datacube (default = False)

quartiles [list] calculates the quartiles as the upper and lower bounds (and is default);

ci [float] will find the bootstrapped confidence intervals of ci_quan at the ci percent level
(default=95)

mad [float] will use +/- the median absolute deviation for the bounds;

ci_quan [string] can be set to ‘median’ (default) or ‘mean’

236 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Notes

A basic plot can be raised with plot()

plot(xquan='Time Since Epoch', yquan='', xunits='', yunits='', epochline=True, usr-
limy=[], show=True, target=None, loc=111, figsize=None, dpi=None, transparent=True,
color='#7F7FFF')

Method called to create basic plot of superposed epoch analysis.

Parameters

Uses object attributes created by the obj.sea() method.

Other Parameters

xquan [str] (default = ‘Time since epoch’) - x-axis label.

yquan [str] default None - yaxus label

xunits [str] (default = None) - x-axis units.

yunits [str] (default = None) - y-axis units.

epochline [boolean] (default = True) - put vertical line at zero epoch.

usrlimy [list] (default = []) - override automatic y-limits on plot.

transparent [boolean] (default True): make patch for low/high bounds transparent

color [str] Color to use for the patch if not transparent. (default #7F7FFF, a medium blue)

Notes

If both quan and units are supplied, axis label will read ‘Quantity Entered By User [Units]’

4.16.2 spacepy.seapy.Sea2d

class spacepy.seapy.Sea2d(data, times, epochs, window=3.0, delta=1.0, verbose=False, y=[])
SeaPy 2D Superposed epoch analysis object

Initialize object with data (n element vector), times(y*n array), epochs, window (half-width), delta (optional),
and y (two-element vector with max and min of y;optional) ‘times’ and epochs should be in some useful format
Includes method to perform superposed epoch analysis of input data series

Parameters

data [array_like] 2-D array of data (0th dimension is quantity y, 1st dimension is time)

times [array_like] list of datetime objects (or list of serial times)

epochs [array_like] list of datetime objects (or serial times) for zero epochs in SEA

window [datetime.timedelta] size of the half-window for the SEA (can also be given as serial
time)

delta [datetime.timedelta] resolution of the input data series, which must be uniform (can also
be given as serial time)

4.16. SeaPy - Superposed Epoch in Python 237

SpacePy Documentation, Release 0.2.2

Notes

Output can be nicely plotted with plot(), or for multiple objects use the multisea() function

sea([storedata, quartiles, ci, mad, . . .]) Perform 2D superposed epoch analysis on data in ob-
ject

plot([xquan, yquan, xunits, yunits, zunits, . . .]) Method called to create basic plot of 2D superposed
epoch analysis.

sea(storedata=False, quartiles=True, ci=False, mad=False, ci_quan='median', nmask=1, **kwargs)
Perform 2D superposed epoch analysis on data in object

Uses object attributes obj.data, obj.times, obj.epochs, obj.delta, obj.window, all of which must be available
on instantiation.

Other Parameters

storedata [boolean] saves matrix of epoch windows as obj.datacube (default = False)

quartiles [list] calculates the inter-quartile range to show the spread (and is default);

ci [float] will find the bootstrapped confidence interval (and requires ci_quan to be set)

mad [float] will use the median absolute deviation for the spread;

ci_quan [string] can be set to ‘median’ or ‘mean’

Notes

A basic plot can be raised with plot()

plot(xquan='Time Since Epoch', yquan='', xunits='', yunits='', zunits='', epochline=True, usrlimy=[],
show=True, zlog=True, figsize=None, dpi=300)

Method called to create basic plot of 2D superposed epoch analysis.

Uses object attributes created by sea().

Other Parameters

x(y)quan [str] x(y)-axis label. (default = ‘Time since epoch’ (None))

x(y/z)units [str] x(y/z)-axis units. (default = None (None))

epochline [boolean] put vertical line at zero epoch. (default = True)

usrlimy [list] override automatic y-limits on plot. (default = [])

show [boolean] shows plot; set to false to output plot object to variable (default = True)

figsize [tuple] (width, height) in inches

dpi [int] figure resolution in dots per inch (default=300)

238 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Notes

If both quan and units are supplied, axis label will read ‘Quantity Entered By User [Units]’

Functions

seadict(objlist, namelist) Function to create dictionary of SeaPy.Sea objects.
multisea(dictobj[, n_cols, epochline, . . .]) Function to create multipanel plot of superposed epoch

analyses.
readepochs(fname[, iso, isofmt]) Read epochs from text file assuming YYYY MM DD

hh mm ss format
sea_signif(obj1, obj2[, test, show, xquan, . . .]) Test for similarity between distributions at each lag in

two 1-D SEAs

4.16.3 spacepy.seapy.seadict

spacepy.seapy.seadict(objlist, namelist)
Function to create dictionary of SeaPy.Sea objects.

Parameters

- objlist: List of Sea objects.

• namelist: List of variable labels for input objects.

Other Parameters

namelist = List containing names for y-axes.

4.16.4 spacepy.seapy.multisea

spacepy.seapy.multisea(dictobj, n_cols=1, epochline=True, usrlimx=[], usrlimy=[], xunits='',
show=True, zunits='', zlog=True, figsize=None)

Function to create multipanel plot of superposed epoch analyses.

Parameters

Dictionary of Sea objects (from superposedepoch.seadict()).

Returns

Plot of input object median and bounds (ci, mad, quartiles - see sea()).

If keyword ‘show’ is False, output is a plot object.

Other Parameters

- epochline (default = True) - put vertical line at zero epoch.

• usrlimy (default = []) - override automatic y-limits on plot (same for all plots).

• show (default = True) - shows plot; set to false to output plot object to variable

• x/zunits - Units for labeling x and z axes, if required

• figsize - tuple of (width, height) in inches

• dpi (default=300) - figure resolution in dots per inch

4.16. SeaPy - Superposed Epoch in Python 239

SpacePy Documentation, Release 0.2.2

• n_cols - Number of columns: not yet implemented.

4.16.5 spacepy.seapy.readepochs

spacepy.seapy.readepochs(fname, iso=False, isofmt='%Y-%m-%dT%H:%M:%S')
Read epochs from text file assuming YYYY MM DD hh mm ss format

Parameters

Filename (include path)

Returns

epochs (type=list)

Other Parameters

iso (default = False), read in ISO date format

isofmt (default is YYYY-mm-ddTHH:MM:SS, code is %Y-%m-%dT%H:%M:%S)

4.16.6 spacepy.seapy.sea_signif

spacepy.seapy.sea_signif(obj1, obj2, test='KS', show=True, xquan='Time Since Epoch', yquan='',
xunits='', yunits='', epochline=True, usrlimy=[])

Test for similarity between distributions at each lag in two 1-D SEAs

Parameters

obj1 [Sea] First instance for comparison

obj2 [Sea] Second instance for comparison

Other Parameters

test (default = ‘KS’) Test to apply at each lag: KS is 2-smaple Kolmogorov-Smirnov; U is
Mann-Whitney U-test

show (default = True)

xquan (default = ‘Time since epoch’ (None)) - x-axis label.

yquan (default = ‘Time since epoch’ (None)) - y-axis label.

xunits (default = None (None)) - x-axis units.

yunits (default = None (None)) - y-axis units.

epochline (default = True) - put vertical line at zero epoch.

usrlimy (default = []) - override automatic y-limits on plot.

240 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

>>> obj1 = seapy.Sea(data1, times1, epochs1)
>>> obj2 = seapy.Sea(data2, times2, epochs2)
>>> obj1.sea(storedata=True)
>>> obj2.sea(storedata=True)
>>> seapy.sea_signif(obj1, obj2)

4.17 time - Time conversion, manipulation and implementation of
Ticktock class

Time conversion, manipulation and implementation of Ticktock class

4.17.1 Notes

The handling of time, in particular the conversions between representations, can be more complicated than it seems
on the surface. This can result in some surprising behavior, particularly when requiring second-level accuracy and
converting between time systems outside of the period 1972 to present. It is strongly recommended to use TAI if
transferring times between SpacePy and other libraries. TAI has a consistent, unambiguous definition and no discon-
tinuities.

Some time systems (e.g. the UTC representation via datetime) cannot represent times during a leapsecond. SpacePy
represents all these times as the latest representable time in the day, e.g.:

>>> spacepy.time.Ticktock('2008-12-31T23:59:60').UTC[0]
datetime.datetime(2008, 12, 31, 23, 59, 59, 999999)

Conversions between continuous time representations (e.g. TAI), leap second aware representations (e.g. ISO
timestrings), and those that ignore leap seconds (e.g. UTC datetime, Unix time) are well-defined between the in-
troduction of the leap second system to UTC in 1972 and the present. For systems that cannot represent leap seconds,
the leap second moment is considered not to exist. For example, from 23:59:59 on 2008-12-31 to 00:00:00 on 2009-
01-01 is two seconds, but only represents a one-second increment in Unix time. Details are also discussed in the
individual time representations.

UTC times more than six months in the future are not well-defined, since the sechedule of leap second insertion is
not known in advance. SpacePy performs conversions assuming there are no leapseconds after those which have been
announced by IERS.

Between 1960 and 1972, UTC was defined by means of fractional leap seconds and a varying-length second. SpacePy
treats UTC time in this period similar to after 1972, with a consistent second the same length of the SI second. It
applies leap seconds wherever there is an entry in the USNO record of TAI-UTC, rounding fractional total leap second
countss to the integer (0.5 rounds up). This results in the application of six leap seconds at the beginning of 1972. The
discrepancy with other means of calculating TAI-UTC may be as much as five seconds at the end of this period.

Before 1960, UTC is not defined. SpacePy assumes days of constant length 86400 seconds, equal to the SI second.
This is almost guaranteed to be wrong; for times well out of the space era, it is strongly recommended to work
consistently in either a continuous time system (e.g. TAI) or a day-based system (e.g. JD).

SpacePy assumes dates including and after 1582-10-15 to be in the Gregorian calendar and dates including and before
1582-10-04 to be Julian. 10-05 through 10-14 do not exist. This change is ignored for continuously-running non leap
second aware timebases: CDF and RDT.

See the Ticktock documentation and its various get functions for more details on the exact definitions of time
systems used by SpacePy.

4.17. time - Time conversion, manipulation and implementation of Ticktock class 241

SpacePy Documentation, Release 0.2.2

4.17.2 Examples:

>>> import spacepy.time as spt
>>> import datetime as dt

Day of year calculations

>>> dts = spt.doy2date([2002]*4, range(186,190), dtobj=True)
>>> dts
[datetime.datetime(2002, 7, 5, 0, 0),
datetime.datetime(2002, 7, 6, 0, 0),
datetime.datetime(2002, 7, 7, 0, 0),
datetime.datetime(2002, 7, 8, 0, 0)]

>>> dts = spt.Ticktock(dts,'UTC')
>>> dts.DOY
array([186., 187., 188., 189.])

Ticktock object creation

>>> isodates = ['2009-12-01T12:00:00', '2009-12-04T00:00:00', '2009-12-06T12:00:00']
>>> dts = spt.Ticktock(isodates, 'ISO')

OR

>>> dtdates = [dt.datetime(2009,12,1,12), dt.datetime(2009,12,4), dt.datetime(2009,12,
→˓6,12)]
>>> dts = spt.Ticktock(dtdates, 'UTC')

ISO time formatting

>>> dts = spt.tickrange('2009-12-01T12:00:00','2009-12-06T12:00:00',2.5)

OR

>>> dts = spt.tickrange(dt.datetime(2009,12,1,12),dt.datetime(2009,12,6,12), dt.
→˓timedelta(days=2, hours=12))

>>> dts
Ticktock(['2009-12-01T12:00:00', '2009-12-04T00:00:00', '2009-12-06T12:00:00']),
→˓dtype=ISO

>>> dts.isoformat()
Current ISO output format is %Y-%m-%dT%H:%M:%S
Options are: [('seconds', '%Y-%m-%dT%H:%M:%S'), ('microseconds', '%Y-%m-%dT%H:%M:%S.%f
→˓')]

>>> dts.isoformat('microseconds')
>>> dts.ISO
['2009-12-01T12:00:00.000000',
'2009-12-04T00:00:00.000000',
'2009-12-06T12:00:00.000000']

Time manipulation

242 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

>>> new_dts = dts + tdelt
>>> new_dts.UTC
[datetime.datetime(2009, 12, 2, 18, 0),
datetime.datetime(2009, 12, 5, 6, 0),
datetime.datetime(2009, 12, 7, 18, 0)]

Other time formats

>>> dts.RDT # Gregorian ordinal time
array([733742.5, 733745. , 733747.5])

>>> dts.GPS # GPS time
array([9.43704015e+08, 9.43920015e+08, 9.44136015e+08])

>>> dts.JD # Julian day
array([2455167. , 2455169.5, 2455172.])

And so on.

Authors: Steve Morley, Josef Koller, Brian Larsen, Jon Niehof Institution: Los Alamos National Laboratory Contact:
smorley@lanl.gov,

Copyright 2010 Los Alamos National Security, LLC.

Classes

Ticktock(data, dtype) Ticktock class holding various time coordinate systems
(TAI, UTC, ISO, JD, MJD, UNX, RDT, CDF, DOY,
eDOY, APT)

4.17.3 spacepy.time.Ticktock

class spacepy.time.Ticktock(data, dtype)
Ticktock class holding various time coordinate systems (TAI, UTC, ISO, JD, MJD, UNX, RDT, CDF, DOY,
eDOY, APT)

Possible input data types:

ISO ISO standard format like ‘2002-02-25T12:20:30’

UTC datetime object with UTC time

TAI Elapsed seconds since 1958-1-1 (includes leap seconds)

UNX Elapsed seconds since 1970-1-1 ignoring leapseconds (all days have 86400 secs).

JD Julian days elapsed

MJD Modified Julian days

RDT Rata Die days elapsed since 0001-1-1

CDF CDF Epoch type: float milliseconds since 0000-1-1 ignoring leapseconds

APT AstroPy Time. Requires AstroPy 1.0. (New in version 0.2.2.)

Possible output data types: All those listed above, plus:

4.17. time - Time conversion, manipulation and implementation of Ticktock class 243

mailto:smorley@lanl.gov
https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time

SpacePy Documentation, Release 0.2.2

DOY Integer day of year, starts with day 1

eDOY Fractional day of year, starts at day 0

It is strongly recommended to access various time systems via the attributes listed above, as in the examples.
They will be calculated automatically if necessary. Using the get methods will force a recalculation.

The original input data will always be available as the data attribute.

Changed in version 0.2.2: In earlier versions of SpacePy, most values were derived from the datetime-based
UTC representation. This did not properly handle leap seconds in many cases. Now most are derived from TAI
(exceptions being DOY and eDOY). In addition to differences around actual leap seconds, this may result in small
differences between versions of SpacePy, with relative magnitude on the order of the resolution of a 64-bit float
(2e-16). For times in the modern era, this is about 50 microseconds (us) for JD, 15 us for CDF, 1.5 us for RDT,
1 us for MJD, and 360 nanoseconds for TAI.

The relationships between parameters and how they are calculated are listed in the get methods and illustrated
below.

data "dtypes" (inputs)

ISO TAIUTC JD MJD RDTCDF UNX

Output and
intermediaries
(.ABC)

CDF

ISO

JD

MJD
TAI

RDT

UTC

UNX

DOY eDOY

leaps

If data dtype is same: populate from data (not shown)
Elif dashed arrow, populate from data via dashed
Else populate from intermediate via ALL solid arrows

GPS

GPS

APT

APT

Parameters

data [array_like (int, datetime, float, string)] time stamp

dtype [string {CDF, ISO, UTC, TAI, UNX, JD, MJD, RDT, APT} or function] data type for
data, if a function it must convert input time format to Python datetime

Returns

out [Ticktock] instance with self.data, self.dtype, self.UTC etc

Other Parameters

isoformat [str, optional] New in version 0.2.2.

Format string used for parsing and outputting ISO format. Input is not forced to be in
this format; it is tried first, and other common formats tried if parsing fails. Because
of this, if ISO input is in a consistent format, specifying this can speed up the input

244 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

parsing. Can be changed on existing Ticktock with isoformat() method. Default
'%Y-%m-%dT%H:%M:%S'.

See also:

datetime.datetime.strptime, isoformat

Notes

UTC data type is implemented as Python datetime, which cannot represent leap seconds. The time within a leap
second is regarded as not happening.

The CDF data type is the older CDF_EPOCH time type, not the newer CDF_TIME_TT2000. It similarly cannot
represent leap seconds. Year 0 is considered a leap year.

Examples

>>> x = Ticktock([2452331.0142361112, 2452332.0142361112], 'JD')
>>> x.ISO
dmarray(['2002-02-25T12:20:30', '2002-02-26T12:20:30'], dtype='|S19')
>>> x.DOY # Day of year
dmarray([56., 57.])
>>> y = Ticktock(['01-01-2013', '20-03-2013'], lambda x: datetime.datetime.
→˓strptime(x, '%d-%m-%Y'))
>>> y.UTC
dmarray([2013-01-01 00:00:00, 2013-03-20 00:00:00], dtype=object)
>>> y.DOY # Day of year
dmarray([1., 79.])

append(other) Will be called when another Ticktock instance has to
be appended to the current one

argsort() This will return the indices that would sort the Tick-
tock values

convert(dtype) convert a Ticktock instance into a new time coordi-
nate system provided in dtype

getAPT() a.APT or a.getAPT()
getCDF() a.getCDF() or a.CDF
getDOY() a.DOY or a.getDOY()
getGPS() a.GPS or a.getGPS()
getISO() a.ISO or a.getISO()
getJD() a.JD or a.getJD()
getMJD() a.MJD or a.getMJD()
getRDT() a.RDT or a.RDT()
getTAI() a.TAI or a.getTAI()
getUNX() a.UNX or a.getUNX()
getUTC() a.UTC or a.getUTC()
geteDOY() a.eDOY or a.geteDOY()
getleapsecs() a.leaps or a.getleapsecs()
isoformat(b, attrib) This changes the self._isofmt attribute by and subse-

quently this function will update the ISO attribute.
now() Create Ticktock with the current UTC time.

continues on next page

4.17. time - Time conversion, manipulation and implementation of Ticktock class 245

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime

SpacePy Documentation, Release 0.2.2

Table 64 – continued from previous page
sort() This will sort the Ticktock values in place based on

the values in data.
today() Create Ticktock with the current UTC date and time

set to 00:00:00
update_items(attrib) After changing the self.data attribute by either

__setitem__ or __add__ etc this function will update
all other attributes.

append(other)
Will be called when another Ticktock instance has to be appended to the current one

Parameters

other [Ticktock] other (Ticktock instance)

argsort()
This will return the indices that would sort the Ticktock values

Returns

out [list] indices that would sort the Ticktock values

Other Parameters

kind [str, optional] Sort algorithm to use, default ‘quicksort’.

Changed in version 0.2.2: Default is now ‘quicksort’ to match numpy default; previously
was ‘mergesort’.

See also:

argsort, numpy.argsort

convert(dtype)
convert a Ticktock instance into a new time coordinate system provided in dtype

Parameters

dtype [string] data type for new system, possible values are {CDF, ISO, UTC, TAI, UNX,
JD, MJD, RDT}

Returns

out [Ticktock] Ticktock instance with new time coordinates

See also:

CDF

ISO

UTC

246 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

SpacePy Documentation, Release 0.2.2

Examples

>>> a = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:00:00'], 'ISO')
>>> s = a.convert('TAI')
>>> type(s)
<class 'time.Ticktock'>
>>> s
Ticktock([1391342432 1391342432]), dtype=TAI

getAPT()
a.APT or a.getAPT()

Return AstroPy time object.

Always recalculates from the current value of TAI, which will be created if necessary.

Updates the APT attribute.

Returns

out [astropy.time.Time] AstroPy Time object

See also:

getUTC, getUNX , getRDT , getJD, getMJD, getCDF , getISO, getDOY , geteDOY

getGPS

Notes

New in version 0.2.2.

Requires AstroPy 1.0. The returned value will be on the tai scale in gps format (unless the Ticktock
was created from a Time object, in which case it will be the original input.) See the astropy.time
docs for conversion to other scales and formats.

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.APT
<Time object: scale='tai' format='gps' value=696686413.0>

getCDF()
a.getCDF() or a.CDF

Return CDF Epoch time which is milliseconds since 0000-1-1 at 00:00:00.000. “Year zero” is a convention
chosen by NSSDC to measure epoch values. This date is more commonly referred to as 1 BC and is
considered a leap year.

The CDF date/time calculations do not take into account the change to the Gregorian calendar or leap
seconds, and cannot be directly converted into Julian date/times.

Returns data if it was provided in CDF; otherwise always recalculates from the current value of TAI,
which will be created if necessary.

Updates the CDF attribute.

Returns

out [numpy array] milliseconds since 0000-01-01T00:00:00 assuming no discontinuities.

4.17. time - Time conversion, manipulation and implementation of Ticktock class 247

https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.astropy.org/en/stable/time/index.html#module-astropy.time

SpacePy Documentation, Release 0.2.2

See also:

getUTC

getUNX

getRDT

getJD

getMJD

getISO

getTAI

getDOY

geteDOY

getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.CDF
array([6.31798704e+13])

getDOY()
a.DOY or a.getDOY()

extract DOY (days since January 1st of given year)

Always recalculates from the current value of UTC, which will be created if necessary.

Updates the DOY attribute.

Returns

out [numpy array] day of the year

See also:

getUTC

getUNX

getRDT

getJD

getMJD

getISO

getTAI

getDOY

geteDOY

getAPT

248 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.DOY
array([33])

getGPS()
a.GPS or a.getGPS()

Return seconds since the GPS epoch (1980-1-6T00:00 UT)

Always recalculates from the current value of TAI, which will be created if necessary.

Updates the GPS attribute.

Returns

out [numpy array] elapsed secs since 1980-1-6. Leap seconds are counted; i.e. there are no
discontinuities.

See also:

getUTC, getUNX , getRDT , getJD, getMJD, getCDF , getISO, getDOY , geteDOY

getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.GPS
dmarray([6.96686413e+08])

getISO()
a.ISO or a.getISO()

convert dtype data into ISO string

Always recalculates from the current value of UTC, which will be created if necessary. Applies leapsecond
correction based on TAI, also created as necessary.

Updates the ISO attribute.

Returns

out [list of strings] date in ISO format

See also:

getUTC, getUNX , getRDT , getJD, getMJD, getCDF , getTAI, getDOY , geteDOY

getAPT

4.17. time - Time conversion, manipulation and implementation of Ticktock class 249

SpacePy Documentation, Release 0.2.2

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.ISO
dmarray(['2002-02-02T12:00:00'])

getJD()
a.JD or a.getJD()

convert dtype data into Julian Date (JD)

Returns data if it was provided in JD; otherwise always recalculates from the current value of TAI, which
will be created if necessary.

Updates the JD attribute.

Returns

out [numpy array] elapsed days since 4713 BCE 01-01T12:00

See also:

getUTC

getUNX

getRDT

getJD

getMJD

getISO

getTAI

getDOY

geteDOY

getAPT

Notes

This is based on the UTC day, defined as JD(UTC) - 2 400 000.5, per the recommendation of IAU General
Assembly XXIII resolution B1. Julian days with leapseconds are 86401 seconds long and each second is
a smaller fraction of the day. Note this “stretching” is across the Julian Day, noon to noon.

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.JD
array([2452308.])

getMJD()
a.MJD or a.getMJD()

convert dtype data into MJD (modified Julian date)

Returns data if it was provided in MJD; otherwise always recalculates from the current value of TAI
which will be created if necessary.

250 Chapter 4. SpacePy Module Reference

https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html
https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html

SpacePy Documentation, Release 0.2.2

Updates the MJD attribute.

Returns

out [numpy array] elapsed days since 1858-11-17T00:00 (Julian date of 1858-11-17T12:00
was 2 400 000)

See also:

getUTC, getUNX , getRDT , getJD, getISO, getCDF , getTAI, getDOY , geteDOY

getAPT

Notes

This is based on the UTC day, defined as JD(UTC) - 2 400 000.5, per the recommendation of IAU General
Assembly XXIII resolution B1. Julian days with leapseconds are 86401 seconds long and each second is
a smaller fraction of the day. Note this “stretching” is across the Julian Day not the MJD, so it will affect
the last half of the MJD before the leap second and the first half of the following MJD, so that MJD is
always JD - 2 400 000.5 This also means that the MJD following a leap second does not begin exactly at
midnight.

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.MJD
array([52307.5])
>>> a = Ticktock('2009-01-01T00:00:00', 'ISO')
>>> a.MJD
array([54832.00000579])

getRDT()
a.RDT or a.RDT()

convert dtype data into Rata Die (lat.) Time, or elapsed days counting 0001-01-01 as day 1. This is a naive
conversion: it ignores the existence of leapseconds for fractional days and ignores the conversion from
Julian to Gregorian calendar, i.e. it assumes Gregorian calendar infinitely into the past.

Returns data if it was provided in RDT; otherwise always recalculates from the current value of TAI,
which will be created if necessary.

Updates the RDT attribute.

Returns

out [numpy array] elapsed days counting 1/1/1 as day 1.

See also:

getUTC, getUNX , getISO, getJD, getMJD, getCDF , getTAI, getDOY , geteDOY

getAPT

4.17. time - Time conversion, manipulation and implementation of Ticktock class 251

https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html
https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html

SpacePy Documentation, Release 0.2.2

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.RDT
array([730883.5])

getTAI()
a.TAI or a.getTAI()

return TAI (International Atomic Time), elapsed secs since 1958-1-1 (leap seconds are counted.) Tick-
tock’s handling of TAI and UTC conversions treats the UTC second as always equal in length to the SI
second (and thus TAI), ignoring frequency changes and fractional leap seconds from 1958 through 1972,
i.e. the UTC to TAI offset is always treated as an integer, truncated (not rounded) from the value at the
most recent leap second (or fraction thereof).

Return value comes from (in priority order):

1. If data was provided in TAI, returns data.

2. Else recalculates directly from data if it was provided in APT, CDF, GPS, ISO, JD, MJD, RDT, or
UNX.

3. Else calculates from current value of UTC, which will be created if necessary.

Updates the TAI attribute; will also create the UTC and ISO attributes from data if input is in ISO
(but will not overwrite an existing ISO or UTC). This is for efficiency, as computation from ISO requires
calculating UTC and makes creating a formatted ISO string easy.

Returns

out [numpy array] TAI as seconds since 1958-1-1.

See also:

getUTC, getUNX , getRDT , getJD, getMJD, getCDF , getISO, getDOY , geteDOY

getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.TAI
array([1391342432])

getUNX()
a.UNX or a.getUNX()

convert dtype data into Unix Time (Posix Time) seconds since 1970-1-1 (not counting leap seconds)

Returns data if it was provided in UNX; otherwise always recalculates from the current value of TAI,
which will be created if necessary.

Updates the UNX attribute.

Returns

out [numpy array] elapsed secs since 1970-1-1 (not counting leap secs)

See also:

getUTC, getISO, getRDT , getJD, getMJD, getCDF , getTAI, getDOY , geteDOY

252 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.UNX
array([1.01265120e+09])

getUTC()
a.UTC or a.getUTC()

convert dtype data into UTC object a la datetime()

Return value comes from (in priority order):

1. If data was provided in UTC, returns data.

2. Else recalculates directly from data if it was provided in ISO.

3. Else calculates from current value of TAI, which will be created if necessary. (data is TAI, GPS,
JD, MJD, RDT, CDF, UNX)).

Updates the UTC attribute.

Returns

out [list of datetime objects] datetime object in UTC time

See also:

getISO, getUNX , getRDT , getJD, getMJD, getCDF , getTAI, getDOY , geteDOY

getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.UTC
[datetime.datetime(2002, 2, 2, 12, 0)]

geteDOY()
a.eDOY or a.geteDOY()

extract eDOY (elapsed days since midnight January 1st of given year)

Always recalculates from the current value of UTC, which will be created if necessary.

Updates the eDOY attribute.

Returns

out [numpy array] days elapsed since midnight bbedJan. 1st

See also:

getUTC

getUNX

getRDT

getJD

4.17. time - Time conversion, manipulation and implementation of Ticktock class 253

SpacePy Documentation, Release 0.2.2

getMJD

getISO

getTAI

getDOY

geteDOY

getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.eDOY
array([32.5])

getleapsecs()
a.leaps or a.getleapsecs()

retrieve leapseconds from lookup table, used in getTAI

Always recalculates from current value of TAI if data is dtype TAI, otherwise from the current value of
UTC, which will be created if necessary.

Updates the leaps attribute.

Returns

out [numpy array] leap seconds

See also:

getTAI

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO')
>>> a.leaps
array([32])

isoformat(b, attrib)
This changes the self._isofmt attribute by and subsequently this function will update the ISO attribute.

Parameters

fmt [string, optional]

classmethod now()
Create Ticktock with the current UTC time.

Equivalent to datetime.utcnow()

Changed in version 0.2.2: This now returns a UTC time; previously it returned a Ticktock UTC object, but
in the local timezone, which made all conversions incorrect.

Returns

out [ticktock] Ticktock object with the current time, equivalent to datetime.utcnow()

See also:

254 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

datetime.datetime.now, datetime.datetime.utcnow

sort()
This will sort the Ticktock values in place based on the values in data. If you need a stable sort use
kind=’mergesort’

Other Parameters

kind [str] Sort algorithm to use, default ‘quicksort’.

See also:

argsort, numpy.argsort

classmethod today()
Create Ticktock with the current UTC date and time set to 00:00:00

Similar to date.today() with time included but in UTC and with the time included (zero hours, minutes,
seconds)

Changed in version 0.2.2: This now returns the UTC day; previously it returned a Ticktock UTC object,
but in the local timezone, which made all conversions incorrect.

Returns

out [ticktock] Ticktock object with the current UTC day

See also:

datetime.date.today

update_items(attrib)
After changing the self.data attribute by either __setitem__ or __add__ etc this function will update all
other attributes. This function is called automatically in __add__, __init__, and __setitem__.

Parameters

attrib [str] attribute that was updated; update others from this

Other Parameters

cls [type] Deprecated since version 0.2.2: Class is now taken from the self of the bound
instance.

Class to use for finding possible attributes; now ignored.

See also:

spacepy.Ticktock.__setitem__

spacepy.Ticktock.__add__

spacepy.Ticktock.__sub__

4.17. time - Time conversion, manipulation and implementation of Ticktock class 255

https://docs.python.org/3/library/datetime.html#datetime.datetime.now
https://docs.python.org/3/library/datetime.html#datetime.datetime.utcnow
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://docs.python.org/3/library/datetime.html#datetime.date.today

SpacePy Documentation, Release 0.2.2

Functions

dtstr2iso(dtstr[, fmt]) Convert a datetime string to a standard format
doy2date(year, doy[, dtobj, flAns]) convert integer day-of-year doy into a month and

day after http://pleac.sourceforge.net/pleac_python/
datesandtimes.html

leapyear(year[, numdays]) return an array of boolean leap year, a lot faster than the
mod method that is normally seen

randomDate(dt1, dt2[, N, tzinfo, sorted]) Return a (or many) random datetimes between two
given dates

sec2hms(sec[, rounding, days, dtobj]) Convert seconds of day to hours, minutes, seconds
tickrange(start, end, deltadays[, dtype]) return a Ticktock range given the start, end, and delta

4.17.4 spacepy.time.dtstr2iso

spacepy.time.dtstr2iso(dtstr, fmt='%Y-%m-%dT%H:%M:%S')
Convert a datetime string to a standard format

Attempts to maintain leap second representation while converting time strings to the specified format (by default,
ISO8601-like.) Only handles a single positive leap second; negative leap seconds require no special handling
and policy is for UTC-UT1 not to exceed 0.9.

Parameters

dtstr [sequence of str] Date + time representation, format is fairly open.

Returns

isostr [array of str] Representation of dtstr formatted according to fmt. Always a new sequence
even if contents are identical to dtstr.

UTC [array of datetime.datetime] The closest-possible rendering of UTC time before or equal
to dtstr.

offset [array of int] Amount (in microseconds) to add to UTC to get the real time.

Other Parameters

fmt [str, optional] Format appropriate for strftime() for rendering the output time.

4.17.5 spacepy.time.doy2date

spacepy.time.doy2date(year, doy, dtobj=False, flAns=False)
convert integer day-of-year doy into a month and day after http://pleac.sourceforge.net/pleac_python/
datesandtimes.html

Parameters

year [int or array of int] year

doy [int or array of int] day of year

Returns

month [int or array of int] month as integer number

day [int or array of int] as integer number

See also:

256 Chapter 4. SpacePy Module Reference

http://pleac.sourceforge.net/pleac_python/datesandtimes.html
http://pleac.sourceforge.net/pleac_python/datesandtimes.html
https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime
http://pleac.sourceforge.net/pleac_python/datesandtimes.html
http://pleac.sourceforge.net/pleac_python/datesandtimes.html

SpacePy Documentation, Release 0.2.2

Ticktock.getDOY

Examples

>>> month, day = doy2date(2002, 186)
>>> dts = doy2date([2002]*4, range(186,190), dtobj=True)

4.17.6 spacepy.time.leapyear

spacepy.time.leapyear(year, numdays=False)
return an array of boolean leap year, a lot faster than the mod method that is normally seen

Parameters

year [array_like] array of years

numdays [boolean (optional)] optionally return the number of days in the year

Returns

out [numpy array] an array of boolean leap year, or array of number of days

Examples

>>> import numpy
>>> import spacepy.time
>>> spacepy.time.leapyear(numpy.arange(15)+1998)
[False, False, True, False, False, False, True, False, False,

False, True, False, False, False, True]

4.17.7 spacepy.time.randomDate

spacepy.time.randomDate(dt1, dt2, N=1, tzinfo=False, sorted=False)
Return a (or many) random datetimes between two given dates

Convention used is dt1 <= rand < dt2. Leap second times will not be returned.

Parameters

dt1 [datetime.datetime] start date for the the random date

dt2 [datetime.datetime] stop date for the the random date

Returns

out [datetime.datetime or numpy.ndarray of datetime.datetime] the new time for the next call to
EventTimer

Other Parameters

N [int (optional)] the number of random dates to generate (defualt=1)

tzinfo [bool (optional)] maintain the tzinfo of the input datetimes (default=False)

sorted [bool (optional)] return the times sorted (default=False)

4.17. time - Time conversion, manipulation and implementation of Ticktock class 257

SpacePy Documentation, Release 0.2.2

4.17.8 spacepy.time.sec2hms

spacepy.time.sec2hms(sec, rounding=True, days=False, dtobj=False)
Convert seconds of day to hours, minutes, seconds

Parameters

sec [float] Seconds of day

Returns

out [[hours, minutes, seconds] or datetime.timedelta]

Other Parameters

rounding [boolean] set for integer seconds

days [boolean] set to wrap around day (i.e. modulo 86400)

dtobj [boolean] set to return a timedelta object

4.17.9 spacepy.time.tickrange

spacepy.time.tickrange(start, end, deltadays, dtype=None)
return a Ticktock range given the start, end, and delta

Parameters

start [string or number] start time (ISO standard string and UTC/datetime do not require a
dtype)

end [string or number] last possible time in series (excluded unless end=start+n*step for integer
n)

deltadays [float or timedelta] step in units of days (float); or datetime timedelta object

dtype [string (optional)] data type for start, end; e.g. ISO, UTC, RTD, etc. see Ticktock for all
options

Returns

out [Ticktock instance] ticks

See also:

Ticktock

Examples

>>> ticks = st.tickrange('2002-02-01T00:00:00', '2002-02-10T00:00:00', deltadays
→˓= 1)
>>> ticks
Ticktock(['2002-02-01T00:00:00', '2002-02-02T00:00:00', '2002-02-03T00:00:00',
'2002-02-04T00:00:00'] , dtype=ISO)

258 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.18 toolbox - Toolbox of various functions and generic utilities

Toolbox of various functions and generic utilities.

Authors: Steve Morley, Jon Niehof, Brian Larsen, Josef Koller, Dan Welling Institution: Los Alamos National Lab-
oratory Contact: smorley@lanl.gov, jniehof@lanl.gov, balarsen@lanl.gov, jkoller@lanl.gov, dwelling@lanl.gov Los
Alamos National Laboratory

Copyright 2010 Los Alamos National Security, LLC.

• Array binning

• Array creation

• Array searching and masking

• Other functions

• Multithreading and multiprocessing

• System tools

• Quaternion math

4.18.1 Array binning

arraybin(array, bins) Split a sequence into subsequences based on value.
bin_center_to_edges(centers) Convert a list of bin centers to their edges
bin_edges_to_center(edges) Convert a list of bin edges to their centers
binHisto(data[, verbose]) Calculates bin width and number of bins for histogram

using Freedman-Diaconis rule, if rule fails, defaults to
square-root method

spacepy.toolbox.arraybin

spacepy.toolbox.arraybin(array, bins)
Split a sequence into subsequences based on value.

Given a sequence of values and a sequence of values representing the division between bins, return the indices
grouped by bin.

Parameters

array [array_like] the input sequence to slice, must be sorted in ascending order

bins [array_like]

dividing lines between bins. Number of bins is len(bins)+1, value that exactly equal a
dividing value are assigned to the higher bin

Returns

out [list] indices for each bin (list of lists)

4.18. toolbox - Toolbox of various functions and generic utilities 259

mailto:smorley@lanl.gov
mailto:jniehof@lanl.gov
mailto:balarsen@lanl.gov
mailto:jkoller@lanl.gov
mailto:dwelling@lanl.gov

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.toolbox as tb
>>> tb.arraybin(range(10), [4.2])
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]

spacepy.toolbox.bin_center_to_edges

spacepy.toolbox.bin_center_to_edges(centers)
Convert a list of bin centers to their edges

Given a list of center values for a set of bins, finds the start and end value for each bin. (start of bin n+1 is
assumed to be end of bin n). Useful for e.g. matplotlib.pyplot.pcolor.

Edge between bins n and n+1 is arithmetic mean of the center of n and n+1; edge below bin 0 and above last bin
are established to make these bins symmetric about their center value.

Parameters

centers [list] list of center values for bins

Returns

out [list] list of edges for bins

note: returned list will be one element longer than centers

Examples

>>> import spacepy.toolbox as tb
>>> tb.bin_center_to_edges([1,2,3])
[0.5, 1.5, 2.5, 3.5]

spacepy.toolbox.bin_edges_to_center

spacepy.toolbox.bin_edges_to_center(edges)
Convert a list of bin edges to their centers

Given a list of edge values for a set of bins, finds the center of each bin. (start of bin n+1 is assumed to be end
of bin n).

Center of bin n is arithmetic mean of the edges of the adjacent bins.

Parameters

edges [list] list of edge values for bins

Returns

out [numpy.ndarray] array of centers for bins

note: returned array will be one element shorter than edges

260 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.toolbox as tb
>>> tb.bin_center_to_edges([1,2,3])
[0.5, 1.5, 2.5, 3.5]

spacepy.toolbox.binHisto

spacepy.toolbox.binHisto(data, verbose=False)
Calculates bin width and number of bins for histogram using Freedman-Diaconis rule, if rule fails, defaults to
square-root method

The Freedman-Diaconis method is detailed in: Freedman, D., and P. Diaconis (1981), On the histogram as a
density estimator: L2 theory, Z. Wahrscheinlichkeitstheor. Verw. Geb., 57, 453–476

and is also described by: Wilks, D. S. (2006), Statistical Methods in the Atmospheric Sciences, 2nd ed.

Parameters

data [array_like] list/array of data values

verbose [boolean (optional)] print out some more information

Returns

out [tuple] calculated width of bins using F-D rule, number of bins (nearest integer) to use for
histogram

See also:

matplotlib.pyplot.hist

Examples

>>> import numpy, spacepy
>>> import matplotlib.pyplot as plt
>>> numpy.random.seed(8675301)
>>> data = numpy.random.randn(1000)
>>> binw, nbins = spacepy.toolbox.binHisto(data)
>>> print(nbins)
19
>>> p = plt.hist(data, bins=nbins, histtype='step', density=True)

4.18.2 Array creation

dist_to_list(func, length[, min, max]) Convert a probability distribution function to a list of
values

geomspace(start[, ratio, stop, num]) Returns geometrically spaced numbers.
linspace(min, max, num, **kwargs) Returns linear-spaced bins.
logspace(min, max, num, **kwargs) Returns log-spaced bins.

4.18. toolbox - Toolbox of various functions and generic utilities 261

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.dist_to_list

spacepy.toolbox.dist_to_list(func, length, min=None, max=None)
Convert a probability distribution function to a list of values

This is a deterministic way to produce a known-length list of values matching a certain probability distribution.
It is likely to be a closer match to the distribution function than a random sampling from the distribution.

Parameters

func [callable]

function to call for each possible value, returning probability density at that value (does
not need to be normalized.)

length [int] number of elements to return

min [float] minimum value to possibly include

max [float] maximum value to possibly include

Examples

>>> import matplotlib
>>> import numpy
>>> import spacepy.toolbox as tb
>>> gauss = lambda x: math.exp(-(x ** 2) / (2 * 5 ** 2)) / (5 * math.sqrt(2 *
→˓math.pi))
>>> vals = tb.dist_to_list(gauss, 1000, -numpy.inf, numpy.inf)
>>> print vals[0]
-16.45263...
>>> p1 = matplotlib.pyplot.hist(vals, bins=[i - 10 for i in range(21)], facecolor=
→˓'green')
>>> matplotlib.pyplot.hold(True)
>>> x = [i / 100.0 - 10.0 for i in range(2001)]
>>> p2 = matplotlib.pyplot.plot(x, [gauss(i) * 1000 for i in x], 'red')
>>> matplotlib.pyplot.draw()

spacepy.toolbox.geomspace

spacepy.toolbox.geomspace(start, ratio=None, stop=False, num=50)
Returns geometrically spaced numbers.

Parameters

start [float] The starting value of the sequence.

ratio [float (optional)] The ratio between subsequent points

stop [float (optional)] End value, if this is selected num is overridden

num [int (optional)] Number of samples to generate. Default is 50.

Returns

seq [array] geometrically spaced sequence

See also:

linspace

262 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

logspace

Examples

To get a geometric progression between 0.01 and 3 in 10 steps

>>> import spacepy.toolbox as tb
>>> tb.geomspace(0.01, stop=3, num=10)
[0.01,
0.018846716378431192,
0.035519871824902655,
0.066943295008216955,
0.12616612944575134,
0.23778172582285118,
0.44814047465571644,
0.84459764235318191,
1.5917892219322083,
2.9999999999999996]

To get a geometric progression with a specified ratio, say 10

>>> import spacepy.toolbox as tb
>>> tb.geomspace(0.01, ratio=10, num=5)
[0.01, 0.10000000000000001, 1.0, 10.0, 100.0]

spacepy.toolbox.linspace

spacepy.toolbox.linspace(min, max, num, **kwargs)
Returns linear-spaced bins. Same as numpy.linspace except works with datetime and is faster

Parameters

min [float, datetime] minimum value

max [float, datetime] maximum value

num [integer] number of linear spaced bins

Returns

out [array] linear-spaced bins from min to max in a numpy array

Other Parameters

kwargs [dict] additional keywords passed into matplotlib.dates.num2date

See also:

geomspace

logspace

4.18. toolbox - Toolbox of various functions and generic utilities 263

SpacePy Documentation, Release 0.2.2

Notes

This function works on both numbers and datetime objects

Examples

>>> import spacepy.toolbox as tb
>>> tb.linspace(1, 10, 4)
array([1., 4., 7., 10.])

spacepy.toolbox.logspace

spacepy.toolbox.logspace(min, max, num, **kwargs)
Returns log-spaced bins. Same as numpy.logspace except the min and max are the min and max not log10(min)
and log10(max)

Parameters

min [float] minimum value

max [float] maximum value

num [integer] number of log spaced bins

Returns

out [array] log-spaced bins from min to max in a numpy array

Other Parameters

kwargs [dict] additional keywords passed into matplotlib.dates.num2date

See also:

geomspace

linspace

Notes

This function works on both numbers and datetime objects

Examples

>>> import spacepy.toolbox as tb
>>> tb.logspace(1, 100, 5)
array([1. , 3.16227766, 10. , 31.6227766 , 100.])

264 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.18.3 Array searching and masking

interweave(a, b) given two array-like variables interweave them together.
isview(array1[, array2]) Returns if an object is a view of another object.
tCommon(ts1, ts2[, mask_only]) Finds the elements in a list of datetime objects present

in another
tOverlap(ts1, ts2, *args, **kwargs) Finds the overlapping elements in two lists of datetime

objects
tOverlapHalf(ts1, ts2[, presort]) Find overlapping elements in two lists of datetime ob-

jects

spacepy.toolbox.interweave

spacepy.toolbox.interweave(a, b)
given two array-like variables interweave them together. Discussed here: http://stackoverflow.com/questions/
5347065/interweaving-two-numpy-arrays

Parameters

a [array-like] first array

b [array-like] second array

Returns

out [numpy.ndarray] interweaved array

spacepy.toolbox.isview

spacepy.toolbox.isview(array1, array2=None)
Returns if an object is a view of another object. More precisely if one array argument is specified True is returned
is the arrays owns its data. If two arrays arguments are specified a tuple is returned of if the first array owns its
data and the the second if they point at the same memory location

Parameters

array1 [numpy.ndarray] array to query if it owns its data

Returns

out [bool or tuple] If one array is specified bool is returned, True is the array owns its data. If
two arrays are specified a tuple where the second element is a bool of if the array point at
the same memory location

Other Parameters

array2 [object (optional)] array to query if array1 is a view of this object at the specified mem-
ory location

4.18. toolbox - Toolbox of various functions and generic utilities 265

http://stackoverflow.com/questions/5347065/interweaving-two-numpy-arrays
http://stackoverflow.com/questions/5347065/interweaving-two-numpy-arrays

SpacePy Documentation, Release 0.2.2

Examples

import numpy import spacepy.toolbox as tb a = numpy.arange(100) b = a[0:10] tb.isview(a) # False tb.isview(b)
True tb.isview(b, a) # (True, True) tb.isview(b, b) # (True, True) # the conditions are met and numpy cannot
tell this

spacepy.toolbox.tCommon

spacepy.toolbox.tCommon(ts1, ts2, mask_only=True)
Finds the elements in a list of datetime objects present in another

Parameters

ts1 [list or array-like] first set of datetime objects

ts2 [list or array-like] second set of datetime objects

Returns

out [tuple] Two element tuple of truth tables (of 1 present in 2, & vice versa)

See also:

tOverlapHalf

tOverlap

Examples

>>> import spacepy.toolbox as tb
>>> import numpy as np
>>> import datetime as dt
>>> ts1 = np.array([dt.datetime(2001,3,10)+dt.timedelta(hours=a) for a in
→˓range(20)])
>>> ts2 = np.array([dt.datetime(2001,3,10,2)+dt.timedelta(hours=a*0.5) for a in
→˓range(20)])
>>> common_inds = tb.tCommon(ts1, ts2)
>>> common_inds[0] #mask of values in ts1 common with ts2
array([False, False, True, True, True, True, True, True, True,

True, True, True, False, False, False, False, False, False,
False, False], dtype=bool)

>>> ts2[common_inds[1]] #values of ts2 also in ts1

The latter can be found more simply by setting the mask_only keyword to False

>>> common_vals = tb.tCommon(ts1, ts2, mask_only=False)
>>> common_vals[1]
array([2001-03-10 02:00:00, 2001-03-10 03:00:00, 2001-03-10 04:00:00,

2001-03-10 05:00:00, 2001-03-10 06:00:00, 2001-03-10 07:00:00,
2001-03-10 08:00:00, 2001-03-10 09:00:00, 2001-03-10 10:00:00,
2001-03-10 11:00:00], dtype=object)

266 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.tOverlap

spacepy.toolbox.tOverlap(ts1, ts2, *args, **kwargs)
Finds the overlapping elements in two lists of datetime objects

Parameters

ts1 [datetime] first set of datetime object

ts2 [datetime] datatime object

args : additional arguments passed to tOverlapHalf

Returns

out [list] indices of ts1 within interval of ts2, & vice versa

See also:

tOverlapHalf

tCommon

Examples

Given two series of datetime objects, event_dates and omni[‘Time’]:

>>> import spacepy.toolbox as tb
>>> from spacepy import omni
>>> import datetime
>>> event_dates = st.tickrange(datetime.datetime(2000, 1, 1), datetime.
→˓datetime(2000, 10, 1), deltadays=3)
>>> onni_dates = st.tickrange(datetime.datetime(2000, 1, 1), datetime.
→˓datetime(2000, 10, 1), deltadays=0.5)
>>> omni = omni.get_omni(onni_dates)
>>> [einds,oinds] = tb.tOverlap(event_dates, omni['ticks'])
>>> omni_time = omni['ticks'][oinds[0]:oinds[-1]+1]
>>> print omni_time
[datetime.datetime(2000, 1, 1, 0, 0), datetime.datetime(2000, 1, 1, 12, 0),
... , datetime.datetime(2000, 9, 30, 0, 0)]

spacepy.toolbox.tOverlapHalf

spacepy.toolbox.tOverlapHalf(ts1, ts2, presort=False)
Find overlapping elements in two lists of datetime objects

This is one-half of tOverlap, i.e. it finds only occurrences where ts2 exists within the bounds of ts1, or the
second element returned by tOverlap.

Parameters

ts1 [list] first set of datetime object

ts2 [list] datatime object

presort [bool]

Set to use a faster algorithm which assumes ts1 and ts2 are both sorted in ascending or-
der. This speeds up the overlap comparison by about 50x, so it is worth sorting the list if
one sort can be done for many calls to tOverlap

4.18. toolbox - Toolbox of various functions and generic utilities 267

SpacePy Documentation, Release 0.2.2

Returns

out [list] indices of ts2 within interval of ts1

note: Returns empty list if no overlap found

See also:

tOverlap

tCommon

4.18.4 Other functions

assemble(fln_pattern, outfln[, sortkey, verbose]) assembles all pickled files matching fln_pattern into sin-
gle file and save as outfln.

bootHisto(data[, inter, n, seed, plot, . . .]) Bootstrap confidence intervals for a histogram.
dictree(in_dict[, verbose, spaces, levels, . . .]) pretty print a dictionary tree
eventTimer(Event, Time1) Times an event then prints out the time and the name of

the event, nice for debugging and seeing that the code is
progressing

feq(x, y[, precision]) compare two floating point values if they are equal after:
http://www.lahey.com/float.htm

getNamedPath(name) Return the full path of a parent directory with name as
the leaf

human_sort(l) Sort the given list in the way that humans expect.
hypot(*args) compute the N-dimensional hypot of an iterable or many

arguments
indsFromXrange(inxrange) return the start and end indices implied by an xrange,

useful when xrange is zero-length
interpol(newx, x, y[, wrap]) 1-D linear interpolation with interpolation of

hours/longitude
intsolve(func, value[, start, stop, maxit]) Find the function input such that definite integral is de-

sired value.
medAbsDev(series[, scale]) Calculate median absolute deviation of a given input se-

ries
mlt2rad(mlt[, midnight]) Convert mlt values to radians for polar plotting trans-

form mlt angles to radians from -pi to pi referenced from
noon by default

normalize(vec[, low, high]) Given an input vector normalize the vector to a given
range

pmm(*args) print min and max of input arrays
poisson_fit(data[, initial, method]) Fit a Poisson distribution to data using the method and

initial guess provided.
rad2mlt(rad[, midnight]) Convert radians values to mlt transform radians from -pi

to pi to mlt referenced from noon by default
windowMean(data[, time, winsize, overlap, . . .]) Windowing mean function, window overlap is user de-

fined

268 Chapter 4. SpacePy Module Reference

http://www.lahey.com/float.htm

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.assemble

spacepy.toolbox.assemble(fln_pattern, outfln, sortkey='ticks', verbose=True)
assembles all pickled files matching fln_pattern into single file and save as outfln. Pattern may contain simple
shell-style wildcards *? a la fnmatch file will be assembled along time axis given by Ticktock (key: ‘ticks’) in
dictionary If sortkey = None, then nothing will be sorted

Parameters

fln_pattern [string] pattern to match filenames

outfln [string] filename to save combined files to

Returns

out [dict] dictionary with combined values

Examples

>>> import spacepy.toolbox as tb
>>> a, b, c = {'ticks':[1,2,3]}, {'ticks':[4,5,6]}, {'ticks':[7,8,9]}
>>> tb.savepickle('input_files_2001.pkl', a)
>>> tb.savepickle('input_files_2002.pkl', b)
>>> tb.savepickle('input_files_2004.pkl', c)
>>> a = tb.assemble('input_files_*.pkl', 'combined_input.pkl')
('adding ', 'input_files_2001.pkl')
('adding ', 'input_files_2002.pkl')
('adding ', 'input_files_2004.pkl')
('\n writing: ', 'combined_input.pkl')
>>> print(a)
{'ticks': array([1, 2, 3, 4, 5, 6, 7, 8, 9])}

spacepy.toolbox.bootHisto

spacepy.toolbox.bootHisto(data, inter=90.0, n=1000, seed=None, plot=False, target=None, fig-
size=None, loc=None, **kwargs)

Bootstrap confidence intervals for a histogram.

All other keyword arguments are passed to numpy.histogram() or matplotlib.pyplot.bar().

Parameters

data [array_like] list/array of data values

inter [float (optional; default 90)] percentage confidence interval to return. Default 90% (i.e.
lower CI will be 5% and upper will be 95%)

n [int (optional; default 1000)] number of bootstrap iterations

seed [int (optional)] Optional seed for the random number generator. If not specified; numpy
generator will not be reseeded.

plot [bool (optional)] Plot the result. Plots if True or target, figsize, or loc specified.

target [(optional)] Target on which to plot the figure (figure or axes). See spacepy.plot.
utils.set_target() for details.

figsize [tuple (optional)] Passed to spacepy.plot.utils.set_target().

loc [int (optional)] Passed to spacepy.plot.utils.set_target().

4.18. toolbox - Toolbox of various functions and generic utilities 269

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar

SpacePy Documentation, Release 0.2.2

Returns

out [tuple] tuple of bin_edges, low, high, sample[, bars]. Where bin_edges is the edges of
the bins used; low is the histogram with the value for each bin from the bottom of that
bin’s confidence interval; high similarly for the top; sample is the histogram of the input
sample without resampling. If plotting, also returned is bars, the container object returned
from matplotlib.

See also:

binHisto

plot.utils.set_target

numpy.histogram

matplotlib.pyplot.hist

Notes

The confidence intervals are calculated for each bin individually and thus the resulting low/high histograms may
not have actually occurred in the calculation from the surrogates. If using a probability density histogram, this
can have “interesting” implications for interpretation.

Examples

>>> import numpy.random
>>> import spacepy.toolbox
>>> numpy.random.seed(0)
>>> data = numpy.random.randn(1000)
>>> bin_edges, low, high, sample, bars = spacepy.toolbox.bootHisto(
... data, plot=True)

spacepy.toolbox.dictree

spacepy.toolbox.dictree(in_dict, verbose=False, spaces=None, levels=True, attrs=False,
**kwargs)

pretty print a dictionary tree

Parameters

in_dict [dict] a complex dictionary (with substructures)

verbose [boolean (optional)] print more info

spaces [string (optional)] string will added for every line

levels [integer (optional)] number of levels to recurse through (True means all)

attrs [boolean (optional)] display information for attributes

270 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

SpacePy Documentation, Release 0.2.2

3 2 1 0 1 2 3
0

50

100

150

200

250

4.18. toolbox - Toolbox of various functions and generic utilities 271

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.toolbox as tb
>>> d = {'grade':{'level1':[4,5,6], 'level2':[2,3,4]}, 'name':['Mary', 'John',
→˓'Chris']}
>>> tb.dictree(d)
+
|____grade

|____level1
|____level2

|____name

More complicated example using a datamodel:

>>> from spacepy import datamodel
>>> counts = datamodel.dmarray([2,4,6], attrs={'units': 'cts/s'})
>>> data = {'counts': counts, 'PI': 'Dr Zog'}
>>> tb.dictree(data)
+
|____PI
|____counts
>>> tb.dictree(data, attrs=True, verbose=True)
+
|____PI (str [6])
|____counts (spacepy.datamodel.dmarray (3,))

:|____units (str [5])

Attributes of, e.g., a CDF or a datamodel type object (obj.attrs) are denoted by a colon.

spacepy.toolbox.eventTimer

spacepy.toolbox.eventTimer(Event, Time1)
Times an event then prints out the time and the name of the event, nice for debugging and seeing that the code
is progressing

Parameters

Event [str] Name of the event, string is printed out by function

Time1 [time.time] the time to difference in the function

Returns

Time2 [time.time] the new time for the next call to EventTimer

Examples

>>> import spacepy.toolbox as tb
>>> import time
>>> t1 = time.time()
>>> t1 = tb.eventTimer('Test event finished', t1)
('4.40', 'Test event finished')

272 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.feq

spacepy.toolbox.feq(x, y, precision=5e-07)
compare two floating point values if they are equal after: http://www.lahey.com/float.htm

Deprecated since version 0.2.2: use numpy.isclose(); the rtol keyword is equivalent to precision.

Parameters

x [float] a number

y [float or array of floats] other numbers to compare

precision [float (optional)] Relative precision for equal (default 0.0000005) Specified as a frac-
tion of the sum of x and y.

Returns

out [bool] True (equal) or False (not equal)

See also:

numpy.allclose

numpy.isclose

Examples

>>> import spacepy.toolbox as tb
>>> x = 1 + 1e-4
>>> y = 1 + 2e-4
>>> tb.feq(x, y)
False
>>> tb.feq(x, y, 1e-3)
True

spacepy.toolbox.getNamedPath

spacepy.toolbox.getNamedPath(name)
Return the full path of a parent directory with name as the leaf

Parameters

name [string] the name of the parent directory to locate

Examples

Run from a directory /mnt/projects/dream/bin/Ephem with ‘dream’ as the name, this function would return
‘/mnt/projects/dream’

4.18. toolbox - Toolbox of various functions and generic utilities 273

http://www.lahey.com/float.htm
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose
https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.human_sort

spacepy.toolbox.human_sort(l)
Sort the given list in the way that humans expect. http://www.codinghorror.com/blog/2007/12/
sorting-for-humans-natural-sort-order.html

Parameters

l [list] list of objects to human sort

Returns

out [list] sorted list

Examples

>>> import spacepy.toolbox as tb
>>> dat = ['r1.txt', 'r10.txt', 'r2.txt']
>>> dat.sort()
>>> print dat
['r1.txt', 'r10.txt', 'r2.txt']
>>> tb.human_sort(dat)
['r1.txt', 'r2.txt', 'r10.txt']

spacepy.toolbox.hypot

spacepy.toolbox.hypot(*args)
compute the N-dimensional hypot of an iterable or many arguments

Parameters

args [many numbers or array-like] array like or many inputs to compute from

Returns

out [float] N-dimensional hypot of a number

Notes

This function has a complicated speed function.

• if a numpy array of floats is input this is passed off to C

• if iterables are passed in they are made into numpy arrays and comptaton is done local

• if many scalar agruments are passed in calculation is done in a loop

For max speed:

• <20 elements expand them into scalars

>>> tb.hypot(*vals)
>>> tb.hypot(vals[0], vals[1]...) #alternate

• >20 elements premake them into a numpy array of doubles

274 Chapter 4. SpacePy Module Reference

http://www.codinghorror.com/blog/2007/12/sorting-for-humans-natural-sort-order.html
http://www.codinghorror.com/blog/2007/12/sorting-for-humans-natural-sort-order.html

SpacePy Documentation, Release 0.2.2

Examples

>>> from spacepy import toolbox as tb
>>> print tb.hypot([3,4])
5.0
>>> print tb.hypot(3,4)
5.0
>>> # Benchmark ####
>>> from spacepy import toolbox as tb
>>> import numpy as np
>>> import timeit
>>> num_list = []
>>> num_np = []
>>> num_np_double = []
>>> num_scalar = []
>>> tot = 500
>>> for num in tb.logspace(1, tot, 10):
>>> print num
>>> num_list.append(timeit.timeit(stmt='tb.hypot(a)',

setup='from spacepy import toolbox as tb;
import numpy as np; a = [3]*{0}'.format(int(num)),

→˓number=10000))
>>> num_np.append(timeit.timeit(stmt='tb.hypot(a)',

setup='from spacepy import toolbox as tb;
import numpy as np; a = np.asarray([3]*{0})'.

→˓format(int(num)), number=10000))
>>> num_scalar.append(timeit.timeit(stmt='tb.hypot(*a)',

setup='from spacepy import toolbox as tb;
import numpy as np; a = [3]*{0}'.format(int(num)),

→˓number=10000))
>>> from pylab import *
>>> loglog(tb.logspace(1, tot, 10), num_list, lw=2, label='list')
>>> loglog(tb.logspace(1, tot, 10), num_np, lw=2, label='numpy->ctypes')
>>> loglog(tb.logspace(1, tot, 10), num_scalar, lw=2, label='scalar')
>>> legend(shadow=True, fancybox=1, loc='upper left')
>>> title('Different hypot times for 10000 runs')
>>> ylabel('Time [s]')
>>> xlabel('Size')

4.18. toolbox - Toolbox of various functions and generic utilities 275

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.indsFromXrange

spacepy.toolbox.indsFromXrange(inxrange)
return the start and end indices implied by an xrange, useful when xrange is zero-length

Parameters

inxrange [xrange] input xrange object to parse

Returns

list of int List of start, stop indices in the xrange. The return value is not defined if a stride is
specified or if stop is before start (but will work when stop equals start).

Examples

>>> import spacepy.toolbox as tb
>>> foo = xrange(23, 39)
>>> foo[0]
23
>>> tb.indsFromXrange(foo)
[23, 39]
>>> foo1 = xrange(23, 23)
>>> tb.indsFromXrange(foo) #indexing won't work in this case
[23, 23]

276 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.interpol

spacepy.toolbox.interpol(newx, x, y, wrap=None, **kwargs)
1-D linear interpolation with interpolation of hours/longitude

Parameters

newx [array_like] x values where we want the interpolated values

x [array_like] x values of the original data (must be monotonically increasing or wrapping)

y [array_like] y values of the original data

wrap [string, optional] for continuous x data that wraps in y at ‘hours’ (24), ‘longitude’ (360),
or arbitrary value (int, float)

kwargs [dict] additional keywords, currently accepts baddata that sets baddata for masked ar-
rays

Returns

out [numpy.masked_array] interpolated data values for new abscissa values

Examples

For a simple interpolation

>>> import spacepy.toolbox as tb
>>> import numpy
>>> x = numpy.arange(10)
>>> y = numpy.arange(10)
>>> tb.interpol(numpy.arange(5)+0.5, x, y)
array([0.5, 1.5, 2.5, 3.5, 4.5])

To use the wrap functionality, without the wrap keyword you get the wrong answer

>>> y = range(24)*2
>>> x = range(len(y))
>>> tb.interpol([1.5, 10.5, 23.5], x, y, wrap='hour').compressed() # compress
→˓removed the masked array
array([1.5, 10.5, 23.5])
>>> tb.interpol([1.5, 10.5, 23.5], x, y)
array([1.5, 10.5, 11.5])

spacepy.toolbox.intsolve

spacepy.toolbox.intsolve(func, value, start=None, stop=None, maxit=1000)
Find the function input such that definite integral is desired value.

Given a function, integrate from an (optional) start point until the integral reached a desired value, and return
the end point of the integration.

Parameters

func [callable] function to integrate, must take single parameter

value [float] desired final value of the integral

start [float (optional)] value at which to start integration, default -Infinity

4.18. toolbox - Toolbox of various functions and generic utilities 277

SpacePy Documentation, Release 0.2.2

stop [float (optional)] value at which to stop integration, default +Infinity

maxit [integer] maximum number of iterations

Returns

out [float] x such that the integral of L{func} from L{start} to x is L{value}

Note: Assumes func is everywhere positive, otherwise solution may be multi-valued.

spacepy.toolbox.medAbsDev

spacepy.toolbox.medAbsDev(series, scale=False)
Calculate median absolute deviation of a given input series

Median absolute deviation (MAD) is a robust and resistant measure of the spread of a sample (same purpose as
standard deviation). The MAD is preferred to the inter-quartile range as the inter-quartile range only shows 50%
of the data whereas the MAD uses all data but remains robust and resistant. See e.g. Wilks, Statistical methods
for the Atmospheric Sciences, 1995, Ch. 3. For additional details on the scaling, see Rousseeuw and Croux, J.
Amer. Stat. Assoc., 88 (424), pp. 1273-1283, 1993.

Parameters

series [array_like] the input data series

Returns

out [float] the median absolute deviation

Other Parameters

scale [bool] if True (default: False), scale to standard deviation of a normal distribution

Examples

Find the median absolute deviation of a data set. Here we use the log- normal distribution fitted to the population
of sawtooth intervals, see Morley and Henderson, Comment, Geophysical Research Letters, 2009.

>>> import numpy
>>> import spacepy.toolbox as tb
>>> numpy.random.seed(8675301)
>>> data = numpy.random.lognormal(mean=5.1458, sigma=0.302313, size=30)
>>> print data
array([181.28078923, 131.18152745, ... , 141.15455416, 160.88972791])
>>> tb.medAbsDev(data)
28.346646721370192

note This implementation is robust to presence of NaNs

278 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.mlt2rad

spacepy.toolbox.mlt2rad(mlt, midnight=False)
Convert mlt values to radians for polar plotting transform mlt angles to radians from -pi to pi referenced from
noon by default

Parameters

mlt [numpy array] array of mlt values

midnight [boolean (optional)] reference to midnight instead of noon

Returns

out [numpy array] array of radians

See also:

rad2mlt

Examples

>>> from numpy import array
>>> mlt2rad(array([3,6,9,14,22]))
array([-2.35619449, -1.57079633, -0.78539816, 0.52359878, 2.61799388])

spacepy.toolbox.normalize

spacepy.toolbox.normalize(vec, low=0.0, high=1.0)
Given an input vector normalize the vector to a given range

Parameters

vec [array_like] input vector to normalize

low [float] minimum value to scale to, default 0.0

high [float] maximum value to scale to, default 1.0

Returns

out [array_like] normalized vector

Examples

>>> import spacepy.toolbox as tb
>>> tb.normalize([1,2,3])
[0.0, 0.5, 1.0]

4.18. toolbox - Toolbox of various functions and generic utilities 279

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.pmm

spacepy.toolbox.pmm(*args)
print min and max of input arrays

Parameters

a [array-like] arbitrary number of input arrays (or lists)

Returns

out [list] list of min, max for each array

Examples

>>> import spacepy.toolbox as tb
>>> from numpy import arange
>>> tb.pmm(arange(10), arange(10)+3)
[[0, 9], [3, 12]]

spacepy.toolbox.poisson_fit

spacepy.toolbox.poisson_fit(data, initial=None, method='Powell')
Fit a Poisson distribution to data using the method and initial guess provided.

Parameters

data [array-like] Data to fit a Poisson distribution to.

initial [int or None] initial guess for the fit, if None np.median(data) is used

method [str] method passed to scipy.optimize.minimize, default=’Powell’

Returns

result [scipy.optimize.optimize.OptimizeResult] Resulting fit results from scipy.optimize, an-
swer is result.x, user should likely round.

Examples

>>> import spacepy.toolbox as tb
>>> from scipy.stats import poisson
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> data = poisson.rvs(20, size=1000)
>>> res = tb.poisson_fit(data)
>>> print(res.x)
19.718000038769095
>>> xvals = np.arange(0, np.max(data)+5)
>>> plt.hist(data, bins=xvals, normed=True)
>>> plt.plot(xvals, poisson.pmf(xvals, np.round(res.x)))

280 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.rad2mlt

spacepy.toolbox.rad2mlt(rad, midnight=False)
Convert radians values to mlt transform radians from -pi to pi to mlt referenced from noon by default

Parameters

rad [numpy array] array of radian values

midnight [boolean (optional)] reference to midnight instead of noon

Returns

out [numpy array] array of mlt values

See also:

mlt2rad

Examples

>>> rad2mlt(array([0,pi, pi/2.]))
array([12., 24., 18.])

spacepy.toolbox.windowMean

spacepy.toolbox.windowMean(data, time=[], winsize=0, overlap=0, st_time=None, op=<function
mean>)

Windowing mean function, window overlap is user defined

Parameters

data [array_like] 1D series of points

time [list (optional)] series of timestamps, optional (format as numeric or datetime) For non-
overlapping windows set overlap to zero.

winsize [integer or datetime.timedelta (optional)] window size

overlap [integer or datetime.timedelta (optional)] amount of window overlap

st_time [datetime.datetime (optional)] for time-based averaging, a start-time other than the first
point can be specified

op [callable (optional)] the operator to be called, default numpy.mean

Returns

out [tuple] the windowed mean of the data, and an associated reference time vector

4.18. toolbox - Toolbox of various functions and generic utilities 281

SpacePy Documentation, Release 0.2.2

Examples

For non-overlapping windows set overlap to zero. e.g. (time-based averaging) Given a data set of 100 points at
hourly resolution (with the time tick in the middle of the sample), the daily average of this, with half-overlapping
windows is calculated:

>>> import spacepy.toolbox as tb
>>> from datetime import datetime, timedelta
>>> wsize = datetime.timedelta(days=1)
>>> olap = datetime.timedelta(hours=12)
>>> data = [10, 20]*50
>>> time = [datetime.datetime(2001,1,1) + datetime.timedelta(hours=n, minutes =
→˓30) for n in range(100)]
>>> outdata, outtime = tb.windowMean(data, time, winsize=wsize, overlap=olap, st_
→˓time=datetime.datetime(2001,1,1))
>>> outdata, outtime
([15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0],
[datetime.datetime(2001, 1, 1, 12, 0),
datetime.datetime(2001, 1, 2, 0, 0),
datetime.datetime(2001, 1, 2, 12, 0),
datetime.datetime(2001, 1, 3, 0, 0),
datetime.datetime(2001, 1, 3, 12, 0),
datetime.datetime(2001, 1, 4, 0, 0),
datetime.datetime(2001, 1, 4, 12, 0)])

When using time-based averaging, ensure that the time tick corresponds to the middle of the time-bin to which
the data apply. That is, if the data are hourly, say for 00:00-01:00, then the time applied should be 00:30. If this
is not done, unexpected behaviour can result.

e.g. (pointwise averaging),

>>> outdata, outtime = tb.windowMean(data, winsize=24, overlap=12)
>>> outdata, outtime
([15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0], [12.0, 24.0, 36.0, 48.0, 60.0, 72.0,
→˓84.0])

where winsize and overlap are numeric, in this example the window size is 24 points (as the data are hourly) and
the overlap is 12 points (a half day). The output vectors start at winsize/2 and end at N-(winsize/2), the output
time vector is basically a reference to the nth point in the original series.

note This is a quick and dirty function - it is NOT optimized, at all.

4.18.5 Multithreading and multiprocessing

thread_job(job_size, thread_count, target, . . .) Split a job into subjobs and run a thread for each
thread_map(target, iterable[, thread_count]) Apply a function to every element of a list, in separate

threads

282 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.thread_job

spacepy.toolbox.thread_job(job_size, thread_count, target, *args, **kwargs)
Split a job into subjobs and run a thread for each

Each thread spawned will call L{target} to handle a slice of the job.

This is only useful if a job:

1. Can be split into completely independent subjobs

2. Relies heavily on code that does not use the Python GIL, e.g. numpy or ctypes code

3. Does not return a value. Either pass in a list/array to hold the result, or see L{thread_map}

Parameters

job_size [int] Total size of the job. Often this is an array size.

thread_count [int]

Number of threads to spawn. If =0 or None, will spawn as many threads as there are
cores available on the system. (Each hyperthreading core counts as 2.) Generally this
is the Right Thing to do. If NEGATIVE, will spawn abs(thread_count) threads, but will
run them sequentially rather than in parallel; useful for debugging.

target [callable]

Python callable (generally a function, may also be an imported ctypes function) to run
in each thread. The last two positional arguments passed in will be a “start” and a “subjob
size,” respectively; frequently this will be the start index and the number of elements to
process in an array.

args [sequence]

Arguments to pass to L{target}. If L{target} is an instance method, self must be explic-
itly passed in. start and subjob_size will be appended.

kwargs [dict] keyword arguments to pass to L{target}.

Examples

squaring 100 million numbers:

>>> import numpy
>>> import spacepy.toolbox as tb
>>> numpy.random.seed(8675301)
>>> a = numpy.random.randint(0, 100, [100000000])
>>> b = numpy.empty([100000000], dtype='int64')
>>> def targ(in_array, out_array, start, count): out_
→˓array[start:start + count] = in_array[start:start + count] ** 2
>>> tb.thread_job(len(a), 0, targ, a, b)
>>> print(b[0:5])
[2704 7225 196 1521 36]

This example:

• Defines a target function, which will be called for each thread. It is usually necessary to define a
simple “wrapper” function like this to provide the correct call signature.

4.18. toolbox - Toolbox of various functions and generic utilities 283

SpacePy Documentation, Release 0.2.2

• The target function receives inputs C{in_array} and C{out_array}, which are not touched directly by
C{thread_job} but are passed through in the call. In this case, C{a} gets passed as C{in_array} and
C{b} as C{out_array}

• The target function also receives the start and number of elements it needs to process. For each thread
where the target is called, these numbers are different.

spacepy.toolbox.thread_map

spacepy.toolbox.thread_map(target, iterable, thread_count=None, *args, **kwargs)
Apply a function to every element of a list, in separate threads

Interface is similar to multiprocessing.map, except it runs in threads

This is made largely obsolete in python3 by from concurrent import futures

Parameters

target [callable]

Python callable to run on each element of iterable. For each call, an element of iterable
is appended to args and both args and kwargs are passed through. Note that this means
the iterable element is always the last positional argument; this allows the specification
of self as the first argument for method calls.

iterable [iterable] elements to pass to each call of L{target}

args [sequence]

arguments to pass to target before each element of iterable

thread_count [integer] Number of threads to spawn; see L{thread_job}.

kwargs [dict] keyword arguments to pass to L{target}.

Returns

out [list] return values of L{target} for each item from L{iterable}

Examples

find totals of several arrays

>>> import numpy
>>> from spacepy import toolbox
>>> inputs = range(100)
>>> totals = toolbox.thread_map(numpy.sum, inputs)
>>> print(totals[0], totals[50], totals[99])
(0, 50, 99)

>>> # in python3
>>> from concurrent import futures
>>> with futures.ThreadPoolExecutor(max_workers=4) as executor:
...: for ans in executor.map(numpy.sum, [0,50,99]):
...: print ans
#0
#50
#99

284 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.2.2

4.18.6 System tools

do_with_timeout(timeout, target, *args,
**kwargs)

Execute a function (or method) with a timeout.

get_url(url[, outfile, reporthook, cached, . . .]) Read data from a URL
loadpickle(fln) load a pickle and return content as dictionary
progressbar(count, blocksize, totalsize[, text]) print a progress bar with urllib.urlretrieve reporthook

functionality
query_yes_no(question[, default]) Ask a yes/no question via raw_input() and return their

answer.
savepickle(fln, dict[, compress]) save dictionary variable dict to a pickle with filename

fln
timeout_check_call(timeout, *args, **kwargs) Call a subprocess with a timeout.
TimeoutError Raised when a time-limited process times out
update([all, QDomni, omni, omni2, leapsecs, . . .]) Download and update local database for omni, leapsecs

etc

spacepy.toolbox.do_with_timeout

spacepy.toolbox.do_with_timeout(timeout, target, *args, **kwargs)
Execute a function (or method) with a timeout.

Call the function (or method) target, with arguments args and keyword arguments kwargs. Normally
return the return value from target, but if target takes more than timeout seconds to execute, raises
TimeoutError.

Note: This is, at best, a blunt instrument. Exceptions from target may not propagate properly (tracebacks
will be hard to follow.) The function which failed to time out may continue to execute until the interpreter exits;
trapping the TimeoutError and continuing normally is not recommended.

Parameters

timeout [float] Timeout, in seconds.

target [callable]

Python callable (generally a function, may also be an imported ctypes function) to run.

args [sequence] Arguments to pass to target.

kwargs [dict] keyword arguments to pass to target.

Returns

out : return value of target

Raises

TimeoutError [If target does not return in timeout seconds.]

4.18. toolbox - Toolbox of various functions and generic utilities 285

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.toolbox as tb
>>> import time
>>> def time_me_out():
... time.sleep(5)
>>> tb.do_with_timeout(0.5, time_me_out) #raises TimeoutError

spacepy.toolbox.get_url

spacepy.toolbox.get_url(url, outfile=None, reporthook=None, cached=False, keepalive=False,
conn=None)

Read data from a URL

Open an HTTP URL, honoring the user agent as specified in the SpacePy config file. Returns the data, optionally
also writing out to a file.

This is similar to the deprecated urlretrieve.

Parameters

url [str] The URL to open

outfile [str (optional)] Full path to file to write data to

reporthook [callable (optional)] Function for reporting progress; takes arguments of block
count, block size, and total size.

cached [bool (optional)] Compare modification time of the URL to the modification time of
outfile; do not retrieve (and return None) unless the URL is newer than the file.

keepalive [bool (optional)] Attempt to keep the connection open to retrieve more URLs. The
return becomes a tuple of (data, conn) to return the connection used so it can be used again.
This mode does not support proxies. (Default False)

conn [http.client.HTTPConnection (optional)] An established http connection (HTTPS is also
okay) to use with keepalive. If not provided, will attempt to make a connection.

Returns

bytes The HTTP data from the server.

See also:

progressbar

Notes

This function honors proxy settings as described in urllib.request.getproxies(). Cryptic error mes-
sages (such as Network is unreachable) may indicate that proxy settings should be defined as appro-
priate for your environment (e.g. with HTTP_PROXY or HTTPS_PROXY environment variables).

286 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/urllib.request.html#urllib.request.getproxies

SpacePy Documentation, Release 0.2.2

spacepy.toolbox.loadpickle

spacepy.toolbox.loadpickle(fln)
load a pickle and return content as dictionary

Parameters

fln [string] filename

Returns

out [dict] dictionary with content from file

See also:

savepickle

Examples

note: If fln is not found, but the same filename with ‘.gz’ is found, will attempt to open the .gz as a gzipped
file.

>>> d = loadpickle('test.pbin')

spacepy.toolbox.progressbar

spacepy.toolbox.progressbar(count, blocksize, totalsize, text='Download Progress')
print a progress bar with urllib.urlretrieve reporthook functionality

Examples

>>> import spacepy.toolbox as tb
>>> import urllib
>>> urllib.urlretrieve(config['psddata_url'], PSDdata_fname, reporthook=tb.
→˓progressbar)

spacepy.toolbox.query_yes_no

spacepy.toolbox.query_yes_no(question, default='yes')
Ask a yes/no question via raw_input() and return their answer.

“question” is a string that is presented to the user. “default” is the presumed answer if the user just hits <Enter>.
It must be “yes” (the default), “no” or None (meaning an answer is required of the user).

The “answer” return value is one of “yes” or “no”.

Parameters

question [string] the question to ask

default [string (optional)]

Returns

out [string] answer (‘yes’ or ‘no’)

4.18. toolbox - Toolbox of various functions and generic utilities 287

SpacePy Documentation, Release 0.2.2

Examples

>>> import spacepy.toolbox as tb
>>> tb.query_yes_no('Ready to go?')
Ready to go? [Y/n] y
'yes'

spacepy.toolbox.savepickle

spacepy.toolbox.savepickle(fln, dict, compress=None)
save dictionary variable dict to a pickle with filename fln

Parameters

fln [string] filename

dict [dict] container with stuff

compress [bool]

write as a gzip-compressed file (.gz will be added to fln). If not specified, defaults to
uncompressed, unless the compressed file exists and the uncompressed does not.

See also:

loadpickle

Examples

>>> d = {'grade':[1,2,3], 'name':['Mary', 'John', 'Chris']}
>>> savepickle('test.pbin', d)

spacepy.toolbox.timeout_check_call

spacepy.toolbox.timeout_check_call(timeout, *args, **kwargs)
Call a subprocess with a timeout.

Like subprocess.check_call(), but will terminate the process and raise TimeoutError if it runs for
too long.

This will only terminate the single process started; any child processes will remain running (this has implications
for, say, spawing shells.)

Parameters

timeout [float] Timeout, in seconds. Fractions are acceptable but the resolution is of order
100ms.

args [sequence] Arguments passed through to subprocess.Popen

kwargs [dict] keyword arguments to pass to subprocess.Popen

Returns

out [int] 0 on successful completion

Raises

TimeoutError [If subprocess does not return in timeout seconds.]

288 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/subprocess.html#subprocess.check_call
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

SpacePy Documentation, Release 0.2.2

CalledProcessError [if command has non-zero exit status]

Examples

>>> import spacepy.toolbox as tb
>>> tb.timeout_check_call(1, 'sleep 30', shell=True) #raises TimeoutError

spacepy.toolbox.TimeoutError

exception spacepy.toolbox.TimeoutError
Raised when a time-limited process times out

spacepy.toolbox.update

spacepy.toolbox.update(all=True, QDomni=False, omni=False, omni2=False, leapsecs=False, PS-
Ddata=False, cached=True)

Download and update local database for omni, leapsecs etc

Web access is via get_url(); notes there may be helpful in debugging errors. See also the keepalive
configuration option.

Parameters

all [boolean (optional)] if True, update OMNI2, Qin-Denton and leapsecs

omni [boolean (optional)] if True. update only omni (Qin-Denton)

omni2 [boolean (optional)] if True, update only original OMNI2

QDomni [boolean (optional)] if True, update OMNI2 and Qin-Denton

leapsecs [boolean (optional)] if True, update only leapseconds

cached [boolean (optional)] Only update files if timestamp on server is newer than timestamp
on local file (default). Set False to always download files.

Returns

out [string] data directory where things are saved

See also:

get_url

Examples

>>> import spacepy.toolbox as tb
>>> tb.update(omni=True)

4.18. toolbox - Toolbox of various functions and generic utilities 289

SpacePy Documentation, Release 0.2.2

4.18.7 Quaternion math

Quaternion functions have moved to coordinates; new functions are also added there.

quaternionRotateVector(Qin, Vin[, . . .]) Given quaternion and vector, return vector rotated by
quaternion.

quaternionNormalize(Qin[, scalarPos]) Given an input quaternion, return the unit quaternion.
quaternionMultiply(Qin1, Qin2[, scalarPos]) Given quaternions, return the product.
quaternionConjugate(Qin[, scalarPos]) Given an input quaternion, return the conjugated.

spacepy.toolbox.quaternionRotateVector

spacepy.toolbox.quaternionRotateVector(Qin, Vin, scalarPos='last', normalize=True)
Given quaternion and vector, return vector rotated by quaternion.

Deprecated since version 0.2.2: use spacepy.coordinates.quaternionRotateVector()

spacepy.toolbox.quaternionNormalize

spacepy.toolbox.quaternionNormalize(Qin, scalarPos='last')
Given an input quaternion, return the unit quaternion.

Deprecated since version 0.2.2: use spacepy.coordinates.quaternionNormalize()

spacepy.toolbox.quaternionMultiply

spacepy.toolbox.quaternionMultiply(Qin1, Qin2, scalarPos='last')
Given quaternions, return the product.

Deprecated since version 0.2.2: use spacepy.coordinates.quaternionMultiply()

spacepy.toolbox.quaternionConjugate

spacepy.toolbox.quaternionConjugate(Qin, scalarPos='last')
Given an input quaternion, return the conjugated.

Deprecated since version 0.2.2: use spacepy.coordinates.quaternionConjugate()

4.19 Indices and tables

• genindex

• modindex

• search

Release 0.2.2

Doc generation date Dec 29, 2020

290 Chapter 4. SpacePy Module Reference

PYTHON MODULE INDEX

s
spacepy, 65
spacepy.ae9ap9, 67
spacepy.coordinates, 69
spacepy.data_assimilation, 109
spacepy.datamanager, 76
spacepy.datamodel, 93
spacepy.empiricals, 113
spacepy.irbempy, 120
spacepy.LANLstar, 130
spacepy.omni, 134
spacepy.plot, 137
spacepy.plot.carrington, 149
spacepy.plot.colourmaps, 149
spacepy.plot.spectrogram, 149
spacepy.plot.utils, 149
spacepy.poppy, 163
spacepy.pybats, 168
spacepy.pybats.bats, 170
spacepy.pybats.dgcpm, 173
spacepy.pybats.dipole, 173
spacepy.pybats.gitm, 173
spacepy.pybats.kyoto, 173
spacepy.pybats.pwom, 174
spacepy.pybats.ram, 174
spacepy.pybats.rim, 174
spacepy.pybats.trace2d, 176
spacepy.pycdf, 181
spacepy.pycdf.const, 217
spacepy.pycdf.istp, 217
spacepy.radbelt, 230
spacepy.seapy, 235
spacepy.time, 241
spacepy.toolbox, 259

291

SpacePy Documentation, Release 0.2.2

292 Python Module Index

INDEX

A
aa_ci() (spacepy.poppy.PPro method), 164
add_arrows() (in module spacepy.plot), 147
add_arrows() (in module spacepy.plot.utils), 162
add_attr_to_cache() (spacepy.pycdf.CDF

method), 190
add_body() (in module spacepy.pybats), 180
add_dst_quicklook()

(spacepy.pybats.bats.BatsLog method), 170
add_Lmax() (spacepy.radbelt.RBmodel method), 231
add_logo() (in module spacepy.plot), 138
add_logo() (in module spacepy.plot.utils), 153
add_Lpp() (spacepy.radbelt.RBmodel method), 231
add_model_error()

(spacepy.data_assimilation.ensemble method),
110

add_model_error_obs()
(spacepy.data_assimilation.ensemble method),
110

add_omni() (spacepy.radbelt.RBmodel method), 232
add_planet() (in module spacepy.pybats), 181
add_PSD_obs() (spacepy.radbelt.RBmodel method),

231
add_PSD_twin() (spacepy.radbelt.RBmodel method),

232
add_source() (spacepy.radbelt.RBmodel method),

232
add_to_cache() (spacepy.pycdf.CDF method), 190
addAttribute() (spacepy.datamodel.dmarray

method), 97
addmodelerror_old() (in module

spacepy.data_assimilation), 113
addmodelerror_old2() (in module

spacepy.data_assimilation), 113
Ae9Data (class in spacepy.ae9ap9), 67
all() (spacepy.pycdf.istp.FileChecks class method),

218
all() (spacepy.pycdf.istp.VariableChecks class

method), 225
analyze() (spacepy.plot.utils.EventClicker method),

152
annotate_xaxis() (in module spacepy.plot), 139

annotate_xaxis() (in module spacepy.plot.utils),
154

append() (spacepy.coordinates.Coords method), 71
append() (spacepy.pycdf.Attr method), 205
append() (spacepy.time.Ticktock method), 246
apply_index() (in module spacepy.datamanager), 78
applySmartTimeTicks() (in module spacepy.plot),

139
applySmartTimeTicks() (in module

spacepy.plot.utils), 155
argsort() (spacepy.time.Ticktock method), 246
array_interleave() (in module

spacepy.datamanager), 78
arraybin() (in module spacepy.toolbox), 259
assemble() (in module spacepy.toolbox), 269
assimilate() (spacepy.radbelt.RBmodel method),

232
assimilate_JK() (in module

spacepy.data_assimilation), 113
assoc() (spacepy.poppy.PPro method), 164
assoc_mult() (spacepy.poppy.PPro method), 165
Attr (class in spacepy.pycdf), 205
attr_num() (spacepy.pycdf.CDF method), 190
AttrList (class in spacepy.pycdf), 204
attrs (spacepy.pycdf.CDF attribute), 190
attrs (spacepy.pycdf.CDFCopy attribute), 214
attrs (spacepy.pycdf.Var attribute), 199
attrs (spacepy.pycdf.VarCopy attribute), 214
available() (in module spacepy.plot), 141
average_window() (in module

spacepy.data_assimilation), 112
axis_index() (in module spacepy.datamanager), 79

B
backward (spacepy.pycdf.CDF attribute), 190
Bats2d (class in spacepy.pybats.bats), 172
BatsLog (class in spacepy.pybats.bats), 170
bin_center_to_edges() (in module

spacepy.toolbox), 260
bin_edges_to_center() (in module

spacepy.toolbox), 260
binHisto() (in module spacepy.toolbox), 261

293

SpacePy Documentation, Release 0.2.2

bootHisto() (in module spacepy.toolbox), 269
boots_ci() (in module spacepy.poppy), 167

C
call() (spacepy.pycdf.Library method), 207
car2sph() (in module spacepy.irbempy), 128
CDF (class in spacepy.pycdf), 187
CDFCopy (class in spacepy.pycdf), 214
CDFError (class in spacepy.pycdf), 215
CDFException (class in spacepy.pycdf), 216
cdffile

istp_checks.py command line option,
49

CDFWarning (class in spacepy.pycdf), 216
check_status() (spacepy.pycdf.Library method),

208
checksum() (spacepy.pycdf.CDF method), 191
ci (spacepy.poppy.PPro attribute), 165
clear_attr_from_cache() (spacepy.pycdf.CDF

method), 191
clear_from_cache() (spacepy.pycdf.CDF method),

191
clone() (spacepy.pycdf.AttrList method), 204
clone() (spacepy.pycdf.CDF method), 191
close() (spacepy.pycdf.CDF method), 191
col_major() (spacepy.pycdf.CDF method), 192
collapse_vertical() (in module spacepy.plot),

141
collapse_vertical() (in module

spacepy.plot.utils), 156
compress() (spacepy.pycdf.CDF method), 192
compress() (spacepy.pycdf.Var method), 199
compress() (spacepy.pycdf.VarCopy method), 214
concatCDF() (in module spacepy.pycdf), 216
conf_above (spacepy.poppy.PPro attribute), 165
convert() (spacepy.coordinates.Coords method), 71
convert() (spacepy.time.Ticktock method), 246
convertKeysToStr() (in module

spacepy.datamodel), 98
coord_trans() (in module spacepy.irbempy), 129
Coords (class in spacepy.coordinates), 70
copy() (spacepy.pycdf.AttrList method), 204
copy() (spacepy.pycdf.CDF method), 192
copy() (spacepy.pycdf.Var method), 199
createISTPattrs() (in module

spacepy.datamodel), 99

D
DataManager (class in spacepy.datamanager), 77
datetime_to_epoch() (spacepy.pycdf.Library

method), 208
datetime_to_epoch16() (spacepy.pycdf.Library

method), 208

datetime_to_tt2000() (spacepy.pycdf.Library
method), 209

deltas() (spacepy.pycdf.istp.VariableChecks class
method), 225

depends() (spacepy.pycdf.istp.VariableChecks class
method), 225

deprecated() (in module spacepy), 15, 66
depsize() (spacepy.pycdf.istp.VariableChecks class

method), 226
dictree() (in module spacepy.toolbox), 270
diff_LL() (in module spacepy.radbelt), 234
dist_to_list() (in module spacepy.toolbox), 262
dmarray (class in spacepy.datamodel), 97
dmcopy() (in module spacepy.datamodel), 99
dmfilled() (in module spacepy.datamodel), 100
DMWarning (class in spacepy.datamodel), 98
do_with_timeout() (in module spacepy.toolbox),

285
doy2date() (in module spacepy.time), 256
dtstr2iso() (in module spacepy.time), 256
dtype (spacepy.pycdf.Var attribute), 200
dual_half_circle() (in module spacepy.plot), 142
dv() (spacepy.pycdf.Var method), 200
dv() (spacepy.pycdf.VarCopy method), 215

E
empty_entry() (spacepy.pycdf.istp.FileChecks class

method), 218
empty_entry() (spacepy.pycdf.istp.VariableChecks

class method), 226
EnKF() (spacepy.data_assimilation.ensemble method),

109
EnKF_oneobs() (spacepy.data_assimilation.ensemble

method), 109
ensemble (class in spacepy.data_assimilation), 109
epoch16_to_datetime() (spacepy.pycdf.Library

method), 210
epoch16_to_epoch() (spacepy.pycdf.Library

method), 210
epoch16_to_tt2000() (spacepy.pycdf.Library

method), 210
epoch_to_datetime() (spacepy.pycdf.Library

method), 209
epoch_to_epoch16() (spacepy.pycdf.Library

method), 209
epoch_to_num() (spacepy.pycdf.Library method),

209
epoch_to_tt2000() (spacepy.pycdf.Library

method), 210
EpochError (class in spacepy.pycdf), 216
EventClicker (class in spacepy.plot.utils), 150
eventTimer() (in module spacepy.toolbox), 272
evolve() (spacepy.radbelt.RBmodel method), 233

294 Index

SpacePy Documentation, Release 0.2.2

F
feq() (in module spacepy.toolbox), 273
fieldnam() (spacepy.pycdf.istp.VariableChecks class

method), 226
FileChecks (class in spacepy.pycdf.istp), 218
filename() (spacepy.pycdf.istp.FileChecks class

method), 218
files_matching() (spacepy.datamanager.DataManager

method), 77
fillval() (in module spacepy.pycdf.istp), 228
fillval() (spacepy.pycdf.istp.VariableChecks class

method), 226
find_Bmirror() (in module spacepy.irbempy), 126
find_magequator() (in module spacepy.irbempy),

127
fix_format() (in module spacepy.pybats.rim), 175
flatten() (in module spacepy.datamodel), 100
flatten() (spacepy.datamodel.SpaceData method),

95
flatten_idx() (in module spacepy.datamanager), 79
forecast() (in module spacepy.data_assimilation),

113
format() (in module spacepy.pycdf.istp), 228
from_data() (spacepy.pycdf.CDF class method), 192
from_dict() (spacepy.pycdf.AttrList method), 204
fromCDF() (in module spacepy.datamodel), 101
fromHDF5() (in module spacepy.datamodel), 102
fromRecArray() (in module spacepy.datamodel), 102

G
gAttr (class in spacepy.pycdf), 203
gAttrList (class in spacepy.pycdf), 201
Gaussian_source() (spacepy.radbelt.RBmodel

method), 231
GeoIndexFile (class in spacepy.pybats.bats), 173
geomspace() (in module spacepy.toolbox), 262
get_AEP8() (in module spacepy.irbempy), 122
get_Bfield() (in module spacepy.irbempy), 122
get_DLL() (spacepy.radbelt.RBmodel method), 233
get_dtype() (in module spacepy.irbempy), 130
get_events() (spacepy.plot.utils.EventClicker

method), 152
get_events_data()

(spacepy.plot.utils.EventClicker method),
152

get_filename() (spacepy.datamanager.DataManager
method), 77

get_iono_cb() (in module spacepy.pybats.rim), 175
get_Lm() (in module spacepy.irbempy), 123
get_local_accel() (in module spacepy.radbelt),

235
get_Lstar() (in module spacepy.irbempy), 124
get_minmax() (spacepy.pycdf.Library method), 211
get_modelop_L() (in module spacepy.radbelt), 234

get_omni() (in module spacepy.omni), 135
get_sysaxes() (in module spacepy.irbempy), 129
get_url() (in module spacepy.toolbox), 286
getAPT() (spacepy.time.Ticktock method), 247
getCDF() (spacepy.time.Ticktock method), 247
getDOY() (spacepy.time.Ticktock method), 248
getDststar() (in module spacepy.empiricals), 114
geteDOY() (spacepy.time.Ticktock method), 253
getExpectedSWTemp() (in module

spacepy.empiricals), 115
getGPS() (spacepy.time.Ticktock method), 249
getHA() (spacepy.data_assimilation.ensemble

method), 110
getHAprime() (spacepy.data_assimilation.ensemble

method), 110
getHPH() (spacepy.data_assimilation.ensemble

method), 111
getInnovation() (spacepy.data_assimilation.ensemble

method), 111
getISO() (spacepy.time.Ticktock method), 249
getJD() (spacepy.time.Ticktock method), 250
getleapsecs() (spacepy.time.Ticktock method), 254
getLm() (spacepy.ae9ap9.Ae9Data method), 67
getLmax() (in module spacepy.empiricals), 115
getMJD() (spacepy.time.Ticktock method), 250
getMPstandoff() (in module spacepy.empiricals),

116
getNamedPath() (in module spacepy.toolbox), 273
getobs4window() (in module

spacepy.data_assimilation), 112
getperturb() (spacepy.data_assimilation.ensemble

method), 111
getPlasmaPause() (in module spacepy.empiricals),

116
getRDT() (spacepy.time.Ticktock method), 251
getSolarProtonSpectra() (in module

spacepy.empiricals), 117
getSolarRotation() (in module

spacepy.empiricals), 117
getTAI() (spacepy.time.Ticktock method), 252
getUNX() (spacepy.time.Ticktock method), 252
getUTC() (spacepy.time.Ticktock method), 253
getVampolaOrder() (in module

spacepy.empiricals), 118

H
has_entry() (spacepy.pycdf.Attr method), 205
help() (in module spacepy), 16, 67
human_sort() (in module spacepy.toolbox), 274
hypot() (in module spacepy.toolbox), 274

I
IdlFile (class in spacepy.pybats), 176
ImfInput (class in spacepy.pybats), 177

Index 295

SpacePy Documentation, Release 0.2.2

indsFromXrange() (in module spacepy.toolbox), 276
insert() (spacepy.pycdf.Attr method), 206
insert() (spacepy.pycdf.Var method), 200
insert_fill() (in module spacepy.datamanager), 80
interpol() (in module spacepy.toolbox), 277
interweave() (in module spacepy.toolbox), 265
intsolve() (in module spacepy.toolbox), 277
Iono (class in spacepy.pybats.rim), 174
isoformat() (spacepy.time.Ticktock method), 254
istp_checks.py command line option

cdffile, 49
isview() (in module spacepy.toolbox), 265

L
LANLmax() (in module spacepy.LANLstar), 133
LANLstar() (in module spacepy.LANLstar), 131
leapyear() (in module spacepy.time), 257
levelPlot() (in module spacepy.plot), 143
lib (in module spacepy.pycdf), 230
libpath (spacepy.pycdf.Library attribute), 213
Library (class in spacepy.pycdf), 207
linspace() (in module spacepy.toolbox), 263
loadpickle() (in module spacepy.toolbox), 287
LogFile (class in spacepy.pybats), 177
logspace() (in module spacepy.toolbox), 264

M
Mag (class in spacepy.pybats.bats), 172
MagFile (class in spacepy.pybats.bats), 172
max_idx() (spacepy.pycdf.Attr method), 206
mean() (spacepy.pycdf.istp.VarBundle method), 220
medAbsDev() (in module spacepy.toolbox), 278
mlt2rad() (in module spacepy.toolbox), 279
module

spacepy, 1, 14, 65
spacepy.ae9ap9, 67
spacepy.coordinates, 69
spacepy.data_assimilation, 109
spacepy.datamanager, 76
spacepy.datamodel, 93
spacepy.empiricals, 113
spacepy.irbempy, 120
spacepy.LANLstar, 130
spacepy.omni, 134
spacepy.plot, 137
spacepy.plot.carrington, 149
spacepy.plot.colourmaps, 149
spacepy.plot.spectrogram, 149
spacepy.plot.utils, 149
spacepy.poppy, 163
spacepy.pybats, 168
spacepy.pybats.bats, 170
spacepy.pybats.dgcpm, 173
spacepy.pybats.dipole, 173

spacepy.pybats.gitm, 173
spacepy.pybats.kyoto, 173
spacepy.pybats.pwom, 174
spacepy.pybats.ram, 174
spacepy.pybats.rim, 174
spacepy.pybats.trace2d, 176
spacepy.pycdf, 181
spacepy.pycdf.const, 217
spacepy.pycdf.istp, 217
spacepy.radbelt, 230
spacepy.seapy, 235
spacepy.time, 241
spacepy.toolbox, 259

multisea() (in module spacepy.seapy), 239

N
name() (spacepy.pycdf.Var method), 200
nanfill() (in module spacepy.pycdf.istp), 229
nelems() (spacepy.pycdf.Var method), 200
nelems() (spacepy.pycdf.VarCopy method), 215
new() (spacepy.pycdf.Attr method), 206
new() (spacepy.pycdf.AttrList method), 204
new() (spacepy.pycdf.CDF method), 193
NgdcIndex (class in spacepy.pybats), 178
normalize() (in module spacepy.toolbox), 279
now() (spacepy.time.Ticktock class method), 254
number() (spacepy.pycdf.Attr method), 206

O
omniFromDirectionalFlux() (in module

spacepy.empiricals), 118
omnirange() (in module spacepy.omni), 136
operations() (spacepy.pycdf.istp.VarBundle

method), 222
output() (in module spacepy.data_assimilation), 112
output() (spacepy.pycdf.istp.VarBundle method), 221
OvalDebugFile (class in spacepy.pybats.rim), 174

P
parse_tecvars() (in module spacepy.pybats), 181
parseHeader() (in module spacepy.ae9ap9), 69
PbData (class in spacepy.pybats), 179
plot() (in module spacepy.plot), 144
plot() (spacepy.poppy.PPro method), 165
plot() (spacepy.pybats.bats.Stream method), 172
plot() (spacepy.radbelt.RBmodel method), 233
plot() (spacepy.seapy.Sea method), 237
plot() (spacepy.seapy.Sea2d method), 238
plot_mult() (spacepy.poppy.PPro method), 166
plot_obs() (spacepy.radbelt.RBmodel method), 233
plot_two_ppro() (in module spacepy.poppy), 166
plotOrbit() (spacepy.ae9ap9.Ae9Data method), 68
plotSpectrogram() (spacepy.ae9ap9.Ae9Data

method), 68

296 Index

SpacePy Documentation, Release 0.2.2

plotSummary() (spacepy.ae9ap9.Ae9Data method),
68

pmm() (in module spacepy.toolbox), 280
poisson_fit() (in module spacepy.toolbox), 280
PPro (class in spacepy.poppy), 164
prep_irbem() (in module spacepy.irbempy), 130
printfig() (in module spacepy.plot.utils), 157
progressbar() (in module spacepy.toolbox), 287

Q
quaternionConjugate() (in module

spacepy.coordinates), 74
quaternionConjugate() (in module

spacepy.toolbox), 290
quaternionFromMatrix() (in module

spacepy.coordinates), 74
quaternionMultiply() (in module

spacepy.coordinates), 73
quaternionMultiply() (in module

spacepy.toolbox), 290
quaternionNormalize() (in module

spacepy.coordinates), 73
quaternionNormalize() (in module

spacepy.toolbox), 290
quaternionRotateVector() (in module

spacepy.coordinates), 72
quaternionRotateVector() (in module

spacepy.toolbox), 290
quaternionToMatrix() (in module

spacepy.coordinates), 75
query_yes_no() (in module spacepy.toolbox), 287

R
rad2mlt() (in module spacepy.toolbox), 281
randomDate() (in module spacepy.time), 257
raw_var() (spacepy.pycdf.CDF method), 194
RBmodel (class in spacepy.radbelt), 230
readepochs() (in module spacepy.seapy), 240
readFile() (in module spacepy.ae9ap9), 69
readJSONheadedASCII() (in module

spacepy.datamodel), 107
readJSONMetadata() (in module

spacepy.datamodel), 107
readonly() (spacepy.pycdf.CDF method), 194
rebin() (in module spacepy.datamanager), 81
recordcount() (spacepy.pycdf.istp.VariableChecks

class method), 227
rename() (spacepy.pycdf.Attr method), 206
rename() (spacepy.pycdf.AttrList method), 204
rename() (spacepy.pycdf.Var method), 200
resample() (in module spacepy.datamodel), 107
rev_index() (in module spacepy.datamanager), 90
revert_style() (in module spacepy.plot), 144
rv() (spacepy.pycdf.Var method), 200

rv() (spacepy.pycdf.VarCopy method), 215

S
SatOrbit (class in spacepy.pybats), 179
save() (spacepy.pycdf.CDF method), 195
savepickle() (in module spacepy.toolbox), 288
Sea (class in spacepy.seapy), 236
sea() (spacepy.seapy.Sea method), 236
sea() (spacepy.seapy.Sea2d method), 238
Sea2d (class in spacepy.seapy), 237
sea_signif() (in module spacepy.seapy), 240
seadict() (in module spacepy.seapy), 239
sec2hms() (in module spacepy.time), 258
set() (spacepy.pycdf.VarCopy method), 215
set_backward() (spacepy.pycdf.Library method),

211
set_lgrid() (spacepy.radbelt.RBmodel method), 234
set_style() (spacepy.pybats.bats.Stream method),

171
set_target() (in module spacepy.plot), 144
set_target() (in module spacepy.plot.utils), 158
setUnits() (spacepy.ae9ap9.Ae9Data method), 68
setup_ticks() (spacepy.radbelt.RBmodel method),

234
shape (spacepy.pycdf.Var attribute), 201
shared_ylabel() (in module spacepy.plot), 145
shared_ylabel() (in module spacepy.plot.utils), 158
show_used() (in module spacepy.plot.utils), 159
slice() (spacepy.pycdf.istp.VarBundle method), 222
smartTimeTicks() (in module spacepy.plot.utils),

161
solarRotationPlot() (in module spacepy.plot),

146
sort() (spacepy.time.Ticktock method), 255
SpaceData (class in spacepy.datamodel), 95
spacepy

module, 1, 14, 65
spacepy.ae9ap9

module, 67
spacepy.coordinates

module, 69
spacepy.data_assimilation

module, 109
spacepy.datamanager

module, 76
spacepy.datamodel

module, 93
spacepy.empiricals

module, 113
spacepy.irbempy

module, 120
spacepy.LANLstar

module, 130
spacepy.omni

Index 297

SpacePy Documentation, Release 0.2.2

module, 134
spacepy.plot

module, 137
spacepy.plot.carrington

module, 149
spacepy.plot.colourmaps

module, 149
spacepy.plot.spectrogram

module, 149
spacepy.plot.utils

module, 149
spacepy.poppy

module, 163
spacepy.pybats

module, 168
spacepy.pybats.bats

module, 170
spacepy.pybats.dgcpm

module, 173
spacepy.pybats.dipole

module, 173
spacepy.pybats.gitm

module, 173
spacepy.pybats.kyoto

module, 173
spacepy.pybats.pwom

module, 174
spacepy.pybats.ram

module, 174
spacepy.pybats.rim

module, 174
spacepy.pybats.trace2d

module, 176
spacepy.pycdf

module, 181
spacepy.pycdf.const

module, 217
spacepy.pycdf.istp

module, 217
spacepy.radbelt

module, 230
spacepy.seapy

module, 235
spacepy.time

module, 241
spacepy.toolbox

module, 259
Spectrogram() (in module spacepy.plot), 146
sph2car() (in module spacepy.irbempy), 128
Stream (class in spacepy.pybats.bats), 171
style() (in module spacepy.plot), 147
sum() (spacepy.pycdf.istp.VarBundle method), 223
supports_int8 (spacepy.pycdf.Library attribute),

211

swap() (spacepy.poppy.PPro method), 166

T
tCommon() (in module spacepy.toolbox), 266
tex_label() (in module spacepy.pybats.rim), 175
thread_job() (in module spacepy.toolbox), 283
thread_map() (in module spacepy.toolbox), 284
tickrange() (in module spacepy.time), 258
Ticktock (class in spacepy.time), 243
time_monoton() (spacepy.pycdf.istp.FileChecks

class method), 219
timeout_check_call() (in module

spacepy.toolbox), 288
TimeoutError, 289
times() (spacepy.pycdf.istp.FileChecks class method),

219
timestamp() (in module spacepy.plot), 147
timestamp() (in module spacepy.plot.utils), 161
toCDF() (in module spacepy.datamodel), 103
today() (spacepy.time.Ticktock class method), 255
toHDF5() (in module spacepy.datamodel), 103
toHTML() (in module spacepy.datamodel), 104
toJSONheadedASCII() (in module

spacepy.datamodel), 104
toRecArray() (in module spacepy.datamodel), 105
tOverlap() (in module spacepy.toolbox), 267
tOverlapHalf() (in module spacepy.toolbox), 267
trace() (spacepy.pybats.bats.Stream method), 172
tree() (spacepy.datamodel.SpaceData method), 96
treetrace() (spacepy.pybats.bats.Stream method),

171
tt2000_to_datetime() (spacepy.pycdf.Library

method), 211
tt2000_to_epoch() (spacepy.pycdf.Library

method), 212
tt2000_to_epoch16() (spacepy.pycdf.Library

method), 212
type() (spacepy.pycdf.Attr method), 206
type() (spacepy.pycdf.Var method), 201
type() (spacepy.pycdf.VarCopy method), 215

U
unflatten() (in module spacepy.datamodel), 106
update() (in module spacepy.toolbox), 289
update_items() (spacepy.time.Ticktock method),

255

V
v_datetime_to_epoch() (spacepy.pycdf.Library

method), 213
v_datetime_to_epoch16()

(spacepy.pycdf.Library method), 213
v_datetime_to_tt2000() (spacepy.pycdf.Library

method), 213

298 Index

SpacePy Documentation, Release 0.2.2

v_epoch16_to_datetime()
(spacepy.pycdf.Library method), 213

v_epoch16_to_tt2000() (spacepy.pycdf.Library
method), 213

v_epoch_to_datetime() (spacepy.pycdf.Library
method), 213

v_epoch_to_tt2000() (spacepy.pycdf.Library
method), 213

v_tt2000_to_datetime() (spacepy.pycdf.Library
method), 213

v_tt2000_to_epoch() (spacepy.pycdf.Library
method), 213

v_tt2000_to_epoch16() (spacepy.pycdf.Library
method), 213

validdisplaytype()
(spacepy.pycdf.istp.VariableChecks class
method), 227

validrange() (spacepy.pycdf.istp.VariableChecks
class method), 227

validscale() (spacepy.pycdf.istp.VariableChecks
class method), 227

value_percentile() (in module spacepy.poppy),
168

values_to_steps() (in module
spacepy.datamanager), 92

vampolaPA() (in module spacepy.empiricals), 119
Var (class in spacepy.pycdf), 196
var_num() (spacepy.pycdf.CDF method), 195
VarBundle (class in spacepy.pycdf.istp), 219
VarCopy (class in spacepy.pycdf), 214
VariableChecks (class in spacepy.pycdf.istp), 224
variables() (spacepy.pycdf.istp.VarBundle method),

224
version (spacepy.pycdf.Library attribute), 213
version() (spacepy.pycdf.CDF method), 195
VirtSat (class in spacepy.pybats.bats), 173

W
windowMean() (in module spacepy.toolbox), 281
writeJSONMetadata() (in module

spacepy.datamodel), 108

Z
zAttr (class in spacepy.pycdf), 202
zAttrList (class in spacepy.pycdf), 202

Index 299

	Getting Started
	SpacePy Documents
	Developer Guide
	SpacePy Module Reference
	Python Module Index
	Index

