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1 Introduction

Spatial interaction modeling involves the analysis of flows from an origin to a destination, either
over physical space (i.e., migration) or through abstract space (i.e., telecommunication). Despite
being a fundamental technique to many geographic disciplines, there is relatively little software
available to carry out spatial interaction modeling and the analysis of flow data, especially in the
realm of free and open source software. Therefore, the purpose of this primer is to provide an
overview of the recently developed spatial interaction modeling (SpInt) module1 of the python
spatial analysis library (PySAL)2. First, the current framework of the module will be highlighted.
Next, the main functionality of the module will be illustrated using migration flows with a dataset
previously used for spatial interaction modeling tutorials in the R programming environment
(Dennett, 2012). Finally, some future additions are discussed.

2 The SpInt framework

2.1 Modeling framework

The core purpose of the SpInt module is to provide the functionality to calibrate spatial interaction
models. Since the “family” of spatial interaction models put forth by Wilson (Wilson, 1971) are
perhaps the most popular, they were chosen as the starting point of the module. Consider the
basic gravity model (Fotheringham and O’Kelly, 1989),

Tij = k
V µ
i W

α
j

dβij
(1)

where

• Tij = an n ×m matrix of flows between n origins (subscripted by i) to m destinations (sub-
scripted by j)
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1This primer is based on the 1.12.1 release of PySAL. For up-to-date code examples and namespaces, it is recom-
mended to consult the documentation pertaining to the latest version of PySAL

2http://pysal.github.io/
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• V = an n× p and vector of p origin attributes describing the emissiveness of i

• W = an m× p vector of p destination attributes describing the attractiveness of j

• d = an n×mmatrix of the costs to overcome the physical separation between i and j (usually
distance or time)

• k = a scaling factor to be estimated to ensure the total observed and predicted flows are
consistent

• µ = a p× 1 vector of parameters representing the effect of p origin attributes on flows

• α = a p× 1 vector of parameters representing the effect of p destination attributes on flows

• β = a parameter representing the effect of movement costs on flows.

When data for T , V , W , and d are available we can estimate the model parameters (also called
calibration), which summarize the effect that each model component contributes towards explain-
ing the system of known flows (T ). In contrast, known parameters can be used to predict unknown
flows when there are deviations in model components (V , W , and d) or the set of locations in the
system are altered.

Using an entropy-maximizing framework, Wilson derives a more informative and flexible
“family” of four spatial interaction models (Wilson, 1971). This framework seeks to assign flows
between a set of origins and destinations by finding the most probable configuration of flows out
of all possible configurations, without making any additional assumptions. By using a common
optimization problem and including information about the total inflows and outflows at each lo-
cation (also called constraints), the following “family” of models can be obtained,

Unconstrained

T ij = V µ
i W

α
j f(dij) (2)

Production− constrained

Tij = AiOiW
α
j f(dij) (3)

Ai =
∑
j

Wα
j f(dij) (3a)

Attraction− constrained

Tij = BjDjV
µ
i f(dij) (4)

Bj =
∑
i

V µ
i f(dij) (4a)

Doubly − constrained

Tij = AiBjOiDjf(dij) (5)

Ai =
∑
j

Wα
j BjDjf(dij) (5a)

Bj =
∑
i

V µ
i AiOif(dij) (5b)
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where

• Oi = an n× 1 vector of the total number of flows emanating from origin i

• Dj = an m× 1 vector of the total number of flows terminating at destination j

• Ai = an n × 1 vector of the origin balancing factors that ensures the total out-flows are pre-
served in the predicted flows

• Bj = an m × 1 vector of the destination balancing factors that ensures the total in-flows are
preserved in the predicted flows

• f(dij) = a function of cost or distance, referred to as the distance-decay function. Most com-
monly, this is an exponential or power function given by,

Power

f(dij) = dβij (6)

Exponential

f(dij) = exp(β ∗ dij) (7)

where β is expected to take a negative value. Different distance-decay functions assume different
responses to the increasing costs associated with moving to more distant locations. Of note is that
the unconstrained model with a power function distance-decay is equivalent to the basic gravity
model in equation (2), except that the scaling factor, k, is not included. In fact, there is no scaling
factor in any of the members of the family of maximum entropy models because there is a total
trip constraint implied in their derivation and subsequently their calibration (Fotheringham and
O’Kelly, 1989). Another aside is that in the doubly-constrained maximum entropy model, the
values for Ai and Bj are dependent upon each other and may need to be computed iteratively
depending on calibration technique. It is also usually assumed that all locations are both origins
and destinations (i.e., n = m) for doubly-constrained models.

Each member of the family of models provides a different system structure, which can be
chosen depending on the available data or the specific research question at hand. The so-called
unconstrained model does not conserve the total inflows or outflows during parameter estima-
tion. The production-constrained and attraction-constrained models conserve either the number
of total inflows or outflows, respectively, and are therefore useful for building models that allocate
flows either to a set of origins or to a set of destinations. Finally, the doubly-constrained model
conserves both the inflows and the outflows at each location during model calibration. The quan-
tity of explanatory information provided by each model is given by the number of parameters it
provides. As such, the unconstrained model provides the most information, followed by the two
singly-constrained models, with the doubly-constrained model providing the least information.
Conversely, the model’s predictive power increases with higher quantities of built-in information
(i.e. total in or out-flows) so that the doubly-constrained model usually provides the most accu-
rate predictions, followed by the two singly-constrained models, and the unconstrained model
supplying the weakest predictions (Fotheringham and O’Kelly, 1989).

2.2 Calibration framework

Spatial interaction models are often calibrated via linear programming, nonlinear optimization,
or, increasingly more often, through linear regression. Given the flexibility and extendability of a
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regression framework it was chosen as the primary model calibration technique within the SpInt
module. By taking the natural logarithm of both sides of a spatial interaction model, say the basic
gravity model, is is possible to obtain the so-called log-linear or log-normal spatial interaction
model,

Power − function

lnTij = k + µ lnVi + α lnWj − β ln dij + ε (8a)

Exponential − function

lnTij = k + µ lnVi + α lnWj − βdij + ε (8b)

where ε is a a normally distributed error term with a mean of 0. The only difference between
equations (8a) and (8b) is the functional distance-decay specification, which results from plugging
either equation (6) for a power function or (7) for an exponential function into equation (2) before
linearizing it. The only practical difference here is that the distance is logged in equation (8a)
whereas in equation (8b) it is not. Constrained spatial interaction models can be achieved by
including fixed effects for the origins (production-constrained), fixed effects for the destinations
(attraction-constrained) or both (doubly-constrained). However, there are several limitations of
the log-normal gravity model, which include,

1. flows are often counts of people or objects and should be modeled as discrete entities;
2. flows are often not normally distributed;
3. downward biased flow predictions due to producing estimates for the logarithm of flows

instead of actual flows;
4. zero flows are problematic since the logarithm of zero is undefined.

Therefore, the Poisson log-linear regression specification for the family of spatial interaction
models was proposed (Flowerdew and Aitkin, 1982; Flowerdew and Lovett, 1988). This specifica-
tion assumes that the number of flows between i and j is drawn from a Poisson distribution with
mean, λij = Tij , where λij is assumed to be logarithmically linked to the linear combination of
variables,

lnλij = k + µ lnVi + α lnWj − β ln dij) (9a)

and exponentiating both sides of the equation yields the unconstrained Poisson log-linear gravity
model,

Tij = exp(k + µ lnVi + α lnWj − β ln dij) (9b)

where equations (9a) and (9b) refer to the unconstrained model with a power function distance-
decay. As previously mentioned, using fixed effects for the balancing factors in equations (3-5),
the constrained variants of the family of spatial interaction models can be specified as,
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Production− constrained

Tij = exp(k + µi + α lnWj − β ln dij) (10)

Attraction− constrained

Tij = exp(k + µ lnVi + αj − β ln dij) (11)

Doubly − constrained

Tij = exp(k + µi + αj − β ln dij) (12)

where µi are origin fixed effects and αi are destination fixed effects that achieve the same results
as including balancing factors (Tiefelsdorf and Boots, 1995). Notice that k is the estimated inter-
cept and must be included in these log-linear models (equation 8-12) to ensure the total number
of flows is conserved, despite not being included in the maximum entropy models where such
conservation is implied. Similar to equation (8b), the exponential function distance-decay can
be specified in equation (9b, 10-12) by omitting the logarithm associated with dij . Using Pois-
son regression is more representative of flows and satisfies limitations (1-2) and it also alleviates
limitations (3-4) since we no longer need to take the logarithm of Tij . Using fixed effects within
Poisson regression to calibrate the doubly-constrained model also avoids the need for iterative
computation of the balancing factors that exists in other calibration methods (Fotheringham and
O’Kelly, 1989).

Calibration of Poisson regression can be carried out within a generalized linear modeling
framework (GLM) using iteratively weighted least squares (IWSL), which converges to the maxi-
mum likelihood estimates for the parameter estimates (Nelder and Wedderburn, 1972). To main-
tain computational efficiency with increasingly larger spatial interaction datasets, SpInt is built
upon a custom GLM/IWLS routine that leverages sparse data structures for the production-
constrained, attraction-constrained, and doubly-constrained models. As the number of locations
in these models increases, so the does the number of binary indicator variables needed to construct
the fixed effects that enforce the constraints. Therefore, larger spatial interaction datasets become
increasingly sparse and the utilization of sparse data structures takes advantage of this feature. As
a metric, constrained models with n = m = 3, 000 locations, which implies n∗m = n2 = 9, 000, 000
observed flows when each location is an origin and destination, can be calibrated within minutes
on a standard macbook pro notebook.

2.3 Model fit statistics

In order to evaluate the fit of spatial interaction models, it has been recommended that a variety
of statistics be used (Knudsen and Fotheringham, 1986), which is the approach taken in SpInt. For
the log-normal regression specification, it is popular to utilize the coefficient of determination (R2),
though this statistic is not available within the GLM framework used by SpInt. In replacement
of the R2 statistic, the SpInt framework provides a pseudo R2 based on the likelihood function
(McFadden, 1974),

R2
pseudo = 1 −

ln L̂(Mfull)

ln L̂(MIntercept)
(13)

where L̂ is the likelihood of an estimated model, Mfull is the model including all explanatory
variables of interest, and MIntercept is the model with only an intercept (i.e., no covariates). Like
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the R2 statistic, the pseudo version is at a maximum at a value of 1 with higher values denoting
better model fit. To account for model complexity, there is also an adjusted version of this statistic,

R2
adj−pseudo = 1 −

ln L̂(Mfull) −K

ln L̂(MIntercept)
(14)

where K is the number of regressors. If model fit does not sufficiently improve, then it is possible
for this measure to decrease as variables are added, signaling that the additional variables do not
contribute towards a better model fit. Henceforth, these pseudo R2 statistics are referred to solely
as R2 and adjusted R2. Another model fit statistic available in the SpInt module that also accounts
for model complexity is the the Akaike information criterion (AIC),

AIC = −2 ln L̂(Mfull) + 2K (15)

where lower AIC values indicate a better model fit (Akaike, 1974). This statistic is grounded in
information theory, whereby the AIC is an asymptotic estimate of the information that is lost by
using the full model to represent a given theoretical process.

The R2 and AIC are designed for model selection, which means they should not be used to
compare between different spatial systems. One solution to this issue is the standardized root
mean square error (SRMSE),

SRMSE =

√∑
i

∑
j(Tij−T̂ij)2

n∗m∑
i

∑
j Tij

n∗m

(16)

where the numerator is the root mean square error of the observed flows, Tij , and the flows pre-
dicted by the model, T̂ij , and the denominator is the mean of the observed flows and is responsible
for standardization of the statistic. Here, n ∗m is the number of origin-destination pairs that con-
stitute the system of flows. A SRMSE value of 0 indicates perfect model fit, while higher values
indicate decreasing model fit; however, the upper limit of the statistic is not necessarily 1 and will
depend on the distribution of the observed values (Knudsen and Fotheringham, 1986).

One final fit statistic, a modified Sorensen similarity index (SSI), is included within the SpInt
module because it has become increasingly popular in some spatial interaction literature that deals
with non-parametric models (Lenormand et al., 2012; Masucci et al., 2012; Yan et al., 2013). Using
the same symbol definition from the SRMSE, the SSI is defined as,

SSI =
1

(n ∗m)

∑
i

∑
j

2min(Tij , T̂ij)

Tij + T̂ij
(17)

which is bounded between values of 0 and 1 with values closer to 1 indicating a better model fit.

3 An illustrative example: migration in Austria

3.1 The data

Despite being a small toy dataset, the following example is utilized for consistency since it was pre-
viously used to demonstrate spatial interaction modeling in the R programming language (Den-
nett, 2012). The data are migration flows between Austrian NUTS level 2 municipalities in 2006.
In order to use a regression-based calibration, the data has to be transformed from the matrices
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and vectors described in equations (1-5) to a table where each row represents a single origin-
destination dyad, (i, j) and any variables associated with locations i and j. Details on how to
do this are outlined further in (LeSage and Pace, 2008), though this has already been done in the
example data. Let’s have a look!

In [19]: import pandas as pd
import geopandas as gp
%pylab inline
austria_shp = gp.read_file('austria.shp')
austria_shp.plot()
austria = pd.read_csv('austria.csv')
austria.head()

Populating the interactive namespace from numpy and matplotlib

Out[19]: Unnamed: 0 Origin Destination Data Oi Dj Dij
0 0 AT11 AT11 0 4016 5146 1.000000e-300
1 1 AT11 AT12 1131 4016 25741 1.030018e+02
2 2 AT11 AT13 1887 4016 26980 8.420467e+01
3 3 AT11 AT21 69 4016 4117 2.208119e+02
4 4 AT11 AT22 738 4016 8634 1.320075e+02

The Origin and Destination columns refer to the labels for origin locations, i, and the labels
for destination locations, j, the Data column is the number of flows between i and j, the Oi and
Dj columns are the number of total out-flows at i and total in-flows at j, respectively, and the Dij
column is the Euclidian distance between the centroids of i and j. In this case we use the total
out-flow and total in-flow as variables to describe how emissive an origin is and how attractive
a destination is. If we want a more informative and interesting model we can replace these with
application specific variables that pertain to different hypotheses. Next, lets format the data into
arrays.

In [4]: austria = austria[austria['Origin'] != austria['Destination']]
flows = austria['Data'].values
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Oi = austria['Oi'].values
Dj = austria['Dj'].values
Dij = austria['Dij'].values
Origin = austria['Origin'].values
Destination = austria['Destination'].values

The Oi and Dj vectors need not be n2×1 arrays. In fact, they can be n2×k where k is the number
of variables that are being used to describe either origin or destination attributes associated with
flows. It should also be noted that intra-zonal flows have been excluded (the first line of code
above). This is sometimes done because intra-zonal flows are large compared to inter-zonal flows
and would therefore heavily influence the model or because it is not possible to adequately define
a distance associated with intra-zonal flows. Some solutions to these issues have been proposed
(Kordi et al., 2012; Tsutsumi and Tamesue, 2011), though for simplicity, intra-zonal were removed
for this example.

3.2 Calibrating the models

Now, lets load the main SpInt functionality and calibrate some models. The “family” of spatial
interaction models are found within the gravity namespace of the SpInt module and the estimated
parameters can be accessed via the params attribute of a successfully instantiated spatial interac-
tion model.

In [5]: from pysal.contrib.spint.gravity import Gravity
from pysal.contrib.spint.gravity import Production
from pysal.contrib.spint.gravity import Attraction
from pysal.contrib.spint.gravity import Doubly

Unconstrained (basic gravity) model

In [6]: gravity = Gravity(flows, Oi, Dj, Dij, 'exp')
print gravity.params

[ -8.01822841e+00 8.69316127e-01 8.91445153e-01 -6.22938370e-03]

Production-constrained model

In [7]: production = Production(flows, Origin, Dj, Dij, 'exp')
print production.params[-2:]

[ 0.90285448 -0.0072617 ]

Attraction-constrained model

In [8]: attraction = Attraction(flows, Destination, Oi, Dij, 'exp')
print attraction.params[-2:]

[ 0.90037216 -0.00695034]
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Doubly-constrained model

In [9]: doubly = Doubly(flows, Origin, Destination, Dij, 'exp')
print doubly.params[-1:]

[-0.00791533]

Note that for the above examples the print statement for the constrained models params attribute
is limited to print only the main model variables (i.e., not fixed effects), though it is still possible
to access the fixed effect parameters too.

In [10]: print production.params

[-1.16851884 1.68980685 2.15135947 0.59917703 0.88336198 1.20669895
0.68945769 1.15434225 1.01013674 0.90285448 -0.0072617 ]

The first parameter is always the overall intercept with the subsequent 8 parameters repre-
senting the fixed effects in this case. You might ask, “why not 9 fixed effects for the 9 different
municipalities?”. Due to the coding scheme used in SpInt, and many popular statistical program-
ming languages, you would use n − 1 binary indicator variables in the design matrix to include
the fixed effects for all 9 municipalities in the model. While the non-zero entries in these columns
of the design matrix indicate which rows are associated with which municipality, where a row has
all zero entries then implicitly refers to the nth municipality that has been left out. In Spint, this
is always the first origin or destination for the production-constrained and attraction-constrained
models. For the doubly-constrained model, both the first origin and the first destination are left
out (Tiefelsdorf and Boots, 1995). In terms of interpreting the parameters, these dropped locations
are assumed to be 0.

You can also access typical model diagnostics, such as standard errors (std_err), t-values
(tvalues), p-values (pvalues), and confidence intervals (cont_int).

3.3 Interpreting the parameters

First, it will be demonstrated how to interpret the coefficients associated with the main model
variables from a general Poisson regression. However, because the spatial interaction model is
a log-linear Poisson regression (i.e., we take the log of the explanatory variables) the same inter-
pretation often cannot be applied because we are working in logarithmic space. Therefore, it will
also be demonstrated how to interpret the parameters when they are associated with a logged
explanatory variable.

Recall from the previous section that the exponential distance-decay specification results in a
model that does not take the logarithm of dij . Therefore, we can use an unconstrained gravity
model with an exponential distance-decay specification to demonstrate a typical interpretation of
coefficients from a Poisson regression.

In [11]: gravity = Gravity(flows, Oi, Dj, Dij, 'exp')
print gravity.params

[ -8.01822841e+00 8.69316127e-01 8.91445153e-01 -6.22938370e-03]
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-6.22938370e-03 is the coefficient for the distance variable in the above example. In Poisson re-
gression, the coefficients are typically interpreted as the proportionate change in the predicted
response, here Tij , if we increase an explanatory variable by 1 unit (Cameron and Trivedi, 2013).
Technically, this is expressed as,

T̃ij = Tij ∗ exp(β) (18)

where T̃ij is the new value of Tij and β is a coefficient, here the one typically associated with
distance in a Poisson log-linear spatial interaction model with an exponential function distance-
decay. For this example, this means from a 1 unit increase in distance, holding all other factors
constant, if our model predicted 2,500 flows, then we can expect the number of flows to decrease
to approximately 2,484.475. We can also identify the percent change expected from a one unit
increase in distance using,

∆% = (1 − exp(β)) ∗ 100.0 (19)

which serves as an alternative interpretation of β. In this case, we could say that from a 1 unit
increase in distance we could expect the number of predicted flows to decrease by approximately
0.621%.

However, neither equation (19) or (20) is applicable when the coefficient is associated with a
logged explanatory variable. This is important for Poisson log-linear spatial interaction models
because this applies to the origin and destination variables when using an exponential function
of distance-decay and to the origin, destination, and distance variables when using a power func-
tion of distance-decay. In these cases, the interpretation of the coefficients becomes the percent
change in the predicted response, here Tij , if we increase the associated explanatory variable by
1% (Cameron and Trivedi, 2013). For example, 8.91445153e-01 is the coefficient associated with
destination total in-flows (i.e., attractiveness) in the above example. Then if we increase the in-
flows to location j by 1%, say from 25, 000 to 25, 250, and holding all other factors constant, we
can expect the number of flows from i to j (i.e., Tij) to increase from 2, 000 to 2, 020.3

Finally, the fixed effects in the constrained models can be interpreted such that the mean pre-
dicted flows, Tij , are eµi (eαj ) times larger if they originate (terminate) from location i (location j)
(Cameron and Trivedi, 2013), where eµi is equivalent notation for exp(µi).

3.4 Assessing model fit

We can compare the different model fit statistics across the four types of spatial interaction models
for this example. Let’s process the statistics into a tidy table and have a look.

In [12]: R2, adjR2, SSI, SRMSE, AIC = [], [], [], [], []
model_name = ['grav', 'prod', 'att', 'doub']
col_names = ['R2', 'adjR2', 'AIC', 'SRMSE', 'SSI']
models = [gravity, production, attraction, doubly]

3This example is only illustrative. Of course, if we increased the total in-flows, this would imply that we are also
increasing the total out-flows from somewhere else and therefore the system could not truly be held constant. How-
ever, substantive modeling calls for origin and destination variables that are not derived from the interaction matrix.
Therefore, this is not an issue in practice when there is the assumption of independence between flows. It should also
be noted that it has been hypothesized that flows may not be independent and therefore more accurate estimates can
be obtained using more advanced methods (LeSage and Pace, 2008; Chun, 2008).
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for model in models:
R2.append(model.pseudoR2)
adjR2.append(model.adj_pseudoR2)
SSI.append(model.SSI)
SRMSE.append(model.SRMSE)
AIC.append(model.AIC)

cols = {'model_name': model_name,
'R2': R2,
'adjR2': adjR2,
'SSI': SSI,
'SRMSE': SRMSE,
'AIC': AIC }

data = pd.DataFrame(cols).set_index('model_name')
data[col_names]

Out[12]: R2 adjR2 AIC SRMSE SSI
model_name
grav 0.885764 0.885718 20122.074349 0.607776 0.727358
prod 0.910156 0.910031 15841.253799 0.464520 0.740914
att 0.909355 0.909230 15982.313101 0.584048 0.752155
doub 0.943540 0.943335 9977.159141 0.379286 0.811852

From this table we can see that all of the fit statistics indicate a better model fit as constraints
are introduced. That is, the weakest model fit is consistently related to the gravity model, with
similarly increased model fit for the production-constrained and attraction-constrained models,
and finally, the best model fit is associated with the doubly constrained model. We can also see
that the R2 and adjusted R2 are very close, since these models have a very similar number of
explanatory variables, thereby resulting in little or no penalization for model complexity.

We can also take a look at whether the power or exponential distance-decay specification re-
sults in a better model fit. For simplicity, lets just take a look at the SRMSE for a doubly constrained
model.

In [13]: print 'SRMSE for exp distance-decay: ', doubly.SRMSE
pow_doubly = Doubly(flows, Origin, Destination, Dij, 'pow')
print 'SRMSE for exp distance-decay: ', pow_doubly.SRMSE

SRMSE for exp distance-decay: 0.37928618533
SRMSE for exp distance-decay: 0.277703139642

For this example, it looks like the power distance-decay specification results in a better model fit.

3.5 Local models

The SpInt module also makes it possible to calibrate “local” models, which subset the data by
specific origins or destinations in order o investigate how spatial interaction processes vary over
space (Fotheringham and Brunsdon, 1999). Below is an example of how to get local parameters
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and local diagnostics for a gravity model subset by its origins. The result is a dictionary of lists
where the keys are the different sets of local values including parameters, hypothesis testing di-
agnostics, and the previously reviewed fit statistics.

In [14]: gravity = Gravity(flows, Oi, Dj, Dij, 'pow')
local_gravity = gravity.local(Origin, np.unique(Origin))

Lets take a look at the local distance-decay parameters. The origin, destination and distance-
decay parameters are indexed sequentially through the design matrix starting with 0 as you move
through the origin attributes, through to the destination attributes, and finally the distance-decay
attribute. Therefore, for n variables, the distance-decay parameters are always the n− 1th param-
eter, in this case of 3 variables: param2.

In [15]: print np.round(local_gravity['param2'], 4)

[-3.4028 -1.3583 -0.8307 -1.1492 -0.4781 -1.0095 -1.6758 -1.2156 -1.5397]

We can also take a look at the local R2.

In [16]: print np.round(local_gravity['pseudoR2'], 4)

[ 0.9665 0.9894 0.9893 0.5205 0.676 0.7298 0.6333 0.432 0.515 ]

Both the local distance-decay and the R2 show some variation. We can explore this spatially, by
mapping the local values. First, lets join the local values to a shapefile and then plot the local
distance-decay parameters

In [17]: #Join local values to census tracts
local_vals = pd.DataFrame({'betas': local_gravity['param2'],

'Dest':np.unique(Origin),
'pseudoR2': local_gravity['pseudoR2']})

local_vals = pd.merge(local_vals, austria_shp[['NUTS_ID', 'geometry']],
left_on='Dest', right_on='NUTS_ID')

local_vals = gp.GeoDataFrame(local_vals)

#Plot betas - use inverse so the most negative values are "higher"
fig = plt.figure()
ax = fig.add_subplot(111)
local_vals['inv_betas'] = (local_vals['betas']*-1)
local_vals.plot('inv_betas', cmap='Blues', ax=ax)

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x115da9fd0>
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Next, lets map the local R2 values. Above we can see a much stronger distance-decay for the
most westerly municipality. Below we can see that the model fit is stronger in the north-west and
decreases in the south-east. Using these patterns, we could then further postulate why they arise
or how we might be able to improve model fit.

In [18]: fig = plt.figure()
ax = fig.add_subplot(111)
local_vals.plot('pseudoR2', cmap='Greens', ax=ax)

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x116f3b9d0>
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Further functionality

In addition to all of the features presented here, there are several other tools that exist in SpInt or
could be added. First, there are dispersion tests available in the dispersion namespace of the SpInt
module, which can be used to test whether or not the Poisson equidispersion assumption is met.
That is, that the conditional mean and variance are equivalent, which can be unrealistic in many
scenarios. If these tests indicate overdispersion or underdispersion, then it might be appropriate
to use a Quasi-Poisson model, which relaxes the equidispersion assumption of the Poisson model.
The resulting parameter estimates are equivalent to the Poisson model, but the standard errors are
typically larger whenever equidispersion does not hold (Wedderburn, 1974). The Quasi-Poisson
model specification can be carried out by setting Quasi=True in any of the spatial interaction
models introduced here. Alternatively, it might be more appropriate to change the underlying
probability model from Poisson to that of negative binomial or a zero-inflated model. However,
this has not yet been implemented in SpInt and therefore remains as future work.

Another area of potential expansion is to accommodate several paradigms for incorporating
spatial effects into spatial interaction models, such as competing destinations (Fotheringham,
1983), a spatial lag autoregressive model (LeSage and Pace, 2008), or an eigenvector spatial fil-
ter model (Chun, 2008). These paradigms require code that computes additional variables, more
complex calibration techniques, and specialized representations of spatial relationships. Some so-
lutions to the latter are available in the spintW namespace of the weights module of PySAL. While
there is still much work to be done to develop a more robust set of open source spatial interaction
modeling tools, SpInt provides a starting point for which to build upon.
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