OpenimagelO 2.0

Programmer Documentation

Editor: Larry Gritz
lg @openimageio.org

Date: 1 Dec 2018

ii

The OpenlmagelO source code and documentation are:

Copyright (c) 2008-2018 Larry Gritz, et al. All Rights Reserved.

The code that implements OpenlmagelO is licensed under the BSD 3-clause (also some-
times known as “new BSD” or “modified BSD”) license:

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

e Neither the name of the software’s owners nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This manual and other text documentation about OpenlmagelO are licensed under the Cre-
ative Commons Attribution 3.0 Unported License.

—G)
http://creativecommons.org/licenses/by/3.0/

OpenlmagelO Programmer’s Documentation

iii

I kinda like “Oy-e-oh” with a bit of a groaning Yiddish accent, as in
“Oll0, did you really write yet another file I/0 library?”

Dan Wexler

OpenIlmagelO Programmer’s Documentation

iv

OpenlmagelO Programmer’s Documentation

Contents

(L_Introduction|

(1.2 Simplifying Assumptions| Lo
1.3 Historical Origins|
1.4 Acknowledgments|

T

The OpenlmagelO Library APIs|

2

Image I/O API Helper Classes|

[2.1 ~ Data Type Descriptions: TypeDesc|.o ...
[2.2 Non-owning string views: String_vIiew|« . .« o v v v ot ..
[2.3 Non-owning array views: span/cspan|
2.4 Efficient unique strings: ustring|
2.5 Helper: ROTI| e
[2.6 Image Specification: ImageSpec|
2.7 “Deep” pixel data: DeepDatal. L

ImageOutput: Writing Images|

3.1 Image Output Made Simplef.
3.2 Advanced Image Output|
3.3 ImageOutput Class Reference|

Imagelnput: Reading Images|

4.1 Image Input Made Stmple]
4.2 Advanced ImageInput| oL
4.3 ImageInput Class Reference|.

5 Writing ImageIO Plugins|

5.1 Plugin Introduction|
5.2 TImageReaders|
5.3 Image Writers| e e e
5.4 Tipsand Conventions|
[5.5 Building ImagelO Plugins|

B WO = -

12
13
14
15
17
24
26

31
31
33
51

59
59
60
72

vi CONTENTS
[6 Bundled ImageIO Plugins| 105
6.1 BMPI. . . . e e 105

6.9 HDR/RGBE

6.18 PNGl 116
etpbm| 117

6.20 PSD| 117
621 Ptex] 118
[6.22 RAW digital camerafiles| oo L. 118
623 RLAI. . . . 120
624 SGIl 121
[6.25 Softimage PIC|. 121
6.26) S 121
6.27 TIEH e 122
6.28 Webp| 127
6.20 Zfilel 127
7 Cached Images| 129
|7.1 Image Cache Introduction and Theory of Operation| 129
7.2 ImageCache API] 131
[8_ Texture Access: TextureSystem| 147
[8.1 Texture System Introduction and Theory of Operation|. 147
[8.2 Helper Classes| e 147
[8.3 TextureSystem Setup| 150
[8.4 Texture Lookups —singlepointf 155
[8.5 Batched Texture Lookups|. oL 160
[8.6 Texture Metadata and Raw Texels] 163
[8.7 Miscellaneous — Statistics, errors, flushing the cache|. 167

OpenlmagelO Programmer’s Documentation

CONTENTS vii
[0 Tmage Buffers| 171
9.1 ImageBuf Introduction and Theory of Operation|. 171
9.2 Constructing, reading, and writing an ImageBuf|. 171
9.3 Getting and setting basic information about an ImageBuf| 175
9.4 Copying ImageBuf’s and blocksof pixels| 178
[9.5 Getting and setting individual pixel values — simple butslow| 179
0.6 Miscellaneous| L 182
[9.7 Iterators — the fast way of accessing individual pixels| 183
9.8 Dealing with buffer datatypes| 186

(10 Image Processing| 189
[10.1 ImageBufAlgo common principles| 189
[10.2 Pattern generation| 192
[10.3 Image transformations and data movement|. 198
[10.4 Image arithmetic|, 206
[10.5 Image comparison and statistics| 214
[10.6 Convolutionsl 219
[10.7 Image Enhancement /Restoration| 222
[10.8 Color manipulation| 226
[10.9 Import/export] 230
[10.10Deep images|. 234

(11 Python Bindings| 239
..................................... 239
..................................... 239
113 ROIl . . . 242
[11.4 ImageSpec|. o e 244
11.5 DeepDatal 251
[11.6 Imagelnput] 253
[11.7 ImageOutput] e e 259

8 ceBuf] 263

[11.9 ImageBufAlgo| 273
[I1.10Miscellaneous Utilities| o 296
[IT.1TPython Recipes| 296

(II Image Utilities| 301
(12 oiiotool: the OIIO Swiss Army Knife 303
MZIOVEIVIEW .« « v v oot e e e e e 303
[12.2 oiiotool Tutorial /Recipes| oL 307
[12.3 oiiotool commands: general and image information|. 313
[12.4 oiiotool commands: reading and writing images|. 317
[12.5 oiiotool commands that change the current image metadatal. 323
|12.6 oiiotool commands that shuffle channels or subimages| 326
[12.7 oiiotool commands that adjust the image stack| 327

OpenlmagelO Programmer’s Documentation

viii CONTENTS

|12.8 oiiotool commands that make entirely new images|
[12.9 oiiotool commands that do image processing|
[12.1001iotool commands for color management|
[12.110iiotool commands for deep images|

(13 The iv Image Viewer|

(14 Getting Image information With iinfo|
[14.1 Using iinfol. o e
[14.2 iinfo command-lineoptions| oL

(15 Converting Image Formats With iconvert]|

[15.2 iconvert Recipes|
[15.3 iconvert command-lineoptions|.

(16 Searching Image Metadata With igrep|
[16.1 Using igrep|. e
|16.2 igrep command-lineoptions|. Lo

17 Comparing Images With idiff]

(III Appendices|

A" Building OpenlmagelO)|

[B__Metadata conventions|
[B.1 Descriptionof theimage|

IB.2 Display hints|
B.3 Colorinformation| L

IB.5 Substituting an IOPRoxy for custom [/O overnides|

[B.6 Photographs or scanned 1tmages|.

357

359
359
361

363
363
363
365

369
369
369

371
371
371
373

377
377
377
386

OpenlmagelO Programmer’s Documentation

CONTENTS ix

(B.12 Extension conventionsl e e e 411
413
Index| 415

OpenlmagelO Programmer’s Documentation

CONTENTS

OpenlmagelO Programmer’s Documentation

1 Introduction

Welcome to OpenimagelO!

1.1 Overview

OpenimagelO provides simple but powerful ImageInput and ImageOutput APIs that abstract
the reading and writing of 2D image file formats. They don’t support every possible way of
encoding images in memory, but for a reasonable and common set of desired functionality, they
provide an exceptionally easy way for an application using the APIs support a wide — and
extensible — selection of image formats without knowing the details of any of these formats.

Concrete instances of these APIs, each of which implements the ability to read and/or write
a different image file format, are stored as plugins (i.e., dynamic libraries, DLL’s, or DSO’s)
that are loaded at runtime. The OpenlmagelO distribution contains such plugins for several
popular formats. Any user may create conforming plugins that implement reading and writing
capabilities for other image formats, and any application that uses OpenimagelO would be able
to use those plugins.

The library also implements the helper class ImageBuf, which is a handy way to store and
manipulate images in memory. ImageBuf itself uses ImageInput and ImageOutput for its
file I/O, and therefore is also agnostic as to image file formats. A variety of functions in the
ImageBufAlgo namespace are available to perform common image processing operations on
ImageBuf’s.

The ImageCache class transparently manages a cache so that it can access truly vast amounts
of image data (thousands of image files totaling hundreds of GB to several TBs) very efficiently
using only a tiny amount (tens of megabytes to a few GB at most) of runtime memory. Addition-
ally, a TextureSystem class provides filtered MIP-map texture lookups, atop the nice caching
behavior of ImageCache.

Finally, the OpenlmagelO distribution contains several utility programs that operate on im-
ages, each of which is built atop this functionality, and therefore may read or write any image
file type for which an appropriate plugin is found at runtime. Paramount among these utilities
oiiotool, a command-line image processing engine, and iv, an image viewing application.
Additionally, there are programs for converting images among different formats, comparing
image data between two images, and examining image metadata.

All of this is released as “open source” software using the very permissive “New BSD”
license. So you should feel free to use any or all of OpenlmagelO in your own software, whether
it is private or public, open source or proprietary, free or commercial. You may also modify it on

2 CHAPTER 1. INTRODUCTION

your own. You are encouraged to contribute to the continued development of OpenimagelO and
to share any improvements that you make on your own, though you are by no means required
to do so.

1.2 Simplifying Assumptions

OpenlmagelO is not the only image library in the world. Certainly there are many fine libraries
that implement a single image format (including the excellent 1ibtiff, 1ibjpeg, and OpenEXR
that OpenlmagelO itself relies on). Many libraries attempt to present a uniform API for reading
and writing multiple image file formats. Most of these support a fixed set of image formats,
though a few of these also attempt to provide an extensible set by using the plugin approach.

But in our experience, these libraries are all flawed in one or more ways: (1) They either
support only a few formats, or many formats but with the majority of them somehow incomplete
or incorrect. (2) Their APIs are not sufficiently expressive as to handle all the image features
we need (such as tiled images, which is critical for our texture library). (3) Their APIs are too
complete, trying to handle every possible permutation of image format features, and as a result
are horribly complicated.

The third sin is the most severe, and is almost always the main problem at the end of the day.
Even among the many open source image libraries that rely on extensible plugins, we have not
found one that is both sufficiently flexible and has APIs anywhere near as simple to understand
and use as those of OpenimagelO.

Good design is usually a matter of deciding what not to do, and OpenimagelO is no ex-
ception. We achieve power and elegance only by making simplifying assumptions. Among
them:

e OpenlmagelO only deals with ordinary 2D images, and to a limited extent 3D volumes,
and image files that contain multiple (but finite) independent images within them. Open-
ImagelO’s support of “movie” files is limited to viewing them as a sequence of separate
frames within the file, but not as movies per se (for example, no support for dealing with
audio or synchronization).

e Pixel data are presented as 8- 16- or 32-bit int (signed or unsigned), 16- 32- or 64-bit
float. NOTHING ELSE. No < 8 bit images, or pixel value boundaries that aren’t byte
boundaries. Files with < 8 bits will appear to the client application as 8-bit unsigned
grayscale images.

e Only fully elaborated, non-compressed data are accepted and returned by the API. Com-
pression or special encodings are handled entirely within an OpenlimagelO plugin.

e Color space is by default converted to grayscale or RGB. Non-spectral color models,
such as XYZ, CMYK, or YUYV, are converted to RGB upon reading. (There is a way to
override this and ask for raw pixel values.)

o All color channels can be treated (by apps or readers/writers) as having the same data for-
mat (though there is a way to deal with per-channel formats for apps and readers/writers
that truly need it).

OpenlmagelO Programmer’s Documentation

1.3. HISTORICAL ORIGINS 3

e All image channels in a subimage are sampled at the same resolution. For file formats
that allow some channels to be subsampled, they will be automatically up-sampled to the
highest resolution channel in the subimage.

e Color information is always in the order R, G, B, and the alpha channel, if any, always
follows RGB, and Z channel (if any) always follows alpha. So if a file actually stores
ABGR, the plugin is expected to rearrange it as RGBA.

It’s important to remember that these restrictions apply to data passed through the APIs, not
to the files themselves. It’s perfectly fine to have an OpenlmagelO plugin that supports YUV
data, or 4 bits per channel, or any other exotic feature. You could even write a movie-reading
ImageInput (despite OpenlmagelO’s claims of not supporting movies) and make it look to
the client like it’s just a series of images within the file. It’s just that all the nonconforming
details are handled entirely within the OpenlmagelO plugin and are not exposed through the
main OpenlmagelO APIs.

1.3 Historical Origins

OpenimagelO is the evolution of concepts and tools I’ve been working on for two decades.

In the 1980’s, every program I wrote that output images would have a simple, custom format
and viewer. I soon graduated to using a standard image file format (TIFF) with my own library
implementation. Then I switched to Sam Leffler’s stable and complete 1ibtiff.

In the mid-to-late-1990’s, I worked at Pixar as one of the main implementors of PhotoRe-
alistic RenderMan, which had display drivers that consisted of an API for opening files and
outputting pixels, and a set of DSO/DLL plugins that each implement image output for each of
a dozen or so different file format. The plugins all responded to the same API, so the renderer
itself did not need to know how to the details of the image file formats, and users could (in
theory, but rarely in practice) extend the set of output image formats the renderer could use by
writing their own plugins.

This was the seed of a good idea, but PRMan’s display driver plugin API was abstruse and
hard to use. So when I started Exluna in 2000, Matt Pharr, Craig Kolb, and I designed a new
API for image output for our own renderer, Entropy. This API, called “ExDisplay,” was C++,
and much simpler, clearer, and easier to use than PRMan’s display drivers.

NVIDIA’s Gelato (circa 2002), whose early work was done by myself, Dan Wexler, Jonathan
Rice, and Eric Enderton, had an API called “ImagelO.” ImagelO was much more powerful and
descriptive than ExDisplay, and had an API for reading as well as writing images. Gelato was
not only “format agnostic™ for its image output, but also for its image input (textures, image
viewer, and other image utilities). We released the API specification and headers (though not
the library implementation) using the BSD open source license, firmly repudiating any notion
that the API should be specific to NVIDIA or Gelato.

For Gelato 3.0 (circa 2007), we refined ImagelO again (by this time, Philip Nemec was
also a major influence, in addition to Dan, Eric, and myseliﬂ). This revision was not a major
overhaul but more of a fine tuning. Our ideas were clearly approaching stability. But, alas, the

IGelato as a whole had many other contributors; those I've named here are the ones I recall contributing to the
design or implementation of the ImagelO APIs

OpenIlmagelO Programmer’s Documentation

4 CHAPTER 1. INTRODUCTION

Gelato project was canceled before Gelato 3.0 was released, and despite our prodding, NVIDIA
executives would not open source the full ImagelO code and related tools.

After I left NVIDIA, I was determined to recreate this work once again — and ONLY once
more — and release it as open source from the start. Thus, OpenlmagelO was born. I started with
the existing Gelato ImagelO specification and headers (which were BSD licensed all along), and
made further refinements since I had to rewrite the entire implementation from scratch anyway.
I think the additional changes are all improvements.

Over the years and with the help of dozens of open source contributors, OpenlmagelO has
expanded beyond the original simple image format input/output to encompass a wide range of
image-related functionality. It has grown into a foundational technology in many products and
tools, particularly for the production of animation and visual effects for motion pictures (but
also many other uses and fields). This is the software you have in your hands today.

1.4 Acknowledgments

OpenlmagelO incorporates, depends upon, or dynamically links against several other open
source packages, detailed below. These other packages are all distributed under licenses that al-
low them to be used by OpenlmagelO. Where not specifically noted, they are all using the same
BSD license that OpenlmagelO uses. Any omissions or inaccuracies in this list are inadvertent
and will be fixed if pointed out. The full original licenses can be found in the relevant parts of
the source code.

OpenimagelO incorporates, distributes, or contains derived works of:

e The SHA-1 implemenation we use is public domain by Dominik Reichl
http://www.dominik-reichl.de/

e Squish (©) 2006 Simon Brown, MIT license. http://sjbrown.co.uk/?code=squish

e PugiXML (© 2006-2009 by Arseny Kapoulkine (based on work (©) 2003 Kristen Weg-
ner), MIT license. http://pugixml.org/

e DPX reader/writer (©) 2009 Patrick A. Palmer, BSD 3-clause license.
https://github.com/patrickpalmer/dpx

e tinyformat.h (¢) 2011 Chris Foster, Boost license.
http://github.com/c42f/tinyformat

e lookup3 code by Bob Jenkins, Public Domain.
http://burtleburtle.net/bob/c/lookup3.c

e xxhash (©) 2014 Yann Collet, BSD 2-clause license.
https://github.com/Cyan4973/xxHash

e farmhash () 2014 Google, Inc., MIT license. https://github.com/google/farmhash

e KissFFT (© 2003-2010 Mark Borgerding, 3-clause BSD license.
https://github.com/mborgerding/kissfft

OpenlmagelO Programmer’s Documentation

http://www.dominik-reichl.de/
http://sjbrown.co.uk/?code=squish
http://pugixml.org/
https://github.com/patrickpalmer/dpx
http://github.com/c42f/tinyformat
http://burtleburtle.net/bob/c/lookup3.c
https://github.com/Cyan4973/xxHash
https://github.com/google/farmhash
https://github.com/mborgerding/kissfft

1.4. ACKNOWLEDGMENTS 5

e CTPL thread pool (©) 2014 Vitaliy Vitsentiy, Apache License.
https://github.com/vit-vit/CTPL

e Droid fonts from the Android SDK are distributed under the Apache license.
http://www.droidfonts.com

e function_ view.h contains code derived from LLVM, (©) 2003-2018 University of Illi-
nois at Urbana-Champaign. UIUC license (compatible with BSD)
llvm.org

e FindOpenVDB.cmake (©) 2015 Blender Foundation, BSD license.
e FindTBB.cmake (©) 2015 Justus Calvin, MIT license.

e fmt library (C) Victor Zverovich. BSD 2-clause license.
https://github.com/fmtlib/fmt

OpenimagelO Has the following build-time dependencies (using system installs, referencing as
git submodules, or downloading as part of the build), including link-time dependencies against
dynamic libraries:

e libtiff (©) 1988-1997 Sam Leffler and 1991-1997 Silicon Graphics, Inc.
http://www.remotesensing.orqg/libtiff

e 1JG libjpeg © 1991-1998, Thomas G. Lane. http://www.ijg.org

e OpenEXR, IImbase, and Half (©) 2006, Industrial Light & Magic.
http://www.openexr.com

e z1ib (© 1995-2005 Jean-loup Gailly and Mark Adler. http://www.z1lib.net
e libpng (©) 1998-2008 Glenn Randers-Pehrson, et al. http://www.libpng.org
e Boost (©) various authors. http://www.boost.org

e GLEW (©) 2002-2007 Milan IKits, et al. http://glew.sourceforge.net

e Jasper (©) 2001-2006 Michael David Adams, et al.
http://www.ece.uvic.ca/~mdadams/jasper/

e Ptex (©) 2009 Disney Enterprises, Inc. http://ptex.us
e Field3D (©) 2009 Sony Pictures Imageworks. http://sites.google.com/site/field3d/

e GIFLIB (© 1997 Eric S. Raymond (MIT Licensed). http://giflib.sourceforge.
net/

e LibRaw (¢) 2008-2013 LibRaw LLC (LGPL, CDDL, and LibRaw licenses).
http://www.libraw.org/

e FFmpeg () various authors and distributed under LGPL. https://www. ffmpeg.org

OpenIlmagelO Programmer’s Documentation

https://github.com/vit-vit/CTPL
http://www.droidfonts.com
llvm.org
https://github.com/fmtlib/fmt
http://www.remotesensing.org/libtiff
http://www.ijg.org
http://www.openexr.com
http://www.zlib.net
http://www.libpng.org
http://www.boost.org
http://glew.sourceforge.net
http://www.ece.uvic.ca/~mdadams/jasper/
http://ptex.us
http://sites.google.com/site/field3d/
http://giflib.sourceforge.net/
http://giflib.sourceforge.net/
http://www.libraw.org/
https://www.ffmpeg.org

CHAPTER 1. INTRODUCTION

FreeType (© 1996-2002, 2006 by David Turner, Robert Wilhelm, and Werner Lemberg.
Distributed under the FreeType license (BSD compatible).

JPEG-Turbo (© 2009-2015 D. R. Commander. Distributed under the BSD license.

pybindl1 (©) 2016 Wenzel Jakob. Distributed under the BSD license. https://github.
com/pybind/pybindll

OpenVDB (©) 2012-2018 DreamWorks Animation LLC, Mozilla Public License 2.0.

Thread Building Blocks () Intel. Apache 2.0 license.

OpenlmagelO Programmer’s Documentation

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

Part |

The OpenimagelO Library APIs

2 Image I/0O API Helper Classes

2.1 Data Type Descriptions: TypeDesc

There are two kinds of data that are important to OpenlmagelO:

e [nternal data is in the memory of the computer, used by an application program.

e Native file data is what is stored in an image file itself (i.e., on the “other side” of the
abstraction layer that OpenlmagelO provides).

Both internal and file data is stored in a particular data format that describes the numerical
encoding of the values. OpenlmagelO understands several types of data encodings, and there
is a special class, TypeDesc, that allows their enumeration and is described in the header file
OpenlImageIO/typedesc.h. A TypeDesc describes a base data format type, aggregation into
simple vector and matrix types, and an array length (if it’s an array).

The remainder of this section describes the C++ API for TypeDesc. See Section for
the corresponding Python bindings.

TypeDesc supports the following base data format types, given by the enumerated type

BASETYPE:
UINTS

INT8
UINT16

INT16

UINT

INT

UINT64

INT64

FLOAT

DOUBLE
HALF

8-bit integer values ranging from 0..255, corresponding to the C/C++
unsigned char.

8-bit integer values ranging from -128..127, corresponding to the C/C++ char.
16-bit integer values ranging from 0..65535, corresponding to the C/C++
unsigned short.

16-bit integer values ranging from -32768..32767, corresponding to the C/C++
short.

32-bit integer values, corresponding to the C/C++ unsigned int.

signed 32-bit integer values, corresponding to the C/C++ int.

64-bit integer values, corresponding to the C/C++ unsigned long long (on
most architectures).

signed 64-bit integer values, corresponding to the C/C++ long long (on most
architectures).

32-bit IEEE floating point values, corresponding to the C/C++ float.

64-bit IEEE floating point values, corresponding to the C/C++ double.

16-bit floating point values in the format supported by OpenEXR and OpenGL.

10 CHAPTER 2. IMAGE IO API HELPER CLASSES

A TypeDesc can be constructed using just this information, either as a single scalar value, or an
array of scalar values:

TypeDesc (BASETYPE btype)
TypeDesc (BASETYPE btype, int arraylength)

Construct a type description of a single scalar value of the given base type, or an array
of such scalars if an array length is supplied. For example, TypeDesc (UINT8) describes
an unsigned 8-bit integer, and TypeDesc (FLOAT, 7) describes an array of 7 32-bit float
values. Note also that a non-array TypeDesc may be implicitly constructed from just the
BASETYPE, so it’s okay to pass a BASETYPE to any function parameter that takes a full
TypeDesc.

In addition, TypeDesc supports certain aggregate types, described by the enumerated type
AGGREGATE:

SCALAR a single scalar value (such as araw int or float in C). This is the default.
VEC2 two values representing a 2D vector.

VEC3 three values representing a 3D vector.

VEC4 four values representing a 4D vector.

MATRIX33 nine values representing a 3 X 3 matrix.
MATRIX44 sixteen values representing a 4 x 4 matrix.

And optionally, a hint about the semantics of the data, described by the enumerated type
VECSEMANTICST]

NOSEMANTICS nothing special known.

COLOR indicates a vector that is intended to represent a “color,” not a spatial
quantity (and of course therefore does not undergo a transformation).

POINT indicates a vector that represents a spatial position and should be trans-
formed by a 4 x 4 matrix as if it had a 4th component of 1.

VECTOR indicates a vector that represents a spatial direction and should be
transformed by a 4 x 4 matrix as if it had a 4th component of 0.

NORMAL indicates a vector that represents a surface normal and should be trans-
formed like a vector, but using the inverse-transpose of a 4 x 4 matrix.

TIMECODE indicates an int [2] representing the standard 4-byte encoding of an
SMPTE timecode.

KEYCODE indicates an int [7] representing the standard 28-byte encoding of an
SMPTE keycode.

RATIONAL indicates an VEC2 representing a rational number val[0] / val[l].

These can be combined to fully describe a complex type:

!1t’s unfortunately called VECSEMANTICS because it used to be used strictly for 3-vectors. If we were to do it over
again, it would just be SEMANTICS.

OpenlmagelO Programmer’s Documentation

2.1. DATA TYPE DESCRIPTIONS: TYPEDESC 11

TypeDesc (BASETYPE btype, AGGREGATE agg=SCALAR, VECSEMANTICS xform=NOSEMANTICS)
TypeDesc (BASETYPE btype, int arraylen)

TypeDesc (BASETYPE btype, AGGREGATE agg, int arraylen)

TypeDesc (BASETYPE btype, AGGREGATE agg, VECSEMANTICS xform, int arraylen)

Construct a type description of an aggregate (or array of aggregates), with optional vector
transformation semantics. For example, TypeDesc (HALF, COLOR) describes an aggregate
of 3 16-bit floats comprising a color, and TypeDesc (FLOAT, VEC3,POINT) describes an
aggregate of 3 32-bit floats comprising a 3D position.

Note that aggregates and arrays are different. A TypeDesc (FLOAT, 3) is an array of three
floats, a TypeDesc (FLOAT, COLOR) is a single 3-channel color comprised of floats, and
TypeDesc (FLOAT, 3, COLOR) is an array of 3 color values, each of which is comprised of
3 floats.

TypeDesc (string view typestring)

Construct a type description based on a string. For example,

TypeDesc ("int") == TypeDesc (TypeDesc: :INT) // C++ int32_t
TypeDesc ("float") == TypeDesc (TypeDesc: :FLOAT) // C++ float
TypeDesc ("float[4]") == TypeDesc (TypeDesc::FLOAT, 4) // array
TypeDesc ("point") == TypeDesc (TypeDesc::FLOAT, TypeDesc::POINT)
TypeDesc ("uint16") == TypeDesc (TypeDesc::UINT16) // C++ uintlé6_t

A number of static constexpr TypeDesc aliases for common types exist in the outer
OpenImageIO scope:

TypeUnknown TypeFloat TypeColor TypePoint TypeVector TypeNormal
TypeMatrix33 TypeMatrix44 TypeMatrix TypeHalf

TypeInt TypeUInt TypeIntl6 TypeUIntl6 TypeInt8 TypeUInt8
TypeString TypeTimeCode TypeKeyCode TypeFloat4 TypeRational

The only types commonly used to store pixel values in image files are scalars of UINTS,
UINT16, FLOAT, and HALF (the last only used by OpenEXR, to the best of our knowledge).

Note that the TypeDesc (which is also used for applications other than images) can describe
many types not used by OpenlmagelO. Please ignore this extra complexity; only the above
simple types are understood by OpenimagelO as pixel storage data types, though a few others,
including STRING and MATRIX44 aggregates, are occasionally used for metadata for certain
image file formats (see Sections and the documentation of individual ImagelO
plugins for details).

OpenIlmagelO Programmer’s Documentation

12 CHAPTER 2. IMAGE IO API HELPER CLASSES

2.2 Non-owning string views: string view

A string view a non-owning, non-copying, non-allocating reference to a sequence of char-
acters. It encapsulates both a character pointer and a length.

A function that takes a string input (but does not need to alter the string in place) may
use a string_view parameter and accept input that is any of char* (C string), string literal
(constant char array), a std: :string (C++ string), or OIIO ustring. For all of these cases,
no extra allocations are performed, and no extra copies of the string contents are performed
(as they would be, for example, if the function took a const std: :string& argument but was
passed a char* or string literal).

Furthermore, a function that returns a copy or a substring of one of its inputs (for example,
a substr ()-like function) may return a string view rather than a std::string, and thus
generate its return value without any allocation or copying. Upon assignment to a std: :string
or ustring, it will properly auto-convert.

There are two important caveats to using this class:

1. The string view merely refers to characters owned by another string, so the string view
may not be used outside the lifetime of the string it refers to. Thus, string view is great
for parameter passing, but it’s not a good idea to use a string_view to store strings in a
data structure (unless you are really sure you know what you’re doing).

2. Because the run of characters that the st ring_ view refers to may not be O-terminated, it
is important to distinguish between the data () method, which returns the pointer to the
characters, and the ¢ _ str () method, which is guaranteed to return a valid C string that is
O-terminated. Thus, if you want to pass the contents of a string_view to a function that
expects a O-terminated string (say, fopen), you must call fopen (my string view.c -
str()). Note that the usual case is that the string view does refer to a O-terminated
string, and in that case ¢ _str() returns the same thing as data() without any extra expense;
but in the rare case that it is not O-terminated, ¢ _str() will incur extra expense to internally
allocate a valid C string.

const char *chars)
const char *chars, size t length)
const std::string &str)

string view (
string view (
string view (
string view (ustring ustr)

Constructs a string_view. The string_view doesn’t have its own copy of the charac-

ters, so don’t use the string view after the original string has been destroyed or altered.

Note that the version that takes a const char* but not a length will automatically take
the strlen(chars) to determine the length. (All the other constructors can deduce the
length without walking through all of the characters.)

OpenlmagelO Programmer’s Documentation

2.3. NON-OWNING ARRAY VIEWS: SPAN / CSPAN 13

const char* string view::data ()
size t string view::size ()

The raw pointer to the characters (not necessarily O-terminated!) and the length of the
string view.

const char* string view::c str ()

Return a O-terminated char* version of the string view (a proper C string).

std::string (string view sr)
ustring (string view sr)

Automatic constructions of C++ std::string or OIIO ustring from a string view.

Additionally, a large portion of the usual API for std: :string is mimicked by string_view.
Please consult the public string view.h header file for full details, if you wish touse string view
in your own code.

2.3 Non-owning array views: span / cspan

Note: span and span are synonyms. The new preferred name is span, in keeping with the
equivalent template that has been accepted into future C++ standards. But the old name span is
still accepted. Over time, we will eventually update the documentation to reflect the change.

A template span<typename T> is a non-owning, non-copying, non-allocating reference
to an array of contiguous T objects. It encapsulates both a pointer and a length, and thus is a
safer way of passing pointers around (because the function called knows how long the array is).
A function that might ordinarily take a T* and a length could instead just take a span<T>.

A non-mutable (i.e., read-only) reference would be span<const T>. Thus, a function that
might ordinarily take a const T* and a length could instead take a span<const T>. As a
shorthand, cspan<T> is defined as a synonym to span<const T>, they are equivalent.

For historical reasons, the deprecated name span is accepted as a synonym for span. (But
will eventually be removed.)

A span may be initialized explicitly from a pointer and length, by initializing with a std: : vector<T>,
or by initalizing with a constant (treated as an array of length 1). For all of these cases, no extra
allocations are performed, and no extra copies of the array contents are made.

Important caveat: The span merely refers to items owned by another array, so the span
should not be used outside the lifetime of the array it refers to. Thus, span is great for parameter
passing, but it’s not a good idea to use a span to store strings in a data structure (unless you are
really sure you know what you’re doing).

Commonly used span methods include:

OpenIlmagelO Programmer’s Documentation

14 CHAPTER 2. IMAGE IO API HELPER CLASSES

span<T> (T *data, ptrdiff t len)
span<T> (T &data)
span<T> (T *begin, T *end)

span<T>
span<T>

std::array<T,N> &vec)

(
(
(
span<T> (std::vector<T> &vec)
(
(TIN])

Constructs a span. The span doesn’t have its own copy of the array elements, so don’t
use the span after the original array has been destroyed or altered.

T* span<T>::data ()
ptrdiff t span<T>::size ()

The raw pointer to the array, and its length.

T& span<T>::operator[] (ptrdiff t pos)

References a single element of the span.

Please consult the public span.h header file for full details, if you wish to use span in your
own code.

2.4 Efficient unique strings: ustring

A ustringis an alternative to char* or std: : string for storing strings, in which the character
sequence is stored uniquely. If there are many copies of the same ustring, they all point to
the same canonical characters, which themselves are stored only once. This allows ustring’s
to be assigned to one another with only the copy of a pointer assignment (not allocation or
copying of characters), and for == and ! = comparisons of two ust ring values for only the cost
of comparing the pointers (not examining the characters).

OpenlmagelO uses ust ring in a few select places, where string assignment/copy and equal-
ity/inequality are the dominant string operation and we want them to be the same low cost as a
simple pointer assignment or comparison. (This primarily comes into play for the TmageCache
and TextureSystem, where we refer to images by their filenames and want very fast lookups.)

Please consult the public header ust ring.h for details, especially if you want to use ustring
extensively in your own code. But here are the most important details to know if you are calling
the OpenlmagelO functions that take ust ring parameters:

ustring (const char *chars)

ustring (const char *chars, size_ t length)
ustring (const std::string &str)

ustring (string_ view sref)

Constructs a ustring from a C string (char*), C++ std: :string, ora string_view.

OpenlmagelO Programmer’s Documentation

2.5. HELPER: ROTI 15

const char* ustring::c_str ()
const std::string& ustring::string()
string_view ustring::operator string view()

Convert a ustring to a O-terminated C string, a C++ std::string, ora string view.
All of these are extremely inexpensive.
static ustring ustring::sprintf (const char* fmt, ...)

Create a formatted ustring using the C printf formatting notation (e.g., "$d %s", akin
to C sprintf (), except that this one uses variadic templates and is type-safe).

2.5 Helper: ROI

ROI is a small helper struct that describes a rectangular region of pixels of an image (and a
channel range). An ROI holds the following data members:

int xbegin, xend, ybegin, yend, zbegin, zend;
int chbegin, chend;

Describes the x,y,z range of the region. The end values are exclusive; that is, (xbegin,
ybegin, zbegin) is the first pixel included in the range, (xend-1, yend-1, zend-1)
is the last pixel included in the range, and (xend, yend, zend) is one past the last pixel
in each dimension.

Similarly, chbegin and chend describe a range of channels: chbegin is the first channel,
chend is one past the last channel.

ROT has the following member functions and friends:

ROI ()
A default-constructed ROT has an undefined region, which is interpreted to mean all valid
pixels and all valid channels of an image.

bool ROI::defined () const
Returns true if the ROI is defined, having a specified region, or false if the ROI is
undefined.

static ROI ROI::All ()

Returns an undefined ROI, which is interpreted to mean all valid pixels and all valid
channels of an image.

OpenIlmagelO Programmer’s Documentation

NEW!

NEW!

16 CHAPTER 2. IMAGE IO API HELPER CLASSES

int ROI::width () const
int ROI::height () const
int ROI::depth () const

Returns the width, height, and depth, respectively, of a defined region. These do not
return sensible values for an ROT that is not defined ().

imagesize t ROI::npixels () const

For an ROT that is defined (), returns the total number of pixels included in the region,
or 0 for an undefined ROI.

imagesize t ROI::nchannels () const

For an ROT that is defined (), returns the number of channels in the channel range.

bool ROI::contains (int x, int y, int z=0, int ch=0) const

Returns true if the ROI contains the coordinate.

bool ROI::contains (const ROI &other) const

Returns true if the ROI other is entirel contained within this ROI.

ROI roi union (const ROI &A, const ROI &B)
ROI roi intersection (const ROI &A, const ROI &B)

Returns the union of two ROI’s (an ROI that is exactly big enough to include all the pixels
of both individual ROI’s) or intersection of two ROI’s (an ROI that contains only the pixels
that are contained in both ROI’s).

ROI get roi (const ImageSpec &spec)
ROI get roi full (const ImageSpec &spec)

Return the ROI describing spec’s pixel data window (the x, vy, z, width, height,
depth fields) or the full (display) window (the full x, full y, full =z, full -
width, full height, full_depth fields), respectively.

void set roi (const ImageSpec &spec, const ROI &newroi)
void set roi full (const ImageSpec &spec, const ROI &newroi)

Alters the spec so to make its pixel data window or the full (display) window match
newroi.

OpenlmagelO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 17

2.6 Image Specification: ImageSpec

An ImageSpec is a structure that describes the complete format specification of a single image.
It contains:

e The image resolution (number of pixels) and origin. This specifies what is often called
the “pixel data window.”

e The full size and offset of an abstract “full” or “display” window. Differing full and
data windows can indicate that the pixels are a crop region or a larger image, or contain
overscan pixels.

e Whether the image is organized into tiles, and if so, the tile size.
e The native data format of the pixel values (e.g., float, 8-bit integer, etc.).

e The number of color channels in the image (e.g., 3 for RGB images), names of the chan-
nels, and whether any particular channels represent alpha and depth.

e A user-extensible (and format-extensible) list of any other arbitrarily-named and -typed
data that may help describe the image or its disk representation.

The remainder of this section describes the C++ API for ImageSpec. See Section [I1.4] for
the corresponding Python bindings.

2.6.1 ImageSpec Data Members

The ImageSpec contains data fields for the values that are required to describe nearly any image,
and an extensible list of arbitrary attributes that can hold metadata that may be user-defined or
specific to individual file formats. Here are the hard-coded data fields:

int width, height, depth
int x, y, 2z

width, height, depth are the size of the data of this image, i.e., the number of pixels
in each dimension. A depth greater than 1 indicates a 3D “volumetric” image.

%, y, z indicate the origin of the pixel data of the image. These default to (0,0,0), but
setting them differently may indicate that this image is offset from the usual origin.

Therefore the pixel data are defined over pixel coordinates [x ... x+width-1] horizontally,
[y ... ytheight-1] vertically, and [z ... z+depth-1] in depth.

OpenIlmagelO Programmer’s Documentation

18

CHAPTER 2. IMAGE IO API HELPER CLASSES

int full width, full height, full depth
int full x, full vy, full z

These fields define a “full” or “display” image window over the region [full x ...
full x+full width-1] horizontally, [full y .. full y+full height-1] verti-
cally, and [full_z .. full z+full depth-1]in depth.

Having the full display window different from the pixel data window can be helpful in
cases where you want to indicate that your image is a crop window of a larger image (if
the pixel data window is a subset of the full display window), or that the pixels include
overscan (if the pixel data is a superset of the full display window), or may simply indicate
how different non-overlapping images piece together.

int tile width, tile height, tile depth

If nonzero, indicates that the image is stored on disk organized into rectangular tiles of
the given dimension. The default of (0,0,0) indicates that the image is stored in scanline
order, rather than as tiles.

int nchannels

The number of channels (color values) present in each pixel of the image. For example,
an RGB image has 3 channels.

TypeDesc format

std::vector<TypeDesc> channelformats

std:

Describes the native format of the pixel data values themselves, as a TypeDesc (see[2.1)).
Typical values would be TypeDesc: : UINTS8 for 8-bit unsigned values, TypeDesc: : FLOAT
for 32-bit floating-point values, etc.

If all channels of the image have the same data format, that will be described by format
and channelformats will be empty (zero length).

If there are different data formats for each channel, they will be described in the channelformats
vector, and the format field will indicate a single default data format for applications that

don’t wish to support per-channel formats (usually this will be the format of the channel

that has the most precision).

:vector<std::string> channelnames

The names of each channel, in order. Typically this will be "R", "G","B", "A" (alpha),
"Z" (depth), or other arbitrary names.

int alpha_ channel

The index of the channel that represents alpha (pixel coverage and/or transparency). It
defaults to -1 if no alpha channel is present, or if it is not known which channel represents
alpha.

OpenlmagelO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 19

int z_ channel

The index of the channel that respresents z or depth (from the camera). It defaults to -1 if
no depth channel is present, or if it is not know which channel represents depth.

bool deep

If t rue, this indicates that the image describes contains “deep’ data consisting of multiple
samples per pixel. If false, it’s an ordinary image with one data value (per channel) per
pixel.

ParamValuelList extra attribs

A list of arbitrarily-named and arbitrarily-typed additional attributes of the image, for
any metadata not described by the hard-coded fields described above. This list may be
manipulated with the attribute () and find_attribute () methods.

2.6.2 ImageSpec member functions

ImageSpec contains the following methods that manipulate format specs or compute useful
information about images given their format spec:

ImageSpec (int xres, int yres, int nchans, TypeDesc fmt = UINTS8)

Constructs an ImageSpec with the given x and y resolution, number of channels, and
pixel data format.

All other fields are set to the obvious defaults — the image is an ordinary 2D image (not a
volume), the image is not offset or a crop of a bigger image, the image is scanline-oriented
(not tiled), channel names are “R”, “G”, “B,” and “A” (up to and including 4 channels,
beyond that they are named “channel n”), the fourth channel (if it exists) is assumed to be
alpha, and values are assumed to be linear.

ImageSpec (const ROI &roi, TypeDesc fmt = TypeDesc::UINTS)

Constructs an ImageSpec whose dimensions (both data and “full”’) and number of chan-
nels are given by the ROI (2.5)), pixel data type by fmt, and other fields are set to their
default values.

void set format (TypeDesc fmt)

Sets the format as described, and clears any per-channel format information in channelformats.

void default channel names ()

Sets the channelnames to reasonable defaults for the number of channels. Specifically,
channel names are set to “R”, “G”, “B,” and “A” (up to and including 4 channels, beyond
that they are named “channeln”.

OpenIlmagelO Programmer’s Documentation

20

CHAPTER 2. IMAGE IO API HELPER CLASSES

size_t channel bytes () const

Returns the number of bytes comprising each channel of each pixel (i.e., the size of a
single value of the type described by the format field).

size_t channel bytes (int chan, bool native=false) const

Returns the number of bytes needed for the single specified channel. If native is false
(default), compute the size of one channel of this->format, but if native is true, com-
pute the size of the channel in terms of the “native” data format of that channel as stored
in the file.

size t pixel bytes (bool native=false) const

Returns the number of bytes comprising each pixel (i.e. the number of channels multi-
plied by the channel size).

If native is true, this will be the sum of all the per-channel formats in channelformats.
If native is false (the default), or if all channels use the same format, this will simply be
the number of channels multiplied by the width (in bytes) of the format.

size t pixel bytes (int chbegin, int chend, bool native=false) const

Returns the number of bytes comprising the range of channels [chbegin, chend) for each
pixel.

If native is true, this will be the sum of the per-channel formats in channelformats
(for the given range of channels). If native is false (the default), or if all channels use
the same format, this will simply be the number of channels multiplied by the width (in
bytes) of the format.

imagesize t scanline bytes (bool native=false) const

Returns the number of bytes comprising each scanline, i.e.,

pixel Dbytes(native) * width

This will return std: :numeric limits<imagesize t>::max () inthe eventof anover-
flow where it’s not representable in an imagesize t.

imagesize t tile pixels () const

Returns the number of tiles comprising an image tile (if it’s a tiled image). This will return
std::numeric limits<imagesize t>::max () in the event of an overflow where it’s
not representable in an imagesize_ t.

imagesize t tile bytes (bool native=false) const

Returns the number of bytes comprising an image tile (if it’s a tiled image), i.e.,

pixel bytes(native) * tile width * tile height * tile depth

This will return std: :numeric limits<imagesize t>::max () inthe eventof anover-
flow where it’s not representable in an imagesize t.

OpenlmagelO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 21

imagesize t image pixels () const

Returns the number of pixels comprising an entire image image of these dimensions. This
will return std: :numeric limits<imagesize t>::max () inthe event of an overflow
where it’s not representable in an imagesize_t.

imagesize t image bytes (bool native=false) const

Returns the number of bytes comprising an entire image of these dimensions, i.e.,

pixel bytes(native) * width * height * depth

This will return std: :numeric limits<imagesize t>::max () inthe eventof anover-
flow where it’s not representable in an imagesize_t.

bool size t safe () const

Return true if an image described by this spec can the sizes (in pixels or bytes) of its
scanlines, tiles, and the entire image can be represented by a size_ t on that platform. If
this returns false, the client application should be very careful allocating storage!

int channelindex (string view name) const

Returns the index of the channel with the given name, or -1 if no such channel is present
in channelnames.

ROI roi () const
ROI roi full () const

The roi () method returns an ROI describing the pixel data window and channel range,
and roi full() returns an ROI describing the “full size” (a.k.a. “display window”).

void set roi (ROI roi)
void set roi full (ROI roi)

Sets the dimensions and offset of the pixel data window and full/display window, respec-
tively. Note that the channel range of the ROT is ignored, i.e., these methods do not modify
the nchannels field of the ImageSpec.

void copy dimensions (const ImageSpec &other)

Copies from other only the fields describing the dimensions and data types, and not ar-
bitrary named metadata or channel names (thus, for an ImageSpec with lots of metadata,
it is much less expensive than copying the whole thing with operator=()).

bool undefined () const

Returns true for a newly initialized (undefined) ImageSpec.

OpenIlmagelO Programmer’s Documentation

NEW!

NEW!

NEW!

NEW!

22

CHAPTER 2. IMAGE IO API HELPER CLASSES

void

void
void
void
void

void

attribute (string view name, TypeDesc type,
const void *value)

Add a metadata attribute to extra_attribs, with the given name and data type. The
value pointer specifies the address of the data to be copied.

attribute
attribute
attribute
attribute

Shortcuts for passing attributes comprised of a single integer, floating-point value, or
string.

string view name, unsigned int value)
string view name, int value)

string view name, float value)

string view name, string view value)

(
(
(
(

erase attribute (string view name,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false)

Searches extra_attribs for any attributes matching name (as a regular expression),
removing them entirely from extra_attribs. If searchtype is anything other than
TypeDesc: : UNKNOWN, matches will be restricted only to attributes with the given type.
The name comparison will be case-sensitive if casesensitive is true, otherwise in a
case-insensitive manner if caseinsensitive is false.

ParamValue * f£ind attribute (string view name,

TypeDesc searchtype=UNKNOWN,
bool casesensitive=false)

const ParamValue * find attribute (string view name,

TypeDesc searchtype=UNKNOWN,
bool casesensitive=false) const

Searches extra_attribs for an attribute matching name, returning a pointer to the at-
tribute record, or NULL if there was no match. If searchtype is anything other than
TypeDesc: : UNKNOWN, matches will be restricted only to attributes with the given type.
The name comparison will be exact if casesensitive is true, otherwise in a case-
insensitive manner if caseinsensitive is false.

const ParamValue * find attribute (string view name,

ParamValue &tmpparam,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false) const

Search for the named attribute and return the pointer to its Paramvalue record, or NULL if
not found. This variety of find attribute () can retrieve items such as "width", which
are part of the ImageSpec, but not in extra_attribs. The tmpparam is a temporary
storage area owned by the caller, which is used as temporary buffer in cases where the
information does not correspond to an actual extra_attribs (in this case, the return
value will be &tmpparam).

OpenlmagelO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 23

int get int attribute (string view name, int defaultval=0) const

Gets an integer metadata attribute (silently converting to int even if if the data is really
int8, uint8, int16, uint16, or uint32), and simply substituting the supplied default value if
no such metadata exists. This is a convenience function for when you know you are just
looking for a simple integer value.

float get float attribute (string view name, float defaultval=0) const

Gets a float metadata attribute (silently converting to float even if the data is really half
or double), simply substituting the supplied default value if no such metadata exists. This
is a convenience function for when you know you are just looking for a simple float value.

string view get string attribute (string view name,
string view defaultval = "") const

Gets a string metadata attribute, simply substituting the supplied default value if no such
metadata exists. This is a convenience function for when you know you are just looking
for a simple string value.

static std::string metadata wval (const ParamValue &p, bool human=true) const

For a given parameter p, format the value nicely as a string. If human is true, use especially
human-readable explanations (units, or decoding of values) for certain known metadata.

std::string serialize (SerialFormat format, SerialVerbose verbose) const

Returns, as a string, a serialized version of the ImageSpec. The format may be either
ImageSpec: :SerialText or ImageSpec: :SerialXML. The verbose argument may be
one of: ImageSpec::SerialBrief (just resolution and other vital statistics, one line for
SerialText, ImageSpec::SerialDetailed (contains all metadata in orginal form), or
ImageSpec: :SerialDetailedHuman (contains all metadata, in many cases with human-
readable explanation).

std::string to xml () const

Saves the contents of the ImageSpec as XML, returning it as a string.

void from xml (const char *xml) const

Populates the fields of the ImageSpec based on the XML passed in.

TypeDesc channelformat (int chan) const

Returns a TypeDesc describing the format of the requested channel.

OpenIlmagelO Programmer’s Documentation

24 CHAPTER 2. IMAGE IO API HELPER CLASSES

void get channelformats (std::vector<TypeDesc> &formats) const

Fill in an array of channel formats describing all channels in the image. (Note that this
differs slightly from the member data channelformats, which is empty if there are not
separate per-channel formats.)

2.7 “Deep” pixel data: DeepData

A DeepData holds the contents of an image of “deep” pixels (multiple depth samples per pixel).
Commonly used DeepData fields and methods include:
void init (const ImageSpec é&spec)

Initialize the DeepData based on the ImageSpec’s total number of pixels, number and
types of channels. At this stage, all pixels are assumed to have 0 samples, and no sample
data is allocated.

void init (int npix, int nchan,
cspan<TypeDesc> channeltypes),
cspan<std::string> channelnames)

Initialize the DeepData with a number of pixels, channels, channel types, and channel
names.

void eclear ()

Reset the DeepData to be equivalent to its empty initial state.

void free ()

Not only clear (), but also ensure that all allocated memory has been truly freed.

int npixels () const

Retrieve the total number of pixels.

int nchannels () const

Retrieve the number of channels.

string view channelname (int c) const

Retrieve the name of channel c.

TypeDesc channeltype (int c) const

Retrieve the data type of channel c.

OpenlmagelO Programmer’s Documentation

2.7. “DEEP” PIXEL DATA: DEEPDATA 25

size t channelsize (int c) const

Retrieve the size (in bytes) of one datum of channel c.

size t samplesize () const

Retrieve the packed size (in bytes) of all channels of one sample.

int samples (int pixel) const

Retrieve the number of samples for the given pixel index.

void set samples (int pixel, int samps)

Set the number of samples for the given pixel index.

void insert samples (int pixel, int samplepos, int n=1)

Insert n samples of the specified pixel, betinning at the sample position index. After
insertion, the new samples will have uninitialized values.

void erase samples (int pixel, int samplepos, int n=1)

Remove n samples of the specified pixel, betinning at the sample position index.

float deep value (int pixel, int channel, int sample) const
uint32_ t deep_ value uint (int pixel, int channel, int sample) const

Retrieve the value of the given pixel, channel, and sample indices, for floating point or
unsigned integer channel types, respectively.

void set deep value (int pixel, int channel, int sample, float value)
void set deep wvalue (int pixel, int channel, int sample, uint32_ t wvalue)

Set the value of the given pixel, channel, and sample indices, for floating point or unsigned
integer channel types, respectively.

bool copy deep sample (int pixel, int sample,
const DeepData &src, int srcpixel, int srcsample)

Copy a deep sample from src to this DeepData. They must have the same channel layout.
Return true if ok, false if the operation could not be performed.

bool copy deep pixel (int pixel, const DeepData &src, int srcpixel)

Copy an entire deep pixel from src to this DeepData, completely replacing any pixel
data for that pixel. They must have the same channel layout. Return t rue if ok, false if
the operation could not be performed.

OpenIlmagelO Programmer’s Documentation

26 CHAPTER 2. IMAGE IO API HELPER CLASSES

bool split (int pixel, float depth)

Split any samples of the pixel that cross depth. Return true if any splits occurred, false
if the pixel was unmodified.

void sort (int pixel)

Sort the samples of the pixel by their Z depth.

void merge_ overlaps (int pixel)

Merge any adjacent samples in the pixel that exactly overlap in z range. This is only
useful if the pixel has previously been split at all sample starts and ends, and sorted by
depth. Note that this may change the number of samples in the pixel.

bool merge deep pixels (int pixel, const DeepData &src, int srcpixel)

Merge the samples of src’s pixel into this DeepData’s pixel. Return true if ok, false if
the operation could not be performed.

bool occlusion cull (int pixel)

Eliminate any samples beyond an opaque sample.

float opaque z (int pixel)

For the given pixel index. return the z value at which the pixel reaches full opacity.

2.8 Miscellaneous Utilities

These helper functions are not part of any other OpenlmagelO class, they just exist in the
OpenImageIO namespace as general utilities. (See Section|11.10|for the corresponding Python
bindings.)

int openimageio version ()

Returns a numeric value for the version of OpenlmagelO, 10000 for each major version,
100 for each minor version, 1 for each patch. For example, OpenimagelO 1.2.3 would
return a value of 10203.

std::string geterror ()

Returns any error string describing what went wrong if ImageInput::create () or
ImageOutput: :create () failed (since in such cases, the ImageInput or ImageOutput
itself does not exist to have its own geterror () function called). This function returns
the last error for this particular thread; separate threads will not clobber each other’s
global error messages.

OpenlmagelO Programmer’s Documentation

2.8. MISCELLANEOUS UTILITIES 27

bool attribute (string view name, TypeDesc type, const void *val)

Sets an global attribute (i.e., a property or option) of OpenlmagelO. The name designates
the name of the attribute, t ype describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the name is known, valid attribute that matches the type specified, the attribute will be
set to the new value and attribute () will return true. If name is not recognized, or if
the types do not match (e.g., type is TypeFloat but the named attribute is a string), the
attribute will not be modified, and attribute () will return false.

The following are the recognized attributes:

int threads

Some OpenlmagelO operations can be accelerated if allowed to spawn multiple
threads to parallelize the task. (Examples: simultaneous format conversions of mul-
tiple scanlines read together, or many ImageBufAlgo operations.) This attribute
sets the default number of threads that will be spawned for these operations (the
“fan out”). The default is 0, which means that it should spawn as many threads as
there are hardware cores present on the system.

Situations where the main application logic is essentially single threaded (i.e., one
top-level call into OIIO at a time) should leave this at the default value, or some
reasonable number of cores, thus allowing lots of threads to fill the cores when
OIIO has big tasks to complete. But situations where you have many threads at
the application level, each of which is expected to be making separate OIIO calls
simultaneously, should set this to 1, thus having each calling thread do its own work
inside of OIIO rather than spawning new threads with a high overall “fan out.”

int exr_ threads
Sets the internal OpenEXR thread pool size. The default is to use as many threads
as the amount of hardware concurrency detected. Note that this is separate from the
OIIO "threads™ attribute.

string plugin searchpath
A colon-separated list of directories to search for dynamically-loaded format plug-
ins.

string format list

string input format list

string output format list
A comma-separated list of all the names of, respectively, all supported image for-
mats, all formats accepted as inputs, and all formats accepted as outputs. (Note: can
only be retrieved by getattribute (), cannot be set by attribute ().)

OpenIlmagelO Programmer’s Documentation

28 CHAPTER 2. IMAGE IO API HELPER CLASSES

NEW!

string extension list

For each format, the format name, followed by a colon, followed by a comma-
separated list of all extensions that are presumed to be used for that format. Semi-
colons separate the lists for formats. For example,

"tiff:tif; jpeg:jpg, jpeg;openexr:exr"

(Note: can only be retrieved by getattribute (), cannot be set by attribute().)

string library list

For each format that uses a dependent library, the format name, followed by a colon,
followed by the name and version of the dependency. Semicolons separate the lists
for formats. For example,

"tiff:LIBTIFF 4.0.4;gif:gif_lib 4.2.3;openexr:0penEXR 2.2.0"

(Note: can only be retrieved by getattribute (), cannot be set by attribute ().)

int read chunk

When performing a read_image (), this is the number of scanlines it will attempt to
read at a time (some formats are more efficient when reading and decoding multiple
scanlines). The default is 256. The special value of O indicates that it should try to
read the whole image if possible.

int debug

When nonzero, various debug messages may be printed. The default is O for release
builds, 1 for DEBUG builds, but also may be overridden by the OPENIMAGEIO_DEBUG
env variable. Values > 1 are for OIIO developers to print even more debugging
information.

int log_times

string timing_report
When the "log times" attribute is nonzero, ImageBufAlgo functions are instru-
mented to record the number of times they were called and the total amount of time
spent executing them. When enabled, there is a slight runtime performance cost
due to checking the time at the start and end of each of those function calls, and the
locking and recording of the data structure that holds the log information. When the
log_ times attribute is disabled, there is no additional performance cost.
The log_times attribute is initialized to 0, but may be overridden by environment
variable OPENIMAGEIO LOG TIMES.

The report of totals can be retrieved as the value of the "t iming report™ attribute,
which is a string and is read-only. The report is sorted alphabetically and for each
named instrumentation region, prints the number of times it executed, the total run-
time, and the average per call, like this:

OpenlmagelO Programmer’s Documentation

2.8. MISCELLANEOUS UTILITIES 29

bool
bool
bool
bool

bool

IBA: :computePixelStats 2 2.69ms (avg 1.34ms)
IBA: :make_texture 1 74.05ms (avg 74.05ms)
IBA::mul 8 2.42ms (avg 0.30ms)
IBA::over 10 23.82ms (avg 2.38ms)
IBA::resize 20 0.24s (avg 12.18ms)
IBA::zero 8 0.66ms (avg 0.08ms)

If the value of 1og_times is 2 or more when the application terminates, the timing
report will be printed to stdout upon exit.

string hw:simd
string oiio:simd
The "hw:simd" read-only attribute is a comma-separated list of hardware CPU fea-

tures for SIMD (and some other things). The "oiio:simd" is similarly a list of
which features this build of OIIO was compiled to support.

float resident memory used MB

This read-only attribute can be used for debugging purposes to report the approxi-
mate process memory used (resident) by the application, in MB.

attribute (string view name, int val)

attribute (string view name, float wval)

attribute (string view name, const char *val)
attribute (string view name, const std::string & val)

Specialized versions of attribute () in which the data type is implied by the type of the
argument.

getattribute (string view name, TypeDesc type, void *val)

Gets the current value of a global attribute. The name designates the name of the attribute,
type describes the type of data, and val is a pointer to memory where the user would
like the value placed.

If the attribute name is valid and matches the type specified, the attribute value will be
stored at address val and attribute () will return true. If name is not recognized as a
valid attribute name, or if the types do not match (e.g., type is TypeFloat but the named
attribute is a string), no data will be written to val, and attribute () will return false.

The complete list of attributes can be found above, in the description of the attribute ()
function.

OpenIlmagelO Programmer’s Documentation

NEW!

30 CHAPTER 2. IMAGE IO API HELPER CLASSES

bool getattribute (string view name, int &val)
bool getattribute (string view name, float &val)
bool getattribute (

bool getattribute (

string view name, char **val)
string view name, std::string & val)

Specialized versions of getattribute () in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int threads;

OIIO::getattribute ("threads", &threads);

std::string path;

0II0::getattribute ("plugin_searchpath", &path);

int get int attribute (string view name, int defaultvalue=0)
float get float attribute (string view name, float defaultvalue=0)
string view get string attribute (string view name,

string view defaultvalue="")

Specialized versions of getattribute () for common types, in which the data is returned
directly, and a supplied default value is returned if the attribute was not found.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int threads = 0IIO::getattribute ("threads", 0);
string_view path = OIIO::getattribute ("plugin_searchpath");

void declare imageio format (const std::string &format name,
ImageInput::Creator input creator,
const char **input extensions,
ImageOutput: :Creator output creator,
const char **output extensions,
const char *1ib version)

Register the input and output ‘create’ functions and list of file extensions for a particular
format.

OpenlmagelO Programmer’s Documentation

3 ImageOutput: Writing Images

3.1 Image Output Made Simple

Here is the simplest sequence required to write the pixels of a 2D image to a file:

#include <OpenImageIO/imageio.h>
using namespace 0IIO;

const char *filename = "foo.jpg";

const int xres = 640, yres = 480;

const int channels = 3; // RGB

unsigned char pixels[xres*yres*channels];

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out)
return;
ImageSpec spec (xres, yres, channels, TypeDesc::UINTS8);
out->open (filename, spec);
out->write_image (TypeDesc::UINT8, pixels);
out->close ();

This little bit of code does a surprising amount of useful work:

e Search for an ImagelO plugin that is capable of writing the file ("foo. jpg"), deducing
the format from the file extension. When it finds such a plugin, it creates a subclass
instance of ImageOutput that writes the right kind of file format.

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

e Open the file, write the correct headers, and in all other important ways prepare a file
with the given dimensions (640 x 480), number of color channels (3), and data format
(unsigned 8-bit integer).

ImageSpec spec (xres, yres, channels, TypeDesc::UINTS);
out->open (filename, spec);

31

32 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

e Write the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of data in the file (in this
case, our in-memory data is unsigned 8-bit and we’ve requested the same format for disk
storage, but if they had been different, write image () would do all the conversions for
us).

out->write_image (TypeDesc::UINT8, &pixels);

e Close the file.

out->close ();

What happens when the file format doesn’t support the spec?

The open () call will fail (returning an empty pointer and set an appropriate error message) if
the output format cannot accommodate what is requested by the ImageSpec. This includes:

e Dimensions (width, height, or number of channels) exceeding the limits supported by the
file format/[]

e Volumetric (depth > 1) if the format does not support volumetric data.
e Tile size > 1 if the format does not support tiles.
e Multiple subimages or MIP levels if not supported by the format.

However, several other mismatches between requested ImageSpec and file format capabil-
ities will be silently ignored, allowing open () to succeed:

o If the pixel data format is not supported (for example, a request for half pixels when
writing a JPEG/JFIF file), the format writer may substitute another data format (generally,
whichever commonly-used data format supported by the file type will result in the least
reduction of precision or range).

o Ifthe ImageSpec requests different per-channel data formats, but the format supports only
a single format for all channels, it may just choose the most precise format requested and
use it for all channels.

o I[f the file format does not support arbitrarily-named channels, the channel names may be
lost when saving the file.

e Any other metadata in the ImageSpec may be summarily dropped if not supported by the
file format.

10ne exception to the rule about number of channels is that a file format that supports only RGB, but not alpha,
is permitted to silently drop the alpha channel without considering that to be an error.

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 33

3.2 Advanced Image Output

Let’s walk through many of the most common things you might want to do, but that are more
complex than the simple example above.

3.2.1 Writing individual scanlines, tiles, and rectangles

The simple example of Section |3.1|wrote an entire image with one call. But sometimes you are
generating output a little at a time and do not wish to retain the entire image in memory until it
is time to write the file. OpenlmagelO allows you to write images one scanline at a time, one
tile at a time, or by individual rectangles.

Writing individual scanlines

Individual scanlines may be written using the write scanline () API call:

unsigned char scanline[xres*channels];
out->open (filename, spec);
int z = 0; // Always zero for 2D images
for (int y = 0; vy < yres; ++y) {
. generate data in scanline[0..xres*channels-1]
out->write_scanline (y, z, TypeDesc::UINT8, scanline);

}

out->close ();

The first two arguments to write scanline () specify which scanline is being written by
its vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number
(the slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc
describing the data you are supplying, and a pointer to the pixel data itself. Additional optional
arguments describe the data stride, which can be ignored for contiguous data (use of strides is
explained in Section [3.2.3).

All ImageOutput implementations will accept scanlines in strict order (starting with scan-
line 0, then 1, up to yres-1, without skipping any). See Section[3.2.6|for details on out-of-order
or repeated scanlines.

The full description of the write scanline () function may be found in Section@

Writing individual tiles

Not all image formats (and therefore not all ImageOutput implementations) support tiled im-
ages. If the format does not support tiles, then write tile() will fail. An application using
OpenimagelO should gracefully handle the case that tiled output is not available for the chosen
format.

Once you create () an ImageOutput, you can ask if it is capable of writing a tiled image
by using the supports ("tiles") query:

OpenIlmagelO Programmer’s Documentation

34 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out->supports ("tiles")) {
// Tiles are not supported

}

Assuming that the ImageOutput supports tiled images, you need to specifically request a
tiled image when you open () the file. This is done by setting the tile size in the ImageSpec
passed to open (). If the tile dimensions are not set, they will default to zero, which indicates
that scanline output should be used rather than tiled output.

int tilesize = 64;

ImageSpec spec (xres, yres, channels, TypeDesc::UINTS8);
spec.tile_width = tilesize;

spec.tile_height = tilesize;

out->open (filename, spec);

In this example, we have used square tiles (the same number of pixels horizontally and
vertically), but this is not a requirement of OpenlmagelO. However, it is possible that some
image formats may only support square tiles, or only certain tile sizes (such as restricting tile
sizes to powers of two). Such restrictions should be documented by each individual plugin.

unsigned char tile[tilesize*tilesize*channels];
int z = 0; // Always zero for 2D images
for (int y = 0; y < yres; vy += tilesize) {
for (int x = 0; x < xres; x += tilesize) {
. generate data in tilef[]
out->write_tile (x, y, z, TypeDesc::UINT8, tile);

}

out->close ();

The first three arguments to write tile () specify which tile is being written by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing
the data you are supplying, and a pointer to the tile’s pixel data itself, which should be ordered
by increasing slice, increasing scanline within each slice, and increasing column within each
scanline. Additional optional arguments describe the data stride, which can be ignored for
contiguous data (use of strides is explained in Section [3.2.3).

All ImageOutput implementations that support tiles will accept tiles in strict order of in-
creasing y rows, and within each row, increasing x column, without missing any tiles. See
Section [3.2.6] for details on out-of-order or repeated tiles.

The full description of the write tile () function may be found in Section

Writing arbitrary rectangles

Some ImageOutput implementations — such as those implementing an interactive image dis-
play, but probably not any that are outputting directly to a file — may allow you to send arbitrary

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 35

rectangular pixel regions. Once you create () an ImageOutput, you can ask if it is capable of
accepting arbitrary rectangles by using the supports ("rectangles") query:

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out->supports ("rectangles")) {
// Rectangles are not supported

If rectangular regions are supported, they may be sent using the write rectangle () API
call:

unsigned int rect[...];
. generate data in rect[]
out->write_rectangle (xbegin, xend, ybegin, yend, zbegin, zend,
TypeDesc: :UINT8, rect);

The first six arguments to write_rectangle () specify the region of pixels that is being
transmitted by supplying the minimum and one-past-maximum pixel indices in x (column), y
(scanline), and z (slice, always O for 2D non-volume images)E] The total number of pixels being
transmitted is therefore:

(xend-xbegin) * (yend-ybegin) * (zend-zbegin)

This is followed by a TypeDesc describing the data you are supplying, and a pointer to the
rectangle’s pixel data itself, which should be ordered by increasing slice, increasing scanline
within each slice, and increasing column within each scanline. Additional optional arguments
describe the data stride, which can be ignored for contiguous data (use of strides is explained in

Section[3.2.3).

3.2.2 Converting pixel data types

The code examples of the previous sections all assumed that your internal pixel data is stored

as unsigned 8-bit integers (i.e., 0-255 range). But OpenimagelO is significantly more flexible.

You may request that the output image pixels be stored in any of several data types. This is
done by setting the format field of the ImageSpec prior to calling open. You can do this upon
construction of the ImageSpec, as in the following example that requests a spec that stores pixel
values as 16-bit unsigned integers:

ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);

Or, for an ImageSpec that has already been constructed, you may reset its format using the
set format () method.

ImageSpec spec (...);
spec.set_format (TypeDesc::UINT16);

20penlmagelO nearly always follows the C++ STL convention of specifying ranges as [begin, end), that is,
begin, begin+l, ..., end-1.

OpenIlmagelO Programmer’s Documentation

36 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

Note that resetting the pixel data type must be done before passing the spec to open (), or it
will have no effect on the file.

Individual file formats, and therefore ImageOutput implementations, may only support a
subset of the pixel data types understood by the OpenimagelO library. Each ImageOutput plu-
gin implementation should document which data formats it supports. An individual ImageOutput
implementation is expected to always succeed, but if the file format does not support the re-
quested pixel data type, it is expected to choose a data type that is supported, usually the data
type that best preserves the precision and range of the originally-requested data type.

The conversion from floating-point formats to integer formats (or from higher to lower
integer, which is done by first converting to float) is always done by rescaling the value so
that 0.0 maps to integer 0 and 1.0 to the maximum value representable by the integer type, then
rounded to an integer value for final output. Here is the code that implements this transformation
(T is the final output integer type):

float value = quant_max * input;
T output = (T) clamp ((int) (value + 0.5), quant_min, quant_max);

Quantization limits for each integer type is as follows:

Data Format min max
UINTS 0 255
INT8 -128 127
UINT16 0 65535
INT16 -32768 32767
UINT 0 | 4294967295
INT -2147483648 | 2147483647

Note that the default is to use the entire positive range of each integer type to represent the
floating-point (0.0 — 1.0) range. Floating-point types do not attempt to remap values, and do

not clamp (except to their full floating-point range).

It is not required that the pixel data passed towrite image(),write scanline(),write tile(),

or write_ rectangle () actually be in the same data type as that requested as the native pixel

data type of the file. You can fully mix and match data you pass to the various write routines

and OpenimagelO will automatically convert from the internal format to the native file format.

For example, the following code will open a TIFF file that stores pixel data as 16-bit unsigned

integers (values ranging from O to 65535), compute internal pixel values as floating-point val-

ues, with write image () performing the conversion automatically:

std::unique_ptr<ImageOutput> out = ImageOutput::create ("myfile.tif");
ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);

out->open (filename, spec);

float pixels [xres*yres*channels];

out->write_image (TypeDesc::FLOAT, pixels);

Note that write scanline(),write tile(),andwrite rectangle have a parameter that
works in a corresponding manner.

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 37

3.2.3 Data Strides

In the preceeding examples, we have assumed that the block of data being passed to the write
functions are contiguous, that is:

e cach pixel in memory consists of a number of data values equal to the declared number
of channels that are being written to the file;

e successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x — 1 of the same row;

o for whole images, tiles or rectangles, the data for each row immediately follows the pre-
vious one in memory (the first pixel of row y immediately follows the last column of row
y=D;

e for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z— 1.

Please note that this implies that data passed to write tile() be contiguous in the shape
of a single tile (not just an offset into a whole image worth of pixels), and that data passed to
write rectangle () be contiguous in the dimensions of the rectangle.

Thewrite scanline () function takes an optional xstride argument, and the write image (),
write_tile(),andwrite_rectangle functions take optional xstride, ystride, and zstride
values that describe the distance, in bytes, between successive pixel columns, rows, and slices,
respectively, of the data you are passing. For any of these values that are not supplied, or are
given as the special constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.

A few representative examples follow:

e Flip an image vertically upon writing, by using negative y stride:

unsigned char pixels[xres*yres*channels];
int scanlinesize = xres * channels * sizeof (pixels[0]);

out->write_image (TypeDesc::UINTS,
(char *)pixels+(yres-1)*scanlinesize, // offset to last

AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

e Write a tile that is embedded within a whole image of pixel data, rather than having a
one-tile-only memory layout:

unsigned char pixels[xres*yres*channels];
int pixelsize = channels * sizeof (pixels[0]);

int scanlinesize = xres ixelsize;
t 1 * 1

out->write_tile (x, y, 0, TypeDesc::UINTS,

OpenIlmagelO Programmer’s Documentation

38 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

e Write only a subset of channels to disk. In this example, our internal data layout consists
of 4 channels, but we write just channel 3 to disk as a one-channel image:

// In-memory representation is 4 channel
const int xres = 640, yres = 480;
const int channels = 4; // RGBA

= sizeof (unsigned char);
unsigned char pixels[xres*yres*channels];

const int channelsize

// File representation is 1 channel
std::unique_ptr<ImageOutput> out = ImageOutput::create
ImageSpec spec (xres, yres, 1, TypeDesc::UINT8);
out->open (filename, spec);

(filename) ;

// Use strides to write out a one-channel "slice" of the image
out->write_image (TypeDesc::UINTS,

(char *)pixels+3*channelsize,
channels*channelsize,
AutoStride,

AutoStride);

// offset to chan 3
// 4 channel x stride
// default y stride
// default z stride

Please consult Section [3.3] for detailed descriptions of the stride parameters to each write
function.

3.2.4 Writing a crop window or overscan region

The ImageSpec fields width, height, and depth describe the dimensions of the actual pixel
data.

At times, it may be useful to also describe an abstract full or display image window, whose
position and size may not correspond exactly to the data pixels. For example, a pixel data
window that is a subset of the full display window might indicate a crop window; a pixel data
window that is a superset of the full display window might indicate overscan regions (pixels
defined outside the eventual viewport).

The ImageSpec fields full width, full height, and full depth describe the dimen-
sions of the full display window, and full x, full vy, full_ z describe its origin (upper left
corner). The fields %, y, z describe the origin (upper left corner) of the pixel data.

These fields collectively describe an abstract full display image ranging from [full x ...
full x+full_ width-1] horizontally, [full vy ... full y+full height-1] vertically, and
[full z..full z+full depth-1]indepth (ifitis a 3D volume), and actual pixel data over
the pixel coordinate range [x ... x+width-1] horizontally, [y ... y+height-1] vertically, and [z

.. z+depth-1] in depth (if it is a volume).

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 39

Not all image file formats have a way to describe display windows. An ImageOutput
implementation that cannot express display windows will always write out the width X height
pixel data, may upon writing lose information about offsets or crop windows.

Here is a code example that opens an image file that will contain a 32 x 32 pixel crop
window within an abstract 640 x 480 full size image. Notice that the pixel indices (column,
scanline, slice) passed to the write functions are the coordinates relative to the full image, not
relative to the crop widow, but the data pointer passed to the write functions should point to the
beginning of the actual pixel data being passed (not the the hypothetical start of the full data, if
it was all present).

int fullwidth = 640, fulllength = 480; // Full display image size

int cropwidth = 16, croplength = 16; // Crop window size

int xorigin = 32, yorigin = 128; // Crop window position

unsigned char pixels [cropwidth * croplength * channels]; // Crop size!

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
ImageSpec spec (cropwidth, croplength, channels, TypeDesc::UINTS);
spec.full_x = 0;

spec.full_y = 0;

spec.full_width = fullwidth;

spec.full_length = fulllength;

spec.x = xorigin;

spec.y = yorigin;

out->open (filename, spec);

int z = 0; // Always zero for 2D images
for (int y = yorigin; y < yorigint+croplength; ++y) {
out->write_scanline (y, z, TypeDesc::UINTS,
(y-yorigin) *cropwidth*channels);
}

out->close ();

3.2.5 Writing metadata

The ImageSpec passed to open () can specify all the common required properties that describe
an image: data format, dimensions, number of channels, tiling. However, there may be a variety
of additional metadatcﬂ that should be carried along with the image or saved in the file.

The remainder of this section explains how to store additional metadata in the ImageSpec.
It is up to the ImageOutput to store these in the file, if indeed the file format is able to accept the
data. Individual ImageOutput implementations should document which metadata they respect.

Channel names

In addition to specifying the number of color channels, it is also possible to name those channels.
Only a few ImageOutput implementations have a way of saving this in the file, but some do,
so you may as well do it if you have information about what the channels represent.

3Metadata refers to data about data, in this case, data about the image that goes beyond the pixel values and
description thereof.

OpenIlmagelO Programmer’s Documentation

40 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

By convention, channel names for red, green, blue, and alpha (or a main image) should be
named "R", "G", "B", and "A", respectively. Beyond this guideline, however, you can use any
names you want.

The ImageSpec has a vector of strings called channelnames. Upon construction, it starts
out with reasonable default values. If you use it at all, you should make sure that it contains the
same number of strings as the number of color channels in your image. Here is an example:

int channels = 4;
ImageSpec spec (width, length, channels, TypeDesc::UINTS8);
spec.channelnames.clear ();
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back ("
spec.channelnames.push_back (

Here is another example in which custom channel names are used to label the channels in an
8-channel image containing beauty pass RGB, per-channel opacity, and texture s,¢ coordinates
for each pixel.

int channels = 8;
ImageSpec spec (width, length, channels, TypeDesc::UINT8);
spec.channelnames.clear ();
spec.channelnames.push_back ("R
spec.channelnames.push_back ("G")
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("opacityR");

(

(

(

(

n II

n

)i
spec.channelnames.push_back ("opacityG");
spec.channelnames.push_back ("opacityB");
spec.channelnames.push_back ("texture_s");
spec.channelnames.push_back ("texture_t");

The main advantage to naming color channels is that if you are saving to a file format that
supports channel names, then any application that uses OpenlmagelO to read the image back
has the option to retain those names and use them for helpful purposes. For example, the iv
image viewer will display the channel names when viewing individual channels or displaying
numeric pixel values in “pixel view” mode.

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which can be used to
designate which channel indices are used for alpha and z depth, if any. Upon construction, these
are both set to -1, indicating that it is not known which channels are alpha or depth. Here is an
example of setting up a 5-channel output that represents RGBAZ:

int channels = 5;

ImageSpec spec (width, length, channels, format);
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 41

spec.channelnames.push_back ("A")
spec.channelnames.push_back ("z")
spec.alpha_channel = 3;
spec.z_channel = 4;

r
’

There are two advantages to designating the alpha and depth channels in this manner:

e Some file formats may require that these channels be stored in a particular order, with
a particular precision, or the ImageOutput may in some other way need to know about
these special channels.

Arbitrary metadata

For all other metadata that you wish to save in the file, you can attach the data to the ImageSpec
using the attribute () methods. These come in polymorphic varieties that allow you to attach
an attribute name and a value consisting of a single int, unsigned int, float, char*, or
std: :string, as shown in the following examples:

ImageSpec spec (...);

unsigned int u = 1;
spec.attribute ("Orientation", u);

float x = 72.0;
spec.attribute ("dotsize", £f);

std::string s = "Fabulous image writer 1.0";
spec.attribute ("Software", s);

These are convenience routines for metadata that consist of a single value of one of these
common types. For other data types, or more complex arrangements, you can use the more
general form of attribute (), which takes arguments giving the name, type (as a TypeDesc),
number of values (1 for a single value, > 1 for an array), and then a pointer to the data values.
For example,

ImageSpec spec (...);

// Attach a 4x4 matrix to describe the camera coordinates
float mymatrix[1l6] = { ... };
spec.attribute ("worldtocamera", TypeMatrix, &mymatrix);

// Attach an array of two floats giving the CIE neutral color
float neutral(2] = { ... };
spec.attribute ("adoptedNeutral", TypeDesc (TypeDesc::FLOAT, 2), &neutral);

In general, most image file formats (and therefore most ImageOutput implementations) are
aware of only a small number of name/value pairs that they predefine and will recognize. Some
file formats (OpenEXR, notably) do accept arbitrary user data and save it in the image file. If an

OpenIlmagelO Programmer’s Documentation

42 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

ImageOutput does not recognize your metadata and does not support arbitrary metadata, that
metadatum will be silently ignored and will not be saved with the file.

Each individual ImageOutput implementation should document the names, types, and
meanings of all metadata attributes that they understand.

Color space hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

Since this can (and probably will) happen, we have a convention for explaining what color
space your image pixels are in. Each individual ImageOutput should document how it uses this
(or not).

The ImageSpec: :extra_attribs field should store metadata that reveals the color space
of the pixels you are sending the ImageOutput (see Section for explanations of particular
values).

The color space hints only describe color channels. You should always pass alpha, depth, or
other non-color channels with linear values.

Here is a simple example of setting up the ImageSpec when you know that the pixel values
you are writing are linear:

ImageSpec spec (width, length, channels, format);
spec.attribute ("oiio:ColorSpace", "Linear");

If a particular ImageOutput implementation is required (by the rules of the file format it
writes) to have pixels in a particular color space, then it should try to convert the color values of
your image to the right color space if it is not already in that space. For example, JPEG images
must be in SRGB space, so if you declare your pixels to be "Linear", the JPEG ImageOutput
will convert to SRGB.

If you leave the "oiio:ColorSpace" unset, the values will not be transformed, since the
plugin can’t be sure that it’s not in the correct space to begin with.

3.2.6 Random access and repeated transmission of pixels

All ITmageOutput implementations that support scanlines and tiles should write pixels in strict
order of increasing z slice, increasing y scanlines/rows within each slice, and increasing x col-
umn within each row. It is generally not safe to skip scanlines or tiles, or transmit them out of
order, unless the plugin specifically advertises that it supports random access or rewrites, which
may be queried using:

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("random_access"))

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 43

Similarly, you should assume the plugin will not correctly handle repeated transmissions of a
scanline or tile that has already been sent, unless it advertises that it supports rewrites, which
may be queried using:

if (out->supports ("rewrite"))

3.2.7 Multi-image files

Some image file formats support storing multiple images within a single file. Given a created
ImageOutput, you can query whether multiple images may be stored in the file:

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("multiimage"))

Some image formats allow you to do the initial open () call without declaring the specifics
of the subimages, and simply append subimages as you go. You can detect this by checking

if (out->supports ("appendsubimage"))

In this case, all you have to do is, after writing all the pixels of one image but before calling
close (), call open () again for the next subimage and pass AppendSubimage as the value for
the mode argument (see Section [3.3]for the full technical description of the arguments to open).
The close () routine is called just once, after all subimages are completed. Here is an example:

const char *filename = "foo.tif";

int nsubimages; // assume this is set

ImageSpec specs[]; // assume these are set for each subimage
unsigned char *pixels[]; // assume a buffer for each subimage

// Create the ImageOutput
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support subimages

if (subimages > 1 && (! out->supports("multiimage") |
! out->supports ("appendsubimage"))) {
std::cerr << "Does not support appending of subimages\n";
return;

// Use Create mode for the first level.
ImageOutput: :OpenMode appendmode = ImageOutput::Create;

// Write the individual subimages

for (int s = 0; s < nsubimages; ++s) {
out->open (filename, specs([s], appendmode);
out->write_image (TypeDesc::UINT8, pixels[s]);
// Use AppendSubimage mode for subsequent levels
appendmode = ImageOutput::AppendSubimage;

OpenIlmagelO Programmer’s Documentation

44 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

}

out->close ();

On the other hand, if out->supports ("appendsubimage™) returns false, then you must
use a different open () variety that allows you to declare the number of subimages and their
specifications up front.

Below is an example of how to write a multi-subimage file, assuming that you know all the
image specifications ahead of time. This should be safe for any file format that supports multiple
subimages, regardless of whether it supports appending, and thus is the preferred method for
writing subimages, assuming that you are able to know the number and specification of the
subimages at the time you first open the file.

const char *filename = "foo.tif";

int nsubimages; // assume this is set

ImageSpec specs[]; // assume these are set for each subimage
unsigned char *pixels[]; // assume a buffer for each subimage

// Create the ImageOutput
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support subimages

if (subimages > 1 && ! out->supports ("multiimage")) {
std::cerr << "Cannot write multiple subimages\n";
return;

// Open and declare all subimages
out->open (filename, nsubimages, specs);

// Write the individual subimages
for (int s = 0; s < nsubimages; ++s) {
if (s > 0) // Not needed for the first, which is already open
out->open (filename, specs[s], Imagelnput::AppendSubimage);
out->write_image (TypeDesc::UINT8, pixels[s]);
}

out->close ();

In both of these examples, we have used write image (), butofcoursewrite scanline(),
write tile(),andwrite_rectangle () work as you would expect, on the current subimage.

3.2.8 MIP-maps

Some image file formats support multiple copies of an image at successively lower resolu-
tions (MIP-map levels, or an “image pyramid”). Given a created ImageOutput, you can query
whether MIP-maps may be stored in the file:

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("mipmap"))

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 45

If you are working with an ImageOutput that supports MIP-map levels, it is easy to write
these levels. After writing all the pixels of one MIP-map level, call open () again for the next
MIP level and pass ImageInput: :AppendMIPLevel as the value for the mode argument, and
then write the pixels of the subsequent MIP level. (See Section[3.3|for the full technical descrip-
tion of the arguments to open ().) The close () routine is called just once, after all subimages
and MIP levels are completed.

Below is pseudocode for writing a MIP-map (a multi-resolution image used for texture
mapping):

const char *filename = "foo.tif";

const int xres = 512, yres = 512;

const int channels = 3; // RGB

unsigned char *pixels = new unsigned char [xres*yres*channels];

// Create the ImageOutput
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support either mipmaps or subimages

if (! out->supports ("mipmap") && ! out->supports ("multiimage")) {
std::cerr << "Cannot write a MIP-map\n";
return;

}
// Set up spec for the highest resolution
ImageSpec spec (xres, yres, channels, TypeDesc::UINTS8);

// Use Create mode for the first level.
ImageOutput: :OpenMode appendmode = ImageOutput::Create;

// Write images, halving every time, until we’re down to
// 1 pixel in either dimension
while (spec.width >= 1 && spec.height >= 1) {
out->open (filename, spec, appendmode);
out->write_image (TypeDesc::UINT8, pixels);
// Assume halve() resamples the image to half resolution
halve (pixels, spec.width, spec.height);
// Don’t forget to change spec for the next iteration
spec.width /= 2;
spec.height /= 2;

// For subsequent levels, change the mode argument to
// open(). If the format doesn’t support MIPmaps directly,
// try to emulate it with subimages.
if (out->supports ("mipmap"))
appendmode = ImageOutput::AppendMIPLevel;
else
appendmode = ImageOutput::AppendSubimage;
}

out->close ();

In this example, we have used write image (),butofcoursewrite scanline(),write tile(),
and write rectangle () work as you would expect, on the current MIP level.

OpenIlmagelO Programmer’s Documentation

46 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

3.2.9 Per-channel formats

Some image formats allow separate per-channel data formats (for example, half data for colors
and float data for depth). When this is desired, the following steps are necessary:

1. Verify that the writer supports per-channel formats by checking
supports ("channelformats").

2. The ImageSpec passed to open () should have its channelformats vector filled with the
types for each channel.

3. Thecalltowrite scanline,read scanlines,write tile,write tiles,orwrite -
image should pass a data pointer to the raw data, already in the native per-channel format
of the file and contiguously packed, and specify that the data is of type TypeDesc: : UNKNOWN.

For example, the following code fragment will write a 5-channel image to an OpenEXR
file, consisting of R/G/B/A channels in half and a Z channel in float:

// Mixed data type for the pixel
struct Pixel { half r,qg,b,a; float z; };
Pixel pixels[xres*yres];

std::unique_ptr<ImageOutput> out = ImageOutput::create ("foo.exr");

// Double check that this format accepts per-channel formats
if (! out->supports("channelformats")) {
return;

// Prepare an ImageSpec with per-channel formats
ImageSpec spec (xres, yres, 5, TypeDesc::FLOAT);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::FLOAT);
spec.channelnames.clear ();
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back (

out->open (filename, spec);

out->write_image (TypeDesc::UNKNOWN, /* use channel formats */
pixels, /* data buffer */
sizeof (Pixel)); /* pixel stride */

3.2.10 Writing “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels —
those containing multiple samples per pixel (and a potentially differing number of them in each

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 47

pixel). You can tell if a format supports deep images by checking supports ("deepdata"),
and you can specify a deep data in an ImageSpec by setting its deep field will be true.

Deep files cannot be written with the usual write_scanline,write_scanlines,write_ -
tile, write tiles, write image functions, due to the nature of their variable number of
samples per pixel. Instead, ImageOutput has three special member functions used only for
writing deep data:

bool write_deep_scanlines (int ybegin, int yend, int z,
const DeepData &deepdata);

bool write_deep_tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, const DeepData &deepdata);

bool write_deep_image (const DeepData &deepdata);

It is only possible to write “native” data types to deep files; that is, there is no automatic
translation into arbitrary data types as there is for ordinary images. All three of these functions
are passed deep data in a special DeepData structure, described in detail in Section
Here is an example of using these methods to write a deep image:

// Prepare the spec for 'half’ RGBA, ’float’ z

int nchannels = 5;

ImageSpec spec (xres, yres, nchannels);

TypeDesc channeltypes[] = { TypeDesc::HALF, TypeDesc::HALF,
TypeDesc: :HALF, TypeDesc::HALF, TypeDesc::FLOAT };

spec.z_channel = 4;

spec.channelnames[spec.z_channel] = "Z";

spec.channeltypes.assign (channeltypes+0, channeltypes+nchannels);

spec.deep = true;

// Prepare the data (sorry, complicated, but need to show the gist)
DeepData deepdata;
deepdata.init (spec);
for (int y = 0; vy < yres; +ty)
for (int x = 0; x < xres; ++x)
deepdata.set_samples (y*xres+x, ...samples for that pixel...);
deepdata.alloc (); // allocate pointers and data
int pixel = 0;
for (int y = 0; vy < yres; ++y)
for (int x = 0; x < xXres; ++x, ++pixel)
for (int chan = 0; chan < nchannels; ++chan)
for (int samp = 0; samp < deepdata.samples (pixel); ++samp)
deepdata.set_deep_value (pixel, chan, samp, ...value...);

// Create the output
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out)
return;
// Make sure the format can handle deep data and per-channel formats

OpenIlmagelO Programmer’s Documentation

48 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

if (! out->supports("deepdata") || ! out->supports("channelformats"))
return;

// Do the I/0 (this is the easy part!)
out->open (filename, spec);
out->write_deep_image (deepdata);
out->close ();

3.2.11 Copying an entire image

Suppose you want to copy an image, perhaps with alterations to the metadata but not to the
pixels. You could open an ImageInput and perform a read image (), and open another
ImageOutput and call write image () to output the pixels from the input image. However,
for compressed images, this may be inefficient due to the unnecessary decompression and sub-
sequent re-compression. In addition, if the compression is /ossy, the output image may not
contain pixel values identical to the original input.

A special copy image method of ImageOutput is available that attempts to copy an image
from an open ImageInput (of the same format) to the output as efficiently as possible with
without altering pixel values, if at all possible.

Not all format plugins will provide an implementation of copy image (in fact, most will
not), but the default implemenatation simply copies pixels one scanline or tile at a time (with
decompression/recompression) so it’s still safe to call. Furthermore, even a provided copy_ -
image is expected to fall back on the default implementation if the input and output are not able
to do an efficient copy. Nevertheless, this method is recommended for copying images so that
maximal advantage will be taken in cases where savings can be had.

The following is an example use of copy image to transfer pixels without alteration while
modifying the image description metadata:

// Open the input file
const char *input = "input.ijpg";
std::unique_ptr<ImageInput> in = Imagelnput::open (input);

// Make an output spec, identical to the input except for metadata
ImageSpec out_spec = in->spec();
out_spec.attribute ("ImageDescription", "My Title");

// Create the output file and copy the image

const char *output = "output.jpg";

std::unique_ptr<ImageOutput> out = ImageOutput::create (output);
out->open (output, out_spec);

out->copy_image (in);

// Clean up
out->close ();
in->close ();

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 49

3.2.12 Custom I/O proxies (and writing the file to a memory buffer)

l Some file format writers allow you to supply a custom I/O proxy object that can allow bypassing
N EW + | the usual file I/O with custom behavior, including the ability to fill an in-memory buffer with a

byte-for-byte representation of the correctly formatted file that would have been written to disk.

Only some output format writers support this feature. To find out if a particular file format
supports this feature, you can create an ImageOutput of the right type, and check if it supports
the feature name "ioproxy":

ImageOutput *out = ImageOutput::create (filename);
if (! out || ! out->supports ("ioproxy")) {
ImageOutput::destroy (out);
out = nullptr;
return;

ImageOutput writers that support "ioproxy" will respond to a special attribute, "oiio:ioproxy",
which passes a pointer to a Filesystem: : I0Proxy* (see OpenlmagelO’s filesystem.h for
this type and its subclasses). IOProxy is an abstract type, and concrete subclasses include
IOFile (which wraps I/O to an open FILE*) and IOVecOutput (which sends output to a
std::vector<unsigned char>).

Here is an example of using a proxy that writes the “file” to a std::vector<unsigned
char>:

// ImageSpec describing the image we want to write.
ImageSpec spec (xres, yres, channels, TypeDesc::UINTS);

std::vector<unsigned char> file_buffer; // bytes will go here
Filesystem::IOVecOutput vecout (file_buffer); // I/0O proxy object
void *ptr = &file_buffer;

spec.attribute ("oiio:ioproxy", TypeDesc::PTR, &ptr);

ImageOutput *out = ImageOutput::open ("out.exr", spec);
out->write_image (...);
ImageOutput::destroy (out);

// At this point, file_buffer will contain the "file"

3.2.13 Custom search paths for plugins

When you call ImageOutput: :create (), the OpenlmagelO library will try to find a plugin
that is able to write the format implied by your filename. These plugins are alternately known
as DLL’s on Windows (with the .d11 extension), DSO’s on Linux (with the . so extension), and
dynamic libraries on Mac OS X (with the .dylib extension).

OpenlmagelO will look for matching plugins according to search paths, which are strings
giving a list of directories to search, with each directory separated by a colon (‘:’). Within a
search path, any substrings of the form ${F00} will be replaced by the value of environment
variable FOO. For example, the searchpath "${HOME}/plugins:/shared/plugins" will first

OpenIlmagelO Programmer’s Documentation

50 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

check the directory " /home /tom/plugins" (assuming the user’s home directory is /home/tom),
and if not found there, will then check the directory "/shared/plugins™".

The first search path it will check is that stored in the environment variable 0II0 LIBRARY -
PATH. It will check each directory in turn, in the order that they are listed in the variable. If no
adequate plugin is found in any of the directories listed in this environment variable, then it will
check the custom searchpath passed as the optional second argument to ImageOutput: :create(),
searching in the order that the directories are listed. Here is an example:

char *mysearch = "/usr/myapp/lib:${HOME}/plugins";
std::unique_ptr<ImageOutput> out ImageOutput::create (filename, mysearch);

3.2.14 Error checking

Nearly every ImageOutput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the TmageOutput will have saved
an error message describing in more detail what went wrong, and the latest error message
is accessible using the ImageOutput method geterror (), which returns the message as a
std::string.

The exception to this rule is ImageOQutput : : create, which returns NULL if it could not cre-
ate an appropriate ImageOutput. And in this case, since no ImageOutput exists for which you
can callits geterror () function, there exists a global geterror () function (in the OpenImageIO
namespace) that retrieves the latest error message resulting from a call to create.

Here is another version of the simple image writing code from Section [3.1] but this time it
is fully elaborated with error checking and reporting:

#include <OpenImageIO/imageio.h>
using namespace 0IIO;

const char *filename = "foo.jpg";

const int xres = 640, yres = 480;

const int channels = 3; // RGB

unsigned char pixels[xres*yres*channels];

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out) {
std::cerr << "Could not create an ImageOutput for "
<< filename << ", error ="
<< OpenImagelO::geterror() << "\n";
return;
}

ImageSpec spec (xres, yres, channels, TypeDesc::UINTS8);

if (! out->open (filename, spec)) {
std::cerr << "Could not open " << filename
<< ", error = " << out->geterror() << "\n";
return;

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 51

if (! out->write_image (TypeDesc::UINT8, pixels)) {
std::cerr << "Could not write pixels to " << filename

<< ", error = " << out->geterror() << "\n";
return;
}
if (! out->close ()) |
std::cerr << "Error closing " << filename
<< ", error = " << out->geterror() << "\n";
return;

3.3 ImageOutput Class Reference

static std::unique ptr<ImageOutput> create (const std::string &filename,
const std::string &plugin searchpath="")

Create an ImageOutput that can be used to write an image file. The type of image
file (and hence, the particular subclass of ImageOutput returned, and the plugin that
contains its methods) is inferred from the extension of the file name. The plugin -
searchpath parameter is a colon-separated list of directories to search for OpenimagelO
plugin DSO/DLLs.

const char * format name ()

Returns the canonical name of the format that this ImageOutput instance is capable of
writing.

int supports (string_view feature) const

Given the name of a feature, tells if this ImageOutput instance supports that feature.
Most queries will simply return O for “doesn’t support the feature” and nonzero for “sup-
ports the feature,” but it is acceptable to have queries return other nonzero integers to
indicate varying degrees of support or limits (but those queries should be clearly docu-
mented as such). The following features are recognized by this query:

"tiles" Is this plugin able to write tiled images?

"rectangles" Can this plugin accept arbitrary rectangular pixel regions (via write -
rectangle ())? False indicates that pixels must be transmitted viawrite scanline()
(if scanline-oriented) orwrite tile() (iftile-oriented, and only if supports ("tiles")
returns true).

"random_access" May tiles or scanlines be written in any order? False indicates that
they must be in successive order.

"multiimage" Does this format support multiple subimages within a single file?

OpenIlmagelO Programmer’s Documentation

52

CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

"appendsubimage" Does this format support multiple subimages that can be succes-
sively appended at will, without needing to pre-declare the number and specifica-
tions the subimages when the file is first opened?

"mipmap" Does this format support resolutions per image/subimage (MIP-map levels)?
"volumes" Does this format support “3D” pixel arrays (a.k.a. volume images)?
"alpha" Does this format support an alpha channel?

"nchannels" Does this format support an arbitrary number of channels (beyond RGBA)?

"rewrite" Does this plugin allow the same scanline or tile to be sent more than once?
Generally this is true for plugins that implement some sort of interactive display,
rather than a saved image file.

"empty" Does this plugin support passing a NULL data pointer to the various write
routines to indicate that the entire data block is composed of pixels with value zero.
Plugins that support this achieve a speedup when passing blank scanlines or tiles
(since no actual data needs to be transmitted or converted).

"channelformats" Does this format writer support per-channel data formats, respect-
ing the ImageSpec’s channelformats field? (If not, it only accepts a single data
format for all channels and will ignore the channelformats field of the spec.)

"displaywindow" Does the image format support specifying a display (“full”’) window
that is distinct from the pixel data window?

"origin" Does the image format support specifying a pixel window origin (i.e., nonzero
ImageSpecx, y, z)?

"negativeorigin" Does the image format allow pixel and data window origins (i.e.,
nonzero ImageSpecx, v, z, full x, full vy, full z)to have negative values?

"deepdata" Does the image format allow “deep” data consisting of multiple values per
pixel (and potentially a differing number of values from pixel to pixel)?

"arbitrary metadata" Does the image file format allow metadata with arbitrary names
(and either arbitrary, or a reasonable set of, data types)? (Versus the file format sup-
porting only a fixed list of specific metadata names/values?

"exif" Does the image file format support Exif camera data (either specifically, or via
arbitrary named metadata)?

"iptc" Does the image file format support IPTC data (either specifically, or via arbitrary
named metadata)?

"ioproxy" Does the image file format support writing to an IOProxy?

This list of queries may be extended in future releases. Since this can be done simply by
recognizing new query strings, and does not require any new API entry points, addition
of support for new queries does not break “link compatibility” with previously-compiled
plugins.

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 53

bool open (const std::string &name, const ImageSpec &newspec,
OpenMode mode=Create)

Open the file with given name, with resolution and other format data as given in newspec.
This function returns true for success, false for failure. Note that it is legal to call
open () multiple times on the same file without a call to close (), if it supports multiim-
age and mode is AppendSubimage, or if it supports MIP-maps and mode is AppendMIPLevel
— this is interpreted as appending a subimage, or a MIP level to the current subimage, re-
spectively.

bool open (const std::string &name, int subimages, const ImageSpec *specs)

Open the file with given name, expecting to have a given total number of subimages, de-
scribed by specs[0..subimages-1]. Return true for success, false for failure. Upon
success, the first subimage will be open and ready for transmission of pixels. Subsequent
subimages will be denoted with the usual call of open (name, spec, AppendSubimage)
(and MIP levels by open (name, spec, AppendMIPLevel)).

The purpose of this call is to accommodate format-writing libraries that must know the

number and specifications of the subimages upon first opening the file; such formats can
be detected by

supports ("multiimage") && ! supports ("appendsubimage")

The individual specs passed to the appending open () calls for subsequent subimages
must match the ones originally passed.

const ImageSpec & spec ()

Returns the spec internally associated with this currently open ImageOutput.

bool close ()

Closes the currently open file associated with this ImageOutput and frees any memory
or resources associated with it.

bool write scanline (int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride)

Write the scanline that includes pixels (x,y,z) from data. For 2D non-volume images, z
isignored. The xstride value gives the data spacing of adjacent pixels (in bytes). Strides
set to the special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * format.size()

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for

OpenIlmagelO Programmer’s Documentation

54

CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

bool

bool

failure. It is a failure to call write scanline () with an out-of-order scanline if this
format driver does not support random access.

write scanlines (int ybegin, int yend, int z,
TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride)

Write a block of scanlines that include pixels (x,y,z), where ybegin <y < yend. This
is essentially identical to write scanline (), except that it can write more than one
scanline at a time, which may be more efficient for certain image format writers.

For 2D non-volume images, z is ignored. The xstride value gives the distance between
successive pixels (in bytes), and ystride gives the distance between successive scan-
lines. Strides set to the special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size ()

ystride = spec.width*xstride

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write scanline () with an out-of-order scanline if this
format driver does not support random access.

write tile (int x, int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write the tile with (x,y,z) as the upper left corner. For 2D non-volume images, z is
ignored. The three stride values give the distance (in bytes) between successive pixels,
scanlines, and volumetric slices, respectively. Strides set to the special value AutoStride
imply contiguous data in the shape of a full tile, i.e.,

xstride = spec.nchannels * format.size()

ystride = xstride * spec.tile width

zstride = ystride * spec.tile height
This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write tile () with an out-of-order tile if this format driver
does not support random access.

This function returns true if it successfully writes the tile, otherwise false for a failure.
The call will fail if the image is not tiled, or if (x,y,z) is not actually a tile boundary.

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 55

bool write tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write the tiles that include pixels xbegin < x < xend, ybegin <y < yend, zbegin <z <
zend from data, converting if necessary from format specified into the file’s native data
format. If format is TypeDesc: : UNKNOWN, the data will be assumed to already be in the
native format (including per-channel formats, if applicable). The stride values give the
data spacing of adjacent pixels, scanlines, and volumetric slices, respectively (measured
in bytes). Strides set to the special value of AutoStride imply contiguous data in the
shape of the region specified, i.e.,

xstride = spec.nchannels * spec.pixel size()

ystride = xstride * (xend - xbegin)

zstride = ystride * (yend - ybegin)
The data for those tiles is assumed to be in the usual image order, as if it were just one
big tile, and not “paded” to a whole multiple of the tile size.

This function returns true if it successfully writes the tiles, otherwise false for a failure.
The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or
image) boundaries, or if it is not a valid tile range.

bool write rectangle (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write pixels covering the range that includes pixels xbegin < x < xend, ybegin <y <
yend, zbegin < z < zend. The three stride values give the distance (in bytes) between
successive pixels, scanlines, and volumetric slices, respectively. Strides set to the special
value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size ()

ystride = xstride* (xend-xbegin)

zstride = ystride* (yend-ybegin)
This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write rectangle for a format plugin that does not return
true for supports ("rectangles").

bool write image (TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

OpenIlmagelO Programmer’s Documentation

56

CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

bool

bool

bool

bool

Write the entire image of spec.width X spec.height X spec.depth pixels, with the
given strides and in the desired format. If format is TypeDesc: : UNKNOWN, the data is
assumed to already be in the file’s native format (including per-channel formats, as spec-
ified in the ImageSpec’s channelformats field, if applicable). Strides set to the special
value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * format.size()

ystride = xstride * spec.width

zstride = ystride * spec.height
The function will internally either call write scanline() orwrite tile(), depend-
ing on whether the file is scanline- or tile-oriented.

Because this may be an expensive operation, a progress callback may be passed. Period-
ically, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been written
thus far.

write deep scanlines (int ybegin, int yend, int z,
const DeepData &deepdata)

write deep tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, const DeepData &deepdata)

write deep image (const DeepData &deepdata)

Write deep data for a block of scanlines, a block of tiles, or an entire image (analogously
to the usual write scanlines,write tiles,and write image, but with deep data).
Return true for success, false for failure.

copy image (ImageInput *in)

Read the current subimage of in, and write it as the next subimage of *this, in a way that
is efficient and does not alter pixel values, if at all possible. Both in and this must be
a properly-opened ImageInput and ImageOutput, respectively, and their current images
must match in size and number of channels. Return true if it works ok, false if for
some reason the operation wasn’t possible.

If a particular ImageOutput implementation does not supply a copy_ image method, it
will inherit the default implementation, which is to simply read scanlines or tiles from
in and write them to *this. However, some file format implementations may have a
special technique for directly copying raw pixel data from the input to the output, when
both input and output are the same file type and the same data format. This can be
more efficient than in->read image followed by out->write image, and avoids any
unintended pixel alterations, especially for formats that use lossy compression.

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 57

int send to output (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

void threads (int n)
int threads () const

Get or set the threading policy for this ImageOutput, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during large write operations. The default
of 0 means that the global attribute ("threads") value should be used (which itself
defaults to using as many threads as cores; see Section [2.8).

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

std::string geterror ()

Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called erroxr ()
with a helpful error message.)

OpenIlmagelO Programmer’s Documentation

58

CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

OpenlmagelO Programmer’s Documentation

4

4.1

Imagelnput: Reading Images

Image Input Made Simple

Here is the simplest sequence required to open an image file, find out its resolution, and read the
pixels (converting them into 8-bit values in memory, even if that’s not the way they’re stored in
the file):

#include <OpenlmagelO/imageio.h>
using namespace 0IIO;

auto in = Imagelnput::open (filename);
if (! in)
return;
const ImageSpec &spec = in->spec();
int xres = spec.width;
int yres = spec.height;
int channels = spec.nchannels;
std::vector<unsigned char> pixels (xres*yres*channels);
in->read_image (TypeDesc::UINT8, &pixels[0]);
in->close ();

Here is a breakdown of what work this code is doing:

e Search for an ImagelO plugin that is capable of reading the file ("foo. jpg"), first by

trying to deduce the correct plugin from the file extension, but if that fails, by opening
every ImagelO plugin it can find until one will open the file without error. When it finds
the right plugin, it creates a subclass instance of ImageInput that reads the right kind of
file format, and tries to fully open the file. The open () method returns a std: :unique_ -
ptr<ImageInput> that will be automatically freed when it exits scope.

auto in = Imagelnput::open (filename);
The specification, accessible as in->spec (), contains vital information such as the di-
mensions of the image, number of color channels, and data type of the pixel values. This

is enough to allow us to allocate enough space for the image.

const ImageSpec &spec = in->spec();
int xres = spec.width;

59

60 CHAPTER 4. IMAGEINPUT: READING IMAGES

int yres = spec.height;
int channels = spec.nchannels;
std::vector<unsigned char> pixels (xres*yres*channels);

Note that in this example, we don’t care what data format is used for the pixel data in the
file — we allocate enough space for unsigned 8-bit integer pixel values, and will rely on
OpenlmagelQO’s ability to convert to our requested format from the native data format of
the file.

e Read the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of the data in the file (in this
case, we request that it be automatically converted to unsigned 8-bit integers).

in->read_image (TypeDesc::UINT8, &pixels[0]);

e Close the file.

in->close ();

e When in exits its scope, the ImageInput will automatically be destroyed and any re-
sources used by the plugin will be released.

4.2 Advanced Image Input

Let’s walk through some of the most common things you might want to do, but that are more
complex than the simple example above.

4.2.1 Reading individual scanlines and tiles

The simple example of Section4.1|read an entire image with one call. But sometimes you want
to read a large image a little at a time and do not wish to retain the entire image in memory as
you process it. OpenlmagelO allows you to read images one scanline at a time or one tile at a
time.

Examining the ImageSpec reveals whether the file is scanline or tile-oriented: a scanline
image will have spec.tile width and spec.tile height set to 0, whereas a tiled images
will have nonzero values for the tile dimensions.

Reading scanlines

Individual scanlines may be read using the read scanline () API call:

auto in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();
if (spec.tile_width == 0) {

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 61

std::vector<unsigned char> scanline (spec.width*spec.channels);
for (int y = 0; y < yres; ++y) {
in->read_scanline (y, 0, TypeDesc::UINT8, &scanline[0]);
. process data in scanline[0..width*channels-1]

}
} else {
. handle tiles, or reject the file ...

}

in->close ();

The first two arguments to read scanline () specify which scanline is being read by its
vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number (the
slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc describ-
ing the data type of the pixel buffer you are supplying, and a pointer to the pixel buffer itself.
Additional optional arguments describe the data stride, which can be ignored for contiguous
data (use of strides is explained in Section [4.2.3).

Nearly all ImageInput implementations will be most efficient reading scanlines in strict
order (starting with scanline 0, then 1, up to yres-1, without skipping any). An ImageInput
is required to accept read_ scanline () requests in arbitrary order, but depending on the file
format and reader implementation, out-of-order scanline reads may be inefficient.

There is also a read scanlines () function that operates similarly, except that it takes a
ybegin and yend that specify a range, reading all scanlines ybegin <y < yend. For most
image format readers, this is implemented as a loop over individual scanlines, but some image
format readers may be able to read a contiguous block of scanlines more efficiently than reading
each one individually.

The full descriptions of the read scanline() and read scanlines () functions may be
found in Section 4.3

Reading tiles

Once you open () an image file, you can find out if it is a tiled image (and the tile size) by exam-
ining the ImageSpec’s tile width, tile height, and tile depth fields. If they are zero,
it’s a scanline image and you should read pixels using read scanline (), not read tile().

auto in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();
if (spec.tile_width == 0) {
. read by scanline ...
} else {
// Tiles
int tilesize = spec.tile_width * spec.tile_height;
std::vector<unsigned char> tile (tilesize * spec.channels);
for (int y = 0; vy < yres; vy += spec.tile_height) {
for (int x = 0; x < xres; x += spec.tile_width) {
in->read_tile (x, y, 0, TypeDesc::UINT8, &tile[0]);
. process the pixels in tile[]

OpenIlmagelO Programmer’s Documentation

62 CHAPTER 4. IMAGEINPUT: READING IMAGES

}
}

in->close ();

The first three arguments to read tile () specify which tile is being read by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing the
data format of the pixel buffer you are supplying, and a pointer to the pixel buffer. Pixel data
will be written to your buffer in order of increasing slice, increasing scanline within each slice,
and increasing column within each scanline. Additional optional arguments describe the data
stride, which can be ignored for contiguous data (use of strides is explained in Section4.2.3).

All ImageInput implementations are required to support reading tiles in arbitrary order
(i.e., not in strict order of increasing y rows, and within each row, increasing x column, without
missing any tiles).

The full description of the read tile () function may be found in Section

4.2.2 Converting formats

The code examples of the previous sections all assumed that your internal pixel data is stored
as unsigned 8-bit integers (i.e., 0-255 range). But OpenlmagelO is significantly more flexible.

You may request that the pixels be stored in any of several formats. This is done merely
by passing the read function the data type of your pixel buffer, as one of the enumerated type
TypeDesc.

It is not required that the pixel data buffer passed to read image(), read scanline(),
or read_tile() actually be in the same data format as the data in the file being read. Open-
ImagelO will automatically convert from native data type of the file to the internal data format
of your choice. For example, the following code will open a TIFF and read pixels into your
internal buffer represented as float values. This will work regardless of whether the TIFF file
itself is using 8-bit, 16-bit, or float values.

std::unique_ptr<Imagelnput> in = Imagelnput::open ("myfile.tif");
const ImageSpec &spec = in->spec();

int numpixels = spec.width * spec.height;
float pixels = new float [numpixels * channels];

in->read_image (TypeDesc::FLOAT, pixels);

Note that read scanline() and read tile () have a parameter that works in a correspond-
ing manner.

You can, of course, find out the native type of the file simply by examining spec.format.
If you wish, you may then allocate a buffer big enough for an image of that type and request
the native type when reading, therefore eliminating any translation among types and seeing the
actual numerical values in the file.

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 63

4.2.3 Data Strides

In the preceeding examples, we have assumed that the buffer passed to the read functions (i.e.,
the place where you want your pixels to be stored) is contiguous, that is:

e cach pixel in memory consists of a number of data values equal to the number of channels
in the file;

e successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x — 1 of the same row;

e for whole images or tiles, the data for each row immediately follows the previous one in
memory (the first pixel of row y immediately follows the last column of row y — 1);

e for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z— 1.

Please note that this implies that read_tile () will write pixel data into your buffer so that
it is contiguous in the shape of a single tile, not just an offset into a whole image worth of pixels.

The read scanline () function takes an optional xst ride argument, and the read image ()
and read tile() functions take optional xstride, ystride, and zstride values that de-
scribe the distance, in bytes, between successive pixel columns, rows, and slices, respectively,
of your pixel buffer. For any of these values that are not supplied, or are given as the special
constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.
A few representative examples follow:

e Flip an image vertically upon reading, by using negative y stride:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int scanlinesize = spec.width * spec.nchannels * sizeof (pixels[0]);

in->read_image (TypeDesc::UINTS,
(char *)pixels+(yres-1)*scanlinesize, // offset to last

AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

e Read a tile into its spot in a buffer whose layout matches a whole image of pixel data,
rather than having a one-tile-only memory layout:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int pixelsize = spec.nchannels * sizeof (pixels[0]);
int scanlinesize = xpec.width * pixelsize;

in->read_tile (x, y, 0, TypeDesc::UINTS,
(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

OpenIlmagelO Programmer’s Documentation

64 CHAPTER 4. IMAGEINPUT: READING IMAGES

Please consult Section [4.3] for detailed descriptions of the stride parameters to each read
function.

4.2.4 Reading metadata

The ImageSpec that is filled in by TmageInput: :open () specifies all the common properties
that describe an image: data format, dimensions, number of channels, tiling. However, there
may be a variety of additional metadata that are present in the image file and could be queried
by your application.

The remainder of this section explains how to query additional metadata in the TmageSpec.
It is up to the ImageInput to read these from the file, if indeed the file format is able to carry
additional data. Individual ImageInput implementations should document which metadata
they read.

Channel names

In addition to specifying the number of color channels, the ImageSpec also stores the names of
those channels in its channelnames field, which is a vector<std: :string>. Its length should
always be equal to the number of channels (it’s the responsibility of the ImageInput to ensure
this).

Only a few file formats (and thus ImageInput implementations) have a way of specifying
custom channel names, so most of the time you will see that the channel names follow the
default convention of being named "R", "G", "B", and "A", for red, green, blue, and alpha,
respectively.

Here is example code that prints the names of the channels in an image:

ImageInput *in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();
for (int 1 = 0; 1 < spec.nchannels; ++1i)
std::cout << "Channel " << 1 << " is "
<< spec.channelnames[i] << "\n";

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which designate which
channel numbers represent alpha and z depth, if any. If either is set to -1, it indicates that it is
not known which channel is used for that data.

If you are doing something special with alpha or depth, it is probably safer to respect the
alpha channel and z channel designations (if not set to -1) rather than merely assuming
that, for example, channel 3 is always the alpha channel.

Arbitrary metadata

All other metadata found in the file will be stored in the ImageSpec’s extra attribs field,
which is a ParamValueList, which is itself essentially a vector of ParamValue instances. Each
ParamValue stores one meta-datum consisting of a name, type (specified by a TypeDesc),
number of values, and data pointer.

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 65

If you know the name of a specific piece of metadata you want to use, you can find it
using the ImageSpec::find_attribute () method, which returns a pointer to the matching
ParamValue, or NULL if no match was found. An optional TypeDesc argument can narrow
the search to only parameters that match the specified type as well as the name. Below is an
example that looks for orientation information, expecting it to consist of a single integer:

ImageInput *in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();

ParamValue *p = spec.find_attribute ("Orientation", Typelnt);

if (p) {
int orientation = * (int *) p->data();
} else {

std::cout << "No integer orientation in the file\n";

By convention, ImageInput plugins will save all integer metadata as 32-bit integers (TypeDesc:

or TypeDesc: :UINT), even if the file format dictates that a particular item is stored in the file
as a 8- or 16-bit integer. This is just to keep client applications from having to deal with all
the types. Since there is relatively little metadata compared to pixel data, there’s no real mem-
ory waste of promoting all integer types to int32 metadata. Floating-point metadata and string
metadata may also exist, of course.

For certain common types, there is an even simpler method for retrieving the metadata:

int i = spec.get_int_attribute ("Orientation", 0);
float f = spec.get_float_attribute ("PixelAspectRatio", 1.0f);
std::string s = spec.get_string_attribute ("ImageDescription", "");

This method simply returns the value. The second argument is the default value to use if the
attribute named is not found. These versions will do automatic type conversion as well — for
example, if you ask for a float and the attribute is really an int, it will return the proper float for
it; or if the attribute is a UINT16 and you call get int attribute, it will succeed, promoting
to an int.

It is also possible to step through all the metadata, item by item. This can be accomplished
using the technique of the following example:

for (size_t 1 = 0; 1 < spec.extra_attribs.size(); ++1i) {
const ParamValue &p (spec.extra_attribs[i]);

printf (" %s: ", p.name.c_str());
if (p.type() == TypeString)

printf ("\"\%s\"", *(const char **)p.data());
else if (p.type() == TypeFloat)

printf ("\%g", *(const float *)p.data());
else 1if (p.type() == Typelnt)

printf ("\%d", *(const int *)p.data());
else if (p.type() == TypeDesc::UINT)

printf ("\%u", *(const unsigned int *)p.data());
else 1f (p.type() == TypeMatrix) ({

const float *f = (const float *)p.data();

OpenIlmagelO Programmer’s Documentation

¢ INT

66 CHAPTER 4. IMAGEINPUT: READING IMAGES

printf ("\$f \$f \%f \&%f \%f \%f \%f \%f "
"\%f \SE \%f \&f \%f \%f \%f \%f",
fro1, £riy, f£[21, £r31, f£r41, £rs51, frel, f£[71,
£181, £19], £[10], f[11), f£[12], £[13], f[14], £[15]);
}
else
printf (" <unknown data type> ");
printf ("\n");

}

Each individual ImageInput implementation should document the names, types, and mean-
ings of all metadata attributes that they understand.

Color space hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

The ImageSpec: :extra_attribs field may store metadata that reveals the color space the
image file in the "oiio:ColorSpace" attribute (see Section for explanations of particular
values).

The ImageInput sets the "oiio:ColorSpace" metadata in a purely advisory capacity —
the read will not convert pixel values among color spaces. Many image file formats only sup-
port nonlinear color spaces (for example, JPEG/JFIF dictates use of SRGB). So your application
should intelligently deal with gamma-corrected and sRGB input, at the very least.

The color space hints only describe color channels. You should assume that alpha or depth
(z) channels (designated by the alpha channel and z channel fields, respectively) always
represent linear values and should never be transformed by your application.

4.2.5 Multi-image files and MIP-maps

Some image file formats support multiple discrete subimages to be stored in one file, and/or
miltiple resolutions for each image to form a MIPmap. When you open () an ImageInput, it
will by default point to the first (i.e., number 0) subimage in the file, and the highest resolution
(Ievel 0) MIP-map level. You can switch to viewing another subimage or MIP-map level using
the seek subimage () function:

ImageInput *in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();

int subimage 1;
int miplevel = 0;
if (in->seek_subimage (subimage, miplevel, spec)) {

} else {
. no such subimage/miplevel ...

}

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 67

The seek__subimage () function takes three arguments: the index of the subimage to switch
to (starting with 0), the MIPmap level (starting with O for the highest-resolution level), and a
reference to an ImageSpec, into which will be stored the spec of the new subimage/miplevel.
The seek subimage () function returns true upon success, and false if no such subimage or
MIP level existed. It is legal to visit subimages and MIP levels out of order; the TmageInput is
responsible for making it work properly. It is also possible to find out which subimage and MIP
level is currently being viewed, using the current subimage () and current miplevel ()
functions, which return the index of the current subimage and MIP levels, respectively.

Below is pseudocode for reading all the levels of a MIP-map (a multi-resolution image used
for texture mapping) that shows how to read multi-image files:

auto in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();

int num_miplevels = 0;

while (in->seek_subimage (0, num_miplevels, spec)) {
// Note: spec has the format of the current subimage/miplevel
int npixels = spec.width * spec.height;
int nchannels = spec.nchannels;
unsigned char *pixels = new unsigned char [npixels * nchannels];
in->read_image (TypeDesc::UINT8, pixels);

. do whatever you want with this level, in pixels ...

delete [] pixels;
++num_miplevels;

}
// Note: we break out of the while loop when seek_subimage fails
// to find a next MIP level.

in->close ();
In this example, we have used read image (), but of course read scanline () and read tile()
work as you would expect, on the current subimage and MIP level.

4.2.6 Per-channel formats

Some image formats allow separate per-channel data formats (for example, half data for colors
and float data for depth). If you want to read the pixels in their true native per-channel formats,
the following steps are necessary:

1. Check the ImageSpec’s channelformats vector. If non-empty, the channels in the file
do not all have the same format.

2. Whencalling read_ scanline, read_scanlines,read_tile,read_ tiles,orread_-
image, pass a format of TypeDesc: : UNKNOWN to indicate that you would like the raw data
in native per-channel format of the file written to your data buffer.

For example, the following code fragment will read a 5-channel image to an OpenEXR file,
consisting of R/G/B/A channels in half and a Z channel in float:

OpenIlmagelO Programmer’s Documentation

68 CHAPTER 4. IMAGEINPUT: READING IMAGES

ImageInput *in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();

// Allocate enough space
unsigned char *pixels = new unsigned char [spec.image_bytes(true)];

in->read_image (TypeDesc::UNKNOWN, /* use native channel formats */
pixels); /* data buffer */

if (spec.channelformats.size() > 0) {
. the buffer contains packed data in the native
per-channel formats
} else {
. the buffer contains all data per spec.format

4.2.7 Reading “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels —
those containing multiple samples per pixel (and a potentially differing number of them in each
pixel). You can tell an image is “deep” from its ImageSpec: the deep field will be true.

Deep files cannot be read with the usual read scanline, read scanlines, read tile,
read_tiles, read_image functions, due to the nature of their variable number of samples
per pixel. Instead, ImageInput has three special member functions used only for reading deep
data:

bool read_native_deep_scanlines (int subimage, int miplevel,
int ybegin, int yend, int z,
int chbegin, int chend,
DeepData &deepdata);

bool read_native_deep_tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin int yend,
int zbegin, int zend,
int chbegin, int chend, DeepData &deepdata);

bool read_native_deep_image (int subimage, int miplevel,
DeepData &deepdata);

It is only possible to read “native” data types from deep files; that is, there is no automatic
translation into arbitrary data types as there is for ordinary images. All three of these functions
store the resulting deep data in a special DeepData structure, described in detail in Section[2.7]

Here is an example of using these methods to read a deep image from a file and print all its
values:

auto in = Imagelnput::open (filename);
if (! in)

return;
const ImageSpec &spec = in->spec();

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 69

if (spec.deep) {
DeepData deepdata;
in->read_native_deep_image (0, 0, deepdata);
int p = 0; // absolute pixel number
for (int y = 0; y < spec.height; ++y) {
for (int x = 0; x < spec.width; ++x, ++p) {
std::cout << "Pixel " << x << ", " <<y << ":\n";
if (deepdata.samples(p) == 0)
std::cout << " no samples\n";
else
for (int ¢ = 0; ¢ < spec.nchannels; ++c) {
TypeDesc type = deepdata.channeltype (c);
std::cout << " " << spec.channelnames[c] << ": ";
void *ptr = deepdata.pointers[p*spec.nchannels+c]
for (int s = 0; s < deepdata.samples(p); ++s) {
if (type.basetype == TypeDesc::FLOAT ||
type.basetype == TypeDesc::HALF)
std::cout << deepdata.deep_value(p, ¢, s) << ' 7/,
else 1f (type.basetype == TypeDesc::UINT32)
std::cout << deepdata.deep_value_uint(p, c, s) <<’
}

std::cout << "\n";

}

in->close ();

4.2.8 Custom /O proxies (and reading the file from a memory buffer)

Some file format readers allow you to supply a custom I/O proxy object that can allow bypassing
the usual file I/O with custom behavior, including the ability to read the file form an in-memory
buffer rather than reading from disk.

Only some input format readers support this feature. To find out if a particular file format
supports this feature, you can create an ImageInput of the right type, and check if it supports
the feature name "ioproxy":

ImageInput *in = Imagelnput::create (filename);
if (! in || ! in->supports ("ioproxy")) {
ImagelInput::destroy (in);
in = nullptr;
return;

}

r .
I

NEW!

ImageInput readers that support "ioproxy" will respond to a special attribute, "oiio:ioproxy",

which passes a pointer to a Filesystem: : I0Proxy* (see OpenlmagelO’s filesystem.h for
this type and its subclasses). IOProxy is an abstract type, and concrete subclasses include
I0File (which wraps I/O to an open FILE*) and IOMemReader (which reads input from a
block of memory).

Here is an example of using a proxy that reads the “file” from a memory buffer:

OpenIlmagelO Programmer’s Documentation

70 CHAPTER 4. IMAGEINPUT: READING IMAGES

const void *buf = ...; // pointer to memory block
size_t size = ...; // length of memory block

ImageSpec config; // ImageSpec describing input configuration options
Filesystem::IOMemReader memreader (buf, size); // I/0 proxy object
void *ptr = &memreader;

config.attribute ("oiio:ioproxy", TypeDesc::PTR, &ptr);

ImageSpec spec;

ImageInput *in = Imagelnput::open ("in.exr", spec, &config);
in->read_image (...);

ImageInput::destroy (in);

// That will have read the "file" from the memory buffer

4.2.9 Custom search paths for plugins

Please see Section [2.8]for discussion about setting the plugin search path via the attribute ()
function. For example:

std::string mysearch = "/usr/myapp/lib:${HOME}/plugins";
OpenImagelO::attribute ("plugin_searchpath", mysearch);
ImageInput *in = Imagelnput::open (filename);

4.2.10 Error checking

Nearly every ImageInput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the ImageInput will have saved an er-
ror message describing in more detail what went wrong, and the latest error message is accessi-
ble using the ImageInput method geterror (), which returns the message as a std: :string.

The exceptions to this rule are static methods such as the static ImageInput::open and
Imagelnput::create, which return an empty pointer if it could not create an appropriate
ImageInput (and open it, in the case of open (). In such a case, since no ImageInput is
returned for which you can call its geterror () function, there exists a global geterror ()
function (in the OpenImageIO namespace) that retrieves the latest error message resulting from
a call to static open () or create().

Here is another version of the simple image reading code from Section {.T] but this time it
is fully elaborated with error checking and reporting:

#include <OpenImagelIO/imageio.h>

using namespace 0IIO;

const char *filename = "foo.jpg";
int xres, yres, channels;
std::vector<unsigned char> pixels;

auto in = Imagelnput::open (filename);

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT

71

if (! in) {
std::cerr << "Could not open " << filename
<< ", error = " << OpenlmagelO::geterror() << "\n";
return;

}

const ImageSpec &spec = in->spec();
xres = spec.width;

yres = spec.height;

channels = spec.nchannels;
pixels.resize (xres*yres*channels);

if (! in->read_image (TypeDesc::UINT8, &pixels[0])) {
std::cerr << "Could not read pixels from " << filename

<< ", error = " << in->geterror() << "\n";
return;
}
if (! in->close ()) {
std::cerr << "Error closing " << filename
<< ", error = " << in->geterror() << "\n";
return;

OpenIlmagelO Programmer’s Documentation

72 CHAPTER 4. IMAGEINPUT: READING IMAGES

4.3 ImageInput Class Reference

std::unique_ ptr<ImageInput> open (const std::string &filename,
const ImageSpec *config=nullptr)

Create an ImageInput subclass instance that is able to read the given file and open it.
The return value is a managed unique pointer, with an included deleter that will properly
dispose the ImageInput when it exists its scope. If the open fails, return an empty pointer
and set an error that can be retrieved by OpenImageIO: :geterror ().

The config, if not nullptr, points to an ImageSpec giving requests or special instruc-
tions. ImageInput implementations are free to not respond to any such requests, so the
default implementation is just to ignore config.

The open () function will first try to make an ImageInput corresponding to the format
implied by the file extension (for example, "foo.tif" will try the TIFF plugin), but if
one is not found or if the inferred one does not open the file, every known ImageInput
type will be tried until one is found that will open the file.

std::unique ptr<Imagelnput> create (const std::string &filename,
bool do_open=false, const ImageSpec *config=nullptr,
string view plugin searchpath="")

Create and return an ImageInput implementation that is able to read the given file. If
do_open is true, fully open it if possible (using the optional configuration spec, if sup-
plied), otherwise just create the ImageInput butdon’t openit. The plugin searchpath
parameter is an override of the searchpath, colon-separated list of directories to search for
OpenlmagelO plugin DSO/DLL’s (not a searchpath for the image itself!). This will actu-
ally just try every ImagelO plugin it can locate, until it finds one that’s able to open the
file without error. This just creates the ImageInput, it does not open the file.

const char * format name (void) const

Return the name of the format implemented by this class.

int supports (string_view feature)

Given the name of a feature, tells if this ImageInput instance supports that feature. Most
queries will simply return O for “doesn’t support the feature” and nonzero for “supports
the feature,” but it is acceptable to have queries return other nonzero integers to indicate
varying degrees of support or limits (but those queries should be clearly documented as
such). The following features are recognized by this query:

"arbitrary metadata" Does the image file format allow metadata with arbitrary
names (and either arbitrary, or a reasonable set of, data types)? (Versus the file
format supporting only a fixed list of specific metadata names/values?

OpenlmagelO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 73

"exif" Does the image file format support Exif camera data (either specifically, or via
arbitrary named metadata)?

"iptc" Does the image file format support IPTC data (either specifically, or via arbitrary
named metadata)?

"procedural" Might the image “file format” generate pixels procedurally, without the
need for any disk file to be present?

Does the image file format support reading from an I0Proxy?

bool walid file (const std::string &filename) const

"ioproxy" Return true if the named file is a file of the type for this ImageInput. The im-
plementation will try to determine this as efficiently as possible, in most cases much less
expensively than doing a full open (). Note that a file can appear to be of the right type
(i.e., valid file() returning true) but still fail a subsequent call to open (), such as if
the contents of the file are truncated, nonsensical, or otherwise corrupted.

bool open (const std::string &name, ImageSpec &newspec)

Opens the file with given name and seek to the first subimage in the file. Various file
attributes are put in newspec and a copy is also saved internally to the ImageInput (re-
trievable via spec (). From examining newspec or spec (), you can discern the resolu-
tion, if it’s tiled, number of channels, native data format, and other metadata about the
image. Return true if the file was found and opened okay, otherwise false.

bool open (const std::string &name, ImageSpec &newspec,
const ImageSpec &config)

Opens the file with given name, similarly to open (name, newspec). However, in this
version, any non-default fields of config, including metadata, will be taken to be con-
figuration requests, preferences, or hints. The default implementation of open (name,
newspec, config) will simply ignore config and calls the usual open (name, newspec).
But a plugin may choose to implement this version of open and respond in some way to
the configuration requests. Supported configuration requests should be documented by
each plugin.

const ImageSpec & spec (void) const

Returns a reference to the image format specification of the current subimage. Note that
the contents of the spec are invalid before open () or after close ().

OpenIlmagelO Programmer’s Documentation

74

CHAPTER 4. IMAGEINPUT: READING IMAGES

ImageSpec spec (int subimage, int miplevel=0)
ImageSpec spec_dimensions (int subimage, int miplevel=0)

bool

Both of these thread-safe methods return a copy of the ImageSpec of the designated
subimage/miplevel.

The spec () method returns a full copy of the ImageSpec, including all metadata (which
may be expensive). The spec_ dimensions () method only copies the dimension fields
but none of the arbitrary named metadata (just as with a call to ImageSpec: :copy -
dimensions ()), and thus is relatively inexpensive.

close ()

Closes an open image.

int current subimage (void) const
int current miplevel (void) const

bool

bool

Returns the index of the subimage and MIP level, respectively, that is currently being
read. Subimage and MIP level index numbers begin with 0.

seek subimage (int subimage, int miplevel, ImageSpec &newspec)

Seek to the given subimage and MIP-map level within the open image file. The first
subimage in the file has index 0, and for each subimage, the highest-resolution MIP level
has index 0. Return true on success, false on failure (including that there is not a
subimage or MIP level with those indices). The new subimage’s vital statistics are put
in newspec (and also saved internally in a way that can be retrieved via spec ()). The
ImageInput is expected to give the appearance of random access to subimages and MIP
levels — in other words, if it can’t randomly seek to the given subimage or MIP level,
it should transparently close, reopen, and sequentially read through prior subimages and
levels.

read scanline (int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride)

Read the scanline that includes pixels (x,y,z) into data (z = 0 for non-volume images),
converting if necessary from the native data format of the file into the format specified. If
format is TypeDesc: : UNKNOWN, the data will be preserved in its native format (including
per-channel formats, if applicable). The xstride value gives the data spacing of adjacent
pixels (in bytes). Strides set to the special value AutoStride imply contiguous data, i.e.,
xstride = spec.nchannels * spec.pixel size()

The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given scanline, it should transparently close, reopen,
and sequentially read through prior scanlines. The base ImageInput class has a default
implementation that calls read native scanline () and then does appropriate format
conversion, so there’s no reason for each format plugin to override this method.

OpenlmagelO Programmer’s Documentation

NEW!

4.3. IMAGEINPUT CLASS REFERENCE 75

bool

bool

bool

read scanline (int y, int z, float *data)

This simplified version of read scanline () reads to contiguous float pixels.

read scanlines (int subimage, int miplevel
int ybegin, int yend, int gz,
int chbegin, int chend, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride)

Read from the specified subimage and MIP level all the scanlines that include pixels
(*,y,2), where ybegin <y < yend, and the given channel subset chbegin < ¢ < chend,
into data, converting if necessary from the file’s native data format to the specified buffer
format. If format is TypeDesc: : UNKNOWN, the data will be preserved in its native format
(including per-channel formats, if applicable). The stride values give the data spacing of
adjacent pixels and scanlines, respectively (measured in bytes). Strides set to the special
value of AutoStride imply contiguous data in the shape of the region specified, i.e.,

xstride = spec.pixel size() * (chend - chbegin)

ystride = xstride * (xend - xbegin)

This function returns true if it successfully reads the scanlines, otherwise false for a
failure.

This function is guaranteed to be thread-safe against other concurrent calls to the read_ -
tiles() or read scanlines () varieties that takes explicit subimage and miplevel (but
not necessarily against any other ImageInput methods).

This call was changed for OpenimagelO 1.9 to include the explicit subimage and miplevel
parameters. The previous versions, which lacked subimage and miplevel parameters (thus
were dependent on a prior call to seek subimage) are considered deprecated.

read tile (int x, int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Read the tile whose upper-left origin is (x,y,z) into data (z = 0 for non-volume images),
converting if necessary from the native data format of the file into the format specified. If
format is TypeDesc: : UNKNOWN, the data will be preserved in its native format (including
per-channel formats, if applicable). The stride values give the data spacing of adjacent
pixels, scanlines, and volumetric slices, respectively (measured in bytes). Strides set to
the special value of AutoStride imply contiguous data in the shape of a full tile, i.e.,

xstride = spec.nchannels * spec.pixel size()

ystride = xstride * spec.tile width

zstride = ystride * spec.tile height
The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given tile, it should transparently close, reopen, and se-
quentially read through prior tiles. The base ImageInput class has a default implemen-
tation that calls read native tile() and then does appropriate format conversion, so
there’s no reason for each format plugin to override this method.

OpenIlmagelO Programmer’s Documentation

NEW!

76

CHAPTER 4. IMAGEINPUT: READING IMAGES

NEW!

bool

bool

This function returns t rue if it successfully reads the tile, otherwise false for a failure.
The call will fail if the image is not tiled, or if (x,y,z) is not actually a tile boundary.

read tile (int x, int y, int z, float *data)

Simple version of read tile that reads to contiguous float pixels.

read tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Read the tiles bounded by xbegin < x < xend, ybegin <y < yend, zbegin <z <
zend, and the given channel subset chbegin < ¢ < chend, into data, converting if nec-
essary from the file’s native data format into the specified buffer format. If format
is TypeDesc: : UNKNOWN, the data will be preserved in its native format (including per-
channel formats, if applicable). The stride values give the data spacing of adjacent pixels,
scanlines, and volumetric slices, respectively (measured in bytes). Strides set to the spe-
cial value of AutoStride imply contiguous data in the shape of the region specified, i.e.,

xstride = spec.pixel size() * (chend - chbegin)

ystride = xstride * (xend - xbegin)

zstride = ystride * (yend - ybegin)
The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given tile, it should transparently close, reopen, and se-
quentially read through prior tiles. The base ImageInput class has a default implementa-
tion that calls read native tiles () and then does appropriate format conversion, so
there’s no reason for each format plugin to override this method.

This function returns t rue if it successfully reads the tiles, otherwise false for a failure.
The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or
image) boundaries, or if it is not a valid tile range.

This function is guaranteed to be thread-safe against other concurrent calls to the read_ -
tiles() or read_scanlines () varieties that takes explicit subimage and miplevel (but
not necessarily against any other ImageInput methods).

This call was changed for OpenimagelO 1.9 to include the explicit subimage and miplevel
parameters. The previous versions, which lacked subimage and miplevel parameters (thus
were dependent on a prior call to seek__subimage) are considered deprecated.

OpenlmagelO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 77

bool

bool

bool

read image (TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

read image (int subimage, int miplevel, int chbegin, int chend,
TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Read the entire image of spec.width * spec.height * spec.depth pixels into data
(which must already be sized large enough for the entire image) with the given strides,
converting into the desired data format. If format is TypeDesc: : UNKNOWN, the data will
be preserved in its native format (including per-channel formats, if applicable). This
function will automatically handle either tiles or scanlines in the file.

Strides set to the special value of AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * pixel size()

ystride = xstride * spec.width

zstride = ystride * spec.height
The function will internally either call read scanlines or read tiles, depending on
whether the file is scanline- or tile-oriented.

The version that specifies a channel range will read only channels [chbegin,chend) into
the buffer.

Because this may be an expensive operation, a progress callback may be passed. Period-
ically, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been read thus
far.

The version of read_image that takes explicit subimage and miplevel parameters is
guaranteed to be thread-safe against other concurrent calls to the read scanlines(),
read_tiles(),or read_image () varieties that take an explicit subimage and miplevel
(but not necessarily against any other ImageInput methods).

read image (float *data)

Simple version of read image () reads to contiguous float pixels.

NEW!

OpenIlmagelO Programmer’s Documentation

78 CHAPTER 4. IMAGEINPUT: READING IMAGES

bool read native scanline (int subimage, int miplevel,
int y, int z, void *data)

The read_native_scanline () function is just like read scanline (), except that it
keeps the data in the native format of the disk file and always reads into contiguous mem-
ory (no strides). It’s up to the user to have enough space allocated and know what to do
with the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE
THIS METHOD.

bool read native scanlines (int subimage, int miplevel,
int ybegin, int yend, int z, void *data)

The read native scanlines () functionis justlike read native scanline,except
that it reads a range of scanlines rather than only one scanline. It is not necessary for
format plugins to override this method — a default implementation in the ImageInput
base class simply calls read native scanline for each scanline in the range. But
format plugins may optionally override this method if there is a way to achieve higher
performance by reading multiple scanlines at once.

bool read native scanlines (int subimage, int miplevel,
int ybegin, int yend, int z, int chbegin, int chend, void *data)

A variant of read native scanlines thatreads only a subset of channels
[chbegin,chend). If a format reader subclass does not override this method, the default
implementation will simply call the all-channel version of read_native_ scanlines
into a temporary buffer and copy the subset of channels.

bool read native tile (int subimage, int miplevel,
int x, int y, int z, void *data)

The read native tile() function is just like read tile (), except that it keeps the
data in the native format of the disk file and always read into contiguous memory (no
strides). It’s up to the user to have enough space allocated and know what to do with
the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE THIS
METHOD IF IT SUPPORTS TILED IMAGES.

bool read native tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, void *data)

The read_native_ tiles() function is just like read tiles(), except that it keeps
the data in the native format of the disk file and always read into contiguous memory (no
strides). If a format reader does not override this method, the default implementation it
will simply be a loop calling read native_ tile for each tile in the block.

OpenlmagelO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 79

bool read native tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend, void *data)

A variant of read_native_tiles() that reads only a subset of channels
[chbegin,chend). If a format reader subclass does not override this method, the default
implementation will simply call the all-channel version of read_native_tiles into a
temporary buffer and copy the subset of channels.

bool read native deep scanlines (int subimage, int miplevel,
int ybegin, int yend, int z, int chbegin, int chend,

bigspc DeepData &deepdata)
bool read native deep tiles (int subimage, int miplevel,

int xbegin, int xend, int ybegin, int yend,

int zbegin, int zend, int chbegin, int chend, DeepData &deepdata)
bool read native deep image (int subimage, int miplevel, DeepData &deepdata)

Read native deep data from scanlines, tiles, or an entire image, storing the results in
deepdata (analogously to the usual read scanlines, read tiles, and read image,
but with deep data). Only channels [chbegin,chend) will be read. Note that for the
scanline variety, the roi’s x range must specify the complete width of the image, and the
z range must be a single plane. For the tile variety, the roi must specify a whole number
of tiles.

int send to_ input (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

void threads (int n)
int threads () const

Get or set the threading policy for this ImageInput, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during large read operations. The default
of 0 means that the global attribute ("threads") value should be used (which itself
defaults to using as many threads as cores; see Section [2.8).

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

OpenIlmagelO Programmer’s Documentation

80

CHAPTER 4. IMAGEINPUT: READING IMAGES

std::

string geterror () const
Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called error ()

with a helpful error message.)

OpenlmagelO Programmer’s Documentation

5 Writing ImagelO Plugins

5.1 Plugin Introduction

As explained in Chapters 4| and |3} the ImagelO library does not know how to read or write any
particular image formats, but rather relies on plugins located and loaded dynamically at run-
time. This set of plugins, and therefore the set of image file formats that OpenimagelO or its
clients can read and write, is extensible without needing to modify OpenlmagelO itself.

This chapter explains how to write your own OpenlmagelO plugins. We will first explain
separately how to write image file readers and writers, then tie up the loose ends of how to build
the plugins themselves.

5.2 Image Readers

A plugin that reads a particular image file format must implement a subclass of ImageInput
(described in Chapter [d)). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h. It may also be helpful to enclose the
contents of your plugin in the same namespace that the OpenimagelQ library uses:

#include <OpenImagelO/imageio.h>
OITIO_PLUGIN_NAMESPACE_BEGIN

. everything else ...

OITO_PLUGIN_NAMESPACE_END

2. Declare these public items:

(a) An integer called name imageio version that identifies the version of the Im-
agelO protocol implemented by the plugin, defined in imageio.h as the constant
OIIO_PLUGIN_VERSION. This allows the library to be sure it is not loading a plugin
that was compiled against an incompatible version of OpenimagelO.

(b) An function named name imageio library version that identifies the under-
lying dependent library that is responsible for reading or writing the format (it may

81

82

CHAPTER 5. WRITING IMAGEIO PLUGINS

return nullptr to indicate that there is no dependent library being used for this
format).

(c) A function named name__input_imageio_create that takes no arguments and
returns an ImageInput * constructed from a new instance of your ImageInput
subclass and a deleter. (Note that name is the name of your format, and must match
the name of the plugin itself.)

(d) An array of char * called name input extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by anullptr.

All of these items must be inside an ‘extern "C"’ block in order to avoid name mangling
by the C++ compiler, and we provide handy macros OIIO PLUGIN EXPORTS BEGIN
and OITO_PLUGIN_EXPORTS_ END to make this easy. Depending on your compiler, you
may need to use special commands to dictate that the symbols will be exported in the
DSO; we provide a special 0OIT0_EXPORT macro for this purpose, defined in export . h.

Putting this all together, we get the following for our JPEG example:

OITO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OIIO_EXPORT ImagelInput *jpeg_input_imageio_create () {
return new Jpglnput;
}
OIIO_EXPORT const char *jpeg_input_extensions[] = {
"Jjpg", "jpe", "jpeg", "jif", "jfif", "Jfi", nullptr
bi
OIIO_EXPORT const char* jpeg_imageio_library_version () {
#define STRINGIZE2 (a) #a
#define STRINGIZE (a) STRINGIZEZ2 (a)
#ifdef LIBJPEG_TURBO_VERSION
return "jpeg-turbo " STRINGIZE (LIBJPEG_TURBO_VERSION) ;

telse
return "jpeglib " STRINGIZE (JPEG_LIB_VERSION_MAJOR) "." \\
STRINGIZE (JPEG_LIB_VERSION_MINOR) ;
fendif

}
OITO_PLUGIN_EXPORTS_END

3. The definition and implementation of an ImageInput subclass for this file format. It must
publicly inherit ImageInput, and must overload the following methods which are “pure
virtual” in the ImageInput base class:

(a) format name () should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

OpenlmagelO Programmer’s Documentation

5.2. IMAGE READERS 83

(b) open () should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

(c) close() should close the file, if open.

(d) read_native_scanline should read a single scanline from the file into the ad-
dress provided, uncompressing it but keeping it in its native data format without any
translation.

(e) The virtual destructor, which should close () if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageInput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageInput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

(f) supports (), only if your format supports any of the optional features described in
Section

(g) valid_file(), if your format has a way to determine if a file is of the given format
in a way that is less expensive than a full open ().

(h) seek subimage (), only if your format supports reading multiple subimages within
a single file.

(1) read_native_ scanlines(), only if your format has a speed advantage when
reading multiple scanlines at once. If you do not supply this function, the default
implementation will simply call read_scanline () for each scanline in the range.

(j) read_native_tile(), only if your format supports reading tiled images.

(k) read native tiles(), only if your format supports reading tiled images and
there is a speed advantage when reading multiple tiles at once. If you do not supply
this function, the default implementation will simply call read native tile()
for each tile in the range.

(1) “Channel subset” versions of read native scanlines () and/or read native -
tiles (), only if your format has a more efficient means of reading a subset of chan-
nels. If you do not supply these methods, the default implementation will simply use
read_native_ scanlines() orread native_ tiles() toread into a temporary
all-channel buffer and then copy the channel subset into the user’s buffer.

(m) read native deep scanlines() and/or read native deep tiles(), only
if your format supports “deep” data images.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

class JpgInput final : public ImagelInput {

public:
JpgInput () { init(); }
virtual “JpgInput () { close(); }

OpenIlmagelO Programmer’s Documentation

84

CHAPTER 5. WRITING IMAGEIO PLUGINS

virtual const char * format_name (void) const override { return "jpeg";
virtual bool open (const std::string &name, ImageSpec &spec) override;
virtual bool read_native_scanline (int y, int z, void *data) override;
virtual bool close () override;

private:

i

FILE *m_fd;

bool m_first_scanline;

struct jpeg_decompress_struct m_cinfo;
struct jpeg_error_mgr m_Jjerr;

void init () { m_fd = NULL; }

Your subclass implementation of open (), close(), and read native scanline() are

the heart of an ImageInput implementation. (Also read native tile() and seek subimage(),

for those image formats that support them.)
The remainder of this section simply lists the full implementation of our JPEG reader, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG decoding.

/*

Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)

*/

#include
#include
#include

#include
#include
#include
#include
#include

#include

<algorithm>
<cassert>
<cstdio>

<OpenImageIO/color.h>
<OpenImageIO/filesystem.h>
<OpenImageIO/fmath.h>
<OpenImageIO/imageio.h>
<OpenImageIO/tiffutils.h>

"jpeg_pvt.h"

OIIO_PLUGIN_NAMESPACE_BEGIN

OpenlmagelO Programmer’s Documentation

}

5.2. IMAGE READERS

85

// N.B. The class definition for JpgInput is in jpeg_pvt.h.

// Export version number and create function symbols
0IIO_PLUGIN_EXPORTS_BEGIN

OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;

OIIO_EXPORT const char*
jpeg_imageio_library_version()
{

#define STRINGIZE2 (a) #a
#define STRINGIZE (a) STRINGIZE2 (a)
#ifdef LIBJPEG_TURBO_VERSION
return "jpeg-turbo " STRINGIZE (LIBJPEG_TURBO_VERSION) "/jp" STRINGIZE (
JPEG_LIB_VERSION) ;

felse
return "jpeglib " STRINGIZE (JPEG_LIB_VERSION_MAJOR) "." STRINGIZE (
JPEG_LIB_VERSION_MINOR) ;
#endif

}

OITIO_EXPORT ImageInput*
jpeg_input_imageio_create ()
{

return new Jpglnput;

}

OIIO_EXPORT const char* jpeg_input_extensions|]
= { lljpg“, lljpell, "jpeg", lljifll, lljfif", lljfill, nullptr };

OIIO_PLUGIN_EXPORTS_END

static const uint8_t JPEG_MAGICL
static const uint8_t JPEG_MAGIC2

0xff;
0xd8;

// For explanations of the error handling, see the "example.c" in the
// libjpeg distribution.

static void
my_error_exit (j_common_ptr cinfo)

/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
JpgInput::my_error_ptr myerr = (Jpglnput::my_error_ptr)cinfo->err;

/* Always display the message. */

/* We could postpone this until after returning, if we chose. */
// (*cinfo->err->output_message) (cinfo);
myerr->jpginput->jpegerror (myerr, true);

/* Return control to the setjmp point */
longjmp (myerr->set jmp_buffer, 1);

static void
my_output_message (j_common_ptr cinfo)

JpgInput::my_error_ptr myerr = (Jpglnput::my_error_ptr)cinfo->err;

// Create the message

char buffer [IMSG_LENGTH_MAX];
(*cinfo->err->format_message) (cinfo, buffer);
myerr->jpginput->jpegerror (myerr, true);

/* Return control to the setjmp point */
longjmp (myerr->set jmp_buffer, 1);

OpenlmagelO Programmer’s Documentation

86 CHAPTER 5. WRITING IMAGEIO PLUGINS

static std::string
comp_info_to_attr(const jpeg_decompress_struct& cinfo)
{
// Compare the current 6 samples with our known definitions
// to determine the corresponding subsampling attr
std::vector<int> comp;
comp.push_back (cinfo.comp_info[
comp.push_back (cinfo.comp_info[
comp.push_back (cinfo.comp_info[
comp.push_back (cinfo.comp_info[
([
([

].h_samp_factor);
].v_samp_factor);
] .h_samp_factor);
] .v_samp_factor);
].h_samp_factor);
].v_samp_factor);

comp.push_back (cinfo.comp_info
comp.push_back (cinfo.comp_info
size_t size = comp.size();

if (std::equal (JPEG_444_COMP, JPEG_444_COMP + size, comp.begin()))
return JPEG_444_STR;

else if (std::equal (JPEG_422_COMP, JPEG_422_COMP + size, comp.begin()))
return JPEG_422_STR;

else if (std::equal (JPEG_420_COMP, JPEG_420_COMP + size, comp.begin()))
return JPEG_420_STR;

else if (std::equal (JPEG_411_COMP, JPEG_411_COMP + size, comp.begin()))
return JPEG_411_STR;

return "";

void
JpgInput::jpegerror (my_error_ptr myerr, bool fatal)
{

// Send the error message to the Imagelnput

char errbuf [JMSG_LENGTH_MAX];
(*m_cinfo.err->format_message) ((j_common_ptr)&m_cinfo, errbuf);
error ("JPEG error: %s (\"$s\")", errbuf, filename().c_str());

// Shut it down and clean it up

if (fatal) {
m_fatalerr = true;
close();

m_fatalerr = true; // because close() will reset it

bool
JpgInput::valid_file(const std::string& filename) const

{
FILE* fd = Filesystem::fopen(filename, "rb");
if (!fd)
return false;

// Check magic number to assure this is a JPEG file

uint8_t magic[2] = { 0, 0 };
bool ok = (fread(magic, sizeof (magic), 1, fd) == 1);
fclose (fd);
if (magic[0] != JPEG_MAGIC1 || magic[l] !'= JPEG_MAGIC2) {
ok = false;
}
return ok;
}
bool

JpgInput::open(const std::string& name, ImageSpecé& newspec,
const ImageSpec& config)
{

const ParamValue* p = config.find_attribute("_jpeg:raw", Typelnt);
m_raw = p && *(int*)p->datal();
return open(name, newspec);

OpenlmagelO Programmer’s Documentation

5.2. IMAGE READERS

bool
JpgInput::open(const std::string& name, ImageSpec& newspec)

// Check that file exists and can be opened
m_filename = name;
m_fd = Filesystem::fopen(name, "rb");
if (m_fd == NULL) {
error ("Could not open file \"%s\"", name.c_str());
return false;

}

// Check magic number to assure this is a JPEG file

uint8_t magic[2] = { 0, 0 };
if (fread(magic, sizeof (magic), 1, m_£fd) !'= 1) {
error ("Empty file \"%s\"", name.c_str());

close_file();
return false;

}

rewind (m_£d);

if (magic[0] != JPEG_MAGIC1 || magic[l] != JPEG_MAGIC2) {
close_file();
error (
"\"$s\" is not a JPEG file, magic number doesn’t match (was 0x%x%x)",
name.c_str(), int(magic[0]), int(magic[l]));

return false;

}

// Set up the normal JPEG error routines, then override error_exit and
// output_message so we intercept all the errors.
m_cinfo.err = jpeg_std_error((jpeg_error_mgr*)&m_jerr);
m_Jjerr.pub.error_exit my_error_exit;
m_jerr.pub.output_message my_output_message;
if (setjmp(m_jerr.setjmp_buffer)) {
// Jump to here if there’s a libjpeg internal error
// Prevent memory leaks, see example.c in jpeg distribution
jpeg_destroy_decompress (&m_cinfo) ;
close_file();
return false;

}

jpeg_create_decompress (&ém_cinfo); // initialize decompressor
jpeg_stdio_src (&m_cinfo, m_fd); // specify the data source

// Request saving of EXIF and other special tags for later spelunking
for (int mark = 0; mark < 16; ++mark)

jpeg_save_markers (&m_cinfo, JPEG_APPO + mark, Oxffff);
jpeg_save_markers (&ém_cinfo, JPEG_COM, Oxffff); // comment marker

// read the file parameters

if (jpeg_read_header (&m_cinfo, FALSE) != JPEG_HEADER_OK || m_fatalerr) {
error ("Bad JPEG header for \"%s\"", filename().c_str());
return false;

}
int nchannels = m_cinfo.num_components;

if (m_cinfo.jpeg_color_space == JCS_CMYK
|| m_cinfo.jpeg_color_space == JCS_YCCK) {
// CMYK jpegs get converted by us to RGB
m_cinfo.out_color_space JCS_CMYK; // pre-convert YCbCrK->CMYK

nchannels = 3;

m_cmyk = true;
}
if (m_raw)

m_coeffs = jpeg_read_coefficients(&m_cinfo);
else

jpeg_start_decompress (&m_cinfo); // start working
if (m_fatalerr)

OpenlmagelO Programmer’s Documentation

88

CHAPTER 5. WRITING IMAGEIO PLUGINS

return false;
m_next_scanline = 0; // next scanline we’ll read

m_spec = ImageSpec (m_cinfo.output_width, m_cinfo.output_height, nchannels,
TypeDesc: :UINTS8) ;

// Assume JPEG is in SRGB unless the Exif or XMP tags say otherwise.
m_spec.attribute ("oiio:ColorSpace", "sRGB");

if (m_cinfo.jpeg_color_space == JCS_CMYK)
m_spec.attribute ("jpeg:ColorSpace", "CMYK");

else if (m_cinfo.jpeg_color_space == JCS_YCCK)
m_spec.attribute ("jpeg:ColorSpace”, "YCbCrK");

// If the chroma subsampling is detected and matches something
// we expect, then set an attribute so that it can be preserved
// in future operations.
std::string subsampling =
if (!subsampling.empty())
m_spec.attribute (JPEG_SUBSAMPLING_ATTR, subsampling);

comp_info_to_attr(m_cinfo);

for (jpeg_saved_marker_ptr m = m_cinfo.marker_list; m; m = m->next) {
if (m->marker == (JPEG_APP0O + 1)
&& !strcmp((const char*)m->data, "Exif")) {
// The block starts with "Exif\0\0", so skip 6 bytes to get
// to the start of the actual Exif data TIFF directory
decode_exif (string_view ((char*)m->data + 6, m->data_length - 6),
m_spec);
} else if (m->marker == (JPEG_APPO + 1)
&& !strcmp((const char*)m->data,
"http://ns.adobe.com/xap/1.0/")) {

#ifndef NDEBUG

std::cerr << "Found APP1 XMP! length " << m->data_length << "\n";

#endif

std::string xml((const char*)m->data, m->data_length);
decode_xmp (xml, m_spec);
} else if (m->marker == (JPEG_APP0O + 13)
&& !strcmp((const char*)m->data, "Photoshop 3.0"))
jpeg_decode_iptc((unsigned char*)m->data);
else 1if (m->marker == JPEG_COM) ({
if (!m_spec.find_attribute ("ImageDescription", TypeDesc::STRING))
m_spec.attribute ("ImageDescription",
std::string((const char*)m->data,
m->data_length));

}

// Handle density/pixelaspect. We need to do this AFTER the exif is
// decoded, in case it contains useful information.
float xdensity = m_spec.get_float_attribute ("XResolution");
float ydensity = m_spec.get_float_attribute("YResolution");
if (!xdensity || !ydensity) {
xdensity = float (m_cinfo.X_density);
ydensity = float (m_cinfo.Y_density);
if (xdensity && ydensity) {
m_spec.attribute ("XResolution", xdensity);
m_spec.attribute ("YResolution", ydensity);

}

}
if (xdensity && ydensity) {
float aspect = ydensity / xdensity;
if (aspect !'= 1.0f)
m_spec.attribute ("PixelAspectRatio", aspect);
switch (m_cinfo.density_unit) {

case 0: m_spec.attribute ("ResolutionUnit", "none"); break;
case 1: m_spec.attribute ("ResolutionUnit", "in"); break;
case 2: m_spec.attribute("ResolutionUnit", "cm"); break;

}
}

read_icc_profile (&m_cinfo, m_spec); /// try to read icc profile

newspec = m_Spec;
return true;

OpenlmagelO Programmer’s Documentation

5.2. IMAGE READERS 89

bool
JpgInput::read_icc_profile(j_decompress_ptr cinfo, ImageSpecé& spec)

int num_markers = 0;
std::vector<unsigned char> icc_buf;
unsigned int total_length = 0;
const int MAX_SEQ NO = 255;
unsigned char marker_present
[MAX_SEQ_NO
+ 1]; // one extra is used to store the flag if marker is found, set to one if marker is found
unsigned int data_length[MAX_SEQ NO + 1]; // store the size of each marker
unsigned int data_offset [MAX_SEQ NO + 1]; // store the offset of each marker
memset (marker_present, 0, (MAX_SEQ NO + 1));

for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {
if (m->marker == (JPEG_APP0O + 2)
&& !strcmp((const char*)m->data, "ICC_PROFILE")) {
if (num_markers == 0)
num_markers = GETJOCTET (m->data[13]);
else if (num_markers != GETJOCTET (m->data[13]))
return false;
int seqg_no = GETJOCTET (m->data[l2]);

if (seq_no <= 0 || seg_no > num_markers)
return false;
if (marker_present[seq_no]) // duplicate marker

return false;
marker_present [seq_no]
data_length[seqg_no]

1; // flag found marker
m->data_length - ICC_HEADER_SIZE;

}

}

if (num_markers == 0)
return false;

// checking for missing markers
for (int segq_no = 1; seq_no <= num_markers; seg_not++) {
if (marker_present[seg_no] == 0)
return false; // missing sequence number
data_offset[seq_no] = total_length;
total_length += data_length[seq_no];
}

if (total_length == 0)
return false; // found only empty markers

icc_buf.resize(total_length * sizeof (JOCTET));

// and fill it in
for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {
if (m->marker == (JPEG_APPO + 2)
&& !strcmp((const char*)m->data, "ICC_PROFILE")) {
int seq_no = GETJOCTET (m->data[l2]);
memcpy (&icc_buf[0] + data_offset[seq_no], m->data + ICC_HEADER_SIZE,
data_length[seqg_no]);
} }
spec.attribute (ICC_PROFILE_ATTR, TypeDesc(TypeDesc::UINT8, total_length),
&icc_buf[0]);
return true;

static void

cmyk_to_rgb(int n, const unsigned char* cmyk, size_t cmyk_stride,
unsigned char* rgb, size_t rgb_stride)

{

for (; n; --n, cmyk += cmyk_stride, rgb += rgb_stride) {
// JPEG seems to store CMYK as 1-x
float C = convert_type<unsigned char, float>(cmyk[0]);
float M = convert_type<unsigned char, float>(cmyk[1]);

OpenlmagelO Programmer’s Documentation

90 CHAPTER 5. WRITING IMAGEIO PLUGINS

float Y = convert_type<unsigned char, float>(cmyk([2]);
float K = convert_type<unsigned char, float>(cmyk[3]);
float R = C * K;

float G = M * K;

float B = Y * K;

rgb[0] = convert_type<float, unsigned char> (R);
rgb[1l] = convert_type<float, unsigned char>(G);
rgb[2] = convert_type<float, unsigned char>(B);

bool

JpgInput::read_native_scanline(int subimage, int miplevel, int y, int z,
void* data)

{

if (!seek_subimage (subimage, miplevel))
return false;

if (m_raw)
return false;
if (y < 0 || y >= (int)m_cinfo.output_height) // out of range scanline

return false;
if (m_next_scanline > y) {
// User is trying to read an earlier scanline than the one we’re
// up to. Easy fix: close the file and re-open.
ImageSpec dummyspec;
int subimage = current_subimage();
if (!close() || !open(m_filename, dummyspec)
|| !seek_subimage (subimage, 0)
return false; // Somehow, the re-open failed
assert (m_next_scanline == 0 && current_subimage() == subimage);

}

// Set up our custom error handler

if (setjmp(m_jerr.setjmp_buffer)) ({
// Jump to here if there’s a libjpeg internal error
return false;

}

void* readdata = data;
if (m_cmyk) {
// If the file’s data is CMYK, read into a 4-channel buffer, then
// we’ll have to convert.
m_cmyk_buf.resize (m_spec.width * 4);
readdata = &m_cmyk_buf[0];

ASSERT (m_spec.nchannels == 3);
}
for (; m_next_scanline <= y; ++m_next_scanline) {
// Keep reading until we’ve read the scanline we really need
if (jpeg_read_scanlines (&m_cinfo, (JSAMPLE**)g&readdata, 1) !=1
|| m_fatalerr) {
error ("JPEG failed scanline read (\"%s\")", filename().c_str());

return false;

}

if (m_cmyk)
cmyk_to_rgb (m_spec.width, (unsigned char*)readdata, 4,
(unsigned char*)data, 3);

return true;

bool
JpgInput::close()
{
if (m_fd != NULL) {
// unnecessary? Jjpeg_abort_decompress (&m_cinfo);
jpeg_destroy_decompress (&m_cinfo);

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 91

close_file();

}
init(); // Reset to initial state
return true;

void
JpgInput::jpeg_decode_iptc(const unsigned char* buf)
{

// BPP13 blob doesn’t have to be IPTC info. Look for the IPTC marker,
// which is the string "Photoshop 3.0" followed by a null character.
if (strcmp((const char*)buf, "Photoshop 3.0"))

return;
buf += strlen("Photoshop 3.0") + 1;

// Next are the 4 bytes "8BIM"

if (strncmp((const char*)buf, "8BIM", 4))
return;

buf += 4;

// Next two bytes are the segment type, in big endian.
// We expect 1028 to indicate IPTC data block.

if (((buf[0] << 8) + buf[l]) != 1028
return;
buf += 2;
// Next are 4 bytes of 0 padding, just skip it.
buf += 4;
// Next is 2 byte (big endian) giving the size of the segment
int segmentsize = (buf[0] << 8) + buf[l];
buf += 2;

decode_iptc_iim(buf, segmentsize, m_spec);

}
OIIO_PLUGIN_NAMESPACE_END

5.3 Image Writers

A plugin that writes a particular image file format must implement a subclass of ImageOutput
(described in Chapter [3). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h, just as with an image reader (see Sec-

tion[5.2)).

2. Declare four public items:

(a) An integer called name imageio version that identifies the version of the Im-
agelO protocol implemented by the plugin, defined in imageio.h as the constant
OIIO_PLUGIN_VERSION. This allows the library to be sure it is not loading a plu-
gin that was compiled against an incompatible version of OpenlmagelO. Note that if
your plugin has both a reader and writer and they are compiled as separate modules
(C++ source files), you don’t want to declare this in both modules; either one is fine.

(b) A function named name_output__imageio_create that takes no arguments and
returns an ImageOutput * constructed from a new instance of your ImageOutput
subclass and a deleter. (Note that name is the name of your format, and must match
the name of the plugin itself.)

OpenIlmagelO Programmer’s Documentation

92 CHAPTER 5. WRITING IMAGEIO PLUGINS

(c) Anarray of char * called name_output_extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by a NULL pointer.

All of these items must be inside an ‘extern "C"’ block in order to avoid name mangling
by the C++ compiler, and we provide handy macros OIIO PLUGIN EXPORTS BEGIN
and OIIO PLUGIN EXPORTS END to mamke this easy. Depending on your compiler,
you may need to use special commands to dictate that the symbols will be exported in the
DSO; we provide a special 0II0 EXPORT macro for this purpose, defined in export.h.

Putting this all together, we get the following for our JPEG example:

OITO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OIIO_EXPORT ImageOQutput *jpeg_output_imageio_create () {
return new JpgOutput;

}

OIIO_EXPORT const char *jpeg_input_extensions[] = {
"jpgll, lljpe“, "jpegll, nullptr
i

OITO_PLUGIN_EXPORTS_END

3. The definition and implementation of an ImageOutput subclass for this file format. It
must publicly inherit ImageOutput, and must overload the following methods which are
“pure virtual” in the ImageOutput base class:

(a) format name () should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

(b) supports () should return true if its argument names a feature supported by your
format plugin, false if it names a feature not supported by your plugin. See Sec-
tion[3.3] for the list of feature names.

(c) open() should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

(d) close () should close the file, if open.

(e) write scanline should write a single scanline to the file, translating from internal
to native data format and handling strides properly.

(f) The virtual destructor, which should close () if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageOutput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageOutput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 93

(g) write_scanlines(), only if your format supports writing scanlines and you can
get a performance improvement when outputting multiple scanlines at once. If
you don’t supply write scanlines (), the default implementation will simply call
write_ scanline () separately for each scanline in the range.

(h) write tile(), only if your format supports writing tiled images.

(1) write_tiles(), only if your format supports writing tiled images and you can
get a performance improvement when outputting multiple tiles at once. If you don’t
supply write tiles(), the default implementation will simply call write tile()
separately for each tile in the range.

(j) write_rectangle(), only if your format supports writing arbitrary rectangles.

(k) write image (), only if you have a more clever method of doing so than the default
implementation that calls write scanline() orwrite tile() repeatedly.

(I) write deep scanlines() and/or write deep tiles(), only if your format
supports “deep” data images.

It is not strictly required, but certainly appreciated, if a file format does not support tiles,
to nonetheless accept an ImageSpec that specifies tile sizes by allocating a full-image
buffer in open (), providing an implementation of write tile() that copies the tile of
data to the right spots in the buffer, and having close () then call write scanlines to
process the buffer now that the image has been fully sent.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

class JpgOutput final : public ImageOutput {
public:
JpgOutput () { init(); }
virtual “JpgOutput () { close(); }
virtual const char * format_name (void) const override { return "jpeg"; }
virtual int supports (string_view property) const override { return false; }
virtual bool open (const std::string &name, const ImageSpec &spec,
bool append=false) override;
virtual bool write_scanline (int y, int z, TypeDesc format,
const void *data, stride_t xstride) override;
bool close ();
private:
FILE *m_fd;
std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr m_jerr;

void init () { m_fd = NULL; }

Your subclass implementation of open (), close (), and write scanline () are the heart
of an ImageOutput implementation. (Also write tile(), for those image formats that sup-
port tiled output.)

OpenIlmagelO Programmer’s Documentation

94 CHAPTER 5. WRITING IMAGEIO PLUGINS

An ImageOutput implementation must properly handle all data formats and strides passed
towrite scanline() orwrite tile(), unlike an ImageInput implementation, which only
needs to read scanlines or tiles in their native format and then have the super-class handle the
translation. But don’t worry, all the heavy lifting can be accomplished with the following helper
functions provided as protected member functions of ImageOutput that convert a scanline, tile,
or rectangular array of values from one format to the native format(s) of the file.

const void * to native scanline (TypeDesc format, const void *data,
stride t xstride, std::vector<unsigned char> &scratch,
unsigned int dither=0, int yorigin=0, int zorigin=0)

Convert a full scanline of pixels (pointed to by data) with the given format and strides
into contiguous pixels in the native format (described by the ImageSpec returned by the
spec () member function). The location of the newly converted data is returned, which
may either be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to_native tile (TypeDesc format, const void *data,
stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch, unsigned int dither=0,
int xorigin=0, int yorigin=0, int zorigin=0)

Convert a full tile of pixels (pointed to by data) with the given format and strides into con-
tiguous pixels in the native format (described by the ImageSpec returned by the spec ()
member function). The location of the newly converted data is returned, which may ei-
ther be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to native rectangle (int xbegin, int xend,
int ybegin, int yend, int zbegin, int zend,
TypeDesc format, const void *data,
stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch, unsigned int dither=0,
int xorigin=0, int yorigin=0, int zorigin=0)

Convert a rectangle of pixels (pointed to by data) with the given format, dimensions, and
strides into contiguous pixels in the native format (described by the ImageSpec returned
by the spec () member function). The location of the newly converted data is returned,
which may either be the original data itself if no data conversion was necessary and the
requested layout was contiguous (thereby avoiding unnecessary memory copies), or may
point into memory allocated within the scratch vector passed by the user. In either case,

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 95

the caller doesn’t need to worry about thread safety or freeing any allocated memory
(other than eventually destroying the scratch vector).

For float to 8 bit integer conversions only, if dither parameter is nonzero, random dither
will be added to reduce quantization banding artifacts; in this case, the specific nonzero dither
value is used as a seed for the hash function that produces the per-pixel dither amounts, and the
optional origin parameters help it to align the pixels to the right position in the dither pattern.

The remainder of this section simply lists the full implementation of our JPEG writer, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG encoding.

/*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)
*/

#include <cassert>
#include <cstdio>
#include <vector>

#include <OpenlImageIO/filesystem.h>
#include <OpenImageIO/fmath.h>
#include <OpenImageIO/imageio.h>
#include <OpenImagelO/tiffutils.h>

#include "jpeg_pvt.h"

OIIO_PLUGIN_NAMESPACE_BEGIN

#define DBG if (0)

// References:

// * JPEG library documentation: /usr/share/doc/libjpeg-devel-6b
// * JFIF spec: https://www.w3.org/Graphics/JPEG/Jfif3.pdf
//
//

* ITU T.871 (aka ISO/IEC 10918-5):
https://www.itu.int/rec/T-REC-T.871-201105-I/en

class JpgOutput final : public ImageOutput {
public:

OpenlmagelO Programmer’s Documentation

96 CHAPTER 5. WRITING IMAGEIO PLUGINS

Jpgoutput () { init(); }
virtual “JpgOutput () { close(); }

virtual const char* format_name(void) const override { return "jpeg"; }
virtual int supports(string_view feature) const override

{
}

virtual bool open(const std::string& name, const ImageSpecé& spec,
OpenMode mode = Create) override;
virtual bool write_scanline(int y, int z, TypeDesc format, const void* data,
stride_t xstride) override;

virtual bool write_tile(int x, int y, int z, TypeDesc format,

const void* data, stride_t xstride,

stride_t ystride, stride_t zstride) override;
virtual bool close() override;
virtual bool copy_image (ImageInput* in) override;

return (feature == "exif" || feature == "iptc");

private:
FILE* m_fd;
std::string m_filename;
unsigned int m_dither;
int m_next_scanline; // Which scanline is the next to write?
std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr c_jerr;
jvirt_barray_ptr* m_copy_coeffs;
struct jpeg_decompress_struct* m_copy_decompressor;
std::vector<unsigned char> m_tilebuffer;

vold init (void)

{

m_£fd = NULL;
m_copy_coeffs = NULL;
m_copy_decompressor = NULL;

}

void set_subsampling(const int components|]

{
jpeg_set_colorspace (&m_cinfo, JCS_YCbCr);

m_cinfo.comp_info[0].h_samp_factor = components[0];
m_cinfo.comp_info[0].v_samp_factor = components[l];
m_cinfo.comp_info[l].h_samp_factor = components[2];
m_cinfo.comp_info[l].v_samp_factor = components[3];
m_cinfo.comp_info[2].h_samp_factor = components[4];
m_cinfo.comp_info[2].v_samp_factor = components[5];

}
// Read the XResolution/YResolution and PixelAspectRatio metadata, store

// in density fields m_cinfo.X_density,Y_density.
void resmeta_to_density();

OIIO_PLUGIN_EXPORTS_BEGIN

OITIO_EXPORT ImageOutput*
jpeg_output_imageio_create ()

return new JpgOutput;
}

OIIO_EXPORT const char* jpeg_output_extensions][]

- { lljng, "jpe", njpegn’ "jif", lljfifll, "jfi", nullptr };

OIIO_PLUGIN_EXPORTS_END

bool

JpgOutput: :open (const std::string& name, const ImageSpec& newspec,
OpenMode mode)

{

if (mode != Create) {

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 97

error ("%s does not support subimages or MIP levels", format_name());
return false;

}

// Save name and spec for later use
m_filename = name;
m_spec newspec;

// Check for things this format doesn’t support
if (m_spec.width < 1 || m_spec.height < 1) {
error ("Image resolution must be at least 1x1, you asked for %d x %d",
m_spec.width, m_spec.height);
return false;
}
if (m_spec.depth < 1)
m_spec.depth = 1;
if (m_spec.depth > 1) {
error ("$s does not support volume images (depth > 1)", format_name());
return false;

}

m_fd = Filesystem::fopen (name, "wb");
if (m_fd == NULL) {
error ("Unable to open file \"%s\"", name.c_str());
return false;

}

m_cinfo.err = jpeg_std_error(&c_jerr); // set error handler
jpeg_create_compress (&m_cinfo); // create compressor
Jjpeg_stdio_dest (&m_cinfo, m_fd); // set output stream

// Set image and compression parameters
m_cinfo.image_width = m_spec.width;
m_cinfo.image_height = m_spec.height;

// JFIF can only handle grayscale and RGB. Do the best we can with this
// limited format by truncating to 3 channels if > 3 are requested,

// truncating to 1 channel if 2 are requested.

if (m_spec.nchannels >= 3) {

m_cinfo.input_components = 3;

m_cinfo.in_color_space = JCS_RGB;
} else {

m_cinfo.input_components 1;

’
m_cinfo.in_color_space JCS_GRAYSCALE;

}

string_view resunit = m_spec.get_string_attribute ("ResolutionUnit");
if (Strutil::iequals(resunit, "none"))
m_cinfo.density_unit = 0;
else if (Strutil::iequals(resunit, "in"))
m_cinfo.density_unit = 1;
else if (Strutil::iequals(resunit, "cm"))
m_cinfo.density_unit = 2;
else
m_cinfo.density_unit = 0;

resmeta_to_density();
m_cinfo.write_JFIF_header = TRUE;

if (m_copy_coeffs) {
// Back door for copy()
jpeg_copy_critical_parameters (m_copy_decompressor, &m_cinfo);
DBG std::cout << "out open: copy_critical_parameters\n";
jpeg_write_coefficients (&m_cinfo, m_copy_coeffs);
DBG std::cout << "out open: write_coefficients\n";

} else {
// normal write of scanlines
jpeg_set_defaults (&m_cinfo); // default compression
// Careful -- jpeg_set_defaults overwrites density
resmeta_to_density();
DBG std::cout << "out open: set_defaults\n";
int quality = newspec.get_int_attribute ("CompressionQuality", 98);
jpeg_set_quality(&m_cinfo, quality, TRUE); // baseline values

OpenlmagelO Programmer’s Documentation

98

CHAPTER 5. WRITING IMAGEIO PLUGINS

DBG

std::cout << "out open: set_quality\n";

if (m_cinfo.input_components == 3) {

}

std::string subsampling = m_spec.get_string_attribute(
JPEG_SUBSAMPLING_ATTR) ;
if (subsampling == JPEG_444_STR)
set_subsampling (JPEG_444_COMP) ;
else if (subsampling == JPEG_422_STR)
set_subsampling (JPEG_422_COMP) ;
else if (subsampling == JPEG_420_STR)
set_subsampling (JPEG_420_COMP) ;
else if (subsampling == JPEG_411_STR)
set_subsampling (JPEG_411_COMP) ;

DBG std::cout << "out open: set_colorspace\n";
jpeg_start_compress (&m_cinfo, TRUE); // start working
DBG std::cout << "out open: start_compress\n";
}
m_next_scanline = 0; // next scanline we’ll write
// Write JPEG comment, if sent an ’ImageDescription’
ParamValue* comment = m_spec.find_attribute ("ImageDescription",
TypeDesc: : STRING) ;
if (comment && comment->data()) {
const char** ¢ = (const char**)comment->data ()

7
jpeg_write_marker (&m_cinfo, JPEG_COM, (JOCTET*)*c, strlen(*c) + 1);

}

if (Stru
m_sp
// Write
std::vec
// Start
// alway
exif.pus
exif.pus
exif.pus
exif.pus
exif.pus
exif.pus
encode_e
jpeg_wri
// Write
std::vec
encode_i
if (iptc
stat
std:
stat
head.
head.
head.
head.
head.
head.
head.
head.
head.
iptc.
Jpeg_
}
// Write
std::str
if (!xmp
stat
std:
bloc
Jpeg

til::iequals(m_spec.get_string attribute("oiio:ColorSpace"), "sRGB"))
ec.attribute ("Exif:ColorSpace", 1);

EXIF info

tor<char> exif;

the blob with "Exif" and two nulls. That’s how it
s is in the JPEG files I’'ve examined.

h_back ("E");

h_back ("x")
h_back("i")
h_back (' f")
h_back (0);

’
’

r

r

! r

0);

h_back (0);

xif (m_spec, exif);

te_marker (&m_cinfo, JPEG_APPO + 1, (JOCTET*)&exif[0], exif.size());

IPTC IIM metadata tags, if we have anything

tor<char> iptc;

ptc_iim(m_spec, iptc);

.size()) {

ic char photoshop[] = "Photoshop 3.0";

:vector<char> head(photoshop, photoshop + strlen(photoshop) + 1);

ic char _8BIM[] = "8BIM";

insert (head.end(), _8BIM, _8BIM + 4);

push_back (4); // 0x0404

push_back (4);

push_back (0); // four bytes of zeroes
push_back (0) ;

push_back (0) ;

push_back (0);

push_back ((char) (iptc.size() >> 8)); // size of block
push_back ((char) (iptc.size() & O0xff));

insert (iptc.begin(), head.begin(), head.end());

write_marker (&m_cinfo, JPEG_APPO + 13, (JOCTET*)é&iptc[O0],
iptc.size());

XMP packet, if we have anything

ing xmp = encode_xmp (m_spec, true);

.empty ()) {

ic char prefix[] = "http://ns.adobe.com/xap/1.0/";
:vector<char> block (prefix, prefix + strlen(prefix) + 1);
k.insert (block.end(), xmp.c_str(), xmp.c_str() + xmp.length());
_write_marker (&m_cinfo, JPEG_APPO + 1, (JOCTET*)é&block[0],

block.size());

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS

929

}

m_spec.set_format (TypeDesc: :UINT8); // JPG is only 8 bit

// Write ICC profile, if we have anything
const ParamValue* icc_profile_parameter = m_spec.find_attribute(

if

}

ICC_PROFILE_ATTR);
(icc_profile_parameter != NULL) {
unsigned char* icc_profile
= (unsigned char*)icc_profile_parameter->data();
unsigned int icc_profile_length = icc_profile_parameter->type().size();
if (icc_profile && icc_profile_length) {
/* Calculate the number of markers we’ll need, rounding up of course */
int num_markers = icc_profile_length / MAX_DATA_ BYTES_IN_MARKER;
if ((unsigned int) (num_markers * MAX_DATA_BYTES_IN_MARKER)
!'= icc_profile_length)
num_markers++;
int curr_marker = 1; /* per spec, count strarts at 1*/
std::vector<unsigned char> profile (MAX_DATA_BYTES_IN_MARKER
+ ICC_HEADER_SIZE);
while (icc_profile_length > 0) {
// length of profile to put in this marker
unsigned int length
= std::min(icc_profile_length,
(unsigned int)MAX_DATA_BYTES_IN_MARKER);
icc_profile_length -= length;
// Write the JPEG marker header (APP2 code and marker length)
strcpy ((char*) &profile[0], "ICC_PROFILE");
profile[11] ;
profile[12] curr_marker;
profile[13] = (unsigned char)num_markers;
memcpy (&profile[0] + ICC_HEADER_SIZE,
icc_profile + length * (curr_marker - 1), length);
jpeg_write_marker (¢ém_cinfo, JPEG_APPO + 2, &profile[O0],
ICC_HEADER_SIZE + length);

curr_marker++;

m_dither = m_spec.get_int_attribute("oiio:dither", 0);

// If user asked for tiles -- which JPEG doesn’t support, emulate it by
// buffering the whole image.

if

(m_spec.tile_width && m_spec.tile_height)
m_tilebuffer.resize (m_spec.image_bytes());

return true;

void

JpgOutput: :resmeta_to_density ()
{

int X_density = int (m_spec.get_float_attribute ("XResolution"));
int Y_density = int (m_spec.get_float_attribute("YResolution", X_density));
const float aspect = m_spec.get_float_attribute("PixelAspectRatio", 1.0f);

if

(aspect != 1.0f && X_density <= 1 && Y_density <= 1) {

// No useful [XY]Resolution, but there is an aspect ratio requested.
// Arbitrarily pick 72 dots per undefined unit, and jigger it to

// honor it as best as we can.

/

/ Here’s where things get tricky. By logic and reason, as well as
/ the JFIF spec and ITU T.871, the pixel aspect ratio is clearly
/ ydensity/xdensity (because aspect is xlength/ylength, and density
/ 1s 1/length). BUT... for reasons lost to history, a number of

/ apps get this exactly backwards, and these include PhotoShop,

/ Nuke, and RV. So, alas, we must replicate the mistake, or else
/ all these common applications will misunderstand the JPEG files
/ written by OIIO and vice versa.

Y _density = 72;

X_density = int(Y_density * aspect + 0.5f);

m_spec.attribute ("XResolution", float(Y_density * aspect + 0.5f));

T N

OpenlmagelO Programmer’s Documentation

100 CHAPTER 5. WRITING IMAGEIO PLUGINS

m_spec.attribute ("YResolution", float (Y_density));

while (X_density > 65535 || Y_density > 65535) {
// JPEG header can store only UINT16 density values. If we
// overflow that limit, punt and knock it down to <= 16 bits.
X_density /= 2;
Y_density /= 2;
}
m_cinfo.X_density = ¥X_density;
m_cinfo.Y_density = Y_density;

bool

JpgOutput::write_scanline(int y, int z, TypeDesc format, const void* data,
stride_t xstride)

{

y —-= m_spec.y;
if (y != m_next_scanline) {
error ("Attempt to write scanlines out of order to %s",
m_filename.c_str());
return false;
}
if (v >= (int)m_cinfo.image_height) {
error ("Attempt to write too many scanlines to %s", m_filename.c_str());
return false;
}

assert (y == (int)m_cinfo.next_scanline);

// Here's where we do the dirty work of conforming to JFIF’s limitation
// of 1 or 3 channels, by temporarily doctoring the spec so that

// to_native_scanline properly contiguizes the first 1 or 3 channels,
// then we restore it. The call to to_native_scanline below needs

// m_spec.nchannels to be set to the true number of channels we’re

// writing, or it won’t arrange the data properly. But if we doctored
// m_spec.nchannels permanently, then subsequent calls to write_scanline
// (including any surrounding call to write_image) with

// stride=AutoStride would screw up the strides since the user’s stride
/ is actually not 1 or 3 channels.

m_spec.auto_stride (xstride, format, m_spec.nchannels);

int save_nchannels = m_spec.nchannels;

m_spec.nchannels = m_cinfo.input_components;

data = to_native_scanline(format, data, xstride, m_scratch, m_dither, y, z);
m_spec.nchannels = save_nchannels;

jpeg_write_scanlines (&m_cinfo, (JSAMPLE**)é&data, 1);
++m_next_scanline;

return true;

bool

JpgOutput::write_tile(int x, int y, int z, TypeDesc format, const void* data,
stride_t xstride, stride_t ystride, stride_t zstride)

{

// Emulate tiles by buffering the whole image
return copy_tile_to_image_buffer(x, y, z, format, data, xstride, ystride,
zstride, &m_tilebuffer[0]);

bool
JpgOutput::close ()
{
if (!m_fd) { // Already closed
return true;
init ();

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS

101

bool

bool ok = true;

if

}

if

}
if

(m_spec.tile_width) {

// We've been emulating tiles; now dump as scanlines.

ASSERT (m_tilebuffer.size());

ok &= write_scanlines(m_spec.y, m_spec.y + m_spec.height, 0,

m_spec.format, &m_tilebuffer[0]);

std::vector<unsigned char>().swap(m_tilebuffer); // free it

(m_next_scanline < spec().height && m_copy_coeffs == NULL) ({

// But if we’ve only written some scanlines, write the rest to avoid

// errors

std::vector<char> buf (spec().scanline_bytes(), 0);

char* data = &buf[0];

while (m_next_scanline < spec().height) {
jpeg_write_scanlines (&ém_cinfo, (JSAMPLE**)g&data, 1);
// DBG std::cout << "out close: write_scanlines\n";
++m_next_scanline;

}

(m_next_scanline >= spec().height || m_copy_coeffs) {

DBG std::cout << "out close: about to finish_compress\n";

jpeg_finish_compress (&ém_cinfo);

DBG std::cout << "out close: finish_compress\n";

} else {

}

DBG std::cout << "out close: about to abort_compress\n";
jpeg_abort_compress (&¢m_cinfo);
DBG std::cout << "out close: abort_compress\n";

DBG std::cout << "out close: about to destroy_compress\n";
jpeg_destroy_compress (&m_cinfo);

fclose (m_£fd);

m_fd = NULL;

init();

return ok;

JpgOutput: :copy_image (ImageInput* in)

{

if (in && !strcmp(in->format_name(), "jpeg")) {

JpgInput* jpg_in = dynamic_cast<JpgInput*>(in);
std::string in_name = jpg_in->filename();
DBG std::cout << "JPG copy_image from " << in_name << "\n";

// Save the original input spec and close it
ImageSpec orig_in_spec = in->spec();
in->close();

DBG std::cout << "Closed old file\n";

// Re-open the input spec, with special request that the JpgInput

// will recognize as a request to merely open, but not start the
// decompressor.

ImageSpec in_spec;

ImageSpec config_spec;

config_spec.attribute("_jpeg:raw", 1);

in->open (in_name, in_spec, config_spec);

// Re-open the output

std::string out_name m_filename;

ImageSpec orig_out_spec spec();
close();
m_copy_coeffs = (jvirt_barray_ptr*)jpg_in->coeffs();

m_copy_decompressor = &jpg_in->m_cinfo;
open (out_name, orig_out_spec);

// Strangeness -- the write_coefficients somehow sets things up
// so that certain writes only happen in close(), which MUST
// happen while the input file is still open. So we go ahead

OpenlmagelO Programmer’s Documentation

102

CHAPTER 5. WRITING IMAGEIO PLUGINS

}

// and close() now, so that the caller of copy_image() doesn’t
// close the input file first and then wonder why they crashed.
close();

return true;

return ImageOutput::copy_image (in);

}

OIIO_PLUGIN_NAMESPACE_END

54

Tips and Conventions

OpenimagelO’s main goal is to hide all the pesky details of individual file formats from the
client application. This inevitably leads to various mismatches between a file format’s true ca-
pabilities and requests that may be made through the OpenimagelO APIs. This section outlines
conventions, tips, and rules of thumb that we recommend for image file support.

Readers

If the file format stores images in a non-spectral color space (for example, YUV), the
reader should automatically convert to RGB to pass through the OIIO APIs. In such a
case, the reader should signal the file’s true color space viaa "Foo:colorspace" attribute
in the TmageSpec.

“Palette” images should be automatically converted by the reader to RGB.

If the file supports thumbnail images in its header, the reader should store the thumbnail
dimensions in attributes "thumbnail width", "thumbnail height", and "thumbnail -
nchannels" (all of which should be int), and the thumbnail pixels themselves in "thumbnail -
image" as an array of channel values (the array length is the total number of channel
samples in the thumbnail).

Writers

The overall rule of thumb is: try to always “succeed” at writing the file, outputting the closest
approximation of the user’s data as possible. But it is permissible to fail the open () call if it is
clearly nonsensical or there is no possible way to output a decent approximation of the user’s
data. Some tips:

If the client application requests a data format not directly supported by the file type,
silently write the supported data format that will result in the least precision or range loss.

It is customary to fail a call to open () if the ImageSpec requested a number of color
channels plainly not supported by the file format. As an exception to this rule, it is
permissible for a file format that does not support alpha channels to silently drop the
fourth (alpha) channel of a 4-channel output request.

OpenlmagelO Programmer’s Documentation

5.5. BUILDING IMAGEIO PLUGINS 103

o If the app requests a "Compression" not supported by the file format, you may choose
as a default any lossless compression supported. Do not use a lossy compression unless
you are fairly certain that the app wanted a lossy compression.

o I[f the file format is able to store images in a non-spectral color space (for example, YUV),
the writer may accept a "Foo:colorspace" attribute in the ImageSpec as a request to
automatically convert and store the data in that format (but it will always be passed as
RGB through the OIIO APIs).

o If the file format can support thumbnail images in its header, and the ImageSpec contain
attributes "thumbnail width", "thumbnail height", "thumbnail nchannels", and
"thumbnail image", the writer should attempt to store the thumbnail if possible.

5.5 Building ImagelO Plugins

FIXME - spell out how to compile and link plugins on each of the major platforms.

OpenIlmagelO Programmer’s Documentation

104 CHAPTER 5. WRITING IMAGEIO PLUGINS

OpenlmagelO Programmer’s Documentation

6 Bundled ImagelO Plugins

This chapter lists all the image format plugins that are bundled with OpenlmagelO. For each
plugin, we delineate any limitations, custom attributes, etc. The plugins are listed alphabetically
by format name.

6.1 BMP

BMP is a bitmap image file format used mostly on Windows systems. BMP files use the file
extension . bmp.

BMP is not a nice format for high-quality or high-performance images. It only supports
unsigned integer 1-, 2-, 4-, and 8- bits per channel; only grayscale, RGB, and RGBA; does not
support MIPmaps, multiimage, or tiles.

ImageSpec Attribute Type BMP header data or explanation
"XResolution" float hres

"YResolution" float vres

"ResolutionUnit" string always "m" (pixels per meter)

6.2 Cineon

Cineon is an image file format developed by Kodak that is commonly used for scanned motion
picture film and digital intermediates. Cineon files use the file extension .cin.

6.3 DDS

DDS (Direct Draw Surface) is an image file format designed by Microsoft for use in Direct3D
graphics. DDS files use the extension .dds.

DDS is an awful format, with several compression modes that are all so lossy as to be
completely useless for high-end graphics. Nevertheless, they are widely used in games and
graphics hardware directly supports these compression modes. Alas.

OpenlmagelO currently only supports reading DDS files, not writing them.

105

106

CHAPTER 6. BUNDLED IMAGEIO PLUGINS

ImageSpec Attribute Type DDS header data or explanation

"compression" string compression type

"oiio:BitsPerSample"| int bits per sample

"textureformat" string Set correctly to one of "Plain Texture", "Volume
Texture", or "CubeFace Environment".

"texturetype" string Set correctly to one of "Plain Texture", "Volume
Texture", or "Environment".

"dds:CubeMapSides" string For environment maps, which cube faces are present (e.g.,

6.4 DICOM

"+x -x +y -y"if x & y faces are present, but not z).

DICOM (Digital Imaging and Communications in Medicine) is the standard format used for
medical images. DICOM files usually have the extension .dcm.
OpenlmagelO 2.0 currently only supports reading DICOM files, not writing them.

ImageSpec Attribute

Type

DICOM header data or explanation

"oiio:BitsPerSample"
"dicom:*"

6.5 DPX

int

bits per sample
DICOM header information and metadata is currently all
preceded by the dicom: prefix.

DPX (Digital Picture Exchange) is an image file format used for motion picture film scanning,
output, and digital intermediates. DPX files use the file extension .dpx.

Configuration settings for DPX input

When opening a DPX ImageInput with a configuration (see Section[d.3), the following special

configuration options are supported:

Configuration attribute

Type

‘ Meaning

"oiio:RawColor"

nt

If nonzero, reading images with non-RGB color
models (such as YCbCr) will return unaltered
pixel values (versus the default OIIO behavior of
automatically converting to RGB).

Configuration settings for DPX output

When opening a DPX ImageOutput, the following special metadata tokens control aspects of

the writing itself:

OpenlmagelO Programmer’s Documentation

6.5. DPX 107
Output attribute Type Meaning
"oiio:RawColor" int If nonzero, writing images with non-RGB color
models (such as YCbCr) will keep unaltered
pixel values (versus the default OIIO behavior of
automatically converting from RGB to the desig-
nated color space as the pixels are written).
DPX Attributes
OIIO Attribute Type DPX header data or explanation
"ImageDescription" string Description of image element
"Copyright" string Copyright statement
"Software" string Creator
"DocumentName" string Project name
"DateTime" string Creation date/time
"Orientation" int the orientation of the DPX image data (see
"compression" string The compression type
"PixelAspectRatio" float pixel aspect ratio
"oiio:BitsPerSample" int the true bits per sample of the DPX file.
"oiio:Endian" string When writing, force a particular endianness
for the output file ("little" or "big")
"smpte:TimeCode" int[2] SMPTE time code (vecsemantics will be
marked as TIMECODE)
"smpte:KeyCode" int[7] SMPTE key code (vecsemantics will be
marked as KEYCODE)
"dpx:Transfer" string Transfer characteristic
"dpx:Colorimetric" string Colorimetric specification
"dpx:ImageDescriptor" string ImageDescriptor
"dpx:Packing" string Image packing method
"dpx:TimeCode" int SMPTE time code
"dpx:UserBits" int SMPTE user bits
"dpx:SourceDateTime" string source time and date
"dpx:FilmEdgeCode" string FilmEdgeCode
"dpx:Signal" string Signal ("Undefined", "NTSC", "PAL", etc.)
"dpx:UserData" UCHAR([*]| User data (stored in an array whose length is
whatever it was in the DPX file)
"dpx:EncryptKey" int Encryption key (-1 is not encrypted)
"dpx:DittoKey" int Ditto (0 = same as previous frame, 1 = new)
"dpx:LowData" int reference low data code value
"dpx:LowQuantity" float reference low quantity
"dpx:HighData" int reference high data code value
"dpx:HighQuantity" float reference high quantity
"dpx:XScannedSize" float X scanned size
"dpx:YScannedSize" float Y scanned size

OpenIlmagelO Programmer’s Documentation

108

CHAPTER 6. BUNDLED IMAGEIO PLUGINS

"dpx:FramePosition"
"dpx:Sequencelength"
"dpx:HeldCount"
"dpx:FrameRate"
"dpx:ShutterAngle"
"dpx:Version"
"dpx:Format"
"dpx:FrameId"
"dpx:SlateInfo"
"dpx:SourcelImageFileName"
"dpx:InputDevice"
"dpx:InputDeviceSerialNumber"
"dpx:Interlace"
"dpx:FieldNumber"
"dpx:HorizontalSampleRate"
"dpx:VerticalSampleRate"
"dpx:TemporalFrameRate"
"dpx:TimeOffset"
"dpx:BlackLevel"
"dpx:BlackGain"
"dpx:BreakPoint"
"dpx:WhiteLevel"
"dpx:IntegrationTimes"
"dpx:EndOfLinePadding"
"dpx:EndOfImagePadding”

6.6 Field3D

int
int
int
float
float
string
string
string
string
string
string
string
int
int
float
float
float
float
float
float
float
float
float
int
int

frame position in sequence

sequence length (frames)

held count (1 = default)

frame rate of original (frames/s)
shutter angle of camera (deg)

version of header format

format (e.g., "Academy")

frame identification

slate information

source image filename

input device name

input device serial number

interlace (0 = noninterlace, 1 = 2:1 interlace)
field number

horizontal sampling rate (Hz)

vertical sampling rate (Hz)

temporal sampling rate (Hz)

time offset from sync to first pixel (ms)
black level code value

black gain

breakpoint

reference white level code value
integration time (s)

Padded bytes at the end of each line
Padded bytes at the end of each image

Field3d is an open-source volume data file format. Field3d files commonly use the extension
.£3d. The official Field3D site is: https://github.com/imageworks/Field3D Currently,
OpenimagelO only reads Field3d files, and does not write them.

Fields are comprised of multiple layers (which appear to OpenlmagelO as subimages). Each
layer/subimage may have a different name, resolution, and coordinate mapping. Layers may be
scalar (1 channel) or vector (3 channel) fields, and the data may be half, float, or double.

OpenlmagelO always reports Field3D files as tiled. If the Field3d file has a “block size”,
the block size will be reported as the tile size. Otherwise, the tile size will be the size of the

entire volume.

OpenlmagelO Programmer’s Documentation

https://github.com/imageworks/Field3D

6.7. FITS 109

ImageSpec Attribute Type Field3d header data or explanation
"ImageDescription" string unique layer name
"oiio:subimagename" string unique layer name
"field3d:partition" string the partition name
"field3d:layer" string the layer (a.k.a. attribute) name
"field3d:fieldtype" string field type, one of: "dense", "sparse", or "MAC"
"field3d:mapping" string the coordinate mapping type
"field3d:localtoworld" | matrix of | if a matrixMapping, the local-to-world transfor-
doubles mation matrix
"worldtolocal™ matrix if a matrixMapping, the world-to-local coordinate
mapping
The “unique layer name” is generally the partition name + “:” + attribute name (exam-

ple: "defaultfield:density"), with the following exceptions: (1) if the partition and at-
tribute names are identical, just one is used rather than it being pointlessly concatenated (e.g.,
"density", not "density:density"); (2) if there are mutiple partitions + attribute combina-
tions with identical names in the same file, “.number” will be added after the partition name for
subsequent layers (e.g., "default:density", "default.2:density", "default.3:density").

6.7 FITS

FITS (Flexible Image Transport System) is an image file format used for scientific applications,
particularly professional astronomy. FITS files use the file extension . £its. Official FITS specs
and other info may be found at: http://fits.gsfc.nasa.gov/

OpenlmagelO supports multiple images in FITS files, and supports the following pixel data
types: UINTS, UINT16, UINT32, FLOAT, DOUBLE.

FITS files can store various kinds of arbitrary data arrays, but OpenlmagelO’s support of

FITS is mostly limited using FITS for image storage. Currently, OpenlmagelO only supports
2D FITS data (images), not 3D (volume) data, nor 1-D or higher-dimensional arrays.

ImageSpec Attribute Type FITS header data or explanation

"Orientation" int derived from FITS “ORIENTAT” field.

"DateTime" string derived from the FITS “DATE” field.

"Comment" string FITS “COMMENT” (*)

"History" string FITS “HISTORY” (*)

"Hierarch" string FITS “HIERARCH” (*)

other all other FITS keywords will be added to the ImageSpec
as arbitrary named metadata.

(*) Note: If the file contains multiple COMMENT, HISTORY, or HIERARCH fields, their text
will be appended to form a single attribute (of each) in OpenlmagelO’s ImageSpec.

OpenIlmagelO Programmer’s Documentation

http://fits.gsfc.nasa.gov/

110 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

6.8 GIF

GIF (Graphics Interchange Format) is an image file format developed by CompuServe in 1987.
Nowadays it is widely used to display basic animations despite its technical limitations.

ImageSpec Attribute Type GIF header data or explanation

"gif:Interlacing" int Specifies if image is interlaced (0 or 1).

"FramesPerSecond" int[2] (rational) | Frames per second

"oiio:Movie" int If nonzero, indicates that it’s an animated GIF.

"gif:LoopCount" int Number of times the animation should be
played (0—65535, 0 stands for infinity).

"ImageDescription" string The GIF comment field.

Limitations

e GIF only supports 3-channel (RGB) images and at most 8 bits per channel.

e Each subimage can include its own palette or use global palette. Palettes contain up to 256
colors of which one can be used as background color. It is then emulated with additional
Alpha channel by OpenlmagelO’s reader.

6.9 HDR/RGBE

HDR (High Dynamic Range), also known as RGBE (rgb with extended range), is a simple
format developed for the Radiance renderer to store high dynamic range images. HDR/RGBE
files commonly use the file extensions .hdr. The format is described in this section of the
Radiance documentation: http://radsite.lbl.gov/radiance/refer/filefmts.pdf

RGBE does not support tiles, multiple subimages, mipmapping, true half or float pixel
values, or arbitrary metadata. Only RGB (3 channel) files are supported.

RGBE became important because it was developed at a time when no standard file formats
supported high dynamic range, and is still used for many legacy applications and to distribute
HDR environment maps. But newer formats with native HDR support, such as OpenEXR, are
vastly superior and should be preferred except when legacy file access is required.

ImageSpec Attribute Type RGBE header data or explanation

"Orientation" int encodes the orientation (see Section
"oiio:ColorSpace" string Color space (see Section .

"oiio:Gamma" float the gamma correction specified in the RGBE header

(if it’s gamma corrected).

OpenlmagelO Programmer’s Documentation

http://radsite.lbl.gov/radiance/refer/filefmts.pdf

6.10. ICO 111

6.10 ICO

ICO is an image file format used for small images (usually icons) on Windows. ICO files use
the file extension . ico.

ImageSpec Attribute Type ICO header data or explanation
"oiio:BitsPerSample"| int the true bits per sample in the ICO file.
"ico:PNG" int if nonzero, will cause the ICO to be written out using
PNG format.
Limitations

e ICO only supports UINTS and UINT16 formats; all output images will be silently con-
verted to one of these.

e ICO only supports small images, up to 256 x 256. Requests to write larger images will
fail their open () call.

6.11 IFF

IFF files are used by Autodesk Maya and use the file extension .1iff.

OIIO Attribute Type DPX header data or explanation

"Artist" string The IFF “author”

"DateTime" string Creation date/time

"compression" string The compression type

"oiio:BitsPerSample" int the true bits per sample of the IFF file.
6.12 JPEG

JPEG (Joint Photographic Experts Group), or more properly the JFIF file format containing
JPEG-compressed pixel data, is one of the most popular file formats on the Internet, with ap-
plications, and from digital cameras, scanners, and other image acquisition devices. JPEG/JFIF
files usually have the file extension . jpg, . Jjpe, .Jjpeg, .jif, .Jfif, or . jfi. The JFIF file
format is described by http://www.w3.0rg/Graphics/JPEG/Jf1f3.pdf.

Although we strive to support JPEG/JFIF because it is so widely used, we acknowledge
that it is a poor format for high-end work: it supports only 1- and 3-channel images, has no
support for alpha channels, no support for high dynamic range or even 16 bit integer pixel
data, by convention stores sSRGB data and is ill-suited to linear color spaces, and does not
support multiple subimages or MIPmap levels. There are newer formats also blessed by the
Joint Photographic Experts Group that attempt to address some of these issues, such as JPEG-
2000, but these do not have anywhere near the acceptance of the original JPEG/JFIF format.

OpenIlmagelO Programmer’s Documentation

http://www.w3.org/Graphics/JPEG/jfif3.pdf

112

CHAPTER 6. BUNDLED IMAGEIO PLUGINS

ImageSpec Attribute Type JPEG header data or explanation
"ImageDescription" string the JPEG Comment field

"Orientation" int the image orientation

"XResolution", The resolution and units from the Exif header
"YResolution",

"ResolutionUnit"

"CompressionQuality"| int Quality of compression (1-100)

"ICCProfile" uint8[] The ICC color profile

"Jpeg:subsampling" string Describes the chroma subsampling, e.g., "4:2:0"

Exif, IPTC, XMP, GPS

Limitations

(the default), "4:4:4","4:2:2", "4:2:1".

Extensive Exif, IPTC, XMP, and GPS data are sup-
ported by the reader/writer, and you should assume
that nearly everything described Appendix |B|is prop-
erly translated when using JPEG files.

e JPEG/JFIF only supports 1- (grayscale) and 3-channel (RGB) images. As a special case,
OpenlmagelO’s JPEG writer will accept n-channel image data, but will only output the
first 3 channels (if n > 3) or the first channel (if n < 2), silently drop any extra channels

from the output.

e Since JPEG/JFIF only supports 8 bits per channel, OpenlmagelO’s JPEG/JFIF writer will
silently convert to UINTS upon output, regardless of requests to the contrary from the

calling program.

e OpenimagelO’s JPEG/JFIF reader and writer always operate in scanline mode and do not
support tiled image input or output.

6.13 JPEG-2000

JPEG-2000 is a successor to the popular JPEG/JFIF format, that supports better (wavelet) com-
pression and a number of other extensions. It’s geared toward photography. JPEG-2000 files
use the file extensions . jp2 or .j2k. The official JPEG-2000 format specification and other
helpful info may be found at http://www. jpeg.org/JPEG2000.htm.

JPEG-2000 is not yet widely used, so OpenlmagelO’s support of it is preliminary. In par-
ticular, we are not yet very good at handling the metadata robustly.

ImageSpec Attribute

‘ Type

‘ JPEG-2000 header data or explanation

"Jpeg2000:streamformat"

string

specifies the JPEG-2000 stream format ("none"
Or " jpc ll)

OpenlmagelO Programmer’s Documentation

http://www.jpeg.org/JPEG2000.htm

6.14. MOVIE FORMATS (USING FFMPEG) 113

6.14 Movie formats (using ffmpeg)

The ffmpeg-based reader is capable of reading the individual frames from a variety of movie
file formats, including:

Format Extensions

AVI .avi

QuickTime .gt, .mov
MPEG-4 .mp4, .mda, .mdv
3GPP files .3gp, .392
Motion JPEG-2000 .mj2

Apple M4V .mdv
MPEG-1/MPEG-2 .mpg

Currently, these files may only be read. Write support may be added in a future release.
Also, currently, these files simply look to OIIO like simple multi-image files and not much
support is given to the fact that they are technically movies (for example, there is no support for
reading audio information).

Some special attributes are used for movie files:

OIIO Attribute ‘ Type ‘ Explanation
"oiio:Movie" int Nonzero value for movie files
"FramesPerSecond" int[2] (rational) | Frames per second

6.15 Null format

The null reader/writer is a mock-up that does not perform any actual I/O. The reader just
returns constant-colored pixels, and the writer just returns directly without saving any data.
This has several uses:

e Benchmarking, if you want to have OIIO’s input or output truly take as close to no time
whatsoever.

e “Dry run” of applications where you don’t want it to produce any real output (akin to a
Unix command that you redirect output to /dev/null).

e Make “fake” input that looks like a file, but the file doesn’t exist (if you are happy with
constant-colored pixels).

The filename allows a REST-ful syntax, where you can append modifiers that specify things
like resolution (of the non-existent file), etc. For example,

foo.null?RES=640x480&CHANNELS=3

would specify a null file with resolution 640x480 and 3 channels. Token/value pairs accepted
are:

OpenIlmagelO Programmer’s Documentation

114

CHAPTER 6. BUNDLED IMAGEIO PLUGINS

RES=1024x1024
CHANNELS=4
TILES=64x64
TYPE=uint38
PIXEL=r,q,b,...
TEX=1
attrib=value

6.16 OpenEXR

Set resolution (3D example: 256x256x100)

Set number of channels

Makes it look like a tiled image with tile size

Set the pixel data type

Set pixel values (comma separates channel values)
Make it look like a full MIP-mapped texture
Anything else will set metadata

OpenEXR is an image file format developed by Industrial Light & Magic, and subsequently
open-sourced. OpenEXR’s strengths include support of high dynamic range imagery (half and
float pixels), tiled images, explicit support of MIPmaps and cubic environment maps, arbitrary
metadata, and arbitrary numbers of color channels. OpenEXR files use the file extension .exr.
The official OpenEXR site is http://www.openexr.com/.

ImageSpec Attribute Type OpenEXR header data or explanation
width, height, x, y dataWindow

full width, full height, displayWindow.

full x, full y

"worldtocamera" matrix worldToCamera

"worldtoscreen" matrix worldToNDC

"ImageDescription" string comments

"Copyright™" string owner

"DateTime" string capDate

"PixelAspectRatio" float pixelAspectRatio

"ExposureTime" float expTime

"FNumber" float aperture

"compression" string one of: "none", "rle", "zip", "zips",

"piz", "pxr24", "b44", "b44a", "dwaa", or
"dwab". If the writer receives a request for
a compression type it does not recognize or
is not supported by the version of OpenEXR
on the system, it will use "zip" by default.
For "dwaa" and "dwab", the dwaCompres-
sionLevel may be optionally appended to the
compression name after a colon, like this:
"dwaa:200".

OpenlmagelO Programmer’s Documentation

http://www.openexr.com/

6.17. OPENVDB 115

"textureformat" string "Plain Texture" for MIP-mapped
OpenEXR files, "CubeFace Environment"
or "Latlong Environment" for OpenEXR
environment maps. Non-environment non-
MIP-mapped OpenEXR files will not set this

attribute.

"wrapmodes" string wrapmodes

"FramesPerSecond" int[2] Frames per second playback rate (vecseman-
tics will be marked as RATIONAL)

"captureRate" int[2] Frames per second capture rate (vecsemantics
will be marked as RATIONAL)

"smpte:TimeCode" int[2] SMPTE time code (vecsemantics will be
marked as TIMECODE)

"smpte:KeyCode" int[7] SMPTE key code (vecsemantics will be
marked as KEYCODE)

"openexr:lineOrder" string OpenEXR lineOrder attribut: "increasingY",
"randomY", or "decreasing¥".

"openexr : roundingmode" int the MIPmap rounding mode of the file.

"openexr:dwaCompressionLevel"| float compression level for dwaa or dwab compres-
sion (default: 45.0).

other All other attributes will be added to the

ImageSpec by their name and apparent type.

OpenEXR input and output both support the “custom I/O” feature via the special "oiio:ioproxy"

attributes (see Sections[3.2.12]and [4.2.3)).

A note on channel names

The underlying OpenEXR library (libllmImf) always saves channels into lexicographic order,
so the channel order on disk (and thus when read!) will NOT match the order when the image
was created.

But in order to adhere to OIIO’s convention that RGBAZ will always be the first channels
(if they exist), OIIO’s OpenEXR reader will automatically reorder just those channels to appear
at the front and in that order. All other channel names will remain in their relative order as
presented to OIIO by libIlmImf.

Limitations

e The OpenEXR format only supports HALF, FLOAT, and UINT32 pixel data. Openlm-
agelO’s OpenEXR writer will silently convert data in formats (including the common
UINTS and UINT16 cases) to HALF data for output.

OpenIlmagelO Programmer’s Documentation

116 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

6.17 OpenVDB

OpenVDB is an open-source volume data file format. OpenVDB files commonly use the ex-
tension .vdb. The official OpenVDB site is: |http://www.openvdb.org/ Currently, Openlm-
agelO only reads OpenVDB files, and does not write them.

Volumes are comprised of multiple layers (which appear to OpenimagelO as subimages).
Each layer/subimage may have a different name, resolution, and coordinate mapping. Layers
may be scalar (1 channel) or vector (3 channel) fields, and the voxel data are always float.
OpenVDB files always report as tiled, using the leaf dimension size.

ImageSpec Attribute Type Field3d header data or explanation

"ImageDescription" string unique layer name

"oiio:subimagename" string unique layer name

"openvdb:indextoworld" | matrix of | conversion of pixel index to world space coordi-
doubles nates.

"openvdb:worldtoindex" | matrix of | conversion of world space coordinates to pixel in-
doubles dex.

"worldtolocal" matrix the world-to-local coordinate mapping.

6.18 PNG

PNG (Portable Network Graphics) is an image file format developed by the open source com-
munity as an alternative to the GIF, after Unisys started enforcing patents allegedly covering
techniques necessary to use GIF. PNG files use the file extension .png.

ImageSpec Attribute Type PNG header data or explanation
"ImageDescription" string Description

"Artist" string Author

"DocumentName" string Title

"DateTime" string the timestamp in the PNG header
"PixelAspectRatio" float pixel aspect ratio

"XResolution" resolution and units from the PNG header.
"YResolution"

"ResolutionUnit"

"oiio:ColorSpace" string Color space (see Section .
"oiio:Gamma" float the gamma correction value (if specified).
"ICCProfile" uint8[] The ICC color profile

PNG output supports the “custom I/O” feature via the special "oiio:ioproxy" attributes

(see Section [3.2.12)).

Limitations

e PNG stupidly specifies that any alpha channel is “unassociated” (i.e., that the color chan-
nels are not “premultiplied” by alpha). This is a disaster, since it results in bad loss of

OpenlmagelO Programmer’s Documentation

NEW!

http://www.openvdb.org/

6.19. PNM /NETPBM 117

precision for alpha image compositing, and even makes it impossible to properly repre-
sent certain additive glows and other desirable pixel values. OpenlmagelO automatically
associates alpha (i.e., multiplies colors by alpha) upon input and deassociates alpha (di-
vides colors by alpha) upon output in order to properly conform to the OIIO convention
(and common sense) that all pixel values passed through the OIIO APIs should use asso-
ciated alpha.

e PNG only supports UINT8 and UINT16 output; other requested formats will be automat-
ically converted to one of these.

6.19 PNM / Netpbm

The Netpbm project, a.k.a. PNM (portable “any” map) defines PBM, PGM, and PPM (portable
bitmap, portable graymap, portable pixmap) files. Without loss of generality, we will refer to
these all collectively as “PNM.” These files have extensions .pbm, . pgm, and . ppm and custom-
arily correspond to bi-level bitmaps, 1-channel grayscale, and 3-channel RGB files, respectively,
or .pnm for those who reject the nonsense about naming the files depending on the number of
channels and bitdepth.

PNM files are not much good for anything, but because of their historical significance and
extreme simplicity (that causes many “amateur” programs to write images in these formats),
OpenlmagelO supports them. PNM files do not support floating point images, anything other
than 1 or 3 channels, no tiles, no multi-image, no MIPmapping. It’s not a smart choice unless
you are sending your images back to the 1980’s via a time machine.

ImageSpec Attribute | Type PNG header data or explanation

"oiio:BitsPerSample! int the true bits per sample of the file (1 for true PBM files,
even though OIIO will report the format as UINTS).

"pnm:binary" int nonzero if the file itself used the PNM binary format, 0

if it used ASCIIL. The PNM writer honors this attribute in
the TmageSpec to determine whether to write an ASCII or
binary file.

6.20 PSD

PSD is the file format used for storing Adobe PhotoShop images. OpenlmagelO provides lim-
ited read abilities for PSD, but not currently the ability to write PSD files.

Configuration settings for PSD input

When opening an ImageInput with a configuration (see Section {.3)), the following special
configuration options are supported:

OpenIlmagelO Programmer’s Documentation

118 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

Configuration attribute Type Meaning

"oiio:RawColor" int If nonzero, reading images with non-RGB color
models (such as CMYK or YCbCr) will return
unaltered raw pixel values (versus the default
OIIO behavior of automatically converting to
RGB).

Currently, the PSD format reader supports color modes RGB, CM YK, multichannel, grayscale,
indexed, and bitmap. It does NOT currenty support Lab or duotone modes.

6.21 Ptex

Ptex is a special per-face texture format developed by Walt Disney Feature Animation. The
format and software to read/write it are open source, and available from http://ptex.us/.
Ptex files commonly use the file extension .ptex.

OpenlmagelQO’s support of Ptex is still incomplete. We can read pixels from Ptex files, but
the TextureSystem doesn’t properly filter across face boundaries when using it as a texture.
OpenimagelO currently does not write Ptex files at all.

ImageSpec Attribute Type Ptex header data or explanation

"ptex:meshType" string the mesh type, either "triangle" or "quad".

"ptex:hasEdits" int nonzero if the Ptex file has edits.

"wrapmode" string the wrap mode as specified by the Ptex file.

other Any other arbitrary metadata in the Ptex file will
be stored directly as attributes in the ImageSpec.

6.22 RAW digital camera files

A variety of digital camera “raw” formats are supported via this plugin that is based on the
LibRaw library (http://www.libraw.org/).

Configuration settings for RAW input

When opening an ImageInput with a configuration (see Section |.3)), the following special
configuration options are supported:

OpenlmagelO Programmer’s Documentation

http://ptex.us/

6.22. RAW DIGITAL CAMERA FILES

119

Configuration attribute

Type

Meaning

"raw:

n

n

"raw:

"raw:

"raw:

"raw:

"raw:

"raw:

raw:

raw:

raw:

auto bright"

use camera wb"

use camera matrix"

adjust maximum thr"

user sat"

aber"

ColorSpace"

Exposure"

Demosaic"

HighlightMode"

int
int

int

float

int

float[2]

string

float

string

int

If nonzero, will use libraw’s exposure correction.
(Default: 0)

If 1, use libraw’s camera white balance adjust-
ment. (Default: 1)

Whether to use the embedded color profile, if it’s
present: O = never, 1 (default) = only for DNG
files, 3 = always.

If nonzero, auto-adjusting maximum value. (De-
fault:0.0)

If nonzero, sets the camera maximum value that
will be normalized to appear saturated. (Default:
0)

Red and blue scale factors for chromatic aber-
ration correction when decoding the raw image.
The default (1,1) means to perform no correction.
This is an overall spatial scale, sensible values
will be very close to 1.0.

Which color primaries to use: "raw", "sRGB",
"Adobe", "Wide", "ProPhoto", "ACES", "XYZ".
(Default: "sRGB")

Amount of exposure before de-mosaicing, from
0.25 (2 stop darken) to 8 (3 stop brighten). (De-
fault: 0, meaning no correction.)

Force a demosaicing algorithm: "linear",
"YNG", "PPG", "AHD" (default), "DCB",
"AHD-Mod", "AFD", "VCD", "Mixed", "LMMSE",
"AMaZE", "DHT", "AAHD", "none".

Set libraw highlight mode processing: 0 = clip, 1
= unclip, 2 = blend, 3+ = rebuild. (Default: 0.)

OpenIlmagelO Programmer’s Documentation

120

CHAPTER 6. BUNDLED IMAGEIO PLUGINS

6.23 RLA

RLA (Run-Length encoded, version A) is an early CGI renderer output format, originating from
Wavefront Advanced Visualizer and used primarily by software developed at Wavefront. RLA
files commonly use the file extension .rla.

ImageSpec Attribute Type RLA header data or explanation
width, height, %,y int RLA “active/viewable” window.
full width, full height, | int RLA “full” window.
full x, full y
"rla:FrameNumber" int frame sequence number.
"rla:Revision" int file format revision number, currently
"OXFFFE".
"rla:JobNumber" int job number ID of the file.
"rla:FieldRendered" int whether the image is a field-rendered (inter-
laced) one ("0" for false, non-zero for true).
"rla:FileName" string name under which the file was orignally saved.
"ImageDescription" string RLA “Description” of the image.
"Software" string name of software used to save the image.
"HostComputer" string name of machine used to save the image.
"Artist" string RLA “UserName”: logon name of user who
saved the image.
"rla:Aspect" string aspect format description string.
"rla:ColorChannel™ string textual description of color channel data for-
mat (usually "rgb").
"rla:Time" string description (format not standardized) of
amount of time spent on creating the image.
"rla:Filter" string name of post-processing filter applied to the
image.
"rla:AuxData" string textual description of auxiliary channel data
format.
"rla:AspectRatio" float image aspect ratio.
"rla:RedChroma" vec2 or vec3 | red point XY (vec2) or XYZ (vec3) coordi-
of floats nates.
"rla:GreenChroma" vec2 or vec3 | green point XY (vec2) or XYZ (vec3) coordi-
of floats nates.
"rla:BlueChroma" vec2 or vec3 | blue point XY (vec2) or XYZ (vec3) coordi-
of floats nates.
"rla:WhitePoint" vec2 or vec3 | white point XY (vec2) or XYZ (vec3) coordi-
of floats nates.
"oiio:ColorSpace" string Color space (see Section .
"oiio:Gamma" float the gamma correction value (if specified).

OpenlmagelO Programmer’s Documentation

6.24. SGI 121

Limitations

e OpenimagelO will only write a single image to each file, multiple subimages are not
supported by the writer (but are supported by the reader).

6.24 SGl

The SGI image format was a simple raster format used long ago on SGI machines. SGI files
use the file extensions sgi, rgb, rgba, "bw", "int", and "inta".

The SGI format is sometimes used for legacy apps, but has little merit otherwise: no support
for tiles, no MIPmaps, no multi-subimage, only 8- and 16-bit integer pixels (no floating point),
only 1-4 channels.

ImageSpec Attribute Type SGI header data or explanation
"ImageDescription" string image name
"Compression" string thee compression of the SGI file ("rle", if RLE

compression is used).

6.25 Softimage PIC

Softimage PIC is an image file format used by the Softimage 3D application, and some other
programs that needed to be compatible with it. Softimage files use the file extension .pic.

The Softimage PIC format is sometimes used for legacy apps, but has little merit otherwise,
so currently OpenlmagelO only reads Softimage files and is unable to write them.

ImageSpec Attribute ‘ Type ‘ PIC header data or explanation
string comment
int the true bits per sample in the PIC file.

"ImageDescription"
"oiio:BitsPerSample"

6.26 Targa

Targa (a.k.a. Truevision TGA) is an image file format with little merit except that it is very
simple and is used by many legacy applications. Targa files use the file extension .tga, or,
much more rarely, .tpic. The official Targa format specification may be found at
http://www.dca.fee.unicamp.br/-martino/disciplinas/ea978/tgaffs.pdf.

OpenIlmagelO Programmer’s Documentation

http://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgaffs.pdf

122 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

ImageSpec Attribute Type TGA header data or explanation
"ImageDescription" string comment

"Artist" string author

"DocumentName" string job name/ID

"Software" string software name

"DateTime" string TGA time stamp

"targa:JobTime" string TGA “job time.”

"Compression" string values of "none™ and "rle" are supported. The

writer will use RLE compression if any unknown
compression methods are requested.

"targa:ImageID" string Image ID

"PixelAspectRatio" float pixel aspect ratio
"oiio:BitsPerSample" int the true (in the file) bits per sample.
"oiio:ColorSpace" string Color space (see Section .
"oiio:Gamma" float the gamma correction value (if specified).

If the TGA file contains a thumbnail, its dimensions will be stored in the attributes "thumbnail -
width", "thumbnail height",and "thumbnail nchannels", and the thumbnail pixels them-
selves will be stored in "thumbnail image" (as an array of UINT8 values, whose length is
the total number of channel samples in the thumbnail).

Limitations

e The Targa reader reserves enough memory for the entire image. Therefore it is not a
good choice for high-performance image use such as would be used for ImageCache or
TextureSystem.

e Targa files only support 8- and 16-bit unsigned integers (no signed, floating point, or
HDR capabilities); the OpenimagelO TGA writer will silently convert all output images
to UINTS (except if UINT16 is explicitly requested).

e Targa only supports grayscale, RGB, and RGBA; the OpenlmagelO TGA writer will fail
its call to open () if it is asked create a file with more than 4 color channels.

6.27 TIFF

TIFF (Tagged Image File Format) is a flexible file format created by Aldus, now controlled
by Adobe. TIFF supports nearly everything anybody could want in an image format (and has
extactly the complexity you would expect from such a requirement). TIFF files commonly
use the file extensions .tif or, .tiff. Additionally, OpenlmagelO associates the following
extensions with TIFF files by default: .tx, .env, .sm, .vsm.

The official TIFF format specification may be found here: http://partners.adobe.com/
public/developer/tiff/index.html The most popular library for reading TIFF directly is

OpenlmagelO Programmer’s Documentation

http://partners.adobe.com/public/developer/tiff/index.html
http://partners.adobe.com/public/developer/tiff/index.html

6.27. TIFF 123

1libtiff, available here: http://www.remotesensing.org/libtiff/| OpenlmagelO uses
1ibtiff for its TIFF reading/writing.

We like TIFF a lot, especially since its complexity can be nicely hidden behind OIIO’s
simple APIs. It supports a wide variety of data formats (though unfortunately not half), an
arbitrary number of channels, tiles and multiple subimages (which makes it our preferred texture
format), and a rich set of metadata.

OpenlmagelO supports the vast majority of TIFF features, including: tiled images ("tiled")
as well as scanline images; multiple subimages per file ("multiimage"); MIPmapping (using
multi-subimage; that means you can’t use multiimage and MIPmaps simultaneously); data for-
mats 8- 16, and 32 bit integer (both signed and unsigned), and 32- and 64-bit floating point;
palette images (will convert to RGB); “miniswhite” photometric mode (will convert to “minis-
black™).

The TIFF plugin attempts to support all the standard Exif, IPTC, and XMP metadata if
present.

Configuration settings for TIFF input

When opening an ImageInput with a configuration (see Section 4.3), the following special
configuration options are supported:

Configuration attribute Type Meaning

"oiio:UnassociatedAlpha" int If nonzero, will leave alpha unassociated (versus
the default of premultiplying color channels by
alpha if the alpha channel is unassociated).
"oiio:RawColor" int If nonzero, reading images with non-RGB color
models (such as CMYK or YCbCr) will return
unaltered raw pixel values (versus the default
OIIO behavior of automatically converting to
RGB).

Configuration settings for TIFF output

When opening an ImageOutput, the following special metadata tokens control aspects of the
writing itself:

OpenIlmagelO Programmer’s Documentation

http://www.remotesensing.org/libtiff/

124 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

Output attribute Type Meaning

"oiio:UnassociatedAlpha" int If nonzero, any alpha channel is understood to be
unassociated, and the EXTRASAMPLES tag in
the TIFF file will be set to reflect this).

"oiio:BitsPerSample" int Requests a rescaling to a specific bits per sample
(such as writing 12-bit TIFFs).

"tiff:write exif" int If zero, will not write any Exif data to the TIFF
file. (The defaultis 1.)

"tiff:half" int If nonzero, allow writing TIFF files with ‘half’

(16 bit float) pixels. The default of 0 will au-
tomatically translate to float pixels, since most
non-OlIO applications will not properly read half
TIFF files despite their being legal.

"tiff:ColorSpace" string Requests that the file be saved with a non-RGB
color spaces. Choices are "RGB", "CMYK".
"tiff:zipquality" int A time-vs-quality knob for "zip" compression,

ranging from 1-9 (default is 6). Higher means
compress to less space, but taking longer to do
so. It is strictly a time vs space tradeoff, the qual-
ity is identical (lossless) no matter what the set-
ting.

"tiff:RowsPerStrip" int Overrides TIFF scanline rows per strip with
a specific request (if not supplied, OIIO will
choose a reasonable default).

TIFF compression modes

The full list of possible TIFF compression mode values are as follows (* indicates that Openlm-
agelO can write that format, and is not part of the format name):

none® lzw* zip*

ccitt t4 ccitt t6 ccittfax3 ccittfax4 ccittrle2 ccittrle® dcs isojbig
IT8BL IT8CTPAD ITS8LW IT8MP jp2000 iJpeg® 1lzma next ojpeg packbits®

pixarfilm pixarlog sgilog24 sgilog T43 T85 thunderscan

Limitations
OpenlmagelO’s TIFF reader and writer have some limitations you should be aware of:
e No separate per-channel data formats (not supported by 1ibtiff).

e Only multiples of 8 bits per pixel may be passed through OpenimagelO’s APIs, e.g., 1-,
2-, and 4-bits per pixel will be passed by OIIO as 8 bit images; 12 bits per pixel will
be passed as 16, etc. But the "oiio:BitsPerSample" attribute in the ImageSpec will
correctly report the original bit depth of the file. Similarly for output, you must pass 8
or 16 bit output, but "oiio:BitsPerSample" gives a hint about how you want it to be
when written to the file, and it will try to accommodate the request (for signed integers,
TIFF output can accommodate 2, 4, 8, 10, 12, and 16 bits).

OpenlmagelO Programmer’s Documentation

6.27. TIFF 125

e JPEG compression is limited to 8-bit per channel, 3-channel files.

OpenIlmagelO Programmer’s Documentation

126

CHAPTER 6. BUNDLED IMAGEIO PLUGINS

TIFF Attributes

ImageSpec Attribute Type TIFF header data or explanation

ImageSpec: :x int XPosition

ImageSpec::y int YPosition

ImageSpec::full width int PIXAR IMAGEFULLWIDTH

ImageSpec::full length int PIXAR IMAGEFULLLENGTH

"ImageDescription" string ImageDescription

"DateTime" string DateTime

"Software" string Software

"Artist" string Artist

"Copyright" string Copyright

"Make" string Make

"Model" string Model

"DocumentName" string DocumentName

"HostComputer" string HostComputer

"XResultion" "YResolution" float XResolution, YResolution

"ResolutionUnit" string ResolutionUnit ("in" or "cm").

"Orientation" int Orientation

"ICCProfile" uint8[] The ICC color profile

"textureformat" string PIXAR_TEXTUREFORMAT

"wrapmodes" string PIXAR_WRAPMODES

"fovcot" float PIXAR FOVCOT

"worldtocamera" matrix PIXAR MATRIX WORLDTOCAMERA

"worldtoscreen" matrix PIXAR MATRIX WORLDTOSCREEN

"compression" string based on TIFF Compression (one of "none",
"lzw", "zip", or others listed above.).

"tiff:compression" int the original integer code from the TIFF Com-
pression tag.

"tiff:planarconfig" string PlanarConfiguration ("separate" or
"contig"). The OpenlmagelO TIFF writer
will honor such a request in the ImageSpec.

"tiff:PhotometricInterpretation" | int Photometric

"tiff:PageName" string PageName

"tiff:PageNumber" int PageNumber

"tiff:RowsPerStrip" int RowsPerStrip

"tiff:subfiletype" 1 SubfileType

"Exif:x" A wide variety of EXIF data are honored, and
are all prefixed with "Exif:".

"oiio:BitsPerSample" int The actual bits per sample in the file (may dif-
fer from ImageSpec: : format).

"oiio:UnassociatedAlpha" int Nonzero if the alpha channel contained

“unassociated” alpha.

OpenlmagelO Programmer’s Documentation

6.28. WEBP 127

6.28 Webp

6.29 Zfile

Zfile is a very simple format for writing a depth (z) image, originally from Pixar’s PhotoRealistic
RenderMan but now supported by many other renderers. It’s extremely minimal, holding only
a width, height, world-to-screen and camera-to-screen matrices, and uncompressed float pixels
of the z-buffer. Zfile files use the file extension .zfile.

ImageSpec Attribute ‘ Type ‘ Zfile header data or explanation
"worldtocamera" matrix NP
"worldtoscreen" matrix N1

OpenIlmagelO Programmer’s Documentation

128 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

OpenlmagelO Programmer’s Documentation

7 Cached Images

7.1 Image Cache Introduction and Theory of Operation

ImageCache is a utility class that allows an application to read pixels from a large number of
image files while using a remarkably small amount of memory and other resources. Of course
it is possible for an application to do this directly using ImageInput objects. But ImageCache
offers the following advantages:

e ImageCache presents an even simpler user interface than ImageInput— the only sup-
ported operations are asking for an ImageSpec describing a subimage in the file, re-
trieving for a block of pixels, and locking/reading/releasing individual tiles. You refer
to images by filename only; you don’t need to keep track of individual file handles or
ImageInput objects. You don’t need to explicitly open or close files.

e The ImageCache is completely thread-safe; if multiple threads are accessing the same
file, the ImageCache internals will handle all the locking and resource sharing.

e No matter how many image files you are accessing, the ImageCache will maintain a
reasonable number of simultaneously-open files, automatically closing files that have not
been needed recently.

e No matter how large the total pixels in all the image files you are dealing with are, the
ImageCache will use only a small amount of memory. It does this by loading only the
individual tiles requested, and as memory allotments are approached, automatically re-
leasing the memory from tiles that have not been used recently.

In short, if you have an application that will need to read pixels from many large image files,
you can rely on ImageCache to manage all the resources for you. It is reasonable to access
thousands of image files totalling hundreds of GB of pixels, efficiently and using a memory
footprint on the order of 50 MB.

129

130 CHAPTER 7. CACHED IMAGES

Below are some simple code fragments that shows ImageCache in action:

#include <OpenImageIO/imagecache.h>
using namespace 0IIO;

// Create an image cache and set some options
ImageCache *cache = ImageCache::create ();
cache->attribute ("max_memory_MB", 500.0);
cache->attribute ("autotile", 64);

// Get a block of pixels from a file.
// (for brevity of this example, let’s assume that ’size’ is the
// number of channels times the number of pixels in the requested region)
float pixels[sizel;
cache->get_pixels ("filel.jpg", 0, 0, xbegin, xend, ybegin, yend,
zbegin, zend, TypeDesc::FLOAT, pixels);

// Get information about a file
ImageSpec spec;
bool ok = cache->get_imagespec ("file2.exr", spec);
if (ok)
std::cout << "resolution is " << spec.width << "x"
<< "spec.height << "\n";

// Request and hold a tile, do some work with its pixels, then release
ImageCache::Tile *tile;

tile = cache->get_tile ("fileZ.exr", 0, 0, x, y, 2);

// The tile won’t be freed until we release it, so this 1s safe:
TypeDesc format;

void *p = cache->tile_pixels (tile, format);

// Now p points to the raw pixels of the tile, whose data format

// is given by ’format’.

cache->release_tile (tile);

// Now cache is permitted to free the tile when needed

// Note that all files were referenced by name, we never had to open
// or close any files, and all the resource and memory management

// was automatic.

ImageCache: :destroy (cache);

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 131

7.2 ImageCache API

7.2.1 Creating and destroying an image cache

ImageCache is an abstract API described as a pure virtual class. The actual internal implemen-
tation is not exposed through the external API of OpenimagelO. Because of this, you cannot
construct or destroy the concrete implementation, so two static methods of ImageCache are
provided:

static ImageCache *ImageCache::create (bool shared=true)

Creates a new ImageCache and returns a pointer to it. If shared is true, create()
will return a pointer to a shared ImageCache (so that multiple parts of an application
that request an ImageCache will all end up with the same one). If shared is false, a
completely unique ImageCache will be created and returned.

static void ImageCache::destroy (ImageCache *x, bool teardown=false)
Destroys an allocated ImageCache, including freeing all system resources that it holds.

This is necessary to ensure that the memory is freed in a way that matches the way it was
allocated within the library. Note that simply using delete on the pointer will not always
work (at least, not on some platforms in which a DSO/DLL can end up using a different
allocator than the main program).

It is safe to destroy even a shared ImageCache, as the implementation of destroy () will
recognize a shared one and only truly release its resources if it has been requested to be de-
stroyed as many times as shared ImageCache’s were created. For a shared ImageCache,
if the teardown parameter is t rue, it will try to truly destroy the shared cache if nobody
else is still holding a reference (otherwise, it will leave it intact).

7.2.2 Setting options and limits for the image cache

The following member functions of ImageCache allow you to set (and in some cases retrieve)
options that control the overall behavior of the image cache:

bool attribute (string view name, TypeDesc type, const void *val)

Sets an attribute (i.e., a property or option) of the ImageCache. The name designates the
name of the attribute, type describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the ImageCache recognizes a valid attribute name that matches the type specified,
the attribute will be set to the new value and attribute () will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc: :FLOAT but the named attribute is a string), the attribute will not be modified,
and attribute () will return false.

Here are examples:

ImageCache *ts;

OpenIlmagelO Programmer’s Documentation

132 CHAPTER 7. CACHED IMAGES
int maxfiles = 50;
ts—>attribute ("max_open_files", TypeDesc::INT, &maxfiles);
const char *path = "/my/path";
ts->attribute ("searchpath", TypeDesc::STRING, &path);
Note that when passing a string, you need to pass a pointer to the char*, not a pointer to
the first character. (Rationale: for an int attribute, you pass the address of the int. So
for a string, which is a char*, you need to pass the address of the string, i.e., a char**).
The complete list of attributes can be found at the end of this section.
bool attribute (string view name, int wval)
bool attribute (string view name, float val)
bool attribute (string view name, double val)
bool attribute (string view name, string view val)
Specialized versions of attribute () in which the data type is implied by the type of the
argument.
For example, the following are equivalent to the example above for the general (pointer)
form of attribute ():
ts—>attribute ("max_open_files", 50);
ts->attribute ("searchpath", "/my/path");
bool getattribute (string view name, TypeDesc type, void *val)

Gets the current value of an attribute of the ImageCache. The name designates the name
of the attribute, type describes the type of data, and val is a pointer to memory where
the user would like the value placed.

If the ImageCache recognizes a valid attribute name that matches the type specified, the
attribute value will be stored at address val and attribute () will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc: :FLOAT but the named attribute is a string), no data will be written to val, and
attribute () will return false.

Here are examples:

ImageCache *ts;
int maxfiles;
ts->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path;
ts->getattribute ("searchpath", TypeDesc::STRING, &path);

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 133

Note that when passing a string, you need to pass a pointer to the char*, not a pointer
to the first character. Also, the char* will end up pointing to characters owned by the
ImageCache; the caller does not need to ever free the memory that contains the characters.

The complete list of attributes can be found at the end of this section.

bool getattribute (string view name, int &val)

bool getattribute (string view name, float &val)

bool getattribute (string view name, double &val)

bool getattribute (string view name, char **val)

bool getattribute (string view name, std::string & val)

Specialized versions of getattribute () in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int maxfiles;

ts->getattribute ("max_open_files", &maxfiles);
const char *path;

ts->getattribute ("searchpath", &path);

Image cache attributes

Recognized attributes include the following:

int max_open_ files

The maximum number of file handles that the image cache will hold open simultaneously.
(Default = 100)

float max memory MB

The maximum amount of memory (measured in MB) that the image cache will use for its
“tile cache.” (Default: 256.0 MB)

string searchpath

The search path for images: a colon-separated list of directories that will be searched in
order for any image name that is not specified as an absolute path. (Default: no search
path.)

string plugin_ searchpath

The search path for plugins: a colon-separated list of directories that will be searched in
order for any OIIO plugins, if not found in OIIO’s “lib” directory.) (Default: no additional
search path.)

OpenIlmagelO Programmer’s Documentation

134 CHAPTER 7. CACHED IMAGES

int autotile
int autoscanline

These attributes control how the image cache deals with images that are not “tiled” (i.e.,
are stored as scanlines).

If autotile is set to O (the default), an untiled image will be treated as if it were a single
tile of the resolution of the whole image. This is simple and fast, but can lead to poor
cache behavior if you are simultaneously accessing many large untiled images.

If autotile is nonzero (e.g., 64 is a good recommended value), any untiled images will
be read and cached as if they were constructed in tiles of size:

autotile X autotile if autoscanlineis O
width X autotile if autoscanline is nonzero.

In both cases, this should lead more efficient caching. The autoscanline determines
whether the “virtual tiles” in the cache are square (if autoscanline is 0, the default) or
if they will be as wide as the image (but only autotile scanlines high). You should try
in your application to see which leads to higher performance.

int automip

If automip is set to O (the default), an untiled single-subimage file will only be able to
utilize that single subimage.

If automip is nonzero, any untiled, single-subimage (un-MIP-mapped) images will have
lower-resolution MIP-map levels generated on-demand if pixels are requested from the
lower-res subimages (that don’t really exist). Essentially this makes the ImageCache
pretend that the file is MIP-mapped even if it isn’t.

int forcefloat

If set to nonzero, all image tiles will be converted to f1oat type when stored in the image
cache. This can be helpful especially for users of ImageBuf who want to simplify their
image manipulations to only need to consider float data.

The default is zero, meaning that image pixels are not forced to be f1oat when in cache.

int accept untiled

When nonzero (the default), ImageCache accepts untiled images as usual. When set to
zero, ImageCache will reject untiled images with an error condition, as if the file could
not be properly read. This is sometimes helpful for applications that want to enforce use
of tiled images only.

int accept unmipped

When nonzero (the default), ImageCache accepts un-MIPmapped images as usual. When
set to zero, ImageCache will reject un-MIPmapped images with an error condition, as if
the file could not be properly read. This is sometimes helpful for applications that want
to enforce use of MIP-mapped images only.

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 135

int failure retries

When an open () or read_tile() calls fails, pause and try again, up to failure -
retries times before truly returning a failure. This is meant to address spooky disk or
network failures. The default is zero, meaning that failures of open or tile reading will
immediately return as a failure.

int deduplicate

When nonzero, the ImageCache will notice duplicate images under different names if
their headers contain a SHA-1 fingerprint (as is done with maketx-produced textures)
and handle them more efficiently by avoiding redundant reads. The default is 1 (de-
duplication turned on). The only reason to set it to O is if you specifically want to disable
the de-duplication optimization.

string substitute image

When set to anything other than the empty string, the ImageCache will use the named
image in place of all other images. This allows you to run an app using OIIO and (if you
can manage to get this option set) automagically substitute a grid, zone plate, or other
special debugging image for all image/texture use.

int unassociatedalpha

When nonzero, will request that image format readers try to leave input images with
unassociated alpha as they are, rather than automatically converting to associated alpha
upon reading the pixels. The default is O, meaning that the automatic conversion will take
place.

int max errors per file

The maximum number of errors that will be printed for each file. The default is 100.
If your output is cluttered with error messages and after the first few for each file you
aren’t getting any helpful additional information, this can cut down on the clutter and the
runtime.

string options

This catch-all is simply a comma-separated list of name=value settings of named options.
For example,

ic->attribute ("options", "max_memory_MB=512.0,autotile=1");

int max_open_ files

The maximum number of file handles that the image cache will hold open simultaneously.
(Default = 100)

OpenIlmagelO Programmer’s Documentation

136 CHAPTER 7. CACHED IMAGES

int total_ files (read only)

The total number of unique file names referenced by calls to the ImageCache.

string[] all filenames (read only)

An array that will be filled with the list of the names of all files referenced by calls to the
ImageCache. (The array is of ustrings or char*’s.)

int64 stat:cache_memory_used (read only)

Total bytes used by tile cache.

int stat:tiles created (read only)
int stat:tiles current (read only)
int stat:tiles_peak (read only)

Total times created, still allocated (at the time of the query), and the peak number of tiles
in memory at any time.

int stat:open files created (read only)
int stat:open files current (read only)
int stat:open files peak (read only)

Total number of times a file was opened, number still opened (at the time of the query),
and the peak number of files opened at any time.

int stat:find tile calls (read only)

Number of times a filename was looked up in the file cache.

int64 stat:image size (read only)

Total size (uncompressed bytes of pixel data) of all images referenced by the ImageCache.
(Note: Prior to 1.7, this was called "stat:files totalsize".)

int64 stat:file size (read only)

Total size of all files (as on disk, possibly compressed) of all images referenced by the
ImageCache.

int64 stat:bytes read (read only)

Total size (uncompressed bytes of pixel data) read.

int stat:unique files (read only)

Number of unique files opened.

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 137

float stat:fileio_time (read only)
Total I/O-related time (seconds).

float stat:fileopen time (read only)
I/0 time related to opening and reading headers (but not pixel I/O).

float stat:file locking time (read only)

Total time (across all threads) that threads blocked waiting for access to the file data
structures.

float stat:tile_locking_time (read only)

Total time (across all threads) that threads blocked waiting for access to the tile cache
data structures.

float stat:find file time (read only)
Total time (across all threads) that threads spent looking up files by name.

float stat:find tile time (read only)

Total time (across all threads) that threads spent looking up individual tiles.

7.2.3 Opaque data for performance lookups

Perthread * get perthread info (Perthread *thread info=NULL)
Perthread * create perthread info ()
void destroy perthread info (Perthread *thread info)

The ImageCache implementation needs to maintain certain per-thread state, and some
ImageCache methods take an opaque Perthread pointer to this record. There are three
options for how to deal with it:

1. Don’t worry about it at all: don’t use the methods that want Perthread pointers,
or always pass NULL for any Perthread* arguments, and ImageCache will do thread-
specific-pointer retrieval as necessary (though at some small cost).

2. If your app already stores per-thread information of its own, you may call get -
perthread info (NULL) to retrieve it for that thread, and then pass it into the functions
that allow it (thus sparing them the need and expense of retrieving the thread-specific
pointer). However, it is crucial that this pointer not be shared between multiple threads.
In this case, the ImageCache manages the storage, which will automatically be released
when the thread terminates.

3. If your app also wants to manage the storage of the Perthread, it can explicitly create
one with create_ perthread_info, pass it around, and eventually be responsible for

OpenIlmagelO Programmer’s Documentation

138 CHAPTER 7. CACHED IMAGES

destroying it with destroy_perthread info. When managing the storage, the app
may reuse the Perthread for another thread after the first is terminated, but still may not
use the same Perthread for two threads running concurrently.

ImageHandle * get image handle (ustring filename,
Perthread *thread info=NULL)

Retrieve an opaque handle for fast ImageCache lookups. The optional opaque pointer
thread info is thread-specific information returned by get perthread info(). Re-
turn NULL if something has gone horribly wrong.

bool good (ImageHandle *file)

Return true if the image handle (previously returned by get __image_handle ())isa valid
image that can be subsequently read.

7.2.4 Getting information about images

bool get image info (ustring filename, int subimage, int miplevel,
ustring dataname, TypeDesc datatype, void *data)
bool get image info (ImageHandle *file, Perthread *thread_ info,
int subimage, int miplevel,
ustring dataname, TypeDesc datatype, void *data)

Retrieves information about the image named by filename (or specified by the opaque
image handle). The dataname is a keyword indcating what information should be re-
trieved, datatype is the type of data expected, and data points to caller-owned memory
where the results should be placed. It is up to the caller to ensure that data contains
enough space to hold an item of the requested datatype.

The return value is true if get _image info () is able to answer the query — that is, find
the requested dataname for the texture and it matched the requested datatype. If the
requested data was not found, or was not of the right data type, get texture info()
will return false. Except for the "exists" query, file that does not exist or could not be
read properly as an image also constitutes a query failure that will return false.

Supported dataname values include:

exists Stores the value 1 (as an int) if the file exists and is an image format that
OpenlmagelO can read, or 0 if the file does not exist, or could not be properly read
as an image. Note that unlike all other queries, this query will “succeed” (return
true) even if the file does not exist.

udim Stores the value 1 (as an int) if the file is a “virtual UDIM” or texture atlas file (as
described in Section[8.7.1)) or O otherwise.

subimages The number of subimages in the file, as an integer.

resolution The resolution of the image file, which is an array of 2 integers (described
as TypeDesc (INT, 2)).

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 139

miplevels The number of MIPmap levels for the specified subimage (an integer).

texturetype A string describing the type of texture of the given file, which describes
how the texture may be used (also which texture API call is probably the right one
for it). This currently may return one of: "unknown", "Plain Texture", "Volume
Texture", "Shadow", or "Environment".

textureformat A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: "unknown", "Plain
Texture", "Volume Texture", "Shadow", "CubeFace Shadow", "Volume Shadow",
"LatLong Environment™, or "CubeFace Environment". Note that there are sev-
eral kinds of shadows and environment maps, all accessible through the same API
calls.

channels The number of color channels in the file (an integer).

format The native data format of the pixels in the file (an integer, giving the TypeDesc: :BASETYPE
of the data). Note that this is not necessarily the same as the data format stored in
the image cache.

cachedformat The native data format of the pixels as stored in the image cache (an inte-
ger, giving the TypeDesc: :BASETYPE of the data). Note that this is not necessarily
the same as the native data format of the file.

datawindow Returns the pixel data window of the image, which is either an array of 4 in-
tegers (returning xmin, ymin, xmax, ymax) or an array of 6 integers (returning xmin,
ymin, zmin, Xmax, ymax, zmax). The z values may be useful for 3D/volumetric im-
ages; for 2D images they will be 0).

displaywindow Returns the display (a.k.a. full) window of the image, which is either
an array of 4 integers (returning xmin, ymin, xmax, ymax) or an array of 6 integers
(returning xmin, ymin, zmin, xmax, ymax, zmax). The z values may be useful for
3D/volumetric images; for 2D images they will be 0).

worldtocamera The viewing matrix, which is a 4 X 4 matrix (an Imath::M44f, de-
scribed as TypeDesc (FLOAT,MATRIX)), giving the world-to-camera 3D transfor-
mation matrix that was used when the image was created. Generally, only rendered
images will have this.

worldtoscreen The projection matrix, which is a 4 X 4 matrix (an Imath: :M44f, de-
scribed as TypeDesc (FLOAT, MATRIX)), giving the matrix that projected points from
world space into a 2D screen coordinate system where x and y range from —1 to +1.
Generally, only rendered images will have this.

averagecolor If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average color of the texture (into an array of
floats).

averagealpha If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average alpha value of the texture (into a
float).

constantcolor If the metadata (generally only for files that have been processed by
maketx) indicates that the texture has the same values for all pixels in the texture,

OpenIlmagelO Programmer’s Documentation

140 CHAPTER 7. CACHED IMAGES
this will retrieve the constant color of the texture (into an array of floats). A non-
constant image (or one that does not have the special metadata tag identifying it as
a constant texture) will fail this query (return false).

constantalpha If the metadata indicates that the texture has the same values for all
pixels in the texture, this will retrieve the constant alpha value of the texture (into
a float). A non-constant image (or one that does not have the special metadata tag
identifying it as a constant texture) will fail this query (return false).

stat:tilesread Number of tiles read from this file (int 64).

stat:bytesread Number of bytes of uncompressed pixel data read from this file (int 64).

stat:redundant tiles Number of times a tile was read, where the same tile had been
rad before. (int64).

stat:redundant_bytesread Number of bytes (of uncompressed pixel data) in tiles
that were read redundantly. (int64).

stat:redundant bytesread Number of tiles read from this file (int).

stat:image_size Size of the uncompressed image pixel data of this image, in bytes
(into64).

stat:file_ size Size of the disk file (possibly compressed) for this image, in bytes
(int64).

stat:timesopened Number of times this file was opened (int).

stat:iotime Time (in seconds) spent on all I/O for this file (float).

stat:mipsused Stores 1 if any MIP levels beyond the highest resolution were accesed,
otherwise 0. (int)

stat:is_duplicate Stores 1 if this file was a duplicate of another image, otherwise O.
(int)

Anything else — For all other data names, the the metadata of the image file will be
searched for an item that matches both the name and data type.

bool get imagespec (ustring filename, ImageSpec &spec,

int subimage=0, int miplevel=0, bool native=false)
bool get imagespec (ImageHandle *file, Perthread *thread info,

ImageSpec &spec, int subimage=0,

int miplevel=0, bool native=false)
If the image (and the specific subimage and MIP level) is found and able to be opened
by an available image format plugin, and the designated subimage exists, this function
copies its image specification for that subimage into spec and returns true. Otherwise,
if the file is not found, could not be opened, is not of a format readable by any plugin that
could be found, or the designated subimage did not exist in the file, the return value is
false and spec will not be modified. The image may be specified either by name, or by
the opaque handle returned by get image handle().

If native is false (the default), then the spec retrieved will accurately describe the
image stored internally in the cache, whereas if native is true, the spec retrieved will

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 141

reflect the original file. These may differ due to use of certain ImageCache settings such
as "forcefloat" or "autotile".

const ImageSpec * imagespec (ustring filename, int subimage=0,

int miplevel=0, bool native=false)

const ImageSpec * imagespec (ImageHandle *file, Perthread *thread info,

std:

int subimage=0, int miplevel=0, bool native=false)

If the image is found and able to be opened by an available image format plugin, and the
designated subimage exists, this function returns a pointer to an ImageSpec that describes
it. Otherwise, if the file is not found, could not be opened, is not of a format readable
by any plugin that could be find, or the designated subimage did not exist in the file, the
return value is NULL. The image may be specified either by name, or by the opaque
handle returned by get image handle().

If native is false (the default), then the spec retrieved will accurately describe the
image stored internally in the cache, whereas if native is true, the spec retrieved will
reflect the original file. These may differ due to use of certain ImageCache settings such
as "forcefloat" or "autotile".

This method is much more efficient than get imagespec (), since it just returns a pointer
to the spec held internally by the ImageCache (rather than copying the spec to the user’s
memory). However, the caller must beware that the pointer is only valid as long as nobody
(even other threads) calls invalidate () on the file, or invalidate all(), or destroys
the ImageCache.

:string resolve filename (const std::string &filename)

Returns the true path to the given file name, with searchpath logic applied.

7.2.5 Getting pixels

bool get pixels (ustring filename, int subimage, int miplevel,

int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend,
TypeDesc format, void *result)

bool get pixels (ImageHandle *file, Perthread *thread info,

int subimage, int miplevel,

int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend,

TypeDesc format, void *result)

For an image specified by either name or handle, retrieve the rectangle of pixels of the
designated subimage and miplevel, storing the pixel values beginning at the address
specified by result. The pixel values will be converted to the type specified by format.
It is up to the caller to ensure that result points to an area of memory big enough to

OpenIlmagelO Programmer’s Documentation

142

CHAPTER 7. CACHED IMAGES

bool

bool

accommodate the requested rectangle (taking into consideration its dimensions, number
of channels, and data format). The rectangular region to be retrieved includes begin but
does not include end (much like STL begin/end usage). Requested pixels that are not part
of the valid pixel data region of the image file will be filled with zero values.

get pixels (ustring filename, int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result,
stride t xstride, stride t ystride, stride t zstride,
int cache chbegin=0, int cache chend=-1)
get pixels (ImageHandle *file, Perthread *thread info,
int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result,
stride t xstride, stride t ystride, stride t zstride,
int cache chbegin=0, int cache chend=-1)

For an image specified by either name or handle, retrieve the rectangle of pixels and
subset of channels of the designated subimage and miplevel, storing the pixel values
beginning at the address specified by result and with the given strides. The pixel values
will be converted to the type specified by format. Itis up to the caller to ensure that result
points to an area of memory big enough to accommodate the requested rectangle (taking
into consideration its dimensions, number of channels, data format, and strides). Any
stride values set to Aut oSt ride will be assumed to indicate a contiguous data layout. The
rectangular region and channel set to be retrieved includes begin but does not include end
(much like STL begin/end usage). Requested pixels that are not part of the valid pixel data
region of the image file will be filled with zero values. The optional parameters cache -
chbegin and cache chend can be used to tell the ImageCache to read and cache a
subset of channels (if not specified, all the channels of the file will be stored in the cached
tile).

7.2.6 Dealing with tiles

ImageCache::Tile * get tile (ustring filename, int subimage, int miplevel,

int x, int y, int z, int chbegin=0, int chend=-1)

ImageCache::Tile * get tile (ImageHandle *file, Perthread *thread info,

int subimage, int miplevel,
int x, int y, int z, int chbegin=0, int chend=-1)

Find a tile of an image (identified by either name or handle) for the requested subimage,
pixel coordinates, and channel range (if chend < chbegin, the full range of channels in
the file will be used). An opaque pointer to the tile will be returned, or NULL if no such file

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 143

(or tile within the file) exists or can be read. The tile will not be purged from the cache
until after release tile() is called on the tile pointer. This is thread-safe.

void release tile (ImageCache::Tile *tile)

After finishing with a tile, release tile () will allow it to once again be purged from
the tile cache if required.

const void * tile pixels (ImageCache::Tile *tile, TypeDesc &format)

For atile retrived by get _ tile (), return a pointer to the pixel data itself, and also store in
format the data type that the pixels are internally stored in (which may be different than
the data type of the pixels in the disk file). This method should only be called on a tile that
has been requested by get tile () but has not yet been released with release tile().

void invalidate (ustring filename)

Invalidate any loaded tiles or open file handles associated with the filename, so that any
subsequent queries will be forced to re-open the file or re-load any tiles (even those that
were previously loaded and would ordinarily be reused). A client might do this if, for
example, they are aware that an image being held in the cache has been updated on disk.
This is safe to do even if other procedures are currently holding reference-counted tile
pointers from the named image, but those procedures will not get updated pixels until
they release the tiles they are holding.

void invalidate all (bool force=false)

Invalidate all loaded tiles and open file handles, so that any subsequent queries will be
forced to re-open the file or re-load any tiles (even those that were previously loaded and
would ordinarily be reused). A client might do this if, for example, they are aware that
an image being held in the cache has been updated on disk. This is safe to do even if
other procedures are currently holding reference-counted tile pointers from the named
image, but those procedures will not get updated pixels until they release the tiles they
are holding. If force is true, everything will be invalidated, no matter how wasteful it is,
but if force is false, in actuality files will only be invalidated if their modification times
have been changed since they were first opened.

void close (ustring filename)
void close all ()

Close any open file handles associated with a named file, or for all files, but do not in-
validate any image spec information or pixels associated with the files. A client might do
this in order to release OS file handle resources, or to make it safe for other processes to
modify cached files.

OpenIlmagelO Programmer’s Documentation

NEW!

144

CHAPTER 7. CACHED IMAGES

7.2.7 Seeding the cache

bool

bool

add file (ustring filename,
ImageInput::Creator creator = NULL,
const ImageSpec *config = NULL)

This method causes a file to be opened or added to the cache. There is no reason to use
this method unless you are supplying a custom creator, or configuration, or both.

If creator is not NULL, it points to an ImageInput: :Creator that will be used rather
than the default ImageInput::create (), thus instead of reading from disk, creates and

uses a custom Imagelnput to generate the image. The creator is a factory that creates
the custom Imagelnput and will be called like this:

ImageInput *in = creator();

Once created, the ImageCache owns the ImageInput and is responsible for destroying
it when done. Custom ImageInput’s allow “procedural” images, among other things.
Also, this is the method you use to set up a “writeable” ImageCache images (perhaps
with a type of ImageInput that’s just a stub that does as little as possible).

If config is not NULL, it points to an ImageSpec with configuration options/hints that
will be passed to the underlying ImageInput::open() call. Thus, this can be used to
ensure that the TmageCache opens a call with special configuration options.

This call (including any custom creator or configuration hints) will have no effect if
there’s already an image by the same name in the cache. Custom creators or configu-
rations only “work” the first time a particular filename is referenced in the lifetime of the
ImageCache.

add tile (ustring filename, int subimage, int miplevel,
int x, int y, int z, int chbegin, int chend,
TypeDesc format, const void *buffer,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride

Preemptively add a tile corresponding to the named image, at the given subimage and
MIP level. The tile added is the one whose corner is (x,y,z), with the given channel range,
and buffer points to the pixels (in the given format, with supplied strides) which will be
copied and inserted into the cache and made available for future lookups.

7.2.8 Errors and statistics

std:

:string geterror ()

If any other API routines return false, indicating that an error has occurred, this routine
will retrieve the error and clear the error status. If no error has occurred since the last
time geterror () was called, it will return an empty string.

OpenlmagelO Programmer’s Documentation

7.2. IMAGECACHE API 145

std::

void

string getstats (int level=l)

Returns a big string containing useful statistics about the ImageCache operations, suitable
for saving to a file or outputting to the terminal. The level indicates the amount of detail
in the statistics, with higher numbers (up to a maximum of 5) yielding more and more
esoteric information.

reset stats ()

Reset most statistics to be as they were with a fresh ImageCache. Caveat emptor: this
does not flush the cache itelf, so the resulting statistics from the next set of texture re-
quests will not match the number of tile reads, etc., that would have resulted from a new
ImageCache.

OpenIlmagelO Programmer’s Documentation

146 CHAPTER 7. CACHED IMAGES

OpenlmagelO Programmer’s Documentation

8 Texture Access: TextureSystem

8.1 Texture System Introduction and Theory of Operation

Coming soon. FIXME

8.2 Helper Classes

8.2.1 Imath

The texture functinality of OpenlmagelO uses the excellent open source Ilmbase package’s
Imath types when it requires 3D vectors and transformation matrixes. Specifically, we use
Imath::V3f for 3D positions and directions, and Imath: :M44f for 4 x 4 transformation matri-
ces. To use these yourself, we recommend that you:

#include <OpenEXR/ImathvVec.h>
#include <OpenEXR/ImathMatrix.h>

Please refer to the I1mbase and OpenEXR documentation and header files for more complete
information about use of these types in your own application. However, note that you are not
strictly required to use these classes in your application — Imath::V3f has a memory layout
identical to float [3] and Imath::M44f has a memory layout identical to float[16], so as
long as your own internal vectors and matrices have the same memory layout, it’s ok to just cast
pointers to them when passing as arguments to TextureSystem methods.

8.2.2 TextureOpt

TextureOpt is a structure that holds many options controlling single-point texture lookups.
Because each texture lookup API call takes a reference to a TextureOpt, the call signatures
remain uncluttered rather than having an ever-growing list of parameters, most of which will
never vary from their defaults. Here is a brief description of the data members of a TextureOpt
structure:

int firstchannel

The beginning channel for the lookup. For example, to retrieve just the blue channel, you
should have firstchannel =2 while passing nchannels =1 to the appropriate texture
function.

147

148 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

int subimage
ustring subimagename

Specifies the subimage or face within the file to use for the texture lookup. If subimagename
is set (it defaults to the empty string), it will try to use the subimage that had a matching
metadata "oiio:subimagename", otherwise the integer subimage will be used (which
defaults to 0, i.e., the first/default subimage). Nonzero subimage indices only make sense
for a texture file that supports subimages or separate images per face (such as Ptex). This
will be ignored if the file does not have multiple subimages or separate per-face textures.

Wrap swrap, twrap

Specify the wrap mode for 2D texture lookups (and 3D volume texture lookups, using the
additional rwrap field). These fields are ignored for shadow and environment lookups.

These specify what happens when texture coordinates are found to be outside the usual
[0, 1] range over which the texture is defined. Wrap is an enumerated type that may take
on any of the following values:

WrapBlack The texture is black outside the [0,1] range.

WrapClamp The texture coordinates will be clamped to [0,1], i.e., the value outside [0,1]
will be the same as the color at the nearest point on the border.

WrapPeriodic The texture is periodic, i.e., wraps back to O after going past 1.

WrapMirror The texture presents a mirror image at the edges, i.e., the coordinates go
from O to 1, then back down to 0, then back up to 1, etc.

WrapDefault Use whatever wrap might be specified in the texture file itself, or some
other suitable default (caveat emptor).

The wrap mode does not need to be identical in the s and ¢ directions.

float swidth, twidth

For each direction, gives a multiplier for the derivatives. Note that a width of 0 indicates a
point sampled lookup (assuming that blur is also zero). The default width is 1, indicating
that the derivatives should guide the amount of blur applied to the texture filtering (not
counting any additional blur specified).

float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture (after
derivatives are taken into account), expressed as a portion of the width of the texture. In
other words, blur = 0.1 means that the texture lookup should act as if the texture was
pre-blurred with a filter kernel with a width 1/10 the size of the full image. The default
blur amount is 0, indicating a sharp texture lookup.

OpenlmagelO Programmer’s Documentation

8.2. HELPER CLASSES 149

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel texture,
the last channel will get the fill value. (Note: this behavior is affected by the "gray_ -
to_rgb" attribute described in Section[8.3.2])

const float* missingcolor

If not NULL, indicates that a missing or broken texture should not be treated as an error,
but rather will simply return the supplied color as the texture lookup color and texture ()
will return true. If the missingcolor field is left at its default (a NULL pointer), a
missing or broken texture will be treated as an error and texture () will return false.
Note: When not NULL, the data must point to nchannels contiguous floats.

float bias

For shadow map lookups only, this gives the “shadow bias” amount.

int samples

For shadow map lookups only, the number of samples to use for the lookup.

Wrap rwrap
float rblur, rwidth

Specifies wrap, blur, and width for the third component of 3D volume texture lookups.
These are not used for 2D texture lookups.

OpenIlmagelO Programmer’s Documentation

150 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

8.3 TextureSystem Setup

8.3.1 Creating and destroying texture systems

TextureSystem is an abstract API described as a pure virtual class. The actual internal imple-
mentation is not exposed through the external API of OpenimagelO. Because of this, you cannot
construct or destroy the concrete implementation, so two static methods of TextureSystem are
provided:

static TextureSystem *TextureSystem::create (bool share=true,
ImageCache *imagecache=nullptr)

Creates anew TextureSystem and returns a pointer to it. If sharedis true, the TextureSystem
returned will be a global shared one, with a globally shared cache. If sharedis false, a

new private TextureSystem will be created, either with a newly created private ImageCache

(if imagecache is nullptr), or with the ImageCache passed from (and owned by) the

caller.

static void TextureSystem::destroy (TextureSystem *x,
bool teardown imagecache=false)

Destroys an allocated TextureSystem, including freeing all system resources that it
holds (such as its underlying ImageCache).

This is necessary to ensure that the memory is freed in a way that matches the way it was
allocated within the library. Note that simply using delete on the pointer will not always
work (at least, not on some platforms in which a DSO/DLL can end up using a different
allocator than the main program).

If teardown imagecache is true, and the TextureSystem’s underlying ImageCache is
the shared one, then that ImageCache will be thoroughly destroyed, not merely releasing
the reference.

8.3.2 Setting options and limits for the texture system

The following member functions of TextureSystem allow you to set (and in some cases re-
trieve) options that control the overall behavior of the texture system:

bool attribute (string view name, TypeDesc type, const void *val)

Sets an attribute (i.e., a property or option) of the TextureSystem. The name designates
the name of the attribute, t ype describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the TextureSystem recognizes a valid attribute name that matches the type specified,
the attribute will be set to the new value and attribute () will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc: :FLOAT but the named attribute is a string), the attribute will not be modified,
and attribute () will return false.

OpenlmagelO Programmer’s Documentation

8.3. TEXTURESYSTEM SETUP 151

bool
bool
bool
bool

bool

Here are examples:
TextureSystem *ts;

int maxfiles = 50;
ts—>attribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path = "/my/path";
ts->attribute ("searchpath", TypeDesc::STRING, &path);

Note that when passing a string, you need to pass a pointer to the char*, not a pointer to
the first character. (Rationale: for an int attribute, you pass the address of the int. So
for a string, which is a char*, you need to pass the address of the string, i.e., a char**).

The complete list of attributes can be found at the end of this section.

attribute (string view name, int val)
attribute (string view name, float val)
attribute (string view name, double val)
attribute (string view name, string view val)

Specialized versions of attribute () in which the data type is implied by the type of the
argument.

For example, the following are equivalent to the example above for the general (pointer)
form of attribute ():

ts—>attribute ("max_open_files", 50);
ts->attribute ("searchpath", "/my/path");

getattribute (string view name, TypeDesc type, void *val)

Gets the current value of an attribute of the TextureSystem. The name designates the
name of the attribute, type describes the type of data, and val is a pointer to memory
where the user would like the value placed.

If the TextureSystem recognizes a valid attribute name that matches the type specified,
the attribute value will be stored at address val and attribute () will return true. If
name is not recognized as a valid attribute name, or if the types do not match (e.g., type
is TypeDesc: :FLOAT but the named attribute is a string), no data will be written to val,
and attribute () will return false.

Here are examples:

TextureSystem *ts;
int maxfiles;
ts->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path;
ts->getattribute ("searchpath", TypeDesc::STRING, &path);

OpenIlmagelO Programmer’s Documentation

152 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

Note that when passing a string, you need to pass a pointer to the char*, not a pointer
to the first character. Also, the char* will end up pointing to characters owned by the
TextureSystem; the caller does not need to ever free the memory that contains the char-
acters.

The complete list of attributes can be found at the end of this section.

bool getattribute (string view name, int &val)
bool getattribute (string view name, float &val)
bool getattribute (string view name, double &val)
bool getattribute (

(

bool getattribute

string view name, char **val)
string view name, std::string & val)

Specialized versions of getattribute () in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int maxfiles;

ts->getattribute ("max_open_files", &maxfiles);
const char *path;

ts->getattribute ("searchpath", &path);

Texture system attributes

Recognized attributes include the following:

int max_open_ files
float max memory MB
string searchpath

string plugin searchpath
int autotile

int autoscanline

int automip

int accept untiled

int accept unmipped

int failure retries

int deduplicate

string substitute image
int max errors per file

These attributes are all passed along to the underlying ImageCache that is used internally
by the TextureSystem. Please consult the ImageCache attribute list in Section [7.2.2] for
explanations of these attributes.

OpenlmagelO Programmer’s Documentation

8.3. TEXTURESYSTEM SETUP 153

matrix worldtocommon

The 4 x 4 matrix that provides the spatial transformation from “world” to a “common”
coordinate system. This is used for shadow map lookups, in which the shadow map itself
encodes the world coordinate system, but positions passed to shadow () are expressed in
“common” coordinates.

matrix commontoworld

The 4 x 4 matrix that is the inverse of worldtocommon — that is, it transforms points
from “common’” to “world” coordinates.

You do not need to set commontoworld and worldtocommon separately; just setting either
one will implicitly set the other, since each is the inverse of the other.

int gray to rgb

If set to nonzero, texture lookups of single-channel (grayscale) images will replicate the
sole channel’s values into the next two channels, making it behave like an RGB image
that happens to have all three channels with identical pixel values. (Channels beyond the
third will get the “fill” value.)

The default value of zero means that all missing channels will get the “fill” color.

int max tile channels

Sets the maximum number of color channels in a texture file for which all channels will
be loaded as cached tiles. Files with more than this number of color channels will have
only the requested subset loaded, in order to save cache space (but at the possible wasted
expense of separate tiles that overlap their channel ranges). The default is 5.

string latlong up

Sets the default “up” direction for latlong environment maps (only applies if the map itself
doesn’t specify a format or is in a format that explicitly requires a particular orientation).
The default is "y". (Currently any other value will result in z being “up.”)

int flip t

If nonzero, ¢ coordinates will be flipped (1 —¢) for texture lookups. The default is 0.

string options

This catch-all is simply a comma-separated list of name=value settings of named options.
For example,

ic->attribute ("options", "max_memory_MB=512.0,autotile=1");

OpenIlmagelO Programmer’s Documentation

154

CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

8.3.3 Opaque data for performance lookups

Perthread * get perthread info (Perthread *thread info=NULL)
Perthread * create perthread info ()
void destroy perthread info (Perthread *thread info)

The TextureSystemimplementation needs to maintain certain per-thread state, and some
TextureSystem methods take an opaque Perthread pointer to this record. There are
three options for how to deal with it:

1. Don’t worry about it at all: don’t use the methods that want Perthread pointers, or
always pass NULL for any Perthread* arguments, and TextureSystem will do thread-
specific-pointer retrieval as necessary (though at some small cost).

2. If your app already stores per-thread information of its own, you may call get_ -
perthread info (NULL) to retrieve it for that thread, and then pass it into the functions
that allow it (thus sparing them the need and expense of retrieving the thread-specific
pointer). However, it is crucial that this pointer not be shared between multiple threads. In
this case, the TextureSystem manages the storage, which will automatically be released
when the thread terminates.

3. If your app also wants to manage the storage of the Perthread, it can explicitly create
one with create_perthread_info, pass it around, and eventually be responsible for
destroying it with destroy perthread info. When managing the storage, the app
may reuse the Perthread for another thread after the first is terminated, but still may not
use the same Perthread for two threads running concurrently.

TextureHandle * get texture handle (ustring filename,

Perthread *thread info=NULL)

Retrieve an opaque handle for fast texture lookups. The optional opaque pointer thread_ -
info is thread-specific information returned by get perthread info(). Return NULL
if something has gone horribly wrong.

bool good (TextureHandle *texture handle)

Return true if the texture handle (previously returned by get texture handle())isa
valid image that can be subsequently read or sampled.

OpenlmagelO Programmer’s Documentation

8.4. TEXTURE LOOKUPS - SINGLE POINT 155

8.4 Texture Lookups — single point

8.4.1 2D Texture Lookups

bool texture (ustring filename, TextureOpt &options,
float s, float t, float dsdx, float dtdx,
float dsdy, float dtdy, int nchannels, float *result),
float *dresultds=NULL, float *dresultdt=NULL)

Perform a filtered 2D texture lookup on a position centered at 2D coordinates (s, t) from
the texture identified by filename, and using relevant texture options. The nchannels
parameter determines the number of channels to retrieve (e.g., 1 for a single value, 3 for
an RGB triple, etc.). The filtered results will be stored in result [0..nchannels-1].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how s and t change from pixel to pixel in the final image, we can properly
filter or antialias the texture lookups. This information is given via derivatives dsdx and
dtdx that define the change in s and t per unit of %, and dsdy and dtdy that define the
change in s and t per unit of y. If it is impossible to know the derivatives, you may pass
0 for them, but in that case you will not receive an antialiased texture lookup.

If the dresultds and dresultdt parameters are not NULL (the default), these specify
locations in which to store the derivatives of the texture lookup, i.e., the change of the
filtered texture per unit of s and ¢, respectively. Each must point to at least nchannels
contiguous floats. If they are NULL, the derivative computations will not be performed.

Fields within options that are honored for 2D texture lookups include the following:
int firstchannel

The index of the first channel to look up from the texture.

int subimage
The subimage or face within the file. This will be ignored if the file does not have
multiple subimages or separate per-face textures.

Wrap swrap, twrap
Specify the wrap mode for each direction, one of: WrapBlack, WrapClamp, WrapPeriodic,
WrapMirror, or WrapDefault.

float swidth, twidth

For each direction, gives a multiplier for the derivatives.

float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

OpenIlmagelO Programmer’s Documentation

156

CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

bool

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray_to_ rgb" attribute described in Section [8.3.2])

const float *missingcolor

If not NULL, specifies the color that will be returned for missing or broken textures
(rather than being an error).

This function returns t rue upon success, or false if the file was not found or could not
be opened by any available ImagelO plugin.

texture (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &options, float s, float t, float dsdx, float dtdx,
float dsdy, float dtdy, int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

A slightly faster texture call for applications that are willing to do the extra housekeep-
ing of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get texture handle() and get -
perthread_info () methods, respectively.

8.4.2 Volume Texture Lookups

bool

texture3d (ustring filename, TextureOpt &options,
const Imath::V3f &P, const Imath::V3f &dPdx,
const Imath::V3f &dPdy, const Imath::V3f &dPdz,
int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL,
float *dresultdr=NULL)

Perform a filtered 3D volumetric texture lookup on a position centered at 3D position P
from the texture identified by filename, and using relevant texture opt ions. The filtered
results will be stored in result [0..nchannels-1].

We assume that this lookup will be part of an image that has pixel coordinates x and y
and depth z. By knowing how P changes from pixel to pixel in the final image, and as we
step in z depth, we can properly filter or antialias the texture lookups. This information is
given via derivatives dPdx, dPdy, and dPdz that define the changes in P per unit of x, v,
and z, respectively. If it is impossible to know the derivatives, you may pass O for them,
but in that case you will not receive an antialiased texture lookup.

The P coordinate and dPdx, dPdy, and dPdz derivatives are assumed to be in some kind
of common global coordinate system (usually "world" space) and will be automatically
transformed into volume local coordinates, if such a transormation is specified in the
volume file itself.

OpenlmagelO Programmer’s Documentation

8.4. TEXTURE LOOKUPS - SINGLE POINT 157

If the dresultds, dresultdt, and dresultdr parameters are not NULL (the default),
these specify locations in which to store the derivatives of the texture lookup, i.e., the
change of the filtered texture per unit of s, # and r, respectively. Each must point to at
least nchannels contiguous floats. If they are NULL, the derivative computations will not
be performed.

Fields within options that are honored for 3D texture lookups include the following:
int firstchannel
The index of the first channel to look up from the texture.
Wrap swrap, twrap, rwrap
Specify the wrap modes for each direction, one of: WrapBlack, WrapClamp, WrapPeriodic,
WrapMirror, or WrapDefault.
float swidth, twidth, rwidth
For each direction, gives a multiplier for the derivatives.
float sblur, tblur, rblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray to_rgb" attribute described in Section [8.3.2])

const float *missingcolor

If not NULL, specifies the color that will be returned for missing or broken textures
(rather than being an error).

float time

A time value to use if the volume texture specifies a time-varying local transforma-
tion (default: 0).

This function returns t rue upon success, or false if the file was not found or could not
be opened by any available ImagelO plugin.

bool texture3d (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &opt, const Imath::V3f &P, const Imath::V3f &dPdx,
const Imath::V3f &dPdy, const Imath::V3f &dPdz,
int nchannels, float *result, float *dresultds=NULL,
float *dresultdt=NULL, float *dresultdr=NULL)

A slightly faster texture3d call for applications that are willing to do the extra house-
keeping of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get texture handle() and get -
perthread info () methods, respectively.

OpenIlmagelO Programmer’s Documentation

158 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

8.4.3 Shadow Lookups

bool shadow (ustring filename, TextureOpt &opt,
const Imath::V3f &P, const Imath::V3f &dPdx,
const Imath::V3f &dPdy, int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

Perform a shadow map lookup on a position centered at 3D coordinate P (in a designated
“common” space) from the shadow map identified by filename, and using relevant tex-
ture options. The filtered results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how P changes from pixel to pixel in the final image, we can properly filter
or antialias the texture lookups. This information is given via derivatives dPdx and dPdy
that define the changes in P per unit of x and y, respectively. If it is impossible to know the
derivatives, you may pass O for them, but in that case you will not receive an antialiased
texture lookup.

Fields within options that are honored for 2D texture lookups include the following:
float swidth, twidth

For each direction, gives a multiplier for the derivatives.

float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

float bias

Specifies the amount of shadow bias to use — this effectively ignores shadow oc-
clusion that is closer than the bias amount to the surface, helping to eliminate self-
shadowing artifacts.

int samples

Specifies the number of samples to use when evaluating the shadow map. More
samples will give a smoother, less noisy, appearance to the shadows, but may also
take longer to compute.

This function returns t rue upon success, or false if the file was not found or could not
be opened by any available ImagelO plugin.

OpenlmagelO Programmer’s Documentation

8.4. TEXTURE LOOKUPS - SINGLE POINT 159

bool shadow (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &opt, const Imath::V3f &P,
const Imath::V3f &dPdx, const Imath::V3f &dPdy,
int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

A slightly faster shadow call for applications that are willing to do the extra housekeep-
ing of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get texture handle() and get -
perthread info () methods, respectively.

8.4.4 Environment Lookups

bool environment (ustring filename, TextureOpt &options,
const Imath::V3f &R, const Imath::V3f &dRdx,
const Imath::V3f &dRdy, int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

Perform a filtered directional environment map lookup in the direction of vector R, from
the texture identified by filename, and using relevant texture options. The filtered
results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how R changes from pixel to pixel in the final image, we can properly filter
or antialias the texture lookups. This information is given via derivatives dRdx and dRdy
that define the changes in R per unit of x and y, respectively. If it is impossible to know the
derivatives, you may pass O for them, but in that case you will not receive an antialiased
texture lookup.

Fields within options that are honored for 3D texture lookups include the following:
int firstchannel
The index of the first channel to look up from the texture.
float swidth, twidth
For each direction, gives a multiplier for the derivatives.
float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray_to_ rgb" attribute described in Section [8.3.2])

OpenIlmagelO Programmer’s Documentation

160 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

This function returns t rue upon success, or false if the file was not found or could not
be opened by any available ImagelO plugin.

bool environment (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &opt, const Imath::V3f &R,
const Imath::V3f &dRdx, onst Imath::V3f &dRdy,
int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

A slightly faster environment call for applications that are willing to do the extra house-
keeping of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get _texture_ handle() and get -
perthread info () methods, respectively.

8.5 Batched Texture Lookups

On CPU architectures with SIMD processing, texturing entire batches of samples at once may
provide a large speedup compared to texturing each sample point individually. The batch size
is fixed (for any build of OpenimagelO) and may be accessed with the following constant:

static const int Tex: :BatchWidth

This constant specifies the batch size. This is fixed within any release of OpenlmagelO,
but may change from release to release and also may be overridden at build time. A
typical batch size is 16.

All of the batched calls take a run mask, which describes which subset of “lanes” should be
computed by the batched lookup:

typedef ... Tex::RunMask

The RunMask is defined to be an integer large enough to hold at least BatchWidth bits.
The least significant bit corresponds to the first (i.e., [0]) position of all batch arrays. For
each position i in the batch, the bit identified by (1 << i) controls whether that position
will be computed.

The defined constant RunMaskOn contants the value with all bits 0. .BatchWidth-1 set
to 1.

8.5.1 Batched Options

OpenlmagelO Programmer’s Documentation

8.5. BATCHED TEXTURE LOOKUPS 161

class TextureOptBatch

TextureOptBatch is a structure that holds the options for doing an entire batch of
lookups from the same texture at once. The members of TextureOptBatch correspond
to the similarly named members of the single-point TextureOpt, so we refer you to Sec-
tion for detailed explanations, and this section will only explain the differences
between batched and single-point options.

int firstchannel

int subimage

ustring subimagename
Tex::Wrap swrap, twrap, rwrap
Tex::MipMode mipmode
Tex::InterpMode interpmode
int anisotropic

bool conservative filter
float fill

const float *missingcolor

These fields are all scalars — a single value for each TextureOptBatch— which
means that the value of these options must be the same for every texture sample
point within a batch. If you have a number of texture lookups to perform for the
same texture, but they have (for example) differing wrap modes or subimages from
point to point, then you must split them into separate batch calls.

float sblur[Tex::BatchWidth]
float tblur[Tex::BatchWidth]
float rblur[Tex::BatchWidth]

These arrays hold the s, and ¢ blur amounts, for each sample in the batch, respec-
tively. (And the r blur amount, used only for volumetric texture3d () lookups.)

float swidth[Tex::BatchWidth]
float twidth[Tex::BatchWidth]
float rwidth[Tex::BatchWidth]

These arrays hold the s, and ¢ filtering width multiplier for derivatives, for each
sample in the batch, respectively. (And the r multiplier, used only for volumetric
texture3d() lookups.)

8.5.2 Batched Texture Lookup Calls

OpenIlmagelO Programmer’s Documentation

162 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

bool texture (ustring filename, TextureOptBatch &options,
Tex::RunMask mask, const float *s, const float *t,
const float *dsdx, const float *dtdx,
const float *dsdy, const float *dtdy,
int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

bool texture (TextureHandle *texture handle, Perthread *thread info,
TextureOptBatch &options,
Tex::RunMask mask, const float *s, const float *t,
const float *dsdx, const float *dtdx,
const float *dsdy, const float *dtdy,
int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

Perform filtered 2D texture lookups on a batch of positions from the same texture, all at
once. The parameters s, t, dsdx, dtdx, and dsdy, dtdy are each a pointer to [BatchSize]

values. The mask determines which of those array elements to actually compute.
The various results are arranged as arrays that behave as if they were declared

float result[channels] [BatchSize]

In other words, all the batch values for channel O are adjacent, followed by all the batch

values for channel 1, etc. (This is “SOA” order.)

This function returns t rue upon success, or false if the file was not found or could not

be opened by any available ImagelO plugin.

bool texture3d (ustring filename, TextureOptBatch &options,
Tex::RunMask mask, const float *P, const float *dPdx,
const float *dPdy, const float *dPdz,
int nchannels, float *result, float *dresultds=nullptr,
float *dresultdt=nullptr,float *dresultdr=nullptr)

bool texture3d (TextureHandle *texture handle, Perthread *thread info,

TextureOptBatch &options,

Tex::RunMask mask, const float *P, const float *dPdx,
const float *dbPdy, const float *dPdz,

int nchannels, float *result, float *dresultds=nullptr,
float *dresultdt=nullptr, float *dresultdr=nullptr)

Perform filtered 3D volumetric texture lookups on a batch of positions from the same
texture, all at once. The “point-like” parameters P, dPdx, dPdy, and dPdz are each a
pointers to arrays of float value[3] [BatchSize]. That is, each one points to all the x
values for the batch, immediately followed by all the y values, followed by the z values.

The various results arrays are also arranged as arrays that behave as if they were declared
float result[channels] [BatchSize], where all the batch values for channel O are

adjacent, followed by all the batch values for channel 1, etc.

OpenlmagelO Programmer’s Documentation

8.6. TEXTURE METADATA AND RAW TEXELS 163

This function returns t rue upon success, or false if the file was not found or could not
be opened by any available ImagelO plugin.

bool environment (ustring filename, TextureOptBatch &options,
Tex::RunMask mask,
const float *R, const float *dRdx,
const float *dRdy, int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

bool environment (TextureHandle *texture handle, Perthread *thread info,
TextureOptBatch &options, Tex::RunMask mask,
const float *R, const float *dRdx,
const float *dRdy, int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

Perform filtered directional environment map lookups on a batch of positions from the
same texture, all at once. The “point-like” parameters R, dRdx, and dRdy are each a
pointers to arrays of float value[3] [BatchSize]. That is, each one points to all the x
values for the batch, immediately followed by all the y values, followed by the z values.

Perform filtered directional environment map lookups on a collection of directions all at
once, which may be much more efficient than repeatedly calling the single-point version
of environment (). The parameters R, dRdx, and dRdy are now VaryingRef’s that may
refer to either a single or an array of values, as are many the fields in the options.

The various results arrays are also arranged as arrays that behave as if they were declared
float result[channels] [BatchSize], where all the batch values for channel O are
adjacent, followed by all the batch values for channel 1, etc.

This function returns t rue upon success, or false if the file was not found or could not
be opened by any available ImagelO plugin.

8.6 Texture Metadata and Raw Texels

bool get texture info (ustring filename, int subimage,

ustring dataname, TypeDesc datatype, void *data)
bool get texture info (TextureHandle *texture handle,

Perthread *thread info, int subimage,

ustring dataname, TypeDesc datatype, void *data)

Retrieves information about the texture, either named by filename or specified by an
opaque handle returned by get texture handle(). The dataname is a keyword in-
dcating what information should be retrieved, datatype is the type of data expected,
and data points to caller-owned memory where the results should be placed. It is up
to the caller to ensure that data contains enough space to hold an item of the requested
datatype.

OpenIlmagelO Programmer’s Documentation

164 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

The return value is true if get _texture_info() is able to answer the query — that is,
find the requested dataname for the texture and it matched the requested datatype. If the
requested data was not found, or was not of the right data type, get texture info()
will return false. Except for the "exists" and "udim" queries, file that does not exist
or could not be read properly as an image also constitutes a query failure that will return
false.

Supported dataname values include:

exists Stores the value 1 (as an int if the file exists and is an image format that
OpenlmagelO can read, or 0 if the file does not exist, or could not be properly read
as a texture. Note that unlike all other queries, this query will “succeed” (return
true) even if the file does not exist.

udim Stores the value 1 (as an int) if the file is a “virtual UDIM” or texture atlas file (as
described in Section or 0 otherwise.

subimages The number of subimages/faces in the file, as an integer.

resolution The resolution of the texture file, which is an array of 2 integers (described
as TypeDesc (INT, 2)).

resolution (int[3)] The 3D resolution of the texture file, which is an array of 3
integers (described as TypeDesc (INT, 3)) The third value will e 1 unless it’s a vol-
umetric (3D) image.

miplevels The number of MIPmap levels for the specified subimage (an integer).

texturetype A string describing the type of texture of the given file, which describes
how the texture may be used (also which texture API call is probably the right one
for it). This currently may return one of: "unknown", "Plain Texture", "Volume
Texture", "Shadow", or "Environment".

textureformat A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: "unknown", "Plain
Texture", "Volume Texture", "Shadow", "CubeFace Shadow", "Volume Shadow",
"LatLong Environment", or "CubeFace Environment". Note that there are sev-
eral kinds of shadows and environment maps, all accessible through the same API
calls.

channels The number of color channels in the file (an integer).

format The native data format of the pixels in the file (an integer, giving the TypeDesc: :BASETYPE
of the data). Note that this is not necessarily the same as the data format stored in
the image cache.

cachedformat The native data format of the pixels as stored in the image cache (an inte-
ger, giving the TypeDesc: :BASETYPE of the data). Note that this is not necessarily
the same as the native data format of the file.

datawindow Returns the pixel data window of the image, which is either an array of 4 in-
tegers (returning xmin, ymin, xmax, ymax) or an array of 6 integers (returning xmin,
ymin, zmin, Xmax, ymax, zmax). The z values may be useful for 3D/volumetric im-
ages; for 2D images they will be 0).

OpenlmagelO Programmer’s Documentation

8.6. TEXTURE METADATA AND RAW TEXELS 165

displaywindow Returns the display (a.k.a. full) window of the image, which is either
an array of 4 integers (returning xmin, ymin, xmax, ymax) or an array of 6 integers
(returning xmin, ymin, zmin, Xmax, ymax, zmax). The z values may be useful for
3D/volumetric images; for 2D images they will be 0).

worldtocamera The viewing matrix, which is a 4 X 4 matrix (an Imath::M44f, de-
scribed as TypeDesc (FLOAT,MATRIX)), giving the world-to-camera 3D transfor-
mation matrix that was used when the image was created. Generally, only rendered
images will have this.

worldtoscreen The projection matrix, which is a 4 X 4 matrix (an Imath::M44f, de-
scribed as TypeDesc (FLOAT, MATRIX)), giving the matrix that projected points from
world space into a 2D screen coordinate system where x and y range from —1 to +1.
Generally, only rendered images will have this.

averagecolor If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average color of the texture (into an array of
floats).

averagealpha If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average alpha value of the texture (into a
float).

constantcolor If the metadata (generally only for files that have been processed by
maketx) indicates that the texture has the same values for all pixels in the texture,
this will retrieve the constant color of the texture (into an array of floats). A non-
constant image (or one that does not have the special metadata tag identifying it as
a constant texture) will fail this query (return false).

constantalpha If the metadata indicates that the texture has the same values for all
pixels in the texture, this will retrieve the constant alpha value of the texture (into
a float). A non-constant image (or one that does not have the special metadata tag
identifying it as a constant texture) will fail this query (return false).

stat:tilesread Number of tiles read from this file (int 64).

stat:bytesread Number of bytes of uncompressed pixel data read from this file (int 64).

stat:redundant tiles Number of times a tile was read, where the same tile had been
rad before. (int64).

stat:redundant _bytesread Number of bytes (of uncompressed pixel data) in tiles
that were read redundantly. (int64).

stat:redundant bytesread Number of tiles read from this file (int).

stat:timesopened Number of times this file was opened (int).

stat:iotime Time (in seconds) spent on all I/O for this file (f1loat).

stat:mipsused Stores 1 if any MIP levels beyond the highest resolution were accesed,
otherwise 0. (int)

stat:is_duplicate Stores 1 if this file was a duplicate of another image, otherwise 0.
(int)

Anything else — For all other data names, the the metadata of the image file will be
searched for an item that matches both the name and data type.

OpenIlmagelO Programmer’s Documentation

166 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

bool get imagespec (ustring filename, int subimage, ImageSpec &spec)
bool get imagespec (TextureHandle *texture handle, Perthread *thread info,
int subimage, ImageSpec &spec)

If the image (specified by either name or handle) is found and able to be opened by an
available image format plugin, this function copies its image specification into spec and
returns true. Otherwise, if the file is not found, could not be opened, or is not of a format
readable by any plugin that could be found, the return value is false.

const ImageSpec * imagespec (ustring filename, int subimage)
const ImageSpec * imagespec (TextureHandle *texture handle,
Perthread *thread info, int subimage)

If the named image is found and able to be opened by an available image format plugin,
and the designated subimage exists, this function returns a pointer to an ImageSpec that
describes it. Otherwise, if the file is not found, could not be opened, is not of a format
readable by any plugin that could be find, or the designated subimage did not exist in the
file, the return value is NULL.

This method is much more efficient than get imagespec (), since it just returns a pointer
to the spec held internally by the underlying ImageCache (rather than copying the spec to
the user’s memory). However, the caller must beware that the pointer is only valid as long
as nobody (even other threads) calls invalidate () on the file, or invalidate all(),
or destroys the TextureSystem.

bool get texels (ustring filename, TextureOpt &options, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result)

bool get texels (TextureHandle *texture handle, PerThread *thread info,
Perthread *thread info, TextureOpt &options, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result)

For a texture identified by either name or handle, retrieve a rectangle of raw unfiltered tex-
els at the named MIP-map level, storing the texel values beginning at the address specified
by result. Note that the face/subimage is communicated through options.subimage.
The texel values will be converted to the type specified by format. It is up to the caller to
ensure that result points to an area of memory big enough to accommodate the requested
rectangle (taking into consideration its dimensions, number of channels, and data format).
The rectangular region to be retrieved includes begin but does not include end (much like
STL begin/end usage). Requested pixels that are not part of the valid pixel data region of
the image file will be filled with zero values.

Fields within options that are honored for raw texel retieval include the following:

OpenlmagelO Programmer’s Documentation

8.7. MISCELLANEOUS - STATISTICS, ERRORS, FLUSHING THE CACHE 167

std::

8.7

std:

std::

void

int subimage
The subimage to retrieve.

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray_to_ rgb" attribute described in Section [8.3.2])

Return true if the file is found and could be opened by an available ImagelO plugin,
otherwise return false.

string resolve filename (const std::string &filename)

Returns the true path to the given file name, with searchpath logic applied.

Miscellaneous — Statistics, errors, flushing the cache

:string geterror ()

If any other API routines return false, indicating that an error has occurred, this routine
will retrieve the error and clear the error status. If no error has occurred since the last
time geterror () was called, it will return an empty string.

string getstats (int level=1l, bool icstats=true)

Returns a big string containing useful statistics about the ImageCache operations, suitable
for saving to a file or outputting to the terminal. The level indicates the amount of detail
in the statistics, with higher numbers (up to a maximum of 5) yielding more and more
esoteric information. If icstats is true, the returned string will also contain all the
statistics of the underlying ImageCache, but if false will only contain texture-specific
statistics.

reset stats ()

Reset most statistics to be as they were with a fresh ImageCache. Caveat emptor: this
does not flush the cache itelf, so the resulting statistics from the next set of texture re-
quests will not match the number of tile reads, etc., that would have resulted from a new
ImageCache.

OpenIlmagelO Programmer’s Documentation

168

CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

NEW!

void

void

void
void

8.7.1

invalidate (ustring filename)

Invalidate any loaded tiles or open file handles associated with the filename, so that any
subsequent queries will be forced to re-open the file or re-load any tiles (even those that
were previously loaded and would ordinarily be reused). A client might do this if, for
example, they are aware that an image being held in the cache has been updated on disk.
This is safe to do even if other procedures are currently holding reference-counted tile
pointers from the named image, but those procedures will not get updated pixels until
they release the tiles they are holding.

invalidate all (bool force=false)

Invalidate all loaded tiles and open file handles, so that any subsequent queries will be
forced to re-open the file or re-load any tiles (even those that were previously loaded and
would ordinarily be reused). A client might do this if, for example, they are aware that
an image being held in the cache has been updated on disk. This is safe to do even if
other procedures are currently holding reference-counted tile pointers from the named
image, but those procedures will not get updated pixels until they release the tiles they
are holding. If force is true, everything will be invalidated, no matter how wasteful it is,
but if force is false, in actuality files will only be invalidated if their modification times
have been changed since they were first opened.

close (ustring filename)

close all ()

Close any open file handles associated with a named file, or for all files, but do not in-
validate any image spec information or pixels associated with the files. A client might do
this in order to release OS file handle resources, or to make it safe for other processes to
modify cached files.

UDIM and texture atlases

The texture () call supports virtual filenames that expand per lookup for UDIM and other tiled
texture atlas techniques. The substitutions will occur if the texture filename initially passed to
texture () does not exist as a concrete file and contains one or more of the following substrings:

<UDIM> 1001 + utile + vtile*10
<u> utile

<v> vtile

<U> utile + 1

<> vtile + 1

where the tile numbers are derived from the input u, v texture coordinates as follows:

/

/ Each unit square of texture is a different tile

utile = max (0, int(u));
vtile = max (0, int(v));

/
u
v

/ Re-adjust the texture coordinates to the offsets within the tile
= u - utile;
=v - vtile;

OpenlmagelO Programmer’s Documentation

8.7. MISCELLANEOUS - STATISTICS, ERRORS, FLUSHING THE CACHE 169

Example:

ustring filename ("paint.<UDIM>.tif");
float s = 1.4, t = 3.8;
texsys—>texture (filename, s, t, ...);

will retrieve from file "paint.1032.tif" at coordinates (0.4,0.8).

Please note that most other calls, including most queries for get texture info(), will
fail with one of these special filenames, since it’s not a real file and the system doesn’t know
which concrete file you it corresponds to in the absence of specific texture coordinates.

OpenIlmagelO Programmer’s Documentation

170 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

OpenlmagelO Programmer’s Documentation

9 Image Buffers

9.1 ImageBuf Introduction and Theory of Operation

ImageBuf is a utility class that stores an entire image. It provides a nice API for reading,
writing, and manipulating images as a single unit, without needing to worry about any of the
details of storage or I/O.

An ImageBuf can store its pixels in one of several ways:

e Allocate “local storage” to hold the image pixels internal to the ImageBuf. This storage
will be freed when the ImageBuf is destroyed.

e “Wrap” pixel memory already allocated by the calling application, which will continue
to own that memory and be responsible for freeing it after the ImageBuf is destroyed.

e Be “backed” by an ImageCache, which will automatically be used to retreive pixels when
requested, but the ImageBuf will not allocate separate storage for it. This brings all
the advantages of the ImageCache, but can only be used for read-only ImageBuf’s that
reference a stored image file.

All I/O involving ImageBuf (that is, calls to read or write) are implemented in terms of
ImageCache, ImageInput, and ImageOutput underneath, and so support all of the image file
formats supported by OIIO.

The ImageBuf class definition requires that you

#include <OpenImagelO/imagebuf.h>

9.2 Constructing, reading, and writing an ImageBuf

Default constructor of an empty ImageBuf

ImageBuf ()

The default constructor makes an uninitialized ImageBuf. There isn’t much you can do
with an uninitialized buffer until you call reset ().

171

172

CHAPTER 9. IMAGE BUFFERS

void

clear ()
Resets the ImageBuf to a pristine state identical to that of a freshly constructed ImageBuf
using the default constructor.

Constructing and initializing a writeable ImageBuf

ImageBuf (const ImageSpec &spec)
ImageBuf (string view name, const ImageSpec &spec)

void
void

bool

Constructs a writeable ImageBuf with the given specification (including resolution, data
type, metadata, etc.), initially set to all black pixels. Optionally, you may name the
ImageBuf.

reset (const ImageSpec &spec)

reset (string view name, const ImageSpec &spec)

Destroys any previous contents of the ImageBuf and re-initializes it as a writeable all-
black TmageBuf with the given specification (including resolution, data type, metadata,
etc.). Optionally, you may name the ImageBuf.

make_writeable (bool keep_cache_ type = false)

Force the ImageBuf to be writeable. That means that if it was previously backed by an
ImageCache (storage was IMAGECACHE), it will force a full read so that the whole image
is in local memory. This will invalidate any current iterators on the image. It has no
effect if the image storage not IMAGECACHE. Return true if it works (including if no read
was necessary), false if something went horribly wrong. If keep_ cache_type is true,
it preserves any ImageCache-forced data types (you might want to do this if it is critical
that the apparent data type doesn’t change, for example if you are calling make writeable
from within a type-specialized function).

Constructing a readable ImageBuf and reading from a file

Constructing a readable ImageBuf that will hold an image to be read from disk.

ImageBuf (string view name, int subimage=0, int miplevel=0,

ImageCache *imagecache = NULL,

const ImageSpec *config = NULL)
Construct an ImageBuf that will be used to read the named file (at the given subimage
and MIP-level, defaulting to the first in the file). But don’t read it yet! The image will
actually be read when other methods need to access the spec and/or pixels, or when an
explicit call to init_spec() or read() is made, whichever comes first. If imagecache
is non-NULL, the custom ImageCache will be used (if applicable); otherwise, a NULL
imagecache indicates that the global/shared ImageCache should be used. If config is
not NULL, it points to an ImageSpec giving requests or special instructions to be passed
on to the eventual ImageInput: :open () call.

OpenlmagelO Programmer’s Documentation

9.2. CONSTRUCTING, READING, AND WRITING AN IMAGEBUF 173

void reset (string view name, int subimage=0, int miplevel=0,

bool

bool

ImageCache *imagecache = NULL
const ImageSpec *config = NULL)

Destroys any previous contents of the ImageBuf and re-initializes it to read the named file
(but doesn’t actually read yet). If config is not NULL, it points to an ImageSpec giving
requests or special instructions to be passed on to the eventual ImageInput: :open ()
call.

read (int subimage=0, int miplevel=0, bool force=false,
TypeDesc convert=TypeDesc: :UNKNOWN,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

read (int subimage, int miplevel,
int chbegin, int chend, bool force, TypeDesc convert,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Explicitly reads the particular subimage and MIP level of the image. Generally, this will
skip the expensive read if the file has already been read into the ImageBuf (at the specified
subimage and MIP level). It will clear and re-allocate memory if the previously allocated
space was not appropriate for the size or data type of the image being read. If convert is
set to a specific type (not UNKNOWN), the ImageBuf memory will be allocated for that type
specifically and converted upon read.

In general, read () will try not to do any I/O at the time of the read () call, but rather to
have the ImageBuf “backed” by an ImageCache, which will do the file I/O on demand, as
pixel values are needed, and in that case the ImageBuf doesn’t actually allocate memory
for the pixels (the data lives in the ImageCache). However, there are several conditions
for which the ImageCache will be bypassed, the ImageBuf will allocate “local” memory,
and the disk file will be read directly into allocated buffer at the time of the read () call:
(a) if the force parameter is true; (b) if the convert parameter requests a data format
conversion to a type that is not the native file type and also is not one of the internal
types supported by the ImageCache (specifically, FLOAT and UINT8); (c) if the ImageBuf
already has local pixel memory allocated, or “wraps” an application buffer.

The variety of read () that takes chbegin and chend parameters allows you to populate
the ImageBuf with a (contiguous) subset of channels from the file. This can be useful if
you are only interested in a subset of channels and want to save the memory and I/O costs
for the channels you won’t want.

If progress_ callback is non-NULL, the underlying read, if expensive, may make sev-
eral calls to

progress_callback (progress_callback_data, portion_done);

which allows you to implement some sort or progress meter. Note that if the ImageBuf
is backed by an ImageCache, the progress callback will never be called, since no actual
file I/O will occur at this time (ImageCache will load tiles or scanlines on demand, as
individual pixel values are needed).

OpenIlmagelO Programmer’s Documentation

174

CHAPTER 9. IMAGE BUFFERS

bool

Note that read () is not strictly necessary. If you are happy with the filename, subimage
and MIP level specified by the ImageBuf constructor (or the last call to reset ()), and
you want the storage to be backed by the ImageCache (including storing the pixels in
whatever data format that implies), then the file contents will be automatically read the
first time you make any other ImageBuf API call that requires the spec or pixel values.
The only reason to call read () yourself is if you are changing the filename, subimage,
or MIP level, or if you want to use force=t rue or a specific convert value to force data
format conversion.

init spec (string view filename, int subimage, int miplevel)

This call will read the ImageSpec for the given file, subimage, and MIP level into the
ImageBuf, but will not read the pixels or allocate any local storage (until a subsequent call
to read ()). This is helpful if you have an ImageBuf and you need to know information
about the image, but don’t want to do a full read yet, and maybe won’t need to do the full
read, depending on what’s found in the spec.

Note that init_spec () is not strictly necessary. If you are happy with the filename,
subimage and MIP level specified by the ImageBuf constructor (or the last call to reset ()),
then the spec will be automatically read the first time you make any other ImageBuf API
call that requires it. The only reason to call read () yourself is if you are changing the file-
name, subimage, or MIP level, or if you want to use force=true or a specific convert
value to force data format conversion.

Constructing an ImageBuf that “wraps” an application buffer

ImageBuf (const ImageSpec &spec, void *buffer)
ImageBuf (string view name, const ImageSpec &spec, void *buffer)

Constructs an ImageBuf that ”wraps” a memory buffer owned by the calling application.
It can write pixels to this buffer, but can’t change its resolution or data type. Optionally,
it names the ImageBuf.

Writing an ImageBuf to a file

bool

write (string view filename,
TypeDesc dtype = TypeUnknown,
string view fileformat = "",
ProgressCallback progress callback=NULL,
void *progress callback data=NULL) const

Write the image to the named file, converted to the specified pixel data type dtype
(TypeUnknown signifies to use the data type of the buffer), in the named file format (an
empty fileformat means to infer the type from the filename extension). Return true if
all went ok, false if there were errors writing.

OpenlmagelO Programmer’s Documentation

9.3. GETTING AND SETTING BASIC INFORMATION ABOUT AN IMAGEBUF 175

By default, it will always write a scanline-oriented file, unless the set _write tiles()
method has been used to override this. Also, it will use the data format of the buffer itself,
unless the set _write format () method has been used to override the data format.

bool write (ImageOutput *out,
ProgressCallback progress callback=NULL,
void *progress_callback data=NULL) const

Write the image to the open ImageOutputout. Return true if all went ok, false if there
were errors writing. It does NOT close the file when it’s done (and so may be called in a
loop to write a multi-image file).

void set write format (TypeDesc format=TypeDesc: :UNKNOWN)
void set write tiles (int width=0, int height=0, int depth=0)

These methods allow the caller to override the data format and tile sizing when using the
write () function (the variety that does not take an open ImageOutput*).

9.3 Getting and setting basic information about an ImageBuf

bool initialized () const

Returns true if the ImageBuf is initialized, false if not yet initialized.

IBStorage storage () const

Returns an enumerated type describing the type of storage currently employed by the
ImageBuf: UNINITIALIZED (no storage), LOCALBUFFER (the ImageBuf has allocated and
owns the pixel memory), APPBUFFER (the ImageBuf “wraps” memory owned by the call-
ing application), or IMAGECACHE (the image is backed by an ImageCache).

const ImageSpec & spec () const
const ImageSpec & nativespec () const

The spec () function returns a const reference to an ImageSpec that describes the image
data held by the ImageBuf.

The nativespec () function returns a const reference to an ImageSpec that describes
the actual data in the file that was read.

These may differ — for example, if a data format conversion was requested, if the buffer
is backed by an ImageCache which stores the pixels internally in a different data format
than that of the file, or if the file had differing per-channel data formats (ImageBuf must
contain a single data format for all channels).

OpenIlmagelO Programmer’s Documentation

176 CHAPTER 9. IMAGE BUFFERS

string view name () const

Returns the name of the buffer (name of the file, for an ImageBuf read from disk).

string view file format name () const

Returns the name of the file format, for an ImageBuf read from disk (for example,

"openexr").
int subimage () const
int nsubimages () const
int miplevel () const
int nmiplevels () const

The subimage () and miplevel () methods return the subimage and MIP level of the
image held by the ImageBuf (the file it came from may hold multiple subimages and/or
MIP levels, but the ImageBuf can only store one of those at any given time).

The nsubimages () method returns the total number of subimages in the file, and the
nmiplevels () method returns the total number of MIP levels in the currently-loaded
subimage.

int nchannels () const

Returns the number of channels stored in the buffer (this is equivalent to spec () .nchannels).

int xbegin () const
int xend () const
int ybegin () const
int yend () const
int zbegin () const
int zend () const

Returns the [begin, end) range of the pixel data window of the buffer. These are equiv-
alent to spec () .x, spec() .x+spec () .width, spec() .y, spec() .y+spec () .height,
spec () .z, and spec () .z+spec () .depth, respectively.

int orientation () const

int oriented width () const

int oriented height () const

int oriented x () const

int oriented y () const

int oriented full width () const
int oriented full height () const
int oriented full x () const

int oriented full y () const

OpenlmagelO Programmer’s Documentation

9.3. GETTING AND SETTING BASIC INFORMATION ABOUT AN IMAGEBUF 177

The orientation () returns the interpretation of the layout (top/bottom, left/right) of the
image, per the table in Section [B.2]

The oriented width, height, x, and y describe the pixel data window after taking the
display orientation into consideration. The full versions the “full” (a.k.a. display) window
after taking the display orientation into consideration.

void set orientation (int orient)

Sets the "Orientation" metadata value.

TypeDesc pixeltype () const

The data type of the pixels stored in the buffer (equivalent to spec () . format).

void set origin (int x, int y, int z=0)

Alters the metadata of the spec in the ImageBuf to reset the “origin” of the pixel data
window to be the specified coordinates. This does not affect the size of the pixel data
window, only its position.

void set full (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend)
void set roi full (const ROI &newroi)

Alters the metadata of the spec in the ImageBuf to reset the “full” image size (a.k.a.
“display window”). This does not affect the size of the pixel data window.

ImageSpec & specmod ()

This returns a writeable reference to the ImageSpec describing the buffer. It’s ok to
modify most of the metadata, but if you modify the spec’s format, width, height, or
depth fields, you get the pain you deserve, as the ImageBuf will no longer have correct
knowledge of its pixel memory layout. USE WITH EXTREME CAUTION.

void threads (int n)
int threads () const

Get or set the threading policy for this ImageBuf, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during expensive operations. The default
of 0 means that the global attribute ("threads") value should be used (which itself
defaults to using as many threads as cores; see Section [2.8).

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

OpenIlmagelO Programmer’s Documentation

NEW!

178

CHAPTER 9. IMAGE BUFFERS

NEW!

NEW!

9.4

Copying ImageBuf’s and blocks of pixels

const ImageBufé& operator= (const ImageBuf &src)
const ImageBufé& operator= (ImageBuf &é&src)

Copy and move assignment.

ImageBuf copy (TypeDesc format=TypeUnknown) const

bool

void

bool

void

bool

Returns a full copy of this (pixels and metadata), with optional data format conversion.

copy (const ImageBuf &src, TypeDesc format=TypeUnknown)

Copies src to this — both pixel values and all metadata. If a format is provided, this
will get the specified pixel data type rather than using the same pixel format as src.

copy metadata (const ImageBuf &src)

Copies all metadata (except for format, width, height, depth from src to this.

copy pixels (const ImageBuf &src)

Copies the pixels of src to this, but does not change the metadata (other than format
and resolution) of this.

swap (ImageBuf &other)

Swaps the entire contents of other and this.

get pixels (ROI roi, TypeDesc format,
void *result, stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride) const

Retrieve the rectangle of pixels specified by ROI, at the current subimage and MIP-map
level, storing the pixel values beginning at the address specified by result and with the
given strides (by default, Aut oSt ride means the usual contiguous packing of pixels) and
converting into the data type described by format. It is up to the caller to ensure that
result points to an area of memory big enough to accommodate the requested rectangle.
Return true if the operation could be completed, otherwise return false.

OpenlmagelO Programmer’s Documentation

9.5. GETTING AND SETTING INDIVIDUAL PIXEL VALUES - SIMPLE BUT SLOW

bool get pixel channels (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result,
stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride) const

Retrieve the rectangle of pixels spanning [xbegin..xend) X [ybegin..yend) X [zbegin
channels [chbegin, chend) (all with exclusive end), specified as integer pixel coordi-
nates, at the current subimage and MIP-map level, storing the pixel values beginning
at the address specified by result and with the given strides (by default, AutoStride
means the usual contiguous packing of pixels) and converting into the data type described
by format. Itis up to the caller to ensure that result points to an area of memory big
enough to accommodate the requested rectangle. Return true if the operation could be
completed, otherwise return false.

bool get pixels (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format,
void *result, stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride) const

Retrieve the rectangle of pixels spanning [xbegin..xend) X [ybegin..yend) X [zbegin
(all with exclusive end), specified as integer pixel coordinates, at the current subimage and
MIP-map level, storing the pixel values beginning at the address specified by result and
with the given strides (by default, AutoStride means the usual contiguous packing of
pixels) and converting into the data type described by format. It is up to the caller to en-
sure that result points to an area of memory big enough to accommodate the requested
rectangle. Return true if the operation could be completed, otherwise return false.

bool set pixels (ROI roi, TypeDesc format,
const void *result, stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride)

Copy the rectangle of data into the specified ROI of the ImageBuf. The data points
to values specified by format, with layout detailed by the stride values (in bytes, with
AutoStride indicating “contiguous” layout). It is up to the caller to ensure that data
points to an area of memory big enough to account for the ROI. Return t rue if the oper-
ation could be completed, otherwise return false.

9.5 Getting and setting individual pixel values — simple but slow

OpenIlmagelO Programmer’s Documentation

..zend),

..zend)

180 CHAPTER 9. IMAGE BUFFERS

float getchannel (int x, int y, int z, int c,
WrapMode wrap=WrapBlack) const

Returns the value of pixel x, y, z,channel c.

The wrap describes what value should be returned if the x, y, =z coordinates are outside
the pixel data window, and may be one of: WrapBlack, WrapClamp, WrapPeriodic, or
WrapMirror.

void getpixel (int x, int y, int z, float *pixel,
int maxchannels=1000, WrapMode wrap=WrapBlack) const

Retrieves pixel (x, y, z), placing its contents in pixel[0..n-1], where n is the smaller
of maxchannels or the actual number of channels stored in the buffer. It is up to the
application to ensure that pixel points to enough memory to hold the required number
of channels.

The wrap describes what value should be returned if the x, y, =z coordinates are outside
the pixel data window, and may be one of: WrapBlack, WrapClamp, WrapPeriodic, or
WrapMirror.

void interppixel (float x, float y, float *pixel,
WrapMode wrap=WrapBlack) const
void interppixel bicubic (float x, float y, float *pixel,
WrapMode wrap=WrapBlack) const

Sample the image plane at coordinates (x,y), using linear interpolation between pixels by
default, or B-spline bicubic interpolation for the _bicubic varieties, placing the result in
pixel[0..n-1], where nis the smaller of maxchannels or the actual number of channels
stored in the buffer. It is up to the application to ensure that pixel points to enough
memory to hold the required number of channels. The sampling location is specified in
the floating-point pixel coordinate system, where pixel (i, j) is centered at image plane
coordinate (i+0.5,j+0.5).

The wrap describes how the image function should be computed outside the boundaries
of the pixel data window, and may be one of: WrapBlack, WrapClamp, WrapPeriodic,
or WrapMirror.

void interppixel NDC (float s, float t, float *pixel,
WrapMode wrap=WrapBlack) const

void interppixel bicubic NDC (float s, float t, float *pixel,
WrapMode wrap=WrapBlack) const

Sample the image plane at coordinates (s,7), similar to the interppixel and interppixel -
bicubic methods, but specifying location using the “NDC” (normalized device coordi-
nate) system where (0,0) is the upper left corner of the full (a.k.a. “display”) window and
(1,1) is the lower right corner of the full/display window.

OpenlmagelO Programmer’s Documentation

9.5. GETTING AND SETTING INDIVIDUAL PIXEL VALUES - SIMPLE BUT SLOSY

void setpixel (int x, int y, int z, const float *pixel, int maxchannels=1000)

Set the pixel with coordinates (x, y, z) to have the values pixel[0..n-1]. The num-
ber of channels, n, is the minimum of minchannels and the actual number of channels
in the image.

Deep data in an ImageBuf

bool deep () const

Returns true if the ImageBuf holds a “deep” image, false if the ImageBuf holds an
ordinary pixel-based image.

int deep samples (int x, int y, int z=0) const

Returns the number of deep samples for the given pixel, or O if there are no deep samples
for that pixel (including if the pixel coordinates are outside the data area). For non-deep
images, it will always return 0.

void set deep samples (int x, int y, int z, int nsamples)

Set the number of samples for pixel (x,y, z). If data has already been allocated, this is
equivalent to inserting or erasing samples.

void deep insert samples (int x, int y, int z, int samplepos, int nsamples)
Insert nsamples new samples, starting at position samplepos of pixel (x,v, z).

void deep erase samples (int x, int y, int z, int samplepos, int nsamples)
Remove nsamples new samples, starting at position samplepos of pixel (x,y,z).

float deep value (int x, int y, int z, int ¢, int s) const

uint32 t deep_ value uint (int x, int y, int z, int ¢, int s) const
Return the value of sample s of channel c of pixel (x,y, z). Return 0 if not a deep image
or if the pixel coordinates, channel number, or sample number are out of range, or if it
has no deep samples. You are expected to call the float or uint32_t version based on
the data type of channel c.

void set deep wvalue (int x, int y, int z, int ¢, int s, float value) const
void set deep wvalue (int x, int y, int z, int ¢, int s, uint32_t wvalue) const

Set the value of sample s of channel c of pixel (x,y,z). It is expected that you choose
the float or uint32_ t variety of the call based on the data type of channel c.

OpenIlmagelO Programmer’s Documentation

182 CHAPTER 9. IMAGE BUFFERS

const void *deep pixel ptr (int x, int y, int z, int ¢, int s=0) const

Returns a pointer to the raw pixel data pixel (x,y, z), channel c, sample s. This will re-
turn NULL if the pixel coordinates or channel number are out of range, if the pixel/channel
has no deep samples, or if the image is not deep. Use with caution — these pointers may
be invalidated by calls that adjust the number of samples in any pixel.

DeepData& deepdata ()
const DeepData& deepdata () const

Returns a reference to the underlying DeepData for a deep image.

9.6 Miscellaneous

void error (const char *format, ...) const

This can be used to register an error associated with this ImageBuf.

bool has error (void) const

Returns true if the ImageBuf has had an error and has an error message to retrieve via
geterror().

std::string geterror (void) const

Return the text of all error messages issued since geterror () was called (or an empty
string if no errors are pending). This also clears the error message for next time.

void *localpixels ();
const void *localpixels () const;

Returns a raw pointer to the “local” pixel memory, if they are fully in RAM and not
backed by an ImageCache (in which case, nullptr will be returned). You can also test
it like a bool to find out if pixels are local.

const void *pixeladdr (int x, int y, int z=0, int ch=0) const
void *pixeladdr (int x, int y, int z=0, int ch=0)

Return the address where pixel (x,y,z), channel ch is stored in the local image buffer
memory. Use with extreme caution! Will return nullptr if the pixel values aren’t local
(for example, if backed by an ImageCache).

int pixelindex (int x, int y, int z, bool check_ range=false) const

Return the index of pixel (X,y,z). If check range is true, return -1 for an invalid coor-
dinate that is not within the data window.

OpenlmagelO Programmer’s Documentation

9.7. ITERATORS - THE FAST WAY OF ACCESSING INDIVIDUAL PIXELS 183

static WrapMode WrapMode from string (string view name)

Return the WrapMode corresponding to the name ("default", "black", "clamp", "periodic",
"mirror"). For an unknown name, this will return WrapDefault.

9.7 lterators — the fast way of accessing individual pixels

Sometimes you need to visit every pixel in an ImageBuf (or at least, every pixel in a large
region). Using the getpixel and setpixel for this purpose is simple but very slow. But
ImageBuf provides templated Iterator and ConstIterator types that are very inexpensive
and hide all the details of local versus cached storage.

An Iterator is associated with a particular ImageBuf. The Iterator has a current pixel
coordinate that it is visiting, and an iteration range that describes a rectangular region of pixels
that it will visits as it advances. It always starts at the upper left corner of the iteration region.
We say that the iterator is done after it has visited every pixel in its iteration range. We say that
a pixel coordinate exists if it is within the pixel data window of the ImageBuf. We say that a
pixel coordinate is valid if it is within the iteration range of the iterator.

The ImageBuf::ConstIterator isidentical to the Iterator, except that ConstIterator
may be used on a const ImageBuf and may not be used to alter the contents of the ImageBuf.
For simplicity, the remainder of this section will only discuss the Iterator.

The Iterator<BUFT, USERT> is templated based on two types: BUFT the type of the data
stored in the ImageBuf, and USERT type type of the data that you want to manipulate with your
code. USERT defaults to float, since usually you will want to do all your pixel math with
float. We will thus use Iterator<T> synonymously with Iterator<T, float>.

For the remainder of this section, we will assume that you have a float-based ImageBuf,
for example, if it were set up like this:

ImageBuf buf ("myfile.exr");
buf.read (0, 0, true, TypeDesc::FLOAT);

Iterator<BUFT> (ImageBuf &buf, WrapMode wrap=WrapDefault)

Initialize an iterator that will visit every pixel in the data window of buf, and start it out
pointing to the upper left corner of the data window. The wrap describes what values will
be retrieved if the iterator is positioned outside the data window of the buffer.

Iterator<BUFT> (ImageBuf &buf, const ROI &roi, WrapMode wrap=WrapDefault)

Initialize an iterator that will visit every pixel of buf within the region described by roi,
and start it out pointing to pixel (roi.xbegin, roi.ybegin, roi.zbegin). The wrap
describes what values will be retrieved if the iterator is positioned outside the data window
of the buffer.

OpenIlmagelO Programmer’s Documentation

184 CHAPTER 9. IMAGE BUFFERS

Iterator<BUFT> (ImageBuf &buf, int x, int y, int z, WrapMode wrap=WrapDefault)

Initialize an iterator that will visit every pixel in the data window of buf, and start it
out pointing to pixel (x, y, z). The wrap describes what values will be retrieved if the
iterator is positioned outside the data window of the buffer.

Iterator::operator++ ()

The ++ operator advances the iterator to the next pixel in its iteration range. (Both prefix
and postfix increment operator are supported.)

bool Iterator::done () const

Returns true if the iterator has completed its visit of all pixels in its iteration range.

ROI Iterator::range () const

Returns the iteration range of the iterator, expressed as an ROI.

int Iterator::x () const
int Iterator::y () const
int Iterator::z () const

Returns the x, y, and z pixel coordinates, respectively, of the pixel that the iterator is
currently visiting.

bool Iterator::valid () const

Returns true if the iterator’s current pixel coordinates are within its iteration range.

bool Iterator::valid (int x, int y, int z=0) const

Returns true if pixel coordinate (x, y, z) are within the iterator’s iteration range (re-
gardless of where the iterator itself is currently pointing).

bool Iterator::exists () const

Returns t rue if the iterator’s current pixel coordinates are within the data window of the
ImageBuf.

bool Iterator::exists (int x, int y, int z=0) const

Returns true if pixel coordinate (x, y, z) are within the pixel data window of the
ImageBuf (regardless of where the iterator itself is currently pointing).

OpenlmagelO Programmer’s Documentation

9.7. ITERATORS - THE FAST WAY OF ACCESSING INDIVIDUAL PIXELS 185

USERT& Iterator::operator[] (int 1)

The value of channel i of the current pixel. (The wrap mode, set up when the iterator was
constructed, determines what value is returned if the iterator points outside the pixel data
window of its buffer.)

int Iterator::deep samples () const

For deep images only, retrieves the number of deep samples for the current pixel.

void Iterator::set deep samples ()

For deep images only (and non-const ImageBuf), set the number of deep samples for the
current pixel. This only is useful if the ImageBuf has not yet had the deep_alloc()
method called.

USERT Iterator::deep value (int c, int s) const
uint32 t Iterator::deep value int (int ¢, int s) const

For deep images only, returns the value of channel c, sample number s, at the current
pixel.

void Iterator::set deep value (int ¢, int s, float value)
void Iterator::set deep value (int ¢, int s, uint32 t wvalue)

For deep images only (and non-cconst ImageBuf, sets the value of channel c, sample
number s, at the current pixel. This only is useful if the ImageBuf has already had the
deep alloc () method called.

Example: Visiting all pixels to compute an average color

void print_channel_averages (const std::string &filename)
{
// Set up the ImageBuf and read the file
ImageBuf buf (filename);
bool ok = buf.read (0, 0, true, TypeDesc::FLOAT); // Force a float buffer
if (! ok)
return;

// Initialize a vector to contain the running total
int nc = buf.nchannels();
std::vector<float> total (n, 0.0f);

// Iterate over all pixels of the image, summing channels separately
for (ImageBuf::Constlterator<float> it (buf); ! it.done(); ++it)
for (int ¢ = 0; ¢ < nc; ++c)
totallc] += it([c];

// Print the averages

OpenIlmagelO Programmer’s Documentation

186 CHAPTER 9. IMAGE BUFFERS

imagesize_t npixels = buf.spec().image_pixels();
for (int ¢ = 0; ¢ < nc; ++c)
std::cout << "Channel " << ¢ << " avg = " (total[c] / npixels) << "\n";

Example: Set all pixels in a region to black

bool make_black (ImageBuf &buf, ROI region)

{
if (buf.spec().format != TypeDesc::FLOAT)
return false; // Assume it’s a float buffer

// Clamp the region’s channel range to the channels in the image
roi.chend = std::min (roi.chend, buf.nchannels);

// Iterate over all pixels in the region...

for (ImageBuf::Iterator<float> it (buf, region); ! it.done(); ++it) {
if (! it.exists()) // Make sure the iterator is pointing
continue; // to a pixel in the data window

for (int ¢ = roi.chbegin; c¢ < roi.chend; ++c)
it[c] = 0.0f; // clear the value
}

return true;

9.8 Dealing with buffer data types

The previous section on iterators presented examples and discussion based on the assumption
that the ImageBuf was guaranteed to store float data and that you wanted all math to also
be done as float computations. Here we will explain how to deal with buffers and files that
contain different data types.

Strategy 1: Only have f£1loat data in your ImageBuf

When creating your own buffers, make sure they are float:

ImageSpec spec (640, 480, 3, TypeDesc::FLOAT); // <-- float buffer
ImageBuf buf ("mybuf", spec);

When using ImageCache-backed buffers, force the ImageCache to convert everything to float:

// Just do this once, to set up the cache:
ImageCache *cache = ImageCache::create (true /* shared cache */);
cache->attribute ("forcefloat", 1);

ImageBuf buf ("myfile.exr"); // Backed by the shared cache

OpenlmagelO Programmer’s Documentation

9.8. DEALING WITH BUFFER DATA TYPES 187

Or force the read to convert to f1oat in the buffer if it’s not a native type that would automati-
cally stored as a float internally to the ImageCacheﬂ

ImageBuf buf ("myfile.exr"); // Backed by the shared cache
buf.read (0, 0, false /* don’t force read to local mem */,
TypeDesc::FLOAT /* but do force conversion to float*/);

Or force a read into local memory unconditionally (rather than relying on the ImageCache), and
convert to float:

ImageBuf buf ("myfile.exr");
buf.read (0, 0, true /*force read*/,
TypeDesc: :FLOAT /* force conversion */);

Strategy 2: Template your iterating functions based on buffer type

Consider the following alternate version of the make black function from Section[9.7;

template<type BUFT>
static bool make_black_impl (ImageBuf &buf, ROI region)
{

// Clamp the region’s channel range to the channels in the image
roi.chend = std::min (roi.chend, buf.nchannels);

// Iterate over all pixels in the region...

for (ImageBuf::Iterator<BUFT> it (buf, region); ! it.done(); ++it) {
if (! it.exists()) // Make sure the iterator is pointing
continue; // to a pixel in the data window

for (int ¢ = roi.chbegin; ¢ < roi.chend; ++c)
it[c] = 0.0f; // clear the value
}

return true;

bool make_black (ImageBuf &buf, ROI region)
{
if (buf.spec().format == TypeDesc: :FLOAT)
return make_black_impl<float> (buf, region);
else 1if (buf.spec().format == TypeDesc::HALF)
return make_black_impl<half> (buf, region);
else if (buf.spec().format == TypeDesc::UINTS)
return make_black_impl<unsigned char> (buf, region);
else 1if (buf.spec().format == TypeDesc::UINT16)
return make_black_impl<unsigned short> (buf, region);
else {
buf.error ("Unsupported pixel data format %s", buf.spec().format);
retrn false;

I Tmagecache only supports a limited set of types internally, currently only FLOAT and UINTS, and all other
data types are converted to these automatically as they are read into the cache.

OpenIlmagelO Programmer’s Documentation

188 CHAPTER 9. IMAGE BUFFERS

In this example, we make an implementation that is templated on the buffer type, and then a
wrapper that calls the appropriate template specialization for each of 4 common types (and logs
an error in the buffer for any other types it encounters).

In fact, imagebufalgo util.h provides a macro to do this (and several variants, which
will be discussed in more detail in the next chapter). You could rewrite the example even more
simply:

#include <OpenImageIO/imagebufalgo_util.h>

template<type BUFT>
static bool make_black_ impl (ImageBuf &buf, ROI region)
{

. same as before ...

bool make_black (ImageBuf &buf, ROI region)
{
bool ok;

OITIO_DISPATCH_COMMON_TYPES (ok, "make_black", make_black_impl,
buf.spec().format, buf, region);
return ok;

This other type-dispatching helper macros will be discussed in more detail in Chapter [T0}

OpenlmagelO Programmer’s Documentation

10 Image Processing

ImageBufAlgo is a set of image processing functions that operate on ImageBuf’s. The func-
tions are declared in the header file OpenImageIO/imagebufalgo.h and are declared in the
namespace ImageBufAlgo.

10.1 ImageBufAlgo common principles

This section explains the general rules common to all ImageBufAlgo functions. Only excep-
tions to these rules will be explained in the subsequent listings of all the individual ImageBufAlgo
functions.

Return values and error messages
Most ImageBufAlgo functions that produce image data come in two forms:

1. Return an ImageBuf.

The return value is a new ImageBuf containing the result image. In this case, an entirely
new image will be created to hold the result. In case of error, the result image returned
can have any error conditions checked with has_error () and geterror ().

// Method 1: Return an image result
ImageBuf fg ("fg.exr"), bg ("bg.exr");
ImageBuf dst = ImageBufAlgo::over (fg, bg);
if (dst.has_error())
std::cout << "error: " << dst.geterror() << "\n";

2. Pass a destination ImageBuf reference as the first parameter.

The function is passed a destination ImageBuf where the results will be stored, and the
return value is a bool that is true if the function succeeds or false if the function fails.
Upon failure, the destination ImageBuf (the one that is being altered) will have an error
message set.

// Method 2: Write into an existing image
ImageBuf fg ("fg.exr"), bg ("bg.exr");
ImageBuf dst; // will be the output image
bool ok = ImageBufAlgo::over (dst, fg, bg);
if (! ok)
std::cout << "error: " << dst.geterror() << "\n";

189

190 CHAPTER 10. IMAGE PROCESSING

The first option (return an ImageBuf directly) is a more compact and intuitive notation
that is natural for most simple uses. But the second option (pass an ImageBufés referring to an
existing destination) offers additional flexibility, including more careful control over allocations,
the ability to partially overwrite regions of an existing image, and the ability for the destination
image to also be one of the input images (for example, add(A,A,B) adds B into existing image
A, with no third image allocated at all).

For a small minority of ImageBufAlgo functions, there are only input images, and no image
outputs (e.g., isMonochrome ()). In such cases, the error message should be retrieved from the
first input image.

Region of interest

Most ImageBufAlgo functions take an optional ROI parameter that restricts the operation to a
range in X, y, z, and channels. The default-constructed ROI (also known as ROI: :A11 ()) means
no region restriction.

For ImageBufAlgo functions that write into a destination ImageBuf parameter and it is
already initialized (i.e. allocated with a particular size and data type), the operation will be
performed on the pixels in the destination that overlap the ROI, leaving pixels in the destination
which are outside the ROT unaltered.

For ImageBufAlgo functions that return an ImageBuf directly, or if their dst parameter is
an uninitialized TmageBuf, the ROI (if set) determines the size of the result image. If the ROI
is the default A11, the result image size will be the union of the pixel data windows of the input
images and have a data type determind by the data types of the input images.

Most ImageBufAlgo functions also respect the chbegin and chend members of the ROI,
thus restricting the channel range on which the operation is performed. The default ROI con-
structor sets up the ROI to specify that the operation should be performed on all channels of the
input image(s).

Constant and per-channel values

Many ImageBufAlgo functions take per-channel constant-valued arguments (for example, a fill
color). These parameters are passed as cspan<float>. These are generally expected to have
length equal to the number of channels. But you may also pass a single float which will be used
as the value for all channels. (More generally, what is happening is that the last value supplied
is replicated for any missing channel.)

Some ImageBufAlgo functions have parameters of type Image or Const, which may
take either an ImageBuf reference, or a per-channel constant, or a single constant to be used for
all channels.

Multithreading

All ImageBufAlgo functions take an optional nthreads parameter that signifies the maximum
number of threads to use to parallelize the operation. The default value for nthreads is 0, which
signifies that the number of thread should be the OIIO global default set by 0II0: :attribute ()
(see Section[2.8)), which itself defaults to be the detected level of hardware concurrency (number
of cores available).

OpenlmagelO Programmer’s Documentation

10.1. IMAGEBUFALGO COMMON PRINCIPLES 191

Generally you can ignore this parameter (or pass 0), meaning to use all the cores available
in order to perform the computation as quickly as possible. The main reason to explicitly pass
a different number (generally 1) is if the application is multithreaded at a high level, and the
thread calling the ImageBufAlgo function just wants to continue doing the computation without
spawning additional threads, which might tend to crowd out the other application threads.

OpenIlmagelO Programmer’s Documentation

192 CHAPTER 10. IMAGE PROCESSING

10.2 Pattern generation

For the ImageBufAlgo functions in this section, there is no “source” image. Therefore, either
an initialized dst must be supplied (to give a pre- allocated size and data type of the image),
or else it is strictly necessary to supply an ROI parameter to specify the size of the new image
(the data type in this case will always be float). It is an error if one of the pattern generation
ImageBufAlgo functions is neither supplied a pre-allocated dst nor a non-default ROI.

ImageBuf zero (ROI roi, int nthreads=0)

bool zero (ImageBuf &dst, ROI roi=ROI::All(), int nthreads=0)

Create an all-black float image of size and channels as described by the ROL. If dst is
passed and is alredy initialized, keep its shape and data type, and just zero out the pixels
in the ROL.

Examples:

// Create a new 3-channel, 512x512 float image filled with 0.0 values.
ImageBuf zero = ImageBufAlgo::zero (ROI(0,512,0,512,0,1,0,3));

// Zero out an existing buffer, keeping it the same size and data type
ImageBuf A = ...;

ImageBufAlgo::zero (A);

// Zero out a rectangular region of an existing buffer
ImageBufAlgo::zero (A, ROI (0, 100, 0, 100));

// Zero out just the green channel, leave everything else the same
ROI roi = A.roi ();

roi.chbegin = 1; // green

roi.chend = 2; // one past the end of the channel region
ImageBufAlgo::zero (A, roi);

ImageBuf £ill (cspan<float> values, ROI roi, int nthreads=0)
ImageBuf £ill (cspan<float> top, cspan<float> bottom, ROI roi, int nthreads=0)
ImageBuf £ill (cspan<float> topleft, cspan<float> topright,

cspan<float> bottomleft, cspan<float> bottomright,

ROI roi, int nthreads=0)

bool £ill (ImageBuf &dst, cspan<float> values,
ROI roi=ROI::All(), int nthreads=0)
bool £ill (ImageBuf &dst, cspan<float> top, cspan<float> bottom,
ROI roi=ROI::All(), int nthreads=0)
bool £ill (ImageBuf &dst, cspan<float> topleft, cspan<float> topright,
cspan<float> bottomleft, cspan<float> bottomright,
ROI roi=ROI::All(), int nthreads=0)

OpenlmagelO Programmer’s Documentation

10.2. PATTERN GENERATION 193

Fill an image region with given channel values, either returning a new image or altering
the existing dst image within the ROI. Note that the values arrays start with channel 0,
even if the ROI indicates that a later channel is the first to be changed.

Three varieties of fill() exist: (a) a single set of channel values that will apply to the
whole ROI, (b) two sets of values that will create a linearly interpolated gradient from top
to bottom of the ROI, (c) four sets of values that will be bilnearly interpolated across all
four corners of the ROL.

Examples:

// Create a new 640x480 RGB image, with a top-to-bottom gradient

// from red to pink

float pink([3] = { 1, 0.7, 0.7 };

float red[3] = { 1, 0, O };

ImageBuf A = ImageBufAlgo::fill (red, pink, ROI (0, 640, O, 480, 0, 1, O,

// Draw a filled red rectangle overtop existing image A.
ImageBufAlgo::£fill (A, red, ROI (50,100, 75, 175));

ImageBuf checker (float width, float height, float depth,
cspan<float> colorl, cspan<float> color2,
int xoffset, int yoffset, int zoffset,
ROI roi, int nthreads=0)

bool checker (ImageBuf &dst, float width, float height, float depth,
cspan<float> colorl, cspan<float> color2,
int xoffset=0, int yoffset=0, int zoffset=0,
ROI roi=ROI::All(), int nthreads=0)

Create a new image, or set the pixels in the destination image within the ROI, to a checker-
board pattern with origin given by the offset values, checker size given by the width,
height, depth values, and alternting between colorl[] and color2[]. The colors
must point to arrays long enough to contain values for all channels in the image.

Examples:

// Create a new 640x480 RGB image, fill it with a two-toned gray
// checkerboard, the checkers being 64x64 pixels each.

ImageBuf A (ImageSpec (640, 480, 3, TypeDesc::FLOAT);

float dark(3] = { 0.1, 0.1, 0.1 };

float light[3] = { 0.4, 0.4, 0.4 };

ImageBufAlgo::checker (A, 64, 64, 1, dark, light, 0, 0, 0);

OpenlmagelO Programmer’s Documentation

194 CHAPTER 10. IMAGE PROCESSING

ImageBuf noise (string view noisetype, float A = 0.0f, float B = 0.1f,
bool mono = false, int seed = 0, ROI roi=ROI::All(), int nthreads=0)

bool noise (ImageBuf &dst, string view noisetype,
float A = 0.0f, float B = 0.1f, bool mono = false,
int seed = 0, ROI roi=ROI::All(), int nthreads=0)

Return an image of pseudorandom noise, or add pseudorandom noise to the specified
region of existing region dst.

For noise type "uniform", the noise is uniformly distributed on the range [2,B). For
noise "gaussian", the noise will have a normal distribution with mean A and standard
deviation B. For noise "salt", the value A will be stored in a random set of pixels whose
proportion (of the overall image) is B. For all noise types, choosing different seed values
will result in a different pattern. If the mono flag is true, a single noise value will be
applied to all channels specified by roi, but if mono is false, a separate noise value will
be computed for each channel in the region.

Examples:

// Create a new 256x256 field of grayscale uniformly distributed noise on [0,1)
ImageBuf A = ImageBufAlgo::noise ("uniform", 0.0f /*min*/, 1.0f /*max*/,
true /*mono*/, 1 /*seed*/, ROI(0,256,0,256,0,1,0,3));

// Add color Gaussian noise to an existing image

ImageBuf B ("tahoe.jpg");

ImageBufAlgo::noise (B, "gaussian", 0.0f /*mean*/, 0.1f /*stddev*/,
false /*mono*/, 1 /*seed*/);

// Use salt and pepper noise to make occasional random dropouts

ImageBuf C ("tahoe.jpg");

ImageBufAlgo::noise (C, "salt", 0.0f /*value*/, 0.01f /*portion*/,
true /*mono*/, 1 /*seed*/);

OpenlmagelO Programmer’s Documentation

10.2. PATTERN GENERATION 195
bool render point (ImageBuf &dst, int x, int y, cspan<float> color,
ROI roi=ROI.All(), int nthreads=0)
Render a point into the destination image, doing an “over” of color (if it includes an
alpha channel). The color value should have at least as many entires as the ROI (which
will default to being the entirety of dst). No pixels or channels outside the ROI will be
modified.
Examples:
ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));
float redf4] = {1, 0, 0, 1 };
ImageBufAlgo::render_point (A, 50, 100, red);
bool render 1line (ImageBuf &dst, int x1, int yl, int x2, int y2,
cspan<float> color, bool skip first point=false,
ROI roi=ROI.Al11(), int nthreads=0)
Render a line from pixel (xj,y;) to (x2,y>) into dst, doing an “over” of the color (if it
includes an alpha channel) onto the existing data in dst. The color should include as
many values as roi.chend-1. The ROI can be used to limit the pixel area or channels
that are modified, and default to the entirety of dst. If skip first point is true, the
first point (x1, y1) will not be drawn (this can be helpful when drawing poly-lines, to
avoid double-rendering of the vertex positions).
Examples:
ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));
float red[4] = { 1, 0, 0, 1 };
ImageBufAlgo::render_line (A, 10, 60, 250, 20, red);
ImageBufAlgo::render_line (A, 250, 20, 100, 190, red, true);
bool render box (ImageBuf &dst, int x1, int yl, int x2, int y2,

cspan<float> color, bool fill=false,
roi=ROI.Al11(), int nthreads=0)

Render a filled or unfilled box with corners at pixels (x1,y;) and (x,y2) into dst, doing
an “over” of the color (if it includes an alpha channel) onto the existing data in dst. The
color must include as many values as roi.chend-1. The ROI can be used to limit the
pixel area or channels that are modified, and default to the entirety of dst. If fill is
true, the box will be completely filled in, otherwise only its outlien will be drawn.

OpenIlmagelO Programmer’s Documentation

196 CHAPTER 10. IMAGE PROCESSING

Examples:
ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));
float cyan([4] = { 1, 0, 0, 1 };
ImageBufAlgo::render_box (A, 150, 100, 240, 180, cyan);
float yellow_transparent([4] = { 0.5, 0.5, 0, 0.5 };

ImageBufAlgo::render_box (A, 100, 50, 180, 140, yellow_transparent, true);

bool render text (ImageBuf &dst, int x, int y, string view text,
int fontsize=16, string view fontname="",
cspan<float> textcolor = 1.0,
TextAlignX alignx = TextAlignX::Left,
TextAlignY aligny = TextAlignX::Baseline,
int shadow = 0, ROI roi = ROI::All(), int nthreads =0)

enum class TextAlignX { Left, Right, Center };
enum class TextAlignY { Baseline, Top, Bottom, Center };

Render a text string (encoded as UTF-8) into image dst. If the dst image is not yet
initiailzed, it will be initialized to be a black background exactly large enought to contain
the rasterized text. If dst is already initialized, the text will be rendered into the existing
image by essentially doing an “over” of the character into the existing pixel data.

The font is given by fontname (if not a full pathname to a font file, it will search for a
matching font, defaulting to some reasonable system font if not supplied at all), and with
a nominal height of fontsize (in pixels).

The position is given by coordinates (x,y), with the default behavior to align the left
edge of the character baseline to (x, y). Optionally, alignx and aligny can override the
alignment behavior, with horizontal alignment choices of Left, Right, and Center, and
vertical alignment choices of Baseline, Top, Bottom, or Center.

The characters will be drawn in opaque white (1.0,1.0,...) in all channels, unless textcolor
is supplied. If shadow is nonzero, a “drop shadow” of that radius will be used to make
the text look more clear by dilating the alpha channel of the composite (makes a black
halo around the characters).

Examples:
ImageBufAlgo: :render_text (ImgA, 50, 100, "Hello, world");

OpenlmagelO Programmer’s Documentation

10.2. PATTERN GENERATION 197

float red[] = { 1, 0, 0, 1 };
ImageBufAlgo: :render_text (ImgA, 100, 200, "Go Big Red!",
60, "Arial Bold", red);

float white[] = { 1, 1, 1, 1 };

ImageBufAlgo::render_text (ImgB, 320, 240, "Centered",
60, "Arial Bold", white,
TextAlignX::Center, TextAlignY::Center);

Hello, world

Centered

ROI text size (string view text, int fontsize=16, string view fontname="")

The helper function text size () merely computes the dimensions of the text, returning
it as an ROT relative to the left side of the baseline of the first character. Only the x and y
dimensions of the ROI will be used. The x dimension runs from left to right, and y runs
from top to bottom (image coordinates). For a failure (such as an invalid font name), the
ROI will return false if you call its defined () method.

// Render text centered in the image, using text_size to find out

// the size we will need and adjusting the coordinates.

ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));

ROI Aroi = A.roi();
ROI size = ImageBufAlgo::text_size ("Centered", 48, "Courier New");
if (size.defined()) {
int x = Aroi.xbegin + Aroi.width()/2 - (size.xbegin + size.width()/2);

int y = Aroi.ybegin + Aroi.height()/2 - (size.ybegin + size.height()/2);
ImageBufAlgo::render_text (A, x, y, "Centered", 48, "Courier New");

OpenlmagelO Programmer’s Documentation

198 CHAPTER 10. IMAGE PROCESSING

10.3 Image transformations and data movement

ImageBuf channels (const ImageBuf &src, int nchannels,
cspan<int> channelorder, cspan<float> channelvalues={},
cspan<std::string> newchannelnames={},
bool shuffle channel names=false, int nthreads=0)

bool channels (ImageBuf &dst, const ImageBuf &src, int nchannels,
cspan<int> channelorder, cspan<float> channelvalues={},
cspan<std::string> newchannelnames={},
bool shuffle channel names=false, int nthreads=0)

Generic channel shuffling: return (or store in dst) a copy of src, but with channels

in the order specified by channelorder[0..nchannels-1]. For any channel in which
channelorder[i] <0, it will just make dst channel i be a constant value set to channelvalues[i]
(if channelvalues is not empty) or 0.0 (if channelvalues is empty). In-place opera-

tion is allowed (i.e., dst and src the same image, but an extra copy will occur).

If channelorder is empty, it will be interpreted as {0, 1, ..., nchannels-1}, mean-
ing that it’s only renaming channels, not reordering them.

If newchannelnames is not empty, it points to an array of new channel names. Channels
for which newchannelnames [1] is the empty string (or all channels, if newchannelnames
is empty) will be named as follows: If shuffle channel names is false, the result-
ing dst image will have default channel names in the usual order ("R", "G", etc.), but
if shuffle channel names is true, the names will be taken from the corresponding
channels of the source image — be careful with this, shuffling both channel ordering and
their names could result in no semantic change at all, if you catch the drift.

Examples:

// Copy the first 3 channels of an RGBA, drop the alpha
ImageBuf RGBA (...); // assume it’s initialized, 4 chans
ImageBuf RGB = ImageBufAlgo::channels (RGBA, 3, {} /*default ordering*/);

// Copy Jjust the alpha channel, making a l-channel image
ImageBuf Alpha = ImageBufAlgo::channels (RGBA, 1, 3 /*alpha_channel*/);

// Swap the R and B channels into an existing image
ImageBuf BRGA;

int channelorder[] = { 2 /*B*/, 1 /*G*/, 0 /*R*/, 3 /*A*/ };
ImageBufAlgo::channels (BRGA, RGBA, 4, channelorder);

// Add an alpha channel with value 1.0 everywhere to an RGB image,
// keep the other channels with their old ordering, values, and

// names.

int channelorder[] = { 0, 1, 2, -1 /*use a float value*/ };

float channelvalues[] = { 0 /*ignore*/, 0 /*ignore*/, 0 /*ignore*/, 1.0 };
std::string channelnames([] = { "", "", "' "A"™ };

ImageBuf RGBA = ImageBufAlgo::channels (RGB, 4, channelorder,
channelvalues, channelnames);

OpenlmagelO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 199

ImageBuf channel append (const ImageBuf &A, const ImageBuf &B,
ROI roi=ROI::All(), int nthreads=0)

bool channel append (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
ROI roi=ROI::All(), int nthreads=0)

Append the channels of A and B together into dst over the region of interest. If the region
passed is uninitialized (the default), it will be interpreted as being the union of the pixel
windows of A and B (and all channels of both images). If dst is not already initialized, it
will be resized to be big enough for the region.

Examples:
ImageBuf RGBA (...); // assume initialized, 4 channels
ImageBuf 7z (...); // assume initialized, 1 channel

ImageBuf RGBAZ = ImageBufAlgo::channel_append (RGBA, Z7);

ImageBuf copy (const ImageBuf &src, TypeDesc convert=TypeUnknown,
ROI roi={}, int nthreads=0)

bool copy (ImageBuf &dst, const ImageBuf &src, TypeDesc convert=TypeUnknown,
ROI roi={}, int nthreads=0)

Return (or copy into dst at the corresponding locations) the specified region of pixels of
src. If dst is not already initialized, it will be set to the same size as roi (by default all
of src, optionally with the pixel type overridden by convert (if it is not UNKNOWN).

Examples:

// Set B to be A, but converted to float
ImageBuf A (...); // Assume initialized
ImageBuf B = ImageBufAlgo::copy (A, TypeDesc::FLOAT);

ImageBuf crop (const ImageBuf &src, ROI roiZ{}, int nthreads=0)

bool crop (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Reset dst to be the specified region of src. Pixels from src which are outside roi will
not be copied, and new black pixels will be added for regions of roi which were outside
the data window of src.

Note that the crop operation does not actually move the pixels on the image plane or
adjust the full/display window; it merely restricts which pixels are copied from src to
dst. (Note the difference compared to cut ()).

Examples:

// Set B to be the upper left 200x100 region of A
ImageBuf A (...); // Assume initialized
ImageBuf B = ImageBufAlgo::crop (A, ROI(0,200,0,100));

OpenIlmagelO Programmer’s Documentation

200 CHAPTER 10. IMAGE PROCESSING

ImageBuf cut (const ImageBuf &src, ROI roi:{}, int nthreads=0)

bool cut (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Reset dst to be the specified region of src, but repositioned at the image plane origin
and with the full/display window set to exactly cover the new pixel window. (Note the
difference compared to crop ()).

Examples:

// Set B to be the 100x100 region of A with origin (50,200).
ImageBuf A (...); // Assume initialized

ImageBuf B = ImageBufAlgo::cut (A, ROI(50,250,200,300));

// Note: B will have origin 0,0, NOT (50,200).

bool paste (ImageBuf &dst, int xbegin, int ybegin, int zbegin, int chbegin,
const ImageBuf &src, ROI srcroi=ROI::All(), int nthreads=0)

Copy into dst, beginning at (xbegin, ybegin, zbegin), the pixels of src described
by srcroi. If srcroi is ROI::All (), the entirety of src will be used. It will copy into
channels [chbegin...], as many channels as are described by srcroi.

Examples:

// Paste small.exr on top of big.exr at offset (100,100)
ImageBuf Big ("big.exr");

ImageBuf Small ("small.exr");

ImageBufAlgo::paste (Big, 100, 100, 0, 0, Small);

ImageBuf rotate90 (const ImageBuf &src, ROI roi={}, int nthreads=0)
ImageBuf rotatel80 (const ImageBuf &src, ROI roi={}, int nthreads=0)
ImageBuf rotate270 (const ImageBuf &src, ROI roi={}, int nthreads=0)

bool rotate90 (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)
bool rotatel80 (ImageBuf &dst, const ImageBuf &src, ROI roi:{}, int nthreads=0)
bool rotate270 (ImageBuf &dst, const ImageBuf &src, ROI roi:{}, int nthreads=0)

Return (or copy into dst) a copy of the image pixels of src, rotated clockwise by 90,
180, or 270 degrees.

Examples:

ImageBuf A ("grid.jpg");

ImageBuf R90 = ImageBufAlgo::rotate90 (A);
ImageBuf R170 = ImageBufAlgo::rotatel80 (A);
ImageBuf R270 = ImageBufAlgo::rotate270 (A);

OpenlmagelO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 201

original rotated 90 rotated 180 rotated 270

ImageBuf £lip (const ImageBuf &src, ROI roi:{}, int nthreads=0)
ImageBuf flop (const ImageBuf &src, ROI roi={}, int nthreads=0)
ImageBuf transpose (const ImageBuf &src, ROI roi={}, int nthreads=0)

bool £lip (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)
bool flop (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)
bool transpose (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Return (or copy into dst) a subregion of src, but with the scanlines exchanged vertically
(flip), or columns exchanged horizontally (flop), or transposed across the diagonal by
swapping rows for columns (transpose) within the display/full window.

Examples:

ImageBuf A ("grid.jpg");
ImageBuf B;

B = ImageBufAlgo::flip (A);
ImageBufAlgo::flop (A);
ImageBufAlgo::transpose (A);

W W
o

original flip flip transpose

ImageBuf reorient (const ImageBuf &src, int nthreads=0)

bool reorient (ImageBuf &dst, const ImageBuf &src, int nthreads=0)
Return (or store into dst) a copy of src, but with whatever seties of rotations, flips,
or flops are necessary to transform the pixels into the configuration suggested by the
"Orientation" metadata of the image (and the "Orientation" metadata is then set to
1, ordinary orientation).

Examples:

ImageBuf A ("tahoe.jpg");
A = ImageBufAlgo::reorient (A);

OpenlmagelO Programmer’s Documentation

202 CHAPTER 10. IMAGE PROCESSING

ImageBuf circular shift (const ImageBuf &src,
int xshift, int yshift, int zshift=0, ROI roi={}, int nthreads=0)

bool circular shift (ImageBuf &dst, const ImageBuf é&src,
int xshift, int yshift, int zshift=0, ROI roi={}, int nthreads=0)

Copy src (or a subregion of src to the pixels of dst, but circularly shifting by the given
amount. To clarify, the circular shift of [0, 1,2,3,4,5] by 42 is [4,5,0,1,2,3].
Examples:

ImageBuf A ("grid.jpg");
ImageBuf B = ImageBufAlgo::circular_shift (A&, 70, 30);

_>

ImageBuf rotate (const ImageBuf &src, float angle,

string view filtername="", float filtersize=0,

bool recompute roi = false, ROI roi={}, int nthreads=0)
ImageBuf rotate (const ImageBuf &src, float angle,

Filter2D *filter,

bool recompute roi = false, ROI roi={}, int nthreads=0)
ImageBuf rotate (const ImageBuf &src, float angle,

float center x, float center vy,

string view filtername="", float filtersize=0,

bool recompute roi = false, ROI roi={}, int nthreads=0)
ImageBuf rotate (const ImageBuf &src, float angle,

float center x, float center vy, Filter2D *filter,

bool recompute roi = false, ROI roi={}, int nthreads=0)

bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,

string view filtername="", float filtersize=0,

bool recompute roi = false, ROI roi={}, int nthreads=0)
bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,

Filter2D *filter,

bool recompute_roi = false, ROI roi={}, int nthreads=0)
bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,

float center x, float center vy,

string view filtername="", float filtersize=0,

bool recompute roi = false, ROI roi={}, int nthreads=0)
bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,

OpenlmagelO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 203

float center x, float center vy, Filter2D *filter,
bool recompute roi = false, ROI roi={}, int nthreads=0)

Rotate the src image by the angle (in radians, with positive angles clockwise). When
center x and center vy are supplied, they denote the center of rotation; in their ab-
sence, the rotation will be about the center of the image’s display window.

Only the pixels (and channels) of dst that are specified by roi will be copied from the
rotated src; the default roi is to alter all the pixels in dst. If dst is uninitialized, it will
be resized to be an ImageBuf large enough to hold the rotated image if recompute roi
is true, or will have the same ROI as src if recompute roi is false. It is an error to
pass both an uninitialied dst and an undefined roi.

The caller may explicitly pass a reconstruction filter, or specify one by name and size, or
if the name is the empty string rotate () will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:

ImageBuf Src ("tahoe.exr");
ImageBuf Dst = ImageBufAlgo::rotate (Src, 45.0);

%

ImageBuf warp (const ImageBuf &src, const Imath::M33f &M,

string view filtername="", float filtersize=0,
bool recompute roi = false,

ImageBuf::WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

ImageBuf warp (const ImageBuf &src, const Imath::M33f &M,

Filter2D *filter, bool recompute roi = false,
ImageBuf: :WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

bool warp (ImageBuf &dst, const ImageBuf &src, const Imath::M33f &M,

string view filtername="", float filtersize=0,
bool recompute roi = false,

ImageBuf::WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

bool warp (ImageBuf &dst, const ImageBuf &src, const Imath::M33f &M,

Filter2D *filter, bool recompute roi = false,

OpenlmagelO Programmer’s Documentation

204

CHAPTER 10. IMAGE PROCESSING

ImageBuf::WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

Warp the src image using the supplied 3x3 transformation matrix M.

Only the pixels (and channels) of dst that are specified by roi will be copied from the
warped src; the default roi is to alter all the pixels in dst. If dst is uninitialized, it will
be resized to be an ImageBuf large enough to hold the warped image if recompute roi
is true, or will have the same ROI as src if recompute roi is false. It is an error to
pass both an uninitialied dst and an undefined roi.

The caller may explicitly pass a reconstruction filter, or specify one by name and size, or
if the name is the empty string resize () will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:

Imath::M33f M (0.7071068, 0.7071068, 0
-0.7071068, 0.7071068, O
20, -8.284271, 1

ImageBuf Src ("tahoe.exr");

ImageBuf Dst = ImageBufAlgo::warp (dst, src, M, "lanczos3");

r

)i

ImageBuf resize (const ImageBuf &src, string view filtername="",

float filtersize=0, ROI roi={}, int nthreads=0)

ImageBuf resize (const ImageBuf &src, Filter2D *filter,

ROI roi={}, int nthreads=0)

bool resize (ImageBuf &dst, const ImageBuf &src, string view filtername="",

float filtersize=0, ROI roi={}, int nthreads=0)

bool resize (ImageBuf &dst, const ImageBuf &src, Filter2D *filter,

ROI roi={}, int nthreads=0)

Set dst, over the region of interest, to be a resized version of the corresponding portion
of src (mapping such that the “full” image window of each correspond to each other,
regardless of resolution). If dst is not yet initialized, it will be sized according to roi.

The caller may explicitly pass a reconstruction filter, or specify one by name and size, or
if the name is the empty string resize () will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:

// Resize the image to 640x480, using the default filter
ImageBuf Src ("tahoe.exr");

ROI roi (0, 640, 0, 480, 0, 1, /*chans:*/ 0, Src.nchannels());
ImageBuf Dst = ImageBufAlgo::resize (Src, "", 0, roi);

OpenlmagelO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 205

ImageBuf resample (const ImageBuf &src,
bool interpolate = true, ROI roi={}, int nthreads=0)

bool resample (ImageBuf &dst, const ImageBuf é&src,
bool interpolate = true, ROI roi={}, int nthreads=0)

Set dst, over the region of interest, to be a resized version of the corresponding portion
of src (mapping such that the “full” image window of each correspond to each other,
regardless of resolution). If dst is not yet initialized, it will be sized according to roi.

Unlike ImageBufAlgo::resize (), resample () does not take a filter; it just samples
either with a bilinear interpolation (if interpolate is true, the default) or uses the sin-
gle “closest” pixel (if interpolate is false). This makes it a lot faster than a proper
resize (), though obviously with lower quality (aliasing when downsizing, pixel repli-
cation when upsizing).

For “deep” images, this function returns copies the closest source pixel needed, rather
than attempting to interpolate deep pixels (regardless of the value of interpolate).
Examples:

// Resample quickly to 320x240, using the default filter
ImageBuf Src ("tahoe.exr");

ROI roi (0, 320, 0, 240, 0, 1, /*chans:*/ 0, Src.nchannels());
ImageBuf Dst = ImageBufAlgo::resample (Src, false, roi);

ImageBuf fit (const ImageBuf &src, string view filtername="",

float filtersize=0, bool exact=false, ROI roi={}, int nthreads=0)

ImageBuf f£it (const ImageBuf &src, Filter2D *filter,
bool exact=false, ROI roi={}, int nthreads=0)

bool fit (ImageBuf &dst, const ImageBuf &src, string view filtername="",

float filtersize=0, bool exact=false, ROI roi={}, int nthreads=0)

bool fit (ImageBuf &dst, const ImageBuf &src, Filter2D *filter,
bool exact=false, ROI roi={}, int nthreads=0)

Fit src into dst (to a size specified by roi, if dst is not initialized), resizing but pre-
serving its original aspect ratio. Thus, it will resize so be the largest size with the same
aspect ratio that can fix inside the region, but will not stretch to completely fill it in both
dimensions.

If exact is true, will result in an exact match on aspect ratio and centering (partial pixel
shift if necessary), whereas if exact is false, it will only preserve aspect ratio and center-
ing to the precision of a whole pixel.

The caller may explicitly pass a reconstruction filter, or specify one by name and size,
or if the name is the empty string fit () will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:

// Resize to fit into a max of 640x480, preserving the aspect ratio

OpenIlmagelO Programmer’s Documentation

NEW!

206 CHAPTER 10. IMAGE PROCESSING

ImageBuf Src ("tahoe.exr");
ROI roi (0, 640, 0, 480, 0, 1, /*chans:*/ 0, Src.nchannels());
ImageBuf Dst ImageBufAlgo::fit (Src, "", 0, true, roi);

10.4 Image arithmetic

ImageBuf add (Image or Const A, Image or Const B, ROI roi={}, int nthreads=0)

bool add (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel sum A + B, returning the result image or storing the result into exist-
ing image dst.

A and B may each either be an ImageBufég, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

// Add images A and B, assign to Sum
ImageBuf A ("a.exr");

ImageBuf B ("b.exr");

ImageBuf Sum = ImageBufAlgo::add (Sum, A, B);

// Add 0.2 to channels 0-2 of A
ImageBuf A ("a.exr");

ROI roi = get_roi (A.spec());
roi.chbegin = 0; roi.chend = 3;

ImageBuf Sum = ImageBufAlgo::add (Sum, A, 0.2f, roi);

ImageBuf sub (Image or Const A, Image or Const B, ROI roi={}, int nthreads=0)
bool sub (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel signed difference A - B, returning the result image or storing the
result into existing image dst.

A and B may each either be an ImageBufg, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Diff = ImageBufAlgo::sub (A, B);

OpenlmagelO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 207

ImageBuf absdiff (Image or Const A, Image or Const B, ROI roi:{}, int nthreads=0)
bool absdiff (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel absolute difference abs (A - B), returning the result image or storing
the result into existing image dst.

A and B may each either be an ImageBufég, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)
Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Diff = ImageBufAlgo::absdiff (A, B);

ImageBuf abs (const ImageBuf &A, ROI roi={}, int nthreads=0)

bool abs (ImageBuf &dst, const ImageBuf &A, ROI roi={}, int nthreads=0)
Compute per-pixel absolute value abs (3), returning the result image or storing the result
into existing image dst.
Examples:

ImageBuf A ("a.exr");
ImageBuf Abs = ImageBufAlgo::abs (A);

ImageBuf mul (Image or_ Const A, Image or_ Const B, ROI roi={}, int nthreads=0)

bool mul (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel product A * B, returning the result image or storing the result into
existing image dst.

A and B may each either be an ImageBufs, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Product = ImageBufAlgo::mul (Product, A, B);

// Reduce intensity of A’s channels 0-2 by 50%
ROI roi = get_roi (A.spec());

roi.chbegin = 0; roi.chend = 3;
ImageBufAlgo::mul (A, A, 0.5f, roi);

OpenIlmagelO Programmer’s Documentation

208 CHAPTER 10. IMAGE PROCESSING

ImageBuf div (Image or Const A, Image or Const B, ROI roi:{}, int nthreads=0)

bool div (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel division A / B, returning the result image or storing the result into
existing image dst. Division by zero is definied to result in zero.

A and B may each either be an ImageBufg, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Result = ImageBufAlgo::div (Result, A, B);

// Reduce intensity of A’s channels 0-2 by 50%
ROI roi = get_roi (A.spec());

roi.chbegin = 0; roi.chend = 3;
ImageBufAlgo::div (A, A, 2.0f, roi);

ImageBuf mad (Image or Const A, Image or Const B,
Image_or_Const C, ROI roi={}, int nthreads=0)

bool mad (ImageBuf &dst, Image or Const A, Image or Const B,
Image_or_Const C, ROI roi={}, int nthreads=0)

Compute per-pixel multiply-and-add, A * B + C, returning the result image or storing
the result into existing image dst.

A, B, and C may each either be an ImageBufé&, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf C ("c.exr");
ImageBuf Result = ImageBufAlgo::mad (A, B, C);

// Compute the "inverse" A, which is 1.0-A, as A*(-1) + 1

// Do this in-place, and only for the first 3 channels (leave any
// alpha channel, if present, as it is).

ROI roi = get_roi (A.spec());

roi.chbegin = 0; roi.chend = 3;

ImageBufAlgo::mad (A, A, -1.0, 1.0, roi);

OpenlmagelO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 209

ImageBuf invert (const ImageBuf &A, ROI roi:{}, int nthreads=0)

bool invert (ImageBuf &dst, const ImageBuf &A, ROI roi={}, int nthreads=0)

Compute per-pixel inverse, 1.0 - A, returning the result image or storing the result into
existing image dst.

Examples:

ImageBuf A ("a.exr");
ImageBuf Inverse = ImageBufAlgo::invert (Inverse, A);

// In this example, we are careful to deal with alpha in an RGBA image.
// First we copy A to Inverse, un-premultiply the color values by alpha,
// invert Jjust the color channels in-place, and then re-premultiply the
// colors by alpha.

roi = A.roi();

roi.chend = 3; // Restrict roi to only R,G,B

ImageBuf Inverse = ImageBufAlgo::unpremult (A);

ImageBufAlgo::invert (Inverse, Inverse, roi);

ImageBufAlgo: :premult (Inverse, Inverse);

ImageBuf pow (const ImageBuf &A, cspan<float> B, ROI roi={}, int nthreads=0))

bool pow (ImageBuf &dst, const ImageBuf &A, cspan<float> B,
ROI roi={}, int nthreads=0)

Compute per-pixel power A2, returning the result image or storing the result into existing
image dst.

Ais always an image, and B may either be a cspan<float> giving a per-channel constant,
or a single constant used for all channels.

Examples:

// Gamma-correct by 2.2 channels 0-2 of the image, in-place
ROI roi = get_roi (A.spec());

roi.chbegin = 0; roi.chend = 3;

ImageBufAlgo::pow (A, A, 1.0f£/2.2f, roi);

ImagBuf channel sum (const ImageBuf &src,
cspan<float> weights=1.0f, ROI roi={}, int nthreads=0)

bool channel sum (ImageBuf &dst, const ImageBuf &src,
cspan<float> weights=1.0f, ROI roi={}, int nthreads=0)

Converts a multi-channel image into a 1-channel image via a weighted sum of channels.
For each pixel of src within the designated ROI (defaulting to all of src, if not de-
fined), sum the channels designated by roi and store the result in channel O of dst. The
weights, if not supplied, default to 1.0 for each channel.

Examples:

OpenIlmagelO Programmer’s Documentation

210

CHAPTER 10. IMAGE PROCESSING

NEW!

// Compute luminance via a weighted sum of R,G,B

// (assuming Rec709 primaries and a linear scale)

float luma_weights[3] = { .2126, .7152, .0722, 0.0 };
ImageBuf A ("a.exr");

ImageBuf lum = ImageBufAlgo::channel_sum (A, luma_weights);

ImageBuf contrast remap (const ImageBuf &src,

cspan<float> black=0.0f, cspan<float> white=1.0f,
cspan<float> min=0.0f, cspan<float> max=1.0f,
cspan<float> scontrast=1.0f, cspan<float> sthresh=0.5f,
ROI roi={}, int nthreads=0)

bool contrast remap (ImageBuf &dst, const ImageBuf é&src,

cspan<float> black=0.0f, cspan<float> white=1.0f,
cspan<float> min=0.0f, cspan<float> max=1.0f,
cspan<float> scontrast=1.0f, cspan<float> sthresh=0.5f,
ROI roi={}, int nthreads=0)

Return (or copy into dst) pixel values that are a contrast-remap of the corresponding
values of the src image, transforming pixel value domain [black, white] to range [min,
max], either linearly or with optional application of a smooth sigmoidal remapping (if
scontrast !=1.0).

The following steps are performed, in order:
Linearly rescale black to 0.0 and white to 1.0.
2. Optionally raise to power 1/gamma (only if gamma is not 1.0).

3. Apply a sigmoidal remapping (only if scontrast > 1) where a larger scontrast
value makes a steeper slope, and the steepest part is at value sthresh (relative to
the new remapped value after steps 1 & 2; the default is 0.5).

4. Rescale the range of that result: 0.0 to min and 1.0 to max.

Values outside of the [black,white] range will be extrapolated to outside [min,max], so it
may be prudent to apply a clamp() to the results.

The black, white, min, max, scontrast, sthresh parameters may each either be a single
float value for all channels, or a span giving per-channel values.

You can use this function for a simple linear contrast remapping of [black, white] to [min,
max] if you use the default values for sthresh. Or just a simple sigmoidal contrast stretch
within the [0,1] range if you leave all other parameters at their defaults, or a combination
of these effects. Note that if black == white, the result will be a simple binary thresholding
where values | black map to min and values ;= bkack map to max.

Examples:

ImageBuf A ("tahoe.tif");

// Simple linear remap that stretches input 0.1 to black, and input
// 0.75 to white.

OpenlmagelO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 211

ImageBuf linstretch = ImageBufAlgo::contrast_remap (A, 0.1f, 0.75f);

// Remapping 0->1 and 1->0 inverts the colors of the image,
// equivalent to ImageBufAlgo::invert().
ImageBuf inverse = ImageBufAlgo::contrast_remap (A, 1.0f, 0.0f);

// Use a sigmoid curve to add contrast but without any hard cutoffs.

// Use a contrast parameter of 5.0.

ImageBuf sigmoid = ImageBufAlgo::contrast_remap (a, 0.0f, 1.0f,
0.0f, 1.0f, 5.0f);

original linstretch inverse sigmoid

ImageBuf color map (const ImageBuf &src, int srcchannel,
int nknots, int channels, cspan<float> knots,
ROI roi={}, int nthreads=0)

ImageBuf color map (const ImageBuf &src, int srcchannel,
string_view mapname, ROI roi={}, int nthreads=0)

bool color map (ImageBuf &dst, const ImageBuf &src, int srcchannel,
int nknots, int channels, cspan<float> knots,
ROI roi={}, int nthreads=0)

bool color map (ImageBuf &dst, const ImageBuf &src, int srcchannel,
string_view mapname, ROI roi={}, int nthreads=0)

Return (or copy into dst) pixel values determined by looking up a color map using values
of the src image, using either the channel specified by srcchannel, or the luminance of
src’s RGB if srcchannel is -1. This happens for all pixels within the ROI (which
defaults to all of src), and if dst is not already initialized, it will be initialized to the ROI
and with color channels equal to channels.

In the first variant, the values linearly-interpolated color map are given by knot s [nknots*channels].
An input value of 0.0 corresponds to knots[0..channels-1], an input value of 1.0 cor-
responds to knots [(nknots-1) *channels..knots.size()-1].

In the second variant, just the name of a color map is specified. Recognized map names
include: "inferno", "viridis", "magma", "plasma", all of which are perceptually uni-
form, strictly increasing in luminance, look good when converted to grayscale, and work
for people with all types of colorblindness. Also supported are the following color maps
that do not have those desirable qualities (and are this not recommended): "blue-red",
"spectrum", and "heat". In all cases, the implied channels is 3.

Examples:

// Use luminance of a.exr (assuming Rec709 primaries and a linear
// scale) and map to a color spectrum:

OpenlmagelO Programmer’s Documentation

212 CHAPTER 10. IMAGE PROCESSING

ImageBuf A ("a.exr");
ImageBuf B = ImageBufAlgo::color_map (A, -1, "inferno");

float mymap[] = { 0.25, 0.25, 0.25, O, 0.5, 0, 1, 0, O };
B = ImageBufAlgo::color_map (A, -1 /* use luminance */,
3 /* num knots */, 3 /* channels */,

mymap) ;

original inferno viridis spectrum custom values

ImageBuf clamp (const ImageBuf &src,
cspan<float> min = {}, cspan<float> max = {},
bool clampalphaOl = false, ROI roi={}, int nthreads=0)

bool clamp (ImageBuf &dst, const ImageBuf &src,
cspan<float> min = {}, cspan<float> max = {},
bool clampalpha0Ol = false, ROI roi={}, int nthreads=0)

Return (or copy into dst) pixels of src with pixel values clamped between the min and
max values. The min and max may either be a single float (applied to all channels) or a
per-channel value. If either is empty, no clamping will be performed in that direction. If
clampalpha0l is true, then any alpha channel is clamped to the 0—1 range (in addition
to its otherwise-specified min/max).

Examples:

// Clamp image buffer A in-place to the [0,1] range for all pixels.
ImageBufAlgo::clamp (A, A, 0.0f, 1.0f);

// Just clamp alpha to [0,1] in-place
ImageBufAlgo::clamp (A, A, -std::numeric_limits<float>::max(),
std::numeric_limits<float>::max (), true);

// Clamp R & G to [0,0.5], leave other channels alone

std::vector<float> min (A.nchannels(), -std::numeric_limits<float>::max());
std::vector<float> max (A.nchannels(), std::numeric_limits<float>::max());
min[0] = 0.0f; max[0] = 0.5f;

min[1l] = 0.0f; max[1] 0.5f;

ImageBufAlgo::clamp (A, A, &min[0], &max[0], false);

OpenlmagelO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 213

ImageBuf rangecompress (const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

bool rangecompress (ImageBuf &dst, const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

ImageBuf rangeexpand (const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

bool rangeexpand (ImageBuf &dst, const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

The rangecompress () function returns (or copy into dst) all pixels and color channels of
src within region roi (defaulting to all the defined pixels of dst), rescaling their range
with a logarithmic transformation. Alpha and z channels are not transformed.

The rangeexpand () function performs the inverse transformation (logarithmic back into
linear).

If useluma is true, the luma of the first three channels (presumed to be R, G, and B) are
used to compute a single scale factor for all color channels, rather than scaling all channels
individually (which could result in a big color shift when performing rangecompress and
rangeexpand).

The purpose of these function is as follows: Some image operations (such as resizing
with a “good” filter that contains negative lobes) can have objectionable artifacts when
applied to images with very high-contrast regions involving extra bright pixels (such as
highlights in HDR captured or rendered images). By compressing the range pixel values,
then performing the operation, then expanding the range of the result again, the result can
be much more pleasing (even if not exactly correct).

Examples:

// Resize the image to 640x480, using a Lanczos3 filter, which
// has negative lobes. To prevent those negative lobes from
// producing ringing or negative pixel values for HDR data,
// do range compression, then resize, then re-expand the range.

// 1. Read the original image
ImageBuf Src ("tahoeHDR.exr");

// 2. Range compress to a logarithmic scale
ImageBuf Compressed = ImageBufAlgo::rangecompress (Src);

// 3. Now do the resize
ImageBuf Dst = ImageBufAlgo::resize (Comrpessed, "lanczos3", 6.0,
ROI (0, 640, 0, 480));

// 4. Expand range to be linear again (operate in-place)
ImageBufAlgo: :rangeexpand (Dst, Dst);

OpenIlmagelO Programmer’s Documentation

214 CHAPTER 10. IMAGE PROCESSING

ImageBuf over (const ImageBuf &A, const ImageBuf &B,
ROI roi={}, int nthreads=0)

bool over (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the composite of images A and B using the Porter-Duff “over”
compositing operation. Image A is the “foreground,” and B is the “background.” Images
A and B must have the same number of channels and must both have an alpha channel.

Examples:

ImageBuf A ("fg.exr");
ImageBuf B ("bg.exr");
ImageBuf Composite = ImageBufAlgo::over (A, B);

ImageBuf zover (const ImageBuf &A, const ImageBuf &B,
bool z_zeroisinf = false, ROI roi={}, int nthreads=0)

bool zover (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
bool z_zeroisinf = false, ROI roi={}, int nthreads=0)

Composite similar to ImageBufAlgo: :over (), but inputs A and B must have designated
‘z’ channels, and on a pixel-by-pixel basis, the z values will determine which of A or
B will be considered the foreground or background (lower z is foreground). If z -
zeroisinf is true, then z = 0 values will be treated as if they are infinitely far away.

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");

ImageBuf Composite ImageBufAlgo::zover (Composite, A, B);

10.5 Image comparison and statistics

bool computePixelStats (PixelStats &stats, const ImageBuf é&src,
ROI roi={}, int nthreads=0)

Compute statistics about the ROI of the image src, storing results in stats (each of
the vectors within stats will be automatically resized to the number of channels in the
image). A return value of true indicates success, false indicates that it was not possible
to complete the operation. The PixelStats structure is defined as follows:

struct PixelStats {
std::vector<float> min;
std::vector<float> max;
std::vector<float> avg;
std::vector<float> stddev;
std::vector<imagesize_t> nancount;
std::vector<imagesize_t> infcount;

OpenlmagelO Programmer’s Documentation

10.5. IMAGE COMPARISON AND STATISTICS 215
std::vector<imagesize_t> finitecount;
std::vector<double> sum, sum2; // for intermediate calculation
bi
Examples:
ImageBuf A ("a.exr");
ImageBufAlgo::PixelStats stats;
ImageBufAlgo: :computePixelStats (stats, A);
for (int ¢ = 0; ¢ < A.nchannels(); ++c) {
std::cout << "Channel " << ¢ << ":\n";
std::cout << " min = " << stats.min[c] << "\n";
std::cout << " max = " << stats.max[c] << "\n";
std::cout << " average = " << stats.avg[c] << "\n";
std::cout << " standard deviation = " << stats.stddev[c] << "\n";
std::cout << " # NaN values = " << stats.nancount[c] << "\n";
std::cout << " # Inf values = " << stats.infcount[c] << "\n";
std::cout << " # finite values = " << stats.finitecount[c] << "\n";

bool compare (const ImageBuf &A, const ImageBuf &B,

float failthresh, float warnthresh, CompareResults &result,

ROI roi={}, int nthreads=0)

Numerically compare two images. The difference threshold (for any individual color
channel in any pixel) for a “failure” is failthresh, and for a “warning” is warnthresh.
The results are stored in result. If roi is defined, pixels will be compared for the pixel
and channel range that is specified. If roi is not defined, the comparison will be for all
channels, on the union of the defined pixel windows of the two images (for either image,
undefined pixels will be assumed to be black). The CompareResults structure is defined

as follows:

struct CompareResults {
double meanerror, rms_error, PSNR, maxerror;
int maxx, maxy, maxz, maxc;
imagesize_t nwarn, nfail;

Vi

Examples:

ImageBuf A ("a.exr");

ImageBuf B ("b.exr");

ImageBufAlgo: :CompareResults comp;

ImageBufAlgo: :compare (A, B, 1.0£/255.0f, 0.0f, comp);

if (comp.nwarn == 0 && comp.nfail == 0) {
std::cout << "Images match within tolerance\n";
} else {
std::cout << "Image differed: " << comp.nfail << " failures,

<< comp.nwarn << " warnings.\n";

std::cout << "Average error was " << comp.meanerror << "\n";
std::cout << "RMS error was " << comp.rms_error << "\n";

OpenIlmagelO Programmer’s Documentation

216

CHAPTER 10. IMAGE PROCESSING

std::cout <<
std::cout <<
<<
<<

bool isConstantColor

"PSNR was " << comp.PSNR << "\n";

"largest error was " << comp.maxerror

" on pixel (" << comp.maxx << "," << comp.maxy

"," << comp.maxz << "), channel " << comp.maxc << "\n";

(const ImageBuf &src, span<float> color={},
float threshold=0.0f, ROI roi={}, int nthreads=0)

If all pixels of src within the ROI have the same values, (for the subset of channels
described by roi), within tolerance of threshold, return true and store the values in

color[roi.chbegin..

Examples:

.roi.chend-1]. Otherwise, return false.

ImageBuf A ("a.exr");
std::vector<float> color (A.nchannels());
if (ImageBufAlgo::isConstantColor (A, color)) {
std::cout << "The image has the same value in all pixels: ";

for (int c =

0; ¢ < A.nchannels(); ++c)

std::cout << (¢ 2 " " : "") << color[c];
std::cout << "\n";

} else {

std::cout << "The image is not a solid color.\n";

bool isConstantChannel (const ImageBuf &src, int channel, float val,

float threshold=0.0f, ROI roi={}, int nthreads=0)

Returns true if all pixels of src within the ROI have the given channel value val (within

threshold).

Examples:

ImageBuf A ("a.exr");
int alpha = A.spec().alpha_channel;

if (alpha < 0)

std::cout << "The image does not have an alpha channel\n";
else if (ImageBufAlgo::isConstantChannel (A, alpha, 1.0f))
std::cout << "The image has alpha = 1.0 everywhere\n";

else

std::cout << "The image has alpha < 1 in at least one pixel\n";

OpenlmagelO Programmer’s Documentation

10.5. IMAGE COMPARISON AND STATISTICS 217

bool isMonochrome (const ImageBuf &src, float threshold=0.0f,
ROI roi={}, int nthreads=0)

Returns true if the image is monochrome within the ROI, that is, for all pixels within
the region, do all channels [roi.chbegin, roi.chend) have the same value (within
tolerance threshold? If roi is not defined (the default), it will be understood to be all of
the defined pixels and channels of source.

Examples:

ImageBuf A ("a.exr");
ROI roi = get_roi (A.spec());
roi.chend = std::min (3, roi.chend); // only test RGB, not alpha
if (ImageBufAlgo::isMonochrome (A, roi))
std::cout << "a.exr is really grayscale\n";

bool color count (const ImageBuf &src, imagesize t *count,
int ncolors, cspan<float> color, cspan<float> eps={},
ROI roi={}, int nthreads=0)

Count how many pixels in the image (within the ROI) match a list of colors. The colors
to match are in:

colors[0 ... nchans-1]
colors[nchans ... 2*nchans-1]

colors|[(ncolors-1)*nchans ... (ncolors*nchans)-1]

and so on, a total of ncolors consecutively stored colors of nchans channels each
(nchans is the number of channels in the image, itself, it is not passed as a parameter).

The values in eps [0. .nchans-1] are the error tolerances for a match, for each channel.
Setting eps [c] to numeric limits<float>::max () will effectively make it ignore the
channel. The default eps is 0.001 for all channels (requires exact matches for 8 bit im-
ages, but allows a wee bit of imprecision for f1oat images).

Examples:

ImageBuf A ("a.exr");
int n = A.nchannels();

// Try to match two colors: pure red and green
std::vector<float> colors (2*n, numeric_limits<float>::max());
colors[0] = 1.0f; colors[l] = 0.0f; colors([2] = 0.0f;
colors[n+t0] = 0.0f; colors[n+l] = 1.0f; colors[n+2] = 0.0f;

const int ncolors = 2;

imagesize_t count[ncolors];

ImageBufAlgo::color_count (A, count, ncolors);

std::cout << "Number of red pixels : " << count[0] << "\n";
std::cout << "Number of green pixels : " << count[1l] << "\n";

OpenIlmagelO Programmer’s Documentation

218

CHAPTER 10. IMAGE PROCESSING

bool color range check (const ImageBuf &src, imagesize t *lowcount,

imagesize t *highcount, imagesize t *inrangecount,
cspan<float> low, cspan<float> high,
ROI roi={}, int nthreads=0)

Count how many pixels in the image (within the ROI) are outside the value range de-
scribed by low[roi.chbegin..roi.chend-1] and high[roi.chbegin..roi.chend-1]
as the low and high acceptable values for each color channel.

The number of pixels containing values that fall below the lower bound will be stored in
*lowcount, the number of pixels containing values that fall above the upper bound will
be stored in *highcount, and the number of pixels for which all channels fell within the
bounds will be stored in *inrangecount. Any of these may be NULL, which simply
means that the counts need not be collected or stored.

Examples:

ImageBuf A ("a.exr");
ROI roi = get_roi (A.spec());
roi.chend = std::min (roi.chend, 4); // only compare RGBA

float low[] = {0, 0, 0, 0};
float high[] = {1, 1, 1, 1};

imagesize_t lowcount, highcount, inrangecount;

ImageBufAlgo::color_range_check (A, &lowcount, &highcount, &inrangecount,
low, high, roi);

std::cout << lowcount << " pixels had components < 0\n";

std::cout << highcount << " pixels had components > 1\n";

std::cout << inrangecount << " pixels were fully within [0,1] range\n";

ROI nonzero region (const ImageBuf &src, ROI roi={}, int nthreads=0)

Find the minimal rectangular region within roi (which defaults to the entire pixel data
window of src) that consists of nonzero pixel values. In other words, gives the region
that is a “shrink-wraps” of src to exclude black border pixels. Note that if the entire
image was black, the ROI returned will contain no pixels.

For “deep” images, this function returns the smallest ROI that contains all pixels that
contain depth samples, and excludes the border pixels that contain no depth samples at
all.

Examples:

ImageBuf A ("a.exr");
ROI shrunk = ImageBufAlgo::nonzero_region (A);
if (shrunk.undefined())
std::cout << "All pixels were empty\n";
else
std::cout << "Non-empty region was " << shrunk << "\n";

OpenlmagelO Programmer’s Documentation

10.6. CONVOLUTIONS 219

std:

std:

:string computePixelHashSHAl (const ImageBuf &src,

string_ view extrainfo = "",
ROI roi={}, int blocksize=0, int nthreads=0)

Compute the SHA-1 byte hash for all the pixels in the specifed region of the image. If
blocksize > 0, the function will compute separate SHA-1 hashes of each blocksize
batch of scanlines, then return a hash of the individual hashes. This is just as strong a
hash, but will NOT match a single hash of the entire image (blocksize == 0). But by
breaking up the hash into independent blocks, we can parallelize across multiple threads,
given by nthreads. The extrainfo provides additional text that will be incorporated
into the hash.

Examples:

ImageBuf A ("a.exr");
std::string hash;
hash = ImageBufAlgo::computePixelHashSHAl (A, "", ROI::All(), 64);

:vector<imagesize t> histogram (const ImageBuf é&src,

int channel=0, int bins=256,
float min=0.0f, float max=1.0f, bool ignore empty=false,
ROI roi={}, int nthreads=0)

Computes a histogram of the given channel of image src, within the ROI, returning a
vector of length bins containing count of pixels whose value was in each of the equally-
sized range bins between min and max. If ignore empty is true, pixels that are empty
(all channels 0 including alpha) will not be counted in the total.

Examples:

ImageBuf Src ("tahoe.exr");

const int bins = 4;

std::vector<imagesize_t> hist =
ImageBufAlgo::histogram (Src, 0, bins, 0.0f, 1.0f);

std::cout << "Channel 0 of the image had:\n";

float binsize = (max-min)/nbins;
for (int 1 = 0; 1 < nbins; ++i)
hist[i] << " pixels that are >= " << (min+i*binsize) << " and "
<< (1 == nbins-1 2 " <=" : " <M

<< (min+(i+1) *binsize) << "\n";

10.6 Convolutions

OpenIlmagelO Programmer’s Documentation

220 CHAPTER 10. IMAGE PROCESSING

ImageBuf make kernel (string view name,
float width, float height, float depth = 1.0f,
bool normalize = true)

Make a 1-channel float image of the named kernel. The size of the image will be big
enough to contain the kernel given its size (width X height) and rounded up to odd
resolution so that the center of the kernel can be at the center of the middle pixel. The
kernel image will be offset so that its center is at the (0, 0) coordinate. If normalize is
true, the values will be normalized so that they sum to 1.0.

If depth > 1, a volumetric kernel will be created. Use with caution!

Kernel names can be: "gaussian", "sharp-gaussian", "box", "triangle", "mitchell",
"blackman-harris", "b-spline", "catmull-rom", "lanczos3", "cubic", "keys",
"simon", "rifman", "disk", "binomial", "laplacian". Note that "catmull-rom"
and "lanczos3" are fixed-size kernels that don’t scale with the width, and are therefore
probably less useful in most cases.

Examples:

ImageBuf K = ImageBufAlgo::make_kernel ("gaussian", 5.0f, 5.0f);

ImageBuf convolve (const ImageBuf &src, const ImageBuf &kernel,
bool normalize = true, ROI roi={}, int nthreads=0)

bool convolve (ImageBuf &dst, const ImageBuf &src, const ImageBuf &kernel,
bool normalize = true, ROI roi={}, int nthreads=0)

Return (or store into the ROI of dst) the convolution of src and a kernel. If roi is not
defined, it defaults to the full size of dst (or src, if dst was uninitialized). If dst is
uninitialized, it will be allocated to be the size specified by roi. If normalizedis true,
the kernel will be normalized for the convolution, otherwise the original values will be
used.

Examples:

// Blur an image with a 5x5 Gaussian kernel

ImageBuf Src ("tahoe.exr");

ImageBuf K = ImageBufAlgo::make_kernel ("gaussian", 5.0f, 5.0f);
ImageBuf Blurred = ImageBufAlgo::convolve (Src, K);

original blurred

OpenlmagelO Programmer’s Documentation

10.6. CONVOLUTIONS 221

bool laplacian (ImageBuf &dst, const ImageBuf &src,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the Laplacian of the corresponding region of src. The Lapla-
cian is the generalized second derivative of the image,

o
oxz 0y?

which is approximated by convolving the image with a discrete 3 x 3 Laplacian kernel,

0 1 O
1 -4 1
0 1

Example:

ImageBuf src ("tahoe.exr");
ImageBuf lap = ImageBufAlgo::laplacian (src);

original Laplacian image

ImageBuf £ft (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool f£ft (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

ImageBuf ifft (const ImageBuf &src, ROI roiZ{}, int nthreads=0)
bool ifft (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

The f£ft () function takes the discrete Fourier transform (DFT) of the section of src
denoted by roi, returning it or storing it in dst. If roi is not defined, it will be all of
src’s pixels. Only one channel of src may be transformed at a time, so it will be the
first channel described by roi (or, again, channel O if roi is undefined). If not already
in the correct format, dst will be re-allocated to be a 2-channel float buffer of size
roi.width() X roi.height, with channel O being the “real” part and channel 1 being
the the “imaginary” part. The values returned are actually the unitary DFT, meaning that

it is scaled by 1//npixels.

The ifft is the inverse discrete Fourier transform, taking a 2-channel complex (real and
imaginary) frequency domain image and transforming to a single-channel spatial domain
image.

Examples:

OpenIlmagelO Programmer’s Documentation

222 CHAPTER 10. IMAGE PROCESSING

ImageBuf Src ("tahoe.exr");

// Take the DFT of the first channel of Src
ImageBuf Freq = ImageBufAlgo::fft (Src);

// At this point, Freq is a 2-channel float image (real, imagq)
// Convert it back from frequency domain to a spatial image
ImageBuf Spatial = ImageBufAlgo::ifft (Freq);

ImageBuf complex to_ polar (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool complex to polar (ImageBuf &dst, const ImageBuf &src,
ROI roi={}, int nthreads=0)

ImageBuf polar to complex (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool polar to complex (ImageBuf &dst, const ImageBuf &src,
ROI roi={}, int nthreads=0)

The polar_to_complex () function transforms a 2-channel image whose channels are
interpreted as complex values (real and imaginary components) into the equivalent values
expressed in polar form of amplitude and phase (with phase between 0 and 27).

The complex to polar() function performs the reverse transformation, converting
from polar values (amplitude and phase) to complex (real and imaginary).

In either case, the section of src denoted by roi is transformed, storing the result in dst.
If roi is not defined, it will be all of src’s pixels. Only the first two channels of src will
be transformed.

Examples:

// Suppose we have a set of frequency space values expressed as
// amplitudes and phase...
ImageBuf Polar ("polar.exr");

// Convert to complex representation
ImageBuf Complex = ImageBufAlgo::complex_to_polar (Polar);

// Now, it’s safe to take an IFFT of the complex image.

// Convert it back from frequency domain to a spatial image.
ImageBuf Spatial = ImageBufAlgo::ifft (Complex);

10.7 Image Enhancement / Restoration

OpenlmagelO Programmer’s Documentation

10.7. IMAGE ENHANCEMENT / RESTORATION 223

ImageBuf fixNonFinite (const ImageBuf &src,
NonFiniteFixMode mode = NONFINITE BOX3,
int *pixelsFixed = nullptr,

ROI roi={}, int nthreads=0)

bool fixNonFinite (ImageBuf &dst, const ImageBuf é&src,
NonFiniteFixMode mode = NONFINITE BOX3,
int *pixelsFixed = nullptr,
ROI roi={}, int nthreads=0)
Copy pixel values from src to dst (within the pixel and channel range designated by
roi), and repair any non-finite (NaN or Inf) pixels. If pixelsFound is not NULL, store in
it the number of pixels that contained non-finite value.

How the non-finite values are repaired is specified by one of the following modes:

NONFINITE NONE do not alter the pixels (but do count the number of nonfinite pixels
in *pixelsFixed, if non-NULL).
NONFINITE BLACK change non-finite values to O.
NONFINITE_ BOX3 replace non-finite values by the average of any finite pixels within a
3x3 window.
NONFINITE ERROR do not alter non-finite values when copying, but return false and
set an error if any non-finite values are found.

This works on all pixel data types, though it’s just a copy for images with pixel data types
that cannot represent NaN or Inf values.

Examples:
ImageBuf Src ("tahoe.exr");
int pixelsFixed = 0;
ImageBufAlgo::fixNonFinite (Src, Src, ImageBufAlgo::NONFINITE_BOX3,
&pixelsFixed);
std::cout << "Repaired " << pixelsFixed << " non-finite pixels\n";

ImageBuf fillholes pushpull (const ImageBuf é&src,
ROI roi={}, int nthreads=0)

bool fillholes pushpull (ImageBuf &dst, const ImageBuf &src,
ROI roi={}, int nthreads=0)
Copy the specified ROI of src to dst and fill any holes (pixels where alpha < 1) with
plausible values using a push-pull technique. The src image must have an alpha channel.
The dst image will end up with a copy of src, but will have an alpha of 1.0 everywhere
within roi, and any place where the alpha of src was ; 1, dst will have a pixel color that
is a plausible “filling” of the original alpha hole.

Examples:

ImageBuf Src ("holes.exr");
ImageBuf Filled = ImageBufAlgo::fillholes_pushpull (Src);

OpenIlmagelO Programmer’s Documentation

224 CHAPTER 10. IMAGE PROCESSING

ImageBuf median filter (const ImageBuf &src,
int width = 3, int height = -1,
ROI roi={}, int nthreads=0)

bool median filter (ImageBuf &dst, const ImageBuf é&src,
int width = 3, int height = -1,
ROI roi={}, int nthreads=0)

Replace the given ROI of dst with a median-filtered version of the corresponding re-
gion of src. The median filter replaces each pixel with the median value underneath
the width x height window surrounding it. If the height is < 1, it will be set to width,
making a square window. The median filter tends to smooth out noise and small high
frequency details that are smaller than the window size, while preserving the sharpness
of long edges.

Examples:

ImageBuf Noisy ("tahoe.exr");
ImageBuf Clean = ImageBufAlgo::median_filter (Noisy, 3, 3);

original with dropouts median filtered

ImageBuf dilate (const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

bool dilate (ImageBuf &dst, const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

ImageBuf erode (const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

bool erode (ImageBuf &dst, const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the dilated or eroded version of the corresponding region of
src. The dilate operation replaces each pixel with the maximum value underneath the
width x height window surrounding it, and the erode operation does the same for the
minimum value under the window. If the height is < 1, it will be set to width, making a
square window.

Dilation makes bright features wider and more prominent, dark features thinner, and re-
moves small isolated dark spots. Erosion makes dark features wider, bright features thin-
ner, and removes small isolated bright spots.

Dilation and erosion are basic morphological filters, and more complex ones are often
constructed from them:

OpenlmagelO Programmer’s Documentation

10.7. IMAGE ENHANCEMENT / RESTORATION 225

e “open” is erode followed by dilate, and it keeps the overall shape while removing
small bright regions;

e “close” is dilate followed by erode, and it keeps the overall shape while removing
small dark regions;

e “morphological gradient” is dilate minus erode, which gives a bright perimeter
edge;

e “tophat” is the original source minus the “open”, which isolates local peaks;

e “bottomhat” is the “close” minus the original source, which isolates dark holes.
Examples:
ImageBuf Source ("source.tif");

ImageBuf Dilated = ImageBufAlgo::dilate (Source, 3, 3);
ImageBuf Eroded ImageBufAlgo::erode (Source, 3, 3);

// Morphological "open" is dilate (erode ((source))
ImageBuf Opened = ImageBufAlgo::dilate (Eroded, 3, 3);
// Morphological "close" is erode(dilate (source))
ImageBuf Closed = ImageBufAlgo::erode (Dilated, 3, 3);
// Morphological "gradient" is dilate minus erode
ImageBuf Gradient = ImageBufAlgo::sub (Dilated, Eroded);
// Tophat filter is source minus open

ImageBuf Tophad = ImageBufAlgo::sub (Source, Opened);

// Bottomhat filter is close minus source

ImageBuf Bottomhat = ImageBufAlgo::sub (Close, Source);

Aal

original dilate
close gradient tophat bottomhat

OpenlmagelO Programmer’s Documentation

226 CHAPTER 10. IMAGE PROCESSING

ImageBuf unsharp mask (const ImageBuf &src,
string view kernel = "gaussian", float width = 3.0f,
float contrast = 1.0f, float threshold = 0.0f,
ROI roi={}, int nthreads=0)

bool unsharp mask (ImageBuf &dst, const ImageBuf &src,
string view kernel = "gaussian", float width = 3.0f,
float contrast = 1.0f, float threshold = 0.0f,
ROI roi={}, int nthreads=0)

Return (or copy into dst) a sharpened version of the corresponding region of src using
the “unsharp mask” technique. Unsharp masking basically works by first blurring the
image (low pass filter), subtracting this from the original image, then adding the residual
back to the original to emphasize the edges. Roughly speaking,

dst = src + contrast * thresh(src - blur(src))

The specific blur can be selected by kernel name and width (for example, "gaussian" is
typical). As a special case, "median" is also accepted as the kernel name, in which case
a median filter is performed rather than a blurring convolution (Gaussian and other blurs
sometimes over-sharpen edges, whereas using the median filter will sharpen compact
high-frequency details while not over-sharpening long edges).

The contrast is a multiplier on the overall sharpening effect. The thresholding step
causes all differences less than threshold to be squashed to zero, which can be useful
for suppressing sharpening of low-contrast details (like noise) but allow sharpening of
higher-contrast edges.

Examples:

ImageBuf Blurry ("tahoe.exr");
ImageBuf Sharp = ImageBufAlgo::unsharp_mask (Blurry, "gaussian", 5.0f);

10.8 Color manipulation

ImageBuf colorconvert (const ImageBuf &src,
string view fromspace, string view tospace, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

bool colorconvert (ImageBuf &dst, const ImageBuf &src,
string view fromspace, string view tospace, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

ImageBuf colorconvert (const ImageBuf &src,
const ColorProcessor *processor, bool unpremult=true,

OpenlmagelO Programmer’s Documentation

10.8. COLOR MANIPULATION 227

ROI roi={}, int nthreads=0)

bool colorconvert (ImageBuf &dst, const ImageBuf &src,
const ColorProcessor *processor, bool unpremult=true,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying a color transform to
the pixel values.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

The first form of this function specifies the “fromspace” and “tospace” color spaces by
name. An optional ColorConfig is specified, but nullptr is passed, the default OCIO
color configuration found by examining the $OCIO environment variable will be used
instead.

The second form is directly passed a ColorProcessor, which is is a special object cre-
ated by a ColorConfig (see OpenImageIO/color.h for details).

The context key and context value may optionally be used to establish a context
(for example, a shot-specific transform).

If OIIO was built with OpenColorlO support enabled, then the transformation may be
between any two spaces supported by the active OCIO configuration, or may be a “look”
transformation created by ColorConfig: :createLookTransform. If OIIO was not built
with OpenColorlO support enabled, then the only transformations available are from
"sRGB" to "linear" and vice versa.

Examples:

#include <OpenImagelIO/imagebufalgo.h>
#include <OpenImageIO/color.h>
using namespace 0IIO;

ImageBuf Src ("tahoe.jpg");

ColorConfig cc;

ColorProcessor *processor = cc.createColorProcessor ("vd8", "lnf");
ImageBuf dst = ImageBufAlgo::colorconvert (Src, processor, true);
ColorProcessor::deleteColorProcessor (processor);

// Equivalent, though possibly less efficient if you will be

// converting many images using the same transformation:

ImageBuf Src ("tahoe.jpg");

ImageBuf Dst = ImageBufAlgo::colorconvert (Src, "vd8", "lnf", true);

OpenIlmagelO Programmer’s Documentation

228 CHAPTER 10. IMAGE PROCESSING

ImageBuf ociolook (const ImageBuf &src,
string view looks, string view fromspace, string view tospace,
bool inverse=false, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=NULL,
ROI roi={}, int nthreads=0)

bool ociolook (ImageBuf &dst, const ImageBuf é&src,
string view looks, string view fromspace, string view tospace,
bool inverse=false, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=NULL,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying an OpenColorIO
“look” transform to the pixel values. The context key and context_value may op-
tionally be used to establish a context (for example, a shot-specific transform).

If inverse is true, it will reverse the color transformation and look application.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

An optional ColorConfig is specified, but NULL is passed, the default OCIO color con-
figuration found by examining the $OCIO environment variable will be used instead.

Examples:

ImageBuf Src ("tahoe.jpg");
ImageBuf Dst = ImageBufAlgo::ociolook (Src, "look", "vd8", "lnf",
true, false, "SHOT", "pe0012");

ImageBuf ociodisplay (const ImageBuf &src, string view display,
string_ view view, string view fromspace="", string_ view looks="",
bool unpremult=true, string view key="", string view value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

bool ociodisplay (ImageBuf &dst, const ImageBuf &src, string view display,
string view view, string view fromspace="", string view looks="",
bool unpremult=true, string view key="", string view value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying an OpenColorIO
“display” transform to the pixel values.

If fromspace is not supplied, it will assume that the source color space is whatever is
indicated by the source image’s metadata or filename, and if that cannot be deduced, it
will be assumed to be scene linear. If 1ooks is empty, use no look. The key and value
may optionally be used to establish a context (for example, a shot-specific transform).

OpenlmagelO Programmer’s Documentation

10.8. COLOR MANIPULATION 229

If inverse is true, it will reverse the color transformation and look application.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

An optional ColorConfig is specified, but nullptr is passed, the default OCIO color
configuration found by examining the $0CIO environment variable will be used instead.

Examples:

ImageBuf Src ("tahoe.exr");
ImageBuf Dst = ImageBufAlgo::ociodisplay (Src, "sRGB", "Film", "lnf",
"', true, "SHOT", "pe0012");

ImageBuf ociofiletransform (const ImageBuf é&src,
string view name, bool inverse=false, bool unpremult=true,
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

bool ociofiletransform (ImageBuf &dst, const ImageBuf é&src,
string view name, bool inverse=false, bool unpremult=true,
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying an OpenColorlO
“file” transform to the pixel values. If inverse is true, it will reverse the color transfor-
mation and look application.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

An optional ColorConfig is specified, but nullptr is passed, the default OCIO color
configuration found by examining the $OCIO environment variable will be used instead.

Examples:

ImageBuf Src ("tahoe.jpg");
ImageBuf Dst = ImageBufAlgo::ociofiletransform (Src, "footransform.csp");

ImageBuf unpremult (const ImageBuf &src, ROI roi:{}, int nthreads=0)
bool unpremult (ImageBuf &dst, const ImageBuf &src, ROI roi:{}, int nthreads=0)

ImageBuf premult (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool premult (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

The unpremult operation returns (or copies into dst) the pixels of src within the ROI,
and in the process divides all color channels (those not alpha or z) by the alpha value,
to “un-premultiply” them. This presumes that the image starts of as “associated alpha”
a.k.a. “premultipled.”

OpenIlmagelO Programmer’s Documentation

230

CHAPTER 10. IMAGE PROCESSING

10.9

bool

bool

The premult operation returns (or copies into dst) the pixels of src within the ROI, and
in the process multiplies all color channels (those not alpha or z) by the alpha value, to
“premultiply”” them. This presumes that the image starts of as “unassociated alpha” a.k.a.
“non-premultipled.”

Both operations are simply a copy if there is no identified alpha channel (and a no-op if
dst and src are the same image).

Examples:

// Convert in-place from associated alpha to unassociated alpha
ImageBuf A ("a.exr");
ImageBufAlgo: :unpremult (A, A);

// Convert in-place from unassociated alpha to associated alpha
ImageBufAlgo::premult (A, A);

Import / export

make texture (MakeTextureMode mode, const ImageBuf &input,
string view outputfilename, const ImageSpec &config,
std::ostream *outstream = nullptr)

make texture (MakeTextureMode mode, string view filename,
string view outputfilename, const ImageSpec &config,
std::ostream *outstream = nullptr)

Turn an image file (either an existing ImageBuf or specified by filename) into a tiled,
MIP-mapped, texture file and write to the file named by (outputfilename). The mode
describes what type of texture file we are creating and may be one of the following:

MakeTxTexture Ordinary 2D texture

MakeTxEnvLatl Latitude-longitude environment map

MakeTxEnvLatlFromLightProbe Latitude-longitude environment map constructed
from a “light probe” image.

MakeTxBumpWithSlopes Bump/displacement map with extra slope data
channels (6 channels total, containing both the
height and 1st and 2nd moments of slope dis-
tributions) for bump-to-roughness conversion in
shaders.

If the out st ream pointer is not NULL, it should point to a stream (for example, &std: : out,
or a pointer to a local std::stringstream to capture output), which is where console
output and error messages will be deposited.

The configis an ImageSpec that contains all the information and special instructions for
making the texture. Anything set in config (format, tile size, or named metadata) will
take precedence over whatever is specified by the input file itself. Additionally, named
metadata that starts with "maketx:" will not be output to the file itself, but may contain

OpenlmagelO Programmer’s Documentation

10.9. IMPORT / EXPORT 231

instructions controlling how the texture is created. The full list of supported configuration

options is:
Named fields:
format Data format of the texture file (default: UNKNOWN = same for-
mat as the input)
tile width
tile height Preferred tile size (default: 64x64x1)
tile depth

Metadata in config.extra attribs:

compression string Default: zip”

fovcot float Default: aspect ratio of the image resolution
planarconfig string Default: ”separate”

worldtocamera matrix World-to-camera matrix of the view.
worldtoscreen matrix World-to-screen space matrix of the view.
wrapmodes string Default: ’black,black”

maketx:verbose int How much detail should go to outstream (0).
maketx:stats int If nonzero, print stats to outstream (0).
maketx:resize int If nonzero, resize to power of 2. (0)

maketx :nomipmap int If nonzero, only output the top MIP level (0).
maketx:updatemode int If nonzero, write new output only if the output file

doesn’t already exist, or is older than the input file,
or was created with different command-line argu-

ments. (0)
maketx:constant color detect
int If nonzero, detect images that are entirely one
color, and change them to be low resolution (de-
fault: 0).

maketx:monochrome detect
int If nonzero, change RGB images which have
R==G==B everywhere to single-channel
grayscale (default: 0).

maketx:opaque_detect int If nonzero, drop the alpha channel if alpha is 1.0
in all pixels (default: 0).
maketx:unpremult int If nonzero, unpremultiply color by alpha before

color conversion, then multiply by alpha after
color conversion (default: 0).
maketx:incolorspace string
maketx:outcolorspace string These two together will apply a color conversion
(with OpenColorlO, if compiled). Default: ""

maketx:colorconfig string Specifies a custom OpenColorlO color config file.
Default: ""
maketx:checknan int If nonzero, will consider it an error if the input

image has any NaN pixels. (0)

OpenIlmagelO Programmer’s Documentation

232

CHAPTER 10. IMAGE PROCESSING

maketx:

maketx:

maketx:

maketx:

maketx:

maketx

maketx:

maketx:

maketx:
maketx:

maketx:

maketx:

maketx:

maketx:

fixnan string

set full to pixels

int

filtername string

highlightcomp int

nchannels int
:channelnames string
fileformatname string

prman_metadata

int
oiio_options int
prman options

int
mipimages string

full command line

string

ignore_unassoc
int

read local MB

If set to ”black” or ”box3”, will attempt to repair
any NaN pixels found in the input image (default:
’none”).

If nonzero, doctors the full/display window of the
texture to be identical to the pixel/data window
and reset the origin to 0,0 (default: 0).

If set, will specify the name of a high-quality filter
to use when resampling for MIPmap levels. De-
fault: "", use bilinear resampling.

If nonzero, performs highlight compensation —
range compression and expansion around the re-
size, plus clamping negative plxel values to zero.
This reduces ringing when using filters with neg-
ative lobes.

If nonzero, will specify how many channels the
output texture should have, padding with O values
or dropping channels, if it doesn’t the number of
channels in the input. (default: 0, meaning keep
all input channels)

If set, overrides the channel names of the output
image (comma-separated).

If set, will specify the output file format. (default:
"' meaning infer the format from the output file-
name)

If set, output some metadata that PRMan will
need for its textures. (0)
(Deprecated; all are handled by default)

If nonzero, override a whole bunch of settings as
needed to make textures that are compatible with
PRMan. (0)

Semicolon-separated list of alternate images to be
used for individual MIPmap levels, rather than
simply downsizing. (default: "")

The command or program used to generate this
call, will be embedded in the metadata. (default:

n ll)

If nonzero, will disbelieve any evidence that the
input image is unassociated alpha. (0)

OpenlmagelO Programmer’s Documentation

10.9. IMPORT / EXPORT 233

int If nonzero, will read the full input file locally if it
is smaller than this threshold. Zero causes the sys-
tem to make a good guess at a reasonable thresh-
old (e.g. 1 GB). (0)

maketx:forcefloat int Forces a conversion through float data for the sake
of ImageBuf math. (1)
maketx:hash int Compute the shal hash of the file in parallel. (1)
maketx:allow pixel shift
int Allow up to a half pixel shift per mipmap level.

The fastest path may result in a slight shift in the
image, accumulated for each mip level with an
odd resolution. (0)

maketx:bumpformat string For the MakeTxBumpWithSlopes mode, chooses
whether to assume the map is a height map
("height"), a normal map ("normal"), or auto-
matically determine it from the number of chan-
nels ("auto", the default).

Examples:
// This command line:
// maketx in.exr —--hicomp --filter lanczos3 --opaque-detect \
// -0 texture.exr

// 1s equivalent to:

ImageBuf Input ("in.exr");
ImageSpec config;
config.attribute ("maketx:highlightcomp", 1);
config.attribute ("maketx:filtername", "lanczos3");
config.attribute ("maketx:opaquedetect", 1);
stringstream s;
bool ok = ImageBufAlgo::make_texture (ImageBufAlgo::MakeTxTexture,
Input, "texture.exr", config, &s);
if (! ok)
std::cout << "make_texture error: " << s.str() << "\n";

ImageBuf from OpenCV (const cv::Mat& mat, TypeDesc convert=TypeUnknown,
ROI roi={}, int nthreads=0)

Convert an OpenCV cv: :Mat into an ImageBuf, copying the pixels (optionally convert-
ing to the pixel data type specified by convert, if not UNKNOWN, which means to preserve
the original data type if possible). Return true if ok, false if it couldn’t figure out how
to make the conversion from Mat to ImageBuf. If OpenlmagelO was compiled without
OpenCYV support, this function will return an empty image with error message set.

OpenIlmagelO Programmer’s Documentation

234

CHAPTER 10. IMAGE PROCESSING

bool to OpenCV (cv::Maté& dst, const ImageBufé& src,

ROI roi={}, int nthreads=0)

Construct an OpenCV cv: :Mat containing the contents of ImageBuf src, and return true.
If it is not possible, or if OpenlmagelO was compiled without OpenCV support, then
return false. Note that OpenCV only supports up to 4 channels, so images with more than
4 channels will be truncated in the conversion.

ImageBuf capture image (int cameranum, TypeDesc convert=TypeUnknown)

Capture a still image from a designated camera. If able to do so, store the image in dst
and return true. If there is no such device, or support for camera capture is not available
(such as if OpenCV support was not enabled at compile time), return false and do not
alter dst.

Examples:

ImageBuf WebcamImage = ImageBufAlgo::capture_image (0, TypeDesc::UINTS8);
WebcamImage.write ("webcam.jpg");

10.10 Deep images

A number of ImageBufAlgo functions are designed to work with “deep” images. These are
detailed below. In general, ImageBufAlgo functions not listed in this section should not be
expected to work with deep images.

10.10.1 Functions specific to deep images

ImageBuf deepen (const ImageBuf &src, float zvalue,

ROI roi={}, int nthreads=0)

bool deepen (ImageBuf &dst, const ImageBuf &src, float zvalue,

ROI roi={}, int nthreads=0)

Return (or copy into dst) pixels from regular (not “deep”) image src. Turning a flat
image image into a deep one means:

If the src image has a "Z" channel: if the source pixel’s Z channel value is not infinite,
the corresponding pixel of dst will get a single depth sample that copies the data from
the soruce pixel; otherwise, dst will get an empty pixel. In other words, infinitely far
pixels will not turn into deep samples.

If the src image lacks a "Z" channel: if any of the source pixel’s channel values are
nonzero, the corresponding pixel of dst will get a single depth sample that copies the
data from the source pixel and uses the zvalue parameter for the depth; otherwise, if all
source channels in that pixel are zero, the destination pixel will get no depth samples.

If src is already a deep image, it will just copy pixel values from src.

Examples:

OpenlmagelO Programmer’s Documentation

10.10. DEEP IMAGES 235

ImageBuf Flat ("RGBAZ.exr");
ImageBuf Deep = ImageBufAlgo::deepen (Flat);

ImageBuf flatten (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool flatten (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Return (or copy into dst) the “flattened” composite of deep image src. That is, it con-
verts a deep image to a simple flat image by compositing the depth samples within each
pixel to yield a single “flat” value per pixel. If src is not deep, it just copies the pixels
without alteration.

Examples:

ImageBuf Deep ("deepalpha.exr");
ImageBuf Flat = ImageBufAlgo::flatten (Deep);

ImageBuf deep merge (const ImageBuf &A, const ImageBuf &B,
bool occlusion_cull=true, ROI roi={}, int nthreads=0)

bool deep merge (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,

bool occlusion_cull=true, ROI roi={}, int nthreads=0)

Merge the samples of two deep images A and B into deep result dst. If occlusion_cull
is true, samples beyond the first opaque sample will be discarded, otherwise they will be
kept.

Examples:

ImageBuf DeepA ("hardsurf.exr");
ImageBuf DeepB ("volume.exr");
ImageBuf Merged = ImageBufAlgo::deep_merge (DeepA, DeepB);

ImageBuf deep holdout (const ImageBuf &src, const ImageBuf &holdout,
ROI roi={}, int nthreads=0)

bool deep holdout (ImageBuf &dst, const ImageBuf é&src,
const ImageBuf &holdout, ROI roi={}, int nthreads=0)

Merge the deep pixels of two images, using holdout as a deep holdout mask against src.

Examples:

ImageBuf Src ("image.exr");
ImageBuf Holdout ("holdout.exr");
ImageBuf Merged = ImageBufAlgo::deep_holdout (Src, Holdout);

OpenIlmagelO Programmer’s Documentation

236 CHAPTER 10. IMAGE PROCESSING

10.10.2 General functions that also work for deep images