
Care and Feeding of Netperf
Versions 2.6.0 and Later

Rick Jones rick.jones2@hp.com

mailto:rick.jones2@hp.com

This is Rick Jones’ feeble attempt at a Texinfo-based manual for the netperf benchmark.

Copyright c© 2005-2012 Hewlett-Packard Company

Permission is granted to copy, distribute and/or modify this document per the
terms of the netperf source license, a copy of which can be found in the file
‘COPYING’ of the basic netperf distribution.

i

Table of Contents

1 Introduction . 1
1.1 Conventions . 1

2 Installing Netperf . 3
2.1 Getting Netperf Bits . 3
2.2 Installing Netperf . 3
2.3 Verifying Installation . 6

3 The Design of Netperf . 7
3.1 CPU Utilization . 7

3.1.1 CPU Utilization in a Virtual Guest 10

4 Global Command-line Options 11
4.1 Command-line Options Syntax . 11
4.2 Global Options . 11

5 Using Netperf to Measure Bulk Data Transfer
. 20

5.1 Issues in Bulk Transfer . 20
5.2 Options common to TCP UDP and SCTP tests 21

5.2.1 TCP STREAM . 23
5.2.2 TCP MAERTS . 24
5.2.3 TCP SENDFILE . 25
5.2.4 UDP STREAM . 25
5.2.5 XTI TCP STREAM . 27
5.2.6 XTI UDP STREAM . 27
5.2.7 SCTP STREAM . 27
5.2.8 DLCO STREAM . 27
5.2.9 DLCL STREAM . 28
5.2.10 STREAM STREAM . 28
5.2.11 DG STREAM . 28

6 Using Netperf to Measure Request/Response
. 29

6.1 Issues in Request/Response . 29
6.2 Options Common to TCP UDP and SCTP RR tests 30

6.2.1 TCP RR . 31
6.2.2 TCP CC . 32
6.2.3 TCP CRR . 33
6.2.4 UDP RR . 33
6.2.5 XTI TCP RR . 34

ii

6.2.6 XTI TCP CC . 34
6.2.7 XTI TCP CRR . 34
6.2.8 XTI UDP RR . 34
6.2.9 DLCL RR . 34
6.2.10 DLCO RR . 34
6.2.11 SCTP RR . 35

7 Using Netperf to Measure Aggregate
Performance. 36

7.1 Running Concurrent Netperf Tests . 36
7.1.1 Issues in Running Concurrent Tests 37

7.2 Using - -enable-burst. 38
7.3 Using - -enable-demo . 41

8 Using Netperf to Measure Bidirectional
Transfer. 44

8.1 Bidirectional Transfer with Concurrent Tests 44
8.2 Bidirectional Transfer with TCP RR . 45
8.3 Implications of Concurrent Tests vs Burst Request/Response

. 45

9 The Omni Tests . 47
9.1 Native Omni Tests . 47
9.2 Migrated Tests . 49
9.3 Omni Output Selection . 50

9.3.1 Omni Output Selectors . 51

10 Other Netperf Tests . 64
10.1 CPU rate calibration . 64
10.2 UUID Generation . 64

11 Address Resolution . 66

12 Enhancing Netperf . 67

13 Netperf4 . 68

Concept Index . 69

Option Index . 70

Chapter 1: Introduction 1

1 Introduction

Netperf is a benchmark that can be use to measure various aspect of networking perfor-
mance. The primary foci are bulk (aka unidirectional) data transfer and request/response
performance using either TCP or UDP and the Berkeley Sockets interface. As of this
writing, the tests available either unconditionally or conditionally include:

• TCP and UDP unidirectional transfer and request/response over IPv4 and IPv6 using
the Sockets interface.

• TCP and UDP unidirectional transfer and request/response over IPv4 using the XTI
interface.

• Link-level unidirectional transfer and request/response using the DLPI interface.

• Unix domain sockets

• SCTP unidirectional transfer and request/response over IPv4 and IPv6 using the sock-
ets interface.

While not every revision of netperf will work on every platform listed, the intention is
that at least some version of netperf will work on the following platforms:

• Unix - at least all the major variants.

• Linux

• Windows

• Others

Netperf is maintained and informally supported primarily by Rick Jones, who can per-
haps be best described as Netperf Contributing Editor. Non-trivial and very appreciated
assistance comes from others in the network performance community, who are too numerous
to mention here. While it is often used by them, netperf is NOT supported via any of the
formal Hewlett-Packard support channels. You should feel free to make enhancements and
modifications to netperf to suit your nefarious porpoises, so long as you stay within the
guidelines of the netperf copyright. If you feel so inclined, you can send your changes to
netperf-feedback for possible inclusion into subsequent versions of netperf.

It is the Contributing Editor’s belief that the netperf license walks like open source and
talks like open source. However, the license was never submitted for “certification” as an
open source license. If you would prefer to make contributions to a networking benchmark
using a certified open source license, please consider netperf4, which is distributed under
the terms of the GPLv2.

The netperf-talk mailing list is available to discuss the care and feeding of netperf with
others who share your interest in network performance benchmarking. The netperf-talk
mailing list is a closed list (to deal with spam) and you must first subscribe by sending
email to netperf-talk-request.

1.1 Conventions

A sizespec is a one or two item, comma-separated list used as an argument to a command-
line option that can set one or two, related netperf parameters. If you wish to set both
parameters to separate values, items should be separated by a comma:

mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org
mailto:netperf-talk-request@netperf.org

Chapter 1: Introduction 2

parameter1,parameter2

If you wish to set the first parameter without altering the value of the second from its
default, you should follow the first item with a comma:

parameter1,

Likewise, precede the item with a comma if you wish to set only the second parameter:

,parameter2

An item with no commas:

parameter1and2

will set both parameters to the same value. This last mode is one of the most frequently
used.

There is another variant of the comma-separated, two-item list called a optionspec which
is like a sizespec with the exception that a single item with no comma:

parameter1

will only set the value of the first parameter and will leave the second parameter at its
default value.

Netperf has two types of command-line options. The first are global command line
options. They are essentially any option not tied to a particular test or group of tests. An
example of a global command-line option is the one which sets the test type - ‘-t’.

The second type of options are test-specific options. These are options which are only
applicable to a particular test or set of tests. An example of a test-specific option would be
the send socket buffer size for a TCP STREAM test.

Global command-line options are specified first with test-specific options following after
a -- as in:

netperf <global> -- <test-specific>

Chapter 2: Installing Netperf 3

2 Installing Netperf

Netperf’s primary form of distribution is source code. This allows installation on systems
other than those to which the authors have ready access and thus the ability to create
binaries. There are two styles of netperf installation. The first runs the netperf server
program - netserver - as a child of inetd. This requires the installer to have sufficient
privileges to edit the files ‘/etc/services’ and ‘/etc/inetd.conf’ or their platform-specific
equivalents.

The second style is to run netserver as a standalone daemon. This second method does
not require edit privileges on ‘/etc/services’ and ‘/etc/inetd.conf’ but does mean you
must remember to run the netserver program explicitly after every system reboot.

This manual assumes that those wishing to measure networking performance already
know how to use anonymous FTP and/or a web browser. It is also expected that you have
at least a passing familiarity with the networking protocols and interfaces involved. In all
honesty, if you do not have such familiarity, likely as not you have some experience to gain
before attempting network performance measurements. The excellent texts by authors such
as Stevens, Fenner and Rudoff and/or Stallings would be good starting points. There are
likely other excellent sources out there as well.

2.1 Getting Netperf Bits

Gzipped tar files of netperf sources can be retrieved via anonymous FTP for “released”
versions of the bits. Pre-release versions of the bits can be retrieved via anonymous FTP
from the experimental subdirectory.

For convenience and ease of remembering, a link to the download site is provided via
the NetperfPage

The bits corresponding to each discrete release of netperf are tagged for retrieval via
subversion. For example, there is a tag for the first version corresponding to this version of
the manual - netperf 2.6.0. Those wishing to be on the bleeding edge of netperf development
can use subversion to grab the top of trunk. When fixing bugs or making enhancements,
patches against the top-of-trunk are preferred.

There are likely other places around the Internet from which one can download netperf
bits. These may be simple mirrors of the main netperf site, or they may be local variants
on netperf. As with anything one downloads from the Internet, take care to make sure it is
what you really wanted and isn’t some malicious Trojan or whatnot. Caveat downloader.

As a general rule, binaries of netperf and netserver are not distributed from
ftp.netperf.org. From time to time a kind soul or souls has packaged netperf as a Debian
package available via the apt-get mechanism or as an RPM. I would be most interested in
learning how to enhance the makefiles to make that easier for people.

2.2 Installing Netperf

Once you have downloaded the tar file of netperf sources onto your system(s), it is necessary
to unpack the tar file, cd to the netperf directory, run configure and then make. Most of
the time it should be sufficient to just:

ftp://ftp.netperf.org/netperf
ftp://ftp.netperf.org/netperf/experimental
http://www.netperf.org/
http://www.netperf.org/svn/netperf2/tags
http://www.netperf.org/svn/netperf2/tags/netperf-2.6.0
http://www.netperf.org/svn/netperf2/trunk

Chapter 2: Installing Netperf 4

gzcat netperf-<version>.tar.gz | tar xf -

cd netperf-<version>

./configure

make

make install

Most of the “usual” configure script options should be present dealing with where to
install binaries and whatnot.

./configure --help

should list all of those and more. You may find the --prefix option helpful in deciding
where the binaries and such will be put during the make install.

If the netperf configure script does not know how to automagically detect which
CPU utilization mechanism to use on your platform you may want to add a --enable-

cpuutil=mumble option to the configure command. If you have knowledge and/or
experience to contribute to that area, feel free to contact netperf-feedback@netperf.org.

Similarly, if you want tests using the XTI interface, Unix Domain Sockets, DLPI or SCTP
it will be necessary to add one or more --enable-[xti|unixdomain|dlpi|sctp]=yes op-
tions to the configure command. As of this writing, the configure script will not include
those tests automagically.

Starting with version 2.5.0, netperf began migrating most of the “classic” netperf tests
found in ‘src/nettest_bsd.c’ to the so-called “omni” tests (aka “two routines to run them
all”) found in ‘src/nettest_omni.c’. This migration enables a number of new features such
as greater control over what output is included, and new things to output. The “omni”
test is enabled by default in 2.5.0 and a number of the classic tests are migrated - you can
tell if a test has been migrated from the presence of MIGRATED in the test banner. If you
encounter problems with either the omni or migrated tests, please first attempt to obtain
resolution via netperf-talk@netperf.org or netperf-feedback@netperf.org. If that is
unsuccessful, you can add a --enable-omni=no to the configure command and the omni
tests will not be compiled-in and the classic tests will not be migrated.

Starting with version 2.5.0, netperf includes the “burst mode” functionality in a default
compilation of the bits. If you encounter problems with this, please first attempt to ob-
tain help via netperf-talk@netperf.org or netperf-feedback@netperf.org. If that is
unsuccessful, you can add a --enable-burst=no to the configure command and the burst
mode functionality will not be compiled-in.

On some platforms, it may be necessary to precede the configure command with a
CFLAGS and/or LIBS variable as the netperf configure script is not yet smart enough to
set them itself. Whenever possible, these requirements will be found in ‘README.platform ’
files. Expertise and assistance in making that more automagic in the configure script would
be most welcome.

Other optional configure-time settings include --enable-intervals=yes to give netperf
the ability to “pace” its STREAM tests and --enable-histogram=yes to have netperf
keep a histogram of interesting times. Each of these will have some effect on the measured
result. If your system supports gethrtime() the effect of the histogram measurement
should be minimized but probably still measurable. For example, the histogram of a netperf
TCP RR test will be of the individual transaction times:

mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org
mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org
mailto:netperf-feedback@netperf.org

Chapter 2: Installing Netperf 5

netperf -t TCP_RR -H lag -v 2

TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to lag.hpl.hp.com (15.4.89.214) port 0 AF_INET : histogram

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 10.00 3538.82

32768 32768

Alignment Offset

Local Remote Local Remote

Send Recv Send Recv

8 0 0 0

Histogram of request/response times

UNIT_USEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0

TEN_USEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0

HUNDRED_USEC : 0: 34480: 111: 13: 12: 6: 9: 3: 4: 7

UNIT_MSEC : 0: 60: 50: 51: 44: 44: 72: 119: 100: 101

TEN_MSEC : 0: 105: 0: 0: 0: 0: 0: 0: 0: 0

HUNDRED_MSEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0

UNIT_SEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0

TEN_SEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0

>100_SECS: 0

HIST_TOTAL: 35391

The histogram you see above is basically a base-10 log histogram where we can see that
most of the transaction times were on the order of one hundred to one-hundred, ninety-nine
microseconds, but they were occasionally as long as ten to nineteen milliseconds

The ‘--enable-demo=yes’ configure option will cause code to be included to report
interim results during a test run. The rate at which interim results are reported can then
be controlled via the global ‘-D’ option. Here is an example of ‘-D’ output:

$ src/netperf -D 1.35 -H tardy.hpl.hp.com -f M

MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to tardy.hpl.hp.com (15.9.116.144) port 0 AF_INET : demo

Interim result: 5.41 MBytes/s over 1.35 seconds ending at 1308789765.848

Interim result: 11.07 MBytes/s over 1.36 seconds ending at 1308789767.206

Interim result: 16.00 MBytes/s over 1.36 seconds ending at 1308789768.566

Interim result: 20.66 MBytes/s over 1.36 seconds ending at 1308789769.922

Interim result: 22.74 MBytes/s over 1.36 seconds ending at 1308789771.285

Interim result: 23.07 MBytes/s over 1.36 seconds ending at 1308789772.647

Interim result: 23.77 MBytes/s over 1.37 seconds ending at 1308789774.016

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. MBytes/sec

87380 16384 16384 10.06 17.81

Chapter 2: Installing Netperf 6

Notice how the units of the interim result track that requested by the ‘-f’ option. Also
notice that sometimes the interval will be longer than the value specified in the ‘-D’ option.
This is normal and stems from how demo mode is implemented not by relying on interval
timers or frequent calls to get the current time, but by calculating how many units of work
must be performed to take at least the desired interval.

Those familiar with this option in earlier versions of netperf will note the addition of the
“ending at” text. This is the time as reported by a gettimeofday() call (or its emulation)
with a NULL timezone pointer. This addition is intended to make it easier to insert interim
results into an rrdtool Round-Robin Database (RRD). A likely bug-riddled example of doing
so can be found in ‘doc/examples/netperf_interim_to_rrd.sh’. The time is reported out
to milliseconds rather than microseconds because that is the most rrdtool understands as
of the time of this writing.

As of this writing, a make install will not actually update the files ‘/etc/services’
and/or ‘/etc/inetd.conf’ or their platform-specific equivalents. It remains necessary to
perform that bit of installation magic by hand. Patches to the makefile sources to effect an
automagic editing of the necessary files to have netperf installed as a child of inetd would
be most welcome.

Starting the netserver as a standalone daemon should be as easy as:

$ netserver

Starting netserver at port 12865

Starting netserver at hostname 0.0.0.0 port 12865 and family 0

Over time the specifics of the messages netserver prints to the screen may change but
the gist will remain the same.

If the compilation of netperf or netserver happens to fail, feel free to contact
netperf-feedback@netperf.org or join and ask in netperf-talk@netperf.org.
However, it is quite important that you include the actual compilation errors and perhaps
even the configure log in your email. Otherwise, it will be that much more difficult for
someone to assist you.

2.3 Verifying Installation

Basically, once netperf is installed and netserver is configured as a child of inetd, or launched
as a standalone daemon, simply typing:

netperf

should result in output similar to the following:

$ netperf

TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 10.00 2997.84

http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html
mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org

Chapter 3: The Design of Netperf 7

3 The Design of Netperf

Netperf is designed around a basic client-server model. There are two executables - netperf
and netserver. Generally you will only execute the netperf program, with the netserver
program being invoked by the remote system’s inetd or having been previously started as
its own standalone daemon.

When you execute netperf it will establish a “control connection” to the remote system.
This connection will be used to pass test configuration information and results to and from
the remote system. Regardless of the type of test to be run, the control connection will be
a TCP connection using BSD sockets. The control connection can use either IPv4 or IPv6.

Once the control connection is up and the configuration information has been passed,
a separate “data” connection will be opened for the measurement itself using the API’s
and protocols appropriate for the specified test. When the test is completed, the data
connection will be torn-down and results from the netserver will be passed-back via the
control connection and combined with netperf’s result for display to the user.

Netperf places no traffic on the control connection while a test is in progress. Certain
TCP options, such as SO KEEPALIVE, if set as your systems’ default, may put packets
out on the control connection while a test is in progress. Generally speaking this will have
no effect on the results.

3.1 CPU Utilization

CPU utilization is an important, and alas all-too infrequently reported component of net-
working performance. Unfortunately, it can be one of the most difficult metrics to measure
accurately and portably. Netperf will do its level best to report accurate CPU utilization
figures, but some combinations of processor, OS and configuration may make that difficult.

CPU utilization in netperf is reported as a value between 0 and 100% regardless of the
number of CPUs involved. In addition to CPU utilization, netperf will report a metric
called a service demand. The service demand is the normalization of CPU utilization and
work performed. For a STREAM test it is the microseconds of CPU time consumed to
transfer on KB (K == 1024) of data. For a RR test it is the microseconds of CPU time
consumed processing a single transaction. For both CPU utilization and service demand,
lower is better.

Service demand can be particularly useful when trying to gauge the effect of a perfor-
mance change. It is essentially a measure of efficiency, with smaller values being more
efficient and thus “better.”

Netperf is coded to be able to use one of several, generally platform-specific CPU uti-
lization measurement mechanisms. Single letter codes will be included in the CPU portion
of the test banner to indicate which mechanism was used on each of the local (netperf) and
remote (netserver) system.

As of this writing those codes are:

U The CPU utilization measurement mechanism was unknown to netperf or
netperf/netserver was not compiled to include CPU utilization measurements.
The code for the null CPU utilization mechanism can be found in
‘src/netcpu_none.c’.

Chapter 3: The Design of Netperf 8

I An HP-UX-specific CPU utilization mechanism whereby the kernel incremented
a per-CPU counter by one for each trip through the idle loop. This mechanism
was only available on specially-compiled HP-UX kernels prior to HP-UX 10 and
is mentioned here only for the sake of historical completeness and perhaps as
a suggestion to those who might be altering other operating systems. While
rather simple, perhaps even simplistic, this mechanism was quite robust and
was not affected by the concerns of statistical methods, or methods attempting
to track time in each of user, kernel, interrupt and idle modes which require
quite careful accounting. It can be thought-of as the in-kernel version of the
looper L mechanism without the context switch overhead. This mechanism
required calibration.

P An HP-UX-specific CPU utilization mechanism whereby the kernel keeps-track
of time (in the form of CPU cycles) spent in the kernel idle loop (HP-UX 10.0
to 11.31 inclusive), or where the kernel keeps track of time spent in idle, user,
kernel and interrupt processing (HP-UX 11.23 and later). The former requires
calibration, the latter does not. Values in either case are retrieved via one of
the pstat(2) family of calls, hence the use of the letter P. The code for these
mechanisms is found in ‘src/netcpu_pstat.c’ and ‘src/netcpu_pstatnew.c’
respectively.

K A Solaris-specific CPU utilization mechanism whereby the kernel keeps track of
ticks (eg HZ) spent in the idle loop. This method is statistical and is known to
be inaccurate when the interrupt rate is above epsilon as time spent processing
interrupts is not subtracted from idle. The value is retrieved via a kstat() call
- hence the use of the letter K. Since this mechanism uses units of ticks (HZ)
the calibration value should invariably match HZ. (Eg 100) The code for this
mechanism is implemented in ‘src/netcpu_kstat.c’.

M A Solaris-specific mechanism available on Solaris 10 and latter which uses the
new microstate accounting mechanisms. There are two, alas, overlapping, mech-
anisms. The first tracks nanoseconds spent in user, kernel, and idle modes. The
second mechanism tracks nanoseconds spent in interrupt. Since the mechanisms
overlap, netperf goes through some hand-waving to try to “fix” the problem.
Since the accuracy of the handwaving cannot be completely determined, one
must presume that while better than the K mechanism, this mechanism too is
not without issues. The values are retrieved via kstat() calls, but the letter code
is set to M to distinguish this mechanism from the even less accurate K mecha-
nism. The code for this mechanism is implemented in ‘src/netcpu_kstat10.c’.

L A mechanism based on “looper”or “soaker” processes which sit in tight loops
counting as fast as they possibly can. This mechanism starts a looper process for
each known CPU on the system. The effect of processor hyperthreading on the
mechanism is not yet known. This mechanism definitely requires calibration.
The code for the “looper”mechanism can be found in ‘src/netcpu_looper.c’

N A Microsoft Windows-specific mechanism, the code for which can be found in
‘src/netcpu_ntperf.c’. This mechanism too is based on what appears to be
a form of micro-state accounting and requires no calibration. On laptops, or
other systems which may dynamically alter the CPU frequency to minimize

Chapter 3: The Design of Netperf 9

power consumption, it has been suggested that this mechanism may become
slightly confused, in which case using BIOS/uEFI settings to disable the power
saving would be indicated.

S This mechanism uses ‘/proc/stat’ on Linux to retrieve time (ticks) spent in
idle mode. It is thought but not known to be reasonably accurate. The code
for this mechanism can be found in ‘src/netcpu_procstat.c’.

C A mechanism somewhat similar to S but using the sysctl() call on BSD-like
Operating systems (*BSD and MacOS X). The code for this mechanism can be
found in ‘src/netcpu_sysctl.c’.

Others Other mechanisms included in netperf in the past have included using the
times() and getrusage() calls. These calls are actually rather poorly suited to
the task of measuring CPU overhead for networking as they tend to be process-
specific and much network-related processing can happen outside the context
of a process, in places where it is not a given it will be charged to the correct, or
even a process. They are mentioned here as a warning to anyone seeing those
mechanisms used in other networking benchmarks. These mechanisms are not
available in netperf 2.4.0 and later.

For many platforms, the configure script will chose the best available CPU utilization
mechanism. However, some platforms have no particularly good mechanisms. On those
platforms, it is probably best to use the “LOOPER” mechanism which is basically some
number of processes (as many as there are processors) sitting in tight little loops counting
as fast as they can. The rate at which the loopers count when the system is believed to be
idle is compared with the rate when the system is running netperf and the ratio is used to
compute CPU utilization.

In the past, netperf included some mechanisms that only reported CPU time charged
to the calling process. Those mechanisms have been removed from netperf versions 2.4.0
and later because they are hopelessly inaccurate. Networking can and often results in CPU
time being spent in places - such as interrupt contexts - that do not get charged to a or the
correct process.

In fact, time spent in the processing of interrupts is a common issue for many CPU
utilization mechanisms. In particular, the “PSTAT” mechanism was eventually known to
have problems accounting for certain interrupt time prior to HP-UX 11.11 (11iv1). HP-UX
11iv2 and later are known/presumed to be good. The “KSTAT” mechanism is known to
have problems on all versions of Solaris up to and including Solaris 10. Even the microstate
accounting available via kstat in Solaris 10 has issues, though perhaps not as bad as those
of prior versions.

The /proc/stat mechanism under Linux is in what the author would consider an “un-
certain” category as it appears to be statistical, which may also have issues with time spent
processing interrupts.

In summary, be sure to “sanity-check” the CPU utilization figures with other mecha-
nisms. However, platform tools such as top, vmstat or mpstat are often based on the same
mechanisms used by netperf.

Chapter 3: The Design of Netperf 10

3.1.1 CPU Utilization in a Virtual Guest

The CPU utilization mechanisms used by netperf are “inline” in that they are run by the
same netperf or netserver process as is running the test itself. This works just fine for “bare
iron” tests but runs into a problem when using virtual machines.

The relationship between virtual guest and hypervisor can be thought of as being similar
to that between a process and kernel in a bare iron system. As such, (m)any CPU utilization
mechanisms used in the virtual guest are similar to “process-local” mechanisms in a bare iron
situation. However, just as with bare iron and process-local mechanisms, much networking
processing happens outside the context of the virtual guest. It takes place in the hypervisor,
and is not visible to mechanisms running in the guest(s). For this reason, one should not
really trust CPU utilization figures reported by netperf or netserver when running in a
virtual guest.

If one is looking to measure the added overhead of a virtualization mechanism, rather
than rely on CPU utilization, one can rely instead on netperf RR tests - path-lengths
and overheads can be a significant fraction of the latency, so increases in overhead should
appear as decreases in transaction rate. Whatever you do, DO NOT rely on the throughput
of a STREAM test. Achieving link-rate can be done via a multitude of options that mask
overhead rather than eliminate it.

Chapter 4: Global Command-line Options 11

4 Global Command-line Options

This section describes each of the global command-line options available in the netperf and
netserver binaries. Essentially, it is an expanded version of the usage information displayed
by netperf or netserver when invoked with the ‘-h’ global command-line option.

4.1 Command-line Options Syntax

Revision 1.8 of netperf introduced enough new functionality to overrun the English alphabet
for mnemonic command-line option names, and the author was not and is not quite ready to
switch to the contemporary ‘--mumble’ style of command-line options. (Call him a Luddite
if you wish :).

For this reason, the command-line options were split into two parts - the first are the
global command-line options. They are options that affect nearly any and every test type
of netperf. The second type are the test-specific command-line options. Both are entered
on the same command line, but they must be separated from one another by a -- for
correct parsing. Global command-line options come first, followed by the -- and then test-
specific command-line options. If there are no test-specific options to be set, the -- may be
omitted. If there are no global command-line options to be set, test-specific options must
still be preceded by a --. For example:

netperf <global> -- <test-specific>

sets both global and test-specific options:

netperf <global>

sets just global options and:

netperf -- <test-specific>

sets just test-specific options.

4.2 Global Options

-a <sizespec>

This option allows you to alter the alignment of the buffers used in the sending
and receiving calls on the local system.. Changing the alignment of the buffers
can force the system to use different copy schemes, which can have a measurable
effect on performance. If the page size for the system were 4096 bytes, and you
want to pass page-aligned buffers beginning on page boundaries, you could use
‘-a 4096’. By default the units are bytes, but suffix of “G,” “M,” or “K” will
specify the units to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A suffix
of “g,” “m” or “k” will specify units of 10^9, 10^6 or 10^3 bytes respectively.
[Default: 8 bytes]

-A <sizespec>

This option is identical to the ‘-a’ option with the difference being it affects
alignments for the remote system.

-b <size> This option is only present when netperf has been configure with –enable-
intervals=yes prior to compilation. It sets the size of the burst of send calls in
a STREAM test. When used in conjunction with the ‘-w’ option it can cause
the rate at which data is sent to be “paced.”

Chapter 4: Global Command-line Options 12

-B <string>

This option will cause ‘<string>’ to be appended to the brief (see -P) output
of netperf.

-c [rate] This option will ask that CPU utilization and service demand be calculated
for the local system. For those CPU utilization mechanisms requiring calibra-
tion, the options rate parameter may be specified to preclude running another
calibration step, saving 40 seconds of time. For those CPU utilization mecha-
nisms requiring no calibration, the optional rate parameter will be utterly and
completely ignored. [Default: no CPU measurements]

-C [rate] This option requests CPU utilization and service demand calculations for the
remote system. It is otherwise identical to the ‘-c’ option.

-d Each instance of this option will increase the quantity of debugging output
displayed during a test. If the debugging output level is set high enough, it
may have a measurable effect on performance. Debugging information for the
local system is printed to stdout. Debugging information for the remote system
is sent by default to the file ‘/tmp/netperf.debug’. [Default: no debugging
output]

-D [interval,units]

This option is only available when netperf is configured with –enable-demo=yes.
When set, it will cause netperf to emit periodic reports of performance during
the run. [interval,units] follow the semantics of an optionspec. If specified,
interval gives the minimum interval in real seconds, it does not have to be
whole seconds. The units value can be used for the first guess as to how many
units of work (bytes or transactions) must be done to take at least interval
seconds. If omitted, interval defaults to one second and units to values specific
to each test type.

-f G|M|K|g|m|k|x

This option can be used to change the reporting units for STREAM tests.
Arguments of “G,” “M,” or “K” will set the units to 2^30, 2^20 or 2^10 bytes/s
respectively (EG power of two GB, MB or KB). Arguments of “g,” “,m” or “k”
will set the units to 10^9, 10^6 or 10^3 bits/s respectively. An argument of
“x” requests the units be transactions per second and is only meaningful for a
request-response test. [Default: “m” or 10^6 bits/s]

-F <fillfile>

This option specified the file from which send which buffers will be pre-filled
. While the buffers will contain data from the specified file, the file is not
fully transferred to the remote system as the receiving end of the test will not
write the contents of what it receives to a file. This can be used to pre-fill the
send buffers with data having different compressibility and so is useful when
measuring performance over mechanisms which perform compression.

While previously required for a TCP SENDFILE test, later versions of netperf
removed that restriction, creating a temporary file as needed. While the author
cannot recall exactly when that took place, it is known to be unnecessary in
version 2.5.0 and later.

Chapter 4: Global Command-line Options 13

-h This option causes netperf to display its “global” usage string and exit to the
exclusion of all else.

-H <optionspec>

This option will set the name of the remote system and or the address family
used for the control connection. For example:

-H linger,4

will set the name of the remote system to “linger” and tells netperf to use IPv4
addressing only.

-H ,6

will leave the name of the remote system at its default, and request that only
IPv6 addresses be used for the control connection.

-H lag

will set the name of the remote system to “lag” and leave the address family
to AF UNSPEC which means selection of IPv4 vs IPv6 is left to the system’s
address resolution.

A value of “inet” can be used in place of “4” to request IPv4 only addressing.
Similarly, a value of “inet6” can be used in place of “6” to request IPv6 only
addressing. A value of “0” can be used to request either IPv4 or IPv6 addressing
as name resolution dictates.

By default, the options set with the global ‘-H’ option are inherited by the test
for its data connection, unless a test-specific ‘-H’ option is specified.

If a ‘-H’ option follows either the ‘-4’ or ‘-6’ options, the family setting specified
with the -H option will override the ‘-4’ or ‘-6’ options for the remote address
family. If no address family is specified, settings from a previous ‘-4’ or ‘-6’
option will remain. In a nutshell, the last explicit global command-line option
wins.

[Default: “localhost” for the remote name/IP address and “0” (eg
AF UNSPEC) for the remote address family.]

-I <optionspec>

This option enables the calculation of confidence intervals and sets the confi-
dence and width parameters with the first half of the optionspec being either
99 or 95 for 99% or 95% confidence respectively. The second value of the op-
tionspec specifies the width of the desired confidence interval. For example

-I 99,5

asks netperf to be 99% confident that the measured mean values for throughput
and CPU utilization are within +/- 2.5% of the “real” mean values. If the ‘-i’
option is specified and the ‘-I’ option is omitted, the confidence defaults to
99% and the width to 5% (giving +/- 2.5%)

If classic netperf test calculates that the desired confidence intervals have not
been met, it emits a noticeable warning that cannot be suppressed with the ‘-P’
or ‘-v’ options:

netperf -H tardy.cup -i 3 -I 99,5

TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to tardy.cup.hp.com (15.244.44.58) port 0 AF_INET : +/-2.5% 99% conf.

Chapter 4: Global Command-line Options 14

!!! WARNING

!!! Desired confidence was not achieved within the specified iterations.

!!! This implies that there was variability in the test environment that

!!! must be investigated before going further.

!!! Confidence intervals: Throughput : 6.8%

!!! Local CPU util : 0.0%

!!! Remote CPU util : 0.0%

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

32768 16384 16384 10.01 40.23

In the example above we see that netperf did not meet the desired confidence
intervals. Instead of being 99% confident it was within +/- 2.5% of the real
mean value of throughput it is only confident it was within +/-3.4%. In this
example, increasing the ‘-i’ option (described below) and/or increasing the
iteration length with the ‘-l’ option might resolve the situation.

In an explicit “omni” test, failure to meet the confidence intervals will not
result in netperf emitting a warning. To verify the hitting, or not, of the
confidence intervals one will need to include them as part of an Section 9.3
[Omni Output Selection], page 50 in the test-specific ‘-o’, ‘-O’ or ‘k’ output
selection options. The warning about not hitting the confidence intervals will
remain in a “migrated” classic netperf test.

-i <sizespec>

This option enables the calculation of confidence intervals and sets the minimum
and maximum number of iterations to run in attempting to achieve the desired
confidence interval. The first value sets the maximum number of iterations to
run, the second, the minimum. The maximum number of iterations is silently
capped at 30 and the minimum is silently floored at 3. Netperf repeats the
measurement the minimum number of iterations and continues until it reaches
either the desired confidence interval, or the maximum number of iterations,
whichever comes first. A classic or migrated netperf test will not display the
actual number of iterations run. An Chapter 9 [The Omni Tests], page 47 will
emit the number of iterations run if the CONFIDENCE_ITERATION output selector
is included in the Section 9.3 [Omni Output Selection], page 50.

If the ‘-I’ option is specified and the ‘-i’ option omitted the maximum number
of iterations is set to 10 and the minimum to three.

Output of a warning upon not hitting the desired confidence intervals follows
the description provided for the ‘-I’ option.

The total test time will be somewhere between the minimum and maximum
number of iterations multiplied by the test length supplied by the ‘-l’ option.

-j This option instructs netperf to keep additional timing statistics when explicitly
running an Chapter 9 [The Omni Tests], page 47. These can be output when

Chapter 4: Global Command-line Options 15

the test-specific ‘-o’, ‘-O’ or ‘-k’ Section 9.3.1 [Omni Output Selectors], page 51
include one or more of:

• MIN LATENCY

• MAX LATENCY

• P50 LATENCY

• P90 LATENCY

• P99 LATENCY

• MEAN LATENCY

• STDDEV LATENCY

These statistics will be based on an expanded (100 buckets per row rather than
10) histogram of times rather than a terribly long list of individual times. As
such, there will be some slight error thanks to the bucketing. However, the
reduction in storage and processing overheads is well worth it. When running
a request/response test, one might get some idea of the error by comparing
the Section 9.3.1 [Omni Output Selectors], page 51 calculated from the his-
togram with the RT_LATENCY calculated from the number of request/response
transactions and the test run time.

In the case of a request/response test the latencies will be transaction latencies.
In the case of a receive-only test they will be time spent in the receive call. In
the case of a send-only test they will be time spent in the send call. The units
will be microseconds. Added in netperf 2.5.0.

-l testlen

This option controls the length of any one iteration of the requested test. A
positive value for testlen will run each iteration of the test for at least testlen
seconds. A negative value for testlen will run each iteration for the absolute
value of testlen transactions for a RR test or bytes for a STREAM test.
Certain tests, notably those using UDP can only be timed, they cannot be
limited by transaction or byte count. This limitation may be relaxed in an
Chapter 9 [The Omni Tests], page 47 test.

In some situations, individual iterations of a test may run for longer for the
number of seconds specified by the ‘-l’ option. In particular, this may occur
for those tests where the socket buffer size(s) are significantly longer than the
bandwidthXdelay product of the link(s) over which the data connection passes,
or those tests where there may be non-trivial numbers of retransmissions.

If confidence intervals are enabled via either ‘-I’ or ‘-i’ the total length of the
netperf test will be somewhere between the minimum and maximum iteration
count multiplied by testlen.

-L <optionspec>

This option is identical to the ‘-H’ option with the difference being it sets
the local hostname/IP and/or address family information. This option is
generally unnecessary, but can be useful when you wish to make sure that the
netperf control and data connections go via different paths. It can also come-in
handy if one is trying to run netperf through those evil, end-to-end breaking
things known as firewalls.

Chapter 4: Global Command-line Options 16

[Default: 0.0.0.0 (eg INADDR ANY) for IPv4 and ::0 for IPv6 for the local
name. AF UNSPEC for the local address family.]

-n numcpus

This option tells netperf how many CPUs it should ass-u-me are active on
the system running netperf. In particular, this is used for the Section 3.1
[CPU Utilization], page 7 and service demand calculations. On certain systems,
netperf is able to determine the number of CPU’s automagically. This option
will override any number netperf might be able to determine on its own.

Note that this option does not set the number of CPUs on the system running
netserver. When netperf/netserver cannot automagically determine the number
of CPUs that can only be set for netserver via a netserver ‘-n’ command-line
option.

As it is almost universally possible for netperf/netserver to determine the num-
ber of CPUs on the system automagically, 99 times out of 10 this option should
not be necessary and may be removed in a future release of netperf.

-N This option tells netperf to forgo establishing a control connection. This makes
it is possible to run some limited netperf tests without a corresponding netserver
on the remote system.

With this option set, the test to be run is to get all the addressing information
it needs to establish its data connection from the command line or internal
defaults. If not otherwise specified by test-specific command line options, the
data connection for a “STREAM” or “SENDFILE” test will be to the “discard”
port, an “RR” test will be to the “echo” port, and a “MEARTS” test will be
to the chargen port.

The response size of an “RR” test will be silently set to be the same as the
request size. Otherwise the test would hang if the response size was larger than
the request size, or would report an incorrect, inflated transaction rate if the
response size was less than the request size.

Since there is no control connection when this option is specified, it is not
possible to set “remote” properties such as socket buffer size and the like via
the netperf command line. Nor is it possible to retrieve such interesting remote
information as CPU utilization. These items will be displayed as values which
should make it immediately obvious that was the case.

The only way to change remote characteristics such as socket buffer size or
to obtain information such as CPU utilization is to employ platform-specific
methods on the remote system. Frankly, if one has access to the remote system
to employ those methods one aught to be able to run a netserver there. How-
ever, that ability may not be present in certain “support” situations, hence the
addition of this option.

Added in netperf 2.4.3.

-o <sizespec>

The value(s) passed-in with this option will be used as an offset added to the
alignment specified with the ‘-a’ option. For example:

-o 3 -a 4096

Chapter 4: Global Command-line Options 17

will cause the buffers passed to the local (netperf) send and receive calls to
begin three bytes past an address aligned to 4096 bytes. [Default: 0 bytes]

-O <sizespec>

This option behaves just as the ‘-o’ option but on the remote (netserver) system
and in conjunction with the ‘-A’ option. [Default: 0 bytes]

-p <optionspec>

The first value of the optionspec passed-in with this option tells netperf the
port number at which it should expect the remote netserver to be listening for
control connections. The second value of the optionspec will request netperf to
bind to that local port number before establishing the control connection. For
example

-p 12345

tells netperf that the remote netserver is listening on port 12345 and leaves
selection of the local port number for the control connection up to the local
TCP/IP stack whereas

-p ,32109

leaves the remote netserver port at the default value of 12865 and causes net-
perf to bind to the local port number 32109 before connecting to the remote
netserver.

In general, setting the local port number is only necessary when one is looking
to run netperf through those evil, end-to-end breaking things known as firewalls.

-P 0|1 A value of “1” for the ‘-P’ option will enable display of the test banner. A value
of “0” will disable display of the test banner. One might want to disable display
of the test banner when running the same basic test type (eg TCP STREAM)
multiple times in succession where the test banners would then simply be redun-
dant and unnecessarily clutter the output. [Default: 1 - display test banners]

-s <seconds>

This option will cause netperf to sleep ‘<seconds>’ before actually transferring
data over the data connection. This may be useful in situations where one
wishes to start a great many netperf instances and do not want the earlier ones
affecting the ability of the later ones to get established.

Added somewhere between versions 2.4.3 and 2.5.0.

-S This option will cause an attempt to be made to set SO KEEPALIVE on the
data socket of a test using the BSD sockets interface. The attempt will be made
on the netperf side of all tests, and will be made on the netserver side of an
Chapter 9 [The Omni Tests], page 47 or Section 9.2 [Migrated Tests], page 49
test. No indication of failure is given unless debug output is enabled with the
global ‘-d’ option.

Added in version 2.5.0.

-t testname

This option is used to tell netperf which test you wish to run. As of this writing,
valid values for testname include:

Chapter 4: Global Command-line Options 18

• Section 5.2.1 [TCP STREAM], page 23, Section 5.2.2 [TCP MAERTS],
page 24, Section 5.2.3 [TCP SENDFILE], page 25, Section 6.2.1
[TCP RR], page 31, Section 6.2.3 [TCP CRR], page 33, Section 6.2.2
[TCP CC], page 32

• Section 5.2.4 [UDP STREAM], page 25, Section 6.2.4 [UDP RR], page 33

• Section 5.2.5 [XTI TCP STREAM], page 27, Section 6.2.5
[XTI TCP RR], page 34, Section 6.2.7 [XTI TCP CRR], page 34,
Section 6.2.6 [XTI TCP CC], page 34

• Section 5.2.6 [XTI UDP STREAM], page 27, Section 6.2.8
[XTI UDP RR], page 34

• Section 5.2.7 [SCTP STREAM], page 27, Section 6.2.11 [SCTP RR],
page 35

• Section 5.2.8 [DLCO STREAM], page 27, Section 6.2.10 [DLCO RR],
page 34, Section 5.2.9 [DLCL STREAM], page 28, Section 6.2.9
[DLCL RR], page 34

• Chapter 10 [Other Netperf Tests], page 64, Chapter 10 [Other Netperf
Tests], page 64

• Chapter 9 [The Omni Tests], page 47

Not all tests are always compiled into netperf. In particular, the “XTI,”
“SCTP,” “UNIXDOMAIN,” and “DL*” tests are only included in netperf when
configured with ‘--enable-[xti|sctp|unixdomain|dlpi]=yes’.

Netperf only runs one type of test no matter how many ‘-t’ options may be
present on the command-line. The last ‘-t’ global command-line option will
determine the test to be run. [Default: TCP STREAM]

-T <optionspec>

This option controls the CPU, and probably by extension memory, affinity of
netperf and/or netserver.

netperf -T 1

will bind both netperf and netserver to “CPU 1” on their respective systems.

netperf -T 1,

will bind just netperf to “CPU 1” and will leave netserver unbound.

netperf -T ,2

will leave netperf unbound and will bind netserver to “CPU 2.”

netperf -T 1,2

will bind netperf to “CPU 1” and netserver to “CPU 2.”

This can be particularly useful when investigating performance issues involving
where processes run relative to where NIC interrupts are processed or where
NICs allocate their DMA buffers.

-v verbosity

This option controls how verbose netperf will be in its output, and is often used
in conjunction with the ‘-P’ option. If the verbosity is set to a value of “0” then
only the test’s SFM (Single Figure of Merit) is displayed. If local Section 3.1

Chapter 4: Global Command-line Options 19

[CPU Utilization], page 7 is requested via the ‘-c’ option then the SFM is the
local service demand. Othersise, if remote CPU utilization is requested via the
‘-C’ option then the SFM is the remote service demand. If neither local nor
remote CPU utilization are requested the SFM will be the measured throughput
or transaction rate as implied by the test specified with the ‘-t’ option.

If the verbosity level is set to “1” then the “normal” netperf result output for
each test is displayed.

If the verbosity level is set to “2” then “extra” information will be displayed.
This may include, but is not limited to the number of send or recv calls made
and the average number of bytes per send or recv call, or a histogram of the
time spent in each send() call or for each transaction if netperf was configured
with ‘--enable-histogram=yes’. [Default: 1 - normal verbosity]

In an Chapter 9 [The Omni Tests], page 47 test the verbosity setting is largely
ignored, save for when asking for the time histogram to be displayed. In version
2.5.0 and later there is no Section 9.3.1 [Omni Output Selectors], page 51 for
the histogram and so it remains displayed only when the verbosity level is set
to 2.

-V This option displays the netperf version and then exits.

Added in netperf 2.4.4.

-w time If netperf was configured with ‘--enable-intervals=yes’ then this value will
set the inter-burst time to time milliseconds, and the ‘-b’ option will set the
number of sends per burst. The actual inter-burst time may vary depending on
the system’s timer resolution.

-W <sizespec>

This option controls the number of buffers in the send (first or only value) and
or receive (second or only value) buffer rings. Unlike some benchmarks, netperf
does not continuously send or receive from a single buffer. Instead it rotates
through a ring of buffers. [Default: One more than the size of the send or
receive socket buffer sizes (‘-s’ and/or ‘-S’ options) divided by the send ‘-m’ or
receive ‘-M’ buffer size respectively]

-4 Specifying this option will set both the local and remote address families to
AF INET - that is use only IPv4 addresses on the control connection. This
can be overridden by a subsequent ‘-6’, ‘-H’ or ‘-L’ option. Basically, the last
option explicitly specifying an address family wins. Unless overridden by a
test-specific option, this will be inherited for the data connection as well.

-6 Specifying this option will set both local and and remote address families to
AF INET6 - that is use only IPv6 addresses on the control connection. This
can be overridden by a subsequent ‘-4’, ‘-H’ or ‘-L’ option. Basically, the last
address family explicitly specified wins. Unless overridden by a test-specific
option, this will be inherited for the data connection as well.

Chapter 5: Using Netperf to Measure Bulk Data Transfer 20

5 Using Netperf to Measure Bulk Data Transfer

The most commonly measured aspect of networked system performance is that of bulk or
unidirectional transfer performance. Everyone wants to know how many bits or bytes per
second they can push across the network. The classic netperf convention for a bulk data
transfer test name is to tack a “ STREAM” suffix to a test name.

5.1 Issues in Bulk Transfer

There are any number of things which can affect the performance of a bulk transfer test.

Certainly, absent compression, bulk-transfer tests can be limited by the speed of the
slowest link in the path from the source to the destination. If testing over a gigabit link,
you will not see more than a gigabit :) Such situations can be described as being network-
limited or NIC-limited.

CPU utilization can also affect the results of a bulk-transfer test. If the networking stack
requires a certain number of instructions or CPU cycles per KB of data transferred, and
the CPU is limited in the number of instructions or cycles it can provide, then the transfer
can be described as being CPU-bound.

A bulk-transfer test can be CPU bound even when netperf reports less than 100% CPU
utilization. This can happen on an MP system where one or more of the CPUs saturate
at 100% but other CPU’s remain idle. Typically, a single flow of data, such as that from a
single instance of a netperf STREAM test cannot make use of much more than the power of
one CPU. Exceptions to this generally occur when netperf and/or netserver run on CPU(s)
other than the CPU(s) taking interrupts from the NIC(s). In that case, one might see as
much as two CPUs’ worth of processing being used to service the flow of data.

Distance and the speed-of-light can affect performance for a bulk-transfer; often this can
be mitigated by using larger windows. One common limit to the performance of a transport
using window-based flow-control is:

Throughput <= WindowSize/RoundTripTime

As the sender can only have a window’s-worth of data outstanding on the network at
any one time, and the soonest the sender can receive a window update from the receiver is
one RoundTripTime (RTT). TCP and SCTP are examples of such protocols.

Packet losses and their effects can be particularly bad for performance. This is especially
true if the packet losses result in retransmission timeouts for the protocol(s) involved. By
the time a retransmission timeout has happened, the flow or connection has sat idle for a
considerable length of time.

On many platforms, some variant on the netstat command can be used to retrieve
statistics about packet loss and retransmission. For example:

netstat -p tcp

will retrieve TCP statistics on the HP-UX Operating System. On other platforms, it
may not be possible to retrieve statistics for a specific protocol and something like:

netstat -s

would be used instead.

Chapter 5: Using Netperf to Measure Bulk Data Transfer 21

Many times, such network statistics are keep since the time the stack started, and we
are only really interested in statistics from when netperf was running. In such situations
something along the lines of:

netstat -p tcp > before

netperf -t TCP_mumble...

netstat -p tcp > after

is indicated. The beforeafter utility can be used to subtract the statistics in ‘before’
from the statistics in ‘after’:

beforeafter before after > delta

and then one can look at the statistics in ‘delta’. Beforeafter is distributed in source
form so one can compile it on the platform(s) of interest.

If running a version 2.5.0 or later “omni” test under Linux one can include either or
both of:

• LOCAL TRANSPORT RETRANS

• REMOTE TRANSPORT RETRANS

in the values provided via a test-specific ‘-o’, ‘-O’, or ‘-k’ output selction option and
netperf will report the retransmissions experienced on the data connection, as reported via
a getsockopt(TCP_INFO) call. If confidence intervals have been requested via the global
‘-I’ or ‘-i’ options, the reported value(s) will be for the last iteration. If the test is over a
protocol other than TCP, or on a platform other than Linux, the results are undefined.

While it was written with HP-UX’s netstat in mind, the annotated netstat writeup may
be helpful with other platforms as well.

5.2 Options common to TCP UDP and SCTP tests

Many “test-specific” options are actually common across the different tests. For those tests
involving TCP, UDP and SCTP, whether using the BSD Sockets or the XTI interface those
common options include:

-h Display the test-suite-specific usage string and exit. For a TCP or UDP test
this will be the usage string from the source file nettest bsd.c. For an XTI test,
this will be the usage string from the source file nettest xti.c. For an SCTP
test, this will be the usage string from the source file nettest sctp.c.

-H <optionspec>

Normally, the remote hostname|IP and address family information is inherited
from the settings for the control connection (eg global command-line ‘-H’, ‘-4’
and/or ‘-6’ options). The test-specific ‘-H’ will override those settings for the
data (aka test) connection only. Settings for the control connection are left
unchanged.

-L <optionspec>

The test-specific ‘-L’ option is identical to the test-specific ‘-H’ option except
it affects the local hostname|IP and address family information. As with its
global command-line counterpart, this is generally only useful when measuring
though those evil, end-to-end breaking things called firewalls.

ftp://ftp.cup.hp.com/dist/networking/tools/
ftp://ftp.cup.hp.com/dist/networking/briefs/annotated_netstat.txt

Chapter 5: Using Netperf to Measure Bulk Data Transfer 22

-m bytes Set the size of the buffer passed-in to the “send” calls of a STREAM test.
Note that this may have only an indirect effect on the size of the packets sent
over the network, and certain Layer 4 protocols do not preserve or enforce
message boundaries, so setting ‘-m’ for the send size does not necessarily mean
the receiver will receive that many bytes at any one time. By default the units
are bytes, but suffix of “G,” “M,” or “K” will specify the units to be 2^30 (GB),
2^20 (MB) or 2^10 (KB) respectively. A suffix of “g,” “m” or “k” will specify
units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-m 32K

will set the size to 32KB or 32768 bytes. [Default: the local send socket buffer
size for the connection - either the system’s default or the value set via the ‘-s’
option.]

-M bytes Set the size of the buffer passed-in to the “recv” calls of a STREAM test. This
will be an upper bound on the number of bytes received per receive call. By
default the units are bytes, but suffix of “G,” “M,” or “K” will specify the units
to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A suffix of “g,” “m”
or “k” will specify units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-M 32K

will set the size to 32KB or 32768 bytes. [Default: the remote receive socket
buffer size for the data connection - either the system’s default or the value set
via the ‘-S’ option.]

-P <optionspec>

Set the local and/or remote port numbers for the data connection.

-s <sizespec>

This option sets the local (netperf) send and receive socket buffer sizes for the
data connection to the value(s) specified. Often, this will affect the advertised
and/or effective TCP or other window, but on some platforms it may not. By
default the units are bytes, but suffix of “G,” “M,” or “K” will specify the units
to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A suffix of “g,” “m”
or “k” will specify units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-s 128K

Will request the local send and receive socket buffer sizes to be 128KB or 131072
bytes.

While the historic expectation is that setting the socket buffer size has a direct
effect on say the TCP window, today that may not hold true for all stacks. Fur-
ther, while the historic expectation is that the value specified in a setsockopt()

call will be the value returned via a getsockopt() call, at least one stack is
known to deliberately ignore history. When running under Windows a value of
0 may be used which will be an indication to the stack the user wants to enable
a form of copy avoidance. [Default: -1 - use the system’s default socket buffer
sizes]

-S <sizespec>

This option sets the remote (netserver) send and/or receive socket buffer sizes
for the data connection to the value(s) specified. Often, this will affect the

Chapter 5: Using Netperf to Measure Bulk Data Transfer 23

advertised and/or effective TCP or other window, but on some platforms it may
not. By default the units are bytes, but suffix of “G,” “M,” or “K” will specify
the units to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A suffix of
“g,” “m” or “k” will specify units of 10^9, 10^6 or 10^3 bytes respectively. For
example:

-S 128K

Will request the remote send and receive socket buffer sizes to be 128KB or
131072 bytes.

While the historic expectation is that setting the socket buffer size has a direct
effect on say the TCP window, today that may not hold true for all stacks. Fur-
ther, while the historic expectation is that the value specified in a setsockopt()

call will be the value returned via a getsockopt() call, at least one stack is
known to deliberately ignore history. When running under Windows a value of
0 may be used which will be an indication to the stack the user wants to enable
a form of copy avoidance. [Default: -1 - use the system’s default socket buffer
sizes]

-4 Set the local and remote address family for the data connection to AF INET - ie
use IPv4 addressing only. Just as with their global command-line counterparts
the last of the ‘-4’, ‘-6’, ‘-H’ or ‘-L’ option wins for their respective address
families.

-6 This option is identical to its ‘-4’ cousin, but requests IPv6 addresses for the
local and remote ends of the data connection.

5.2.1 TCP STREAM

The TCP STREAM test is the default test in netperf. It is quite simple, transferring some
quantity of data from the system running netperf to the system running netserver. While
time spent establishing the connection is not included in the throughput calculation, time
spent flushing the last of the data to the remote at the end of the test is. This is how netperf
knows that all the data it sent was received by the remote. In addition to the Section 5.2
[Options common to TCP UDP and SCTP tests], page 21, the following test-specific options
can be included to possibly alter the behavior of the test:

-C This option will set TCP CORK mode on the data connection on those sys-
tems where TCP CORK is defined (typically Linux). A full description of
TCP CORK is beyond the scope of this manual, but in a nutshell it forces
sub-MSS sends to be buffered so every segment sent is Maximum Segment
Size (MSS) unless the application performs an explicit flush operation or the
connection is closed. At present netperf does not perform any explicit flush
operations. Setting TCP CORK may improve the bitrate of tests where the
“send size” (‘-m’ option) is smaller than the MSS. It should also improve (make
smaller) the service demand.

The Linux tcp(7) manpage states that TCP CORK cannot be used in conjunc-
tion with TCP NODELAY (set via the ‘-d’ option), however netperf does not
validate command-line options to enforce that.

-D This option will set TCP NODELAY on the data connection on those systems
where TCP NODELAY is defined. This disables something known as the Nagle

Chapter 5: Using Netperf to Measure Bulk Data Transfer 24

Algorithm, which is intended to make the segments TCP sends as large as
reasonably possible. Setting TCP NODELAY for a TCP STREAM test should
either have no effect when the send size (‘-m’ option) is larger than the MSS
or will decrease reported bitrate and increase service demand when the send
size is smaller than the MSS. This stems from TCP NODELAY causing each
sub-MSS send to be its own TCP segment rather than being aggregated with
other small sends. This means more trips up and down the protocol stack per
KB of data transferred, which means greater CPU utilization.

If setting TCP NODELAY with ‘-D’ affects throughput and/or service demand
for tests where the send size (‘-m’) is larger than the MSS it suggests the TCP/IP
stack’s implementation of the Nagle Algorithm may be broken, perhaps in-
terpreting the Nagle Algorithm on a segment by segment basis rather than the
proper user send by user send basis. However, a better test of this can be
achieved with the Section 6.2.1 [TCP RR], page 31 test.

Here is an example of a basic TCP STREAM test, in this case from a Debian Linux (2.6
kernel) system to an HP-UX 11iv2 (HP-UX 11.23) system:

$ netperf -H lag

TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to lag.hpl.hp.com (15.4.89.214) port 0 AF_INET

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

32768 16384 16384 10.00 80.42

We see that the default receive socket buffer size for the receiver (lag - HP-UX 11.23)
is 32768 bytes, and the default socket send buffer size for the sender (Debian 2.6 kernel)
is 16384 bytes, however Linux does “auto tuning” of socket buffer and TCP window sizes,
which means the send socket buffer size may be different at the end of the test than it was
at the beginning. This is addressed in the Chapter 9 [The Omni Tests], page 47 added in
version 2.5.0 and Section 9.3 [Omni Output Selection], page 50. Throughput is expressed as
10^6 (aka Mega) bits per second, and the test ran for 10 seconds. IPv4 addresses (AF INET)
were used.

5.2.2 TCP MAERTS

A TCP MAERTS (MAERTS is STREAM backwards) test is “just like” a Section 5.2.1
[TCP STREAM], page 23 test except the data flows from the netserver to the netperf. The
global command-line ‘-F’ option is ignored for this test type. The test-specific command-line
‘-C’ option is ignored for this test type.

Here is an example of a TCP MAERTS test between the same two systems as in the
example for the Section 5.2.1 [TCP STREAM], page 23 test. This time we request larger
socket buffers with ‘-s’ and ‘-S’ options:

$ netperf -H lag -t TCP_MAERTS -- -s 128K -S 128K

TCP MAERTS TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to lag.hpl.hp.com (15.4.89.214) port 0 AF_INET

Recv Send Send

Socket Socket Message Elapsed

Chapter 5: Using Netperf to Measure Bulk Data Transfer 25

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

221184 131072 131072 10.03 81.14

Where we see that Linux, unlike HP-UX, may not return the same value in a
getsockopt() as was requested in the prior setsockopt().

This test is included more for benchmarking convenience than anything else.

5.2.3 TCP SENDFILE

The TCP SENDFILE test is “just like” a Section 5.2.1 [TCP STREAM], page 23 test
except netperf the platform’s sendfile() call instead of calling send(). Often this results
in a zero-copy operation where data is sent directly from the filesystem buffer cache. This
should result in lower CPU utilization and possibly higher throughput. If it does not,

then you may want to contact your vendor(s) because they have a problem on their hands.

Zero-copy mechanisms may also alter the characteristics (size and number of buffers
per) of packets passed to the NIC. In many stacks, when a copy is performed, the stack
can “reserve” space at the beginning of the destination buffer for things like TCP, IP and
Link headers. This then has the packet contained in a single buffer which can be easier to
DMA to the NIC. When no copy is performed, there is no opportunity to reserve space for
headers and so a packet will be contained in two or more buffers.

As of some time before version 2.5.0, the Section 4.2 [Global Options], page 11 is no
longer required for this test. If it is not specified, netperf will create a temporary file, which
it will delete at the end of the test. If the ‘-F’ option is specified it must reference a file of
at least the size of the send ring (See Section 4.2 [Global Options], page 11.) multiplied by
the send size (See Section 5.2 [Options common to TCP UDP and SCTP tests], page 21.).
All other TCP-specific options remain available and optional.

In this first example:

$ netperf -H lag -F ../src/netperf -t TCP_SENDFILE -- -s 128K -S 128K

TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to lag.hpl.hp.com (15.4.89.214) port 0 AF_INET

alloc_sendfile_buf_ring: specified file too small.

file must be larger than send_width * send_size

we see what happens when the file is too small. Here:

$ netperf -H lag -F /boot/vmlinuz-2.6.8-1-686 -t TCP_SENDFILE -- -s 128K -S 128K

TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to lag.hpl.hp.com (15.4.89.214) port 0 AF_INET

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

131072 221184 221184 10.02 81.83

we resolve that issue by selecting a larger file.

5.2.4 UDP STREAM

A UDP STREAM test is similar to a Section 5.2.1 [TCP STREAM], page 23 test except
UDP is used as the transport rather than TCP.

Chapter 5: Using Netperf to Measure Bulk Data Transfer 26

A UDP STREAM test has no end-to-end flow control - UDP provides none
and neither does netperf. However, if you wish, you can configure netperf with
--enable-intervals=yes to enable the global command-line ‘-b’ and ‘-w’ options to pace
bursts of traffic onto the network.

This has a number of implications.

The biggest of these implications is the data which is sent might not be received by the
remote. For this reason, the output of a UDP STREAM test shows both the sending and
receiving throughput. On some platforms, it may be possible for the sending throughput
to be reported as a value greater than the maximum rate of the link. This is common when
the CPU(s) are faster than the network and there is no intra-stack flow-control.

Here is an example of a UDP STREAM test between two systems connected by a 10
Gigabit Ethernet link:

$ netperf -t UDP_STREAM -H 192.168.2.125 -- -m 32768

UDP UNIDIRECTIONAL SEND TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 192.168.2.125 (192.168.2.125) port 0 AF_INET

Socket Message Elapsed Messages

Size Size Time Okay Errors Throughput

bytes bytes secs # # 10^6bits/sec

124928 32768 10.00 105672 0 2770.20

135168 10.00 104844 2748.50

The first line of numbers are statistics from the sending (netperf) side. The second line
of numbers are from the receiving (netserver) side. In this case, 105672 - 104844 or 828
messages did not make it all the way to the remote netserver process.

If the value of the ‘-m’ option is larger than the local send socket buffer size (‘-s’ option)
netperf will likely abort with an error message about how the send call failed:

netperf -t UDP_STREAM -H 192.168.2.125

UDP UNIDIRECTIONAL SEND TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 192.168.2.125 (192.168.2.125) port 0 AF_INET

udp_send: data send error: Message too long

If the value of the ‘-m’ option is larger than the remote socket receive buffer, the reported
receive throughput will likely be zero as the remote UDP will discard the messages as being
too large to fit into the socket buffer.

$ netperf -t UDP_STREAM -H 192.168.2.125 -- -m 65000 -S 32768

UDP UNIDIRECTIONAL SEND TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 192.168.2.125 (192.168.2.125) port 0 AF_INET

Socket Message Elapsed Messages

Size Size Time Okay Errors Throughput

bytes bytes secs # # 10^6bits/sec

124928 65000 10.00 53595 0 2786.99

65536 10.00 0 0.00

The example above was between a pair of systems running a “Linux” kernel. Notice that
the remote Linux system returned a value larger than that passed-in to the ‘-S’ option. In
fact, this value was larger than the message size set with the ‘-m’ option. That the remote
socket buffer size is reported as 65536 bytes would suggest to any sane person that a message

Chapter 5: Using Netperf to Measure Bulk Data Transfer 27

of 65000 bytes would fit, but the socket isn’t really 65536 bytes, even though Linux is
telling us so. Go figure.

5.2.5 XTI TCP STREAM

An XTI TCP STREAM test is simply a Section 5.2.1 [TCP STREAM], page 23 test using
the XTI rather than BSD Sockets interface. The test-specific ‘-X <devspec>’ option can be
used to specify the name of the local and/or remote XTI device files, which is required by
the t_open() call made by netperf XTI tests.

The XTI TCP STREAM test is only present if netperf was configured with --enable-

xti=yes. The remote netserver must have also been configured with --enable-xti=yes.

5.2.6 XTI UDP STREAM

An XTI UDP STREAM test is simply a Section 5.2.4 [UDP STREAM], page 25 test using
the XTI rather than BSD Sockets Interface. The test-specific ‘-X <devspec>’ option can
be used to specify the name of the local and/or remote XTI device files, which is required
by the t_open() call made by netperf XTI tests.

The XTI UDP STREAM test is only present if netperf was configured with --enable-

xti=yes. The remote netserver must have also been configured with --enable-xti=yes.

5.2.7 SCTP STREAM

An SCTP STREAM test is essentially a Section 5.2.1 [TCP STREAM], page 23 test using
the SCTP rather than TCP. The ‘-D’ option will set SCTP NODELAY, which is much like
the TCP NODELAY option for TCP. The ‘-C’ option is not applicable to an SCTP test as
there is no corresponding SCTP CORK option. The author is still figuring-out what the
test-specific ‘-N’ option does :)

The SCTP STREAM test is only present if netperf was configured with --enable-

sctp=yes. The remote netserver must have also been configured with --enable-sctp=yes.

5.2.8 DLCO STREAM

A DLPI Connection Oriented Stream (DLCO STREAM) test is very similar in concept
to a Section 5.2.1 [TCP STREAM], page 23 test. Both use reliable, connection-oriented
protocols. The DLPI test differs from the TCP test in that its protocol operates only at the
link-level and does not include TCP-style segmentation and reassembly. This last difference
means that the value passed-in with the ‘-m’ option must be less than the interface MTU.
Otherwise, the ‘-m’ and ‘-M’ options are just like their TCP/UDP/SCTP counterparts.

Other DLPI-specific options include:

-D <devspec>

This option is used to provide the fully-qualified names for the local and/or
remote DLPI device files. The syntax is otherwise identical to that of a sizespec.

-p <ppaspec>

This option is used to specify the local and/or remote DLPI PPA(s). The PPA
is used to identify the interface over which traffic is to be sent/received. The
syntax of a ppaspec is otherwise the same as a sizespec.

-s sap This option specifies the 802.2 SAP for the test. A SAP is somewhat like either
the port field of a TCP or UDP header or the protocol field of an IP header. The

Chapter 5: Using Netperf to Measure Bulk Data Transfer 28

specified SAP should not conflict with any other active SAPs on the specified
PPA’s (‘-p’ option).

-w <sizespec>

This option specifies the local send and receive window sizes in units of frames
on those platforms which support setting such things.

-W <sizespec>

This option specifies the remote send and receive window sizes in units of frames
on those platforms which support setting such things.

The DLCO STREAM test is only present if netperf was configured with --enable-

dlpi=yes. The remote netserver must have also been configured with --enable-dlpi=yes.

5.2.9 DLCL STREAM

A DLPI ConnectionLess Stream (DLCL STREAM) test is analogous to a Section 5.2.4
[UDP STREAM], page 25 test in that both make use of unreliable/best-effort, connection-
less transports. The DLCL STREAM test differs from the Section 5.2.4 [UDP STREAM],
page 25 test in that the message size (‘-m’ option) must always be less than the link MTU
as there is no IP-like fragmentation and reassembly available and netperf does not presume
to provide one.

The test-specific command-line options for a DLCL STREAM test are the same as those
for a Section 5.2.8 [DLCO STREAM], page 27 test.

The DLCL STREAM test is only present if netperf was configured with --enable-

dlpi=yes. The remote netserver must have also been configured with --enable-dlpi=yes.

5.2.10 STREAM STREAM

A Unix Domain Stream Socket Stream test (STREAM STREAM) is similar in concept
to a Section 5.2.1 [TCP STREAM], page 23 test, but using Unix Domain sockets. It is,
naturally, limited to intra-machine traffic. A STREAM STREAM test shares the ‘-m’, ‘-M’,
‘-s’ and ‘-S’ options of the other STREAM tests. In a STREAM STREAM test the
‘-p’ option sets the directory in which the pipes will be created rather than setting a port
number. The default is to create the pipes in the system default for the tempnam() call.

The STREAM STREAM test is only present if netperf was configured with --enable-

unixdomain=yes. The remote netserver must have also been configured with --enable-

unixdomain=yes.

5.2.11 DG STREAM

A Unix Domain Datagram Socket Stream test (SG STREAM) is very much like a Sec-
tion 5.2.1 [TCP STREAM], page 23 test except that message boundaries are preserved. In
this way, it may also be considered similar to certain flavors of SCTP test which can also
preserve message boundaries.

All the options of a Section 5.2.10 [STREAM STREAM], page 28 test are applicable to
a DG STREAM test.

The DG STREAM test is only present if netperf was configured with --enable-

unixdomain=yes. The remote netserver must have also been configured with
--enable-unixdomain=yes.

Chapter 6: Using Netperf to Measure Request/Response 29

6 Using Netperf to Measure Request/Response

Request/response performance is often overlooked, yet it is just as important as bulk-
transfer performance. While things like larger socket buffers and TCP windows, and state-
less offloads like TSO and LRO can cover a multitude of latency and even path-length
sins, those sins cannot easily hide from a request/response test. The convention for a re-
quest/response test is to have a RR suffix. There are however a few “request/response”
tests that have other suffixes.

A request/response test, particularly synchronous, one transaction at a time test such
as those found by default in netperf, is particularly sensitive to the path-length of the net-
working stack. An RR test can also uncover those platforms where the NICs are strapped
by default with overbearing interrupt avoidance settings in an attempt to increase the bulk-
transfer performance (or rather, decrease the CPU utilization of a bulk-transfer test). This
sensitivity is most acute for small request and response sizes, such as the single-byte default
for a netperf RR test.

While a bulk-transfer test reports its results in units of bits or bytes transferred per
second, by default a mumble RR test reports transactions per second where a transaction
is defined as the completed exchange of a request and a response. One can invert the
transaction rate to arrive at the average round-trip latency. If one is confident about the
symmetry of the connection, the average one-way latency can be taken as one-half the
average round-trip latency. As of version 2.5.0 (actually slightly before) netperf still does
not do the latter, but will do the former if one sets the verbosity to 2 for a classic netperf test,
or includes the appropriate Section 9.3.1 [Omni Output Selectors], page 51 in an Chapter 9
[The Omni Tests], page 47. It will also allow the user to switch the throughput units from
transactions per second to bits or bytes per second with the global ‘-f’ option.

6.1 Issues in Request/Response

Most if not all the Section 5.1 [Issues in Bulk Transfer], page 20 apply to request/response.
The issue of round-trip latency is even more important as netperf generally only has one
transaction outstanding at a time.

A single instance of a one transaction outstanding RR test should never completely
saturate the CPU of a system. If testing between otherwise evenly matched systems, the
symmetric nature of a RR test with equal request and response sizes should result in equal
CPU loading on both systems. However, this may not hold true on MP systems, particularly
if one CPU binds the netperf and netserver differently via the global ‘-T’ option.

For smaller request and response sizes packet loss is a bigger issue as there is no oppor-
tunity for a fast retransmit or retransmission prior to a retransmission timer expiring.

Virtualization may considerably increase the effective path length of a networking stack.
While this may not preclude achieving link-rate on a comparatively slow link (eg 1 Gigabit
Ethernet) on a STREAM test, it can show-up as measurably fewer transactions per second
on an RR test. However, this may still be masked by interrupt coalescing in the NIC/driver.

Certain NICs have ways to minimize the number of interrupts sent to the host. If these
are strapped badly they can significantly reduce the performance of something like a single-
byte request/response test. Such setups are distinguished by seriously low reported CPU
utilization and what seems like a low (even if in the thousands) transaction per second

Chapter 6: Using Netperf to Measure Request/Response 30

rate. Also, if you run such an OS/driver combination on faster or slower hardware and do
not see a corresponding change in the transaction rate, chances are good that the driver is
strapping the NIC with aggressive interrupt avoidance settings. Good for bulk throughput,
but bad for latency.

Some drivers may try to automagically adjust the interrupt avoidance settings. If they
are not terribly good at it, you will see considerable run-to-run variation in reported trans-
action rates. Particularly if you “mix-up” STREAM and RR tests.

6.2 Options Common to TCP UDP and SCTP RR tests

Many “test-specific” options are actually common across the different tests. For those tests
involving TCP, UDP and SCTP, whether using the BSD Sockets or the XTI interface those
common options include:

-h Display the test-suite-specific usage string and exit. For a TCP or UDP test
this will be the usage string from the source file ‘nettest_bsd.c’. For an XTI
test, this will be the usage string from the source file ‘src/nettest_xti.c’.
For an SCTP test, this will be the usage string from the source file
‘src/nettest_sctp.c’.

-H <optionspec>

Normally, the remote hostname|IP and address family information is inherited
from the settings for the control connection (eg global command-line ‘-H’, ‘-4’
and/or ‘-6’ options. The test-specific ‘-H’ will override those settings for the
data (aka test) connection only. Settings for the control connection are left
unchanged. This might be used to cause the control and data connections to
take different paths through the network.

-L <optionspec>

The test-specific ‘-L’ option is identical to the test-specific ‘-H’ option except
it affects the local hostname|IP and address family information. As with its
global command-line counterpart, this is generally only useful when measuring
though those evil, end-to-end breaking things called firewalls.

-P <optionspec>

Set the local and/or remote port numbers for the data connection.

-r <sizespec>

This option sets the request (first value) and/or response (second value) sizes
for an RR test. By default the units are bytes, but a suffix of “G,” “M,” or “K”
will specify the units to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively.
A suffix of “g,” “m” or “k” will specify units of 10^9, 10^6 or 10^3 bytes
respectively. For example:

-r 128,16K

Will set the request size to 128 bytes and the response size to 16 KB or 16384
bytes. [Default: 1 - a single-byte request and response]

-s <sizespec>

This option sets the local (netperf) send and receive socket buffer sizes for the
data connection to the value(s) specified. Often, this will affect the advertised

Chapter 6: Using Netperf to Measure Request/Response 31

and/or effective TCP or other window, but on some platforms it may not. By
default the units are bytes, but a suffix of “G,” “M,” or “K” will specify the
units to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A suffix of “g,”
“m” or “k” will specify units of 10^9, 10^6 or 10^3 bytes respectively. For
example:

-s 128K

Will request the local send (netperf) and receive socket buffer sizes to be 128KB
or 131072 bytes.

While the historic expectation is that setting the socket buffer size has a direct
effect on say the TCP window, today that may not hold true for all stacks.
When running under Windows a value of 0 may be used which will be an
indication to the stack the user wants to enable a form of copy avoidance.
[Default: -1 - use the system’s default socket buffer sizes]

-S <sizespec>

This option sets the remote (netserver) send and/or receive socket buffer sizes
for the data connection to the value(s) specified. Often, this will affect the
advertised and/or effective TCP or other window, but on some platforms it
may not. By default the units are bytes, but a suffix of “G,” “M,” or “K”
will specify the units to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively.
A suffix of “g,” “m” or “k” will specify units of 10^9, 10^6 or 10^3 bytes
respectively. For example:

-S 128K

Will request the remote (netserver) send and receive socket buffer sizes to be
128KB or 131072 bytes.

While the historic expectation is that setting the socket buffer size has a direct
effect on say the TCP window, today that may not hold true for all stacks.
When running under Windows a value of 0 may be used which will be an
indication to the stack the user wants to enable a form of copy avoidance.
[Default: -1 - use the system’s default socket buffer sizes]

-4 Set the local and remote address family for the data connection to AF INET - ie
use IPv4 addressing only. Just as with their global command-line counterparts
the last of the ‘-4’, ‘-6’, ‘-H’ or ‘-L’ option wins for their respective address
families.

-6 This option is identical to its ‘-4’ cousin, but requests IPv6 addresses for the
local and remote ends of the data connection.

6.2.1 TCP RR

A TCP RR (TCP Request/Response) test is requested by passing a value of “TCP RR”
to the global ‘-t’ command-line option. A TCP RR test can be thought-of as a user-space
to user-space ping with no think time - it is by default a synchronous, one transaction at
a time, request/response test.

The transaction rate is the number of complete transactions exchanged divided by the
length of time it took to perform those transactions.

Chapter 6: Using Netperf to Measure Request/Response 32

If the two Systems Under Test are otherwise identical, a TCP RR test with the same
request and response size should be symmetric - it should not matter which way the test
is run, and the CPU utilization measured should be virtually the same on each system. If
not, it suggests that the CPU utilization mechanism being used may have some, well, issues
measuring CPU utilization completely and accurately.

Time to establish the TCP connection is not counted in the result. If you want connection
setup overheads included, you should consider the Section 6.2.2 [TCP CC], page 32 or
Section 6.2.3 [TCP CRR], page 33 tests.

If specifying the ‘-D’ option to set TCP NODELAY and disable the Nagle Algorithm
increases the transaction rate reported by a TCP RR test, it implies the stack(s) over which
the TCP RR test is running have a broken implementation of the Nagle Algorithm. Likely
as not they are interpreting Nagle on a segment by segment basis rather than a user send
by user send basis. You should contact your stack vendor(s) to report the problem to them.

Here is an example of two systems running a basic TCP RR test over a 10 Gigabit
Ethernet link:

netperf -t TCP_RR -H 192.168.2.125

TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 192.168.2.125 (192.168.2.125) port 0 AF_INET

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 10.00 29150.15

16384 87380

In this example the request and response sizes were one byte, the socket buffers were
left at their defaults, and the test ran for all of 10 seconds. The transaction per second rate
was rather good for the time :)

6.2.2 TCP CC

A TCP CC (TCP Connect/Close) test is requested by passing a value of “TCP CC” to the
global ‘-t’ option. A TCP CC test simply measures how fast the pair of systems can open
and close connections between one another in a synchronous (one at a time) manner. While
this is considered an RR test, no request or response is exchanged over the connection.

The issue of TIME WAIT reuse is an important one for a TCP CC test. Basically,
TIME WAIT reuse is when a pair of systems churn through connections fast enough that
they wrap the 16-bit port number space in less time than the length of the TIME WAIT
state. While it is indeed theoretically possible to “reuse” a connection in TIME WAIT,
the conditions under which such reuse is possible are rather rare. An attempt to reuse a
connection in TIME WAIT can result in a non-trivial delay in connection establishment.

Basically, any time the connection churn rate approaches:

Sizeof(clientportspace) / Lengthof(TIME WAIT)

there is the risk of TIME WAIT reuse. To minimize the chances of this happening,
netperf will by default select its own client port numbers from the range of 5000 to 65535.
On systems with a 60 second TIME WAIT state, this should allow roughly 1000 transactions

Chapter 6: Using Netperf to Measure Request/Response 33

per second. The size of the client port space used by netperf can be controlled via the test-
specific ‘-p’ option, which takes a sizespec as a value setting the minimum (first value) and
maximum (second value) port numbers used by netperf at the client end.

Since no requests or responses are exchanged during a TCP CC test, only the ‘-H’, ‘-L’,
‘-4’ and ‘-6’ of the “common” test-specific options are likely to have an effect, if any, on
the results. The ‘-s’ and ‘-S’ options may have some effect if they alter the number
and/or type of options carried in the TCP SYNchronize segments, such as Window Scaling
or Timestamps. The ‘-P’ and ‘-r’ options are utterly ignored.

Since connection establishment and tear-down for TCP is not symmetric, a TCP CC
test is not symmetric in its loading of the two systems under test.

6.2.3 TCP CRR

The TCP Connect/Request/Response (TCP CRR) test is requested by passing a value of
“TCP CRR” to the global ‘-t’ command-line option. A TCP CRR test is like a merger
of a Section 6.2.1 [TCP RR], page 31 and Section 6.2.2 [TCP CC], page 32 test which
measures the performance of establishing a connection, exchanging a single request/response
transaction, and tearing-down that connection. This is very much like what happens in an
HTTP 1.0 or HTTP 1.1 connection when HTTP Keepalives are not used. In fact, the
TCP CRR test was added to netperf to simulate just that.

Since a request and response are exchanged the ‘-r’, ‘-s’ and ‘-S’ options can have an
effect on the performance.

The issue of TIME WAIT reuse exists for the TCP CRR test just as it does for the
TCP CC test. Similarly, since connection establishment and tear-down is not symmetric,
a TCP CRR test is not symmetric even when the request and response sizes are the same.

6.2.4 UDP RR

A UDP Request/Response (UDP RR) test is requested by passing a value of “UDP RR”
to a global ‘-t’ option. It is very much the same as a TCP RR test except UDP is used
rather than TCP.

UDP does not provide for retransmission of lost UDP datagrams, and netperf does not
add anything for that either. This means that if any request or response is lost, the
exchange of requests and responses will stop from that point until the test timer expires.
Netperf will not really “know” this has happened - the only symptom will be a low trans-
action per second rate. If ‘--enable-burst’ was included in the configure command and
a test-specific ‘-b’ option used, the UDP RR test will “survive” the loss of requests and
responses until the sum is one more than the value passed via the ‘-b’ option. It will though
almost certainly run more slowly.

The netperf side of a UDP RR test will call connect() on its data socket and thenceforth
use the send() and recv() socket calls. The netserver side of a UDP RR test will not call
connect() and will use recvfrom() and sendto() calls. This means that even if the request
and response sizes are the same, a UDP RR test is not symmetric in its loading of the
two systems under test.

Here is an example of a UDP RR test between two otherwise identical two-CPU systems
joined via a 1 Gigabit Ethernet network:

$ netperf -T 1 -H 192.168.1.213 -t UDP_RR -c -C

Chapter 6: Using Netperf to Measure Request/Response 34

UDP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 192.168.1.213 (192.168.1.213) port 0 AF_INET

Local /Remote

Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem

Send Recv Size Size Time Rate local remote local remote

bytes bytes bytes bytes secs. per sec % I % I us/Tr us/Tr

65535 65535 1 1 10.01 15262.48 13.90 16.11 18.221 21.116

65535 65535

This example includes the ‘-c’ and ‘-C’ options to enable CPU utilization reporting and
shows the asymmetry in CPU loading. The ‘-T’ option was used to make sure netperf and
netserver ran on a given CPU and did not move around during the test.

6.2.5 XTI TCP RR

An XTI TCP RR test is essentially the same as a Section 6.2.1 [TCP RR], page 31 test
only using the XTI rather than BSD Sockets interface. It is requested by passing a value
of “XTI TCP RR” to the ‘-t’ global command-line option.

The test-specific options for an XTI TCP RR test are the same as those for a TCP RR
test with the addition of the ‘-X <devspec>’ option to specify the names of the local and/or
remote XTI device file(s).

6.2.6 XTI TCP CC

An XTI TCP CC test is essentially the same as a Section 6.2.2 [TCP CC], page 32 test,
only using the XTI rather than BSD Sockets interface.

The test-specific options for an XTI TCP CC test are the same as those for a TCP CC
test with the addition of the ‘-X <devspec>’ option to specify the names of the local and/or
remote XTI device file(s).

6.2.7 XTI TCP CRR

The XTI TCP CRR test is essentially the same as a Section 6.2.3 [TCP CRR], page 33
test, only using the XTI rather than BSD Sockets interface.

The test-specific options for an XTI TCP CRR test are the same as those for a TCP RR
test with the addition of the ‘-X <devspec>’ option to specify the names of the local and/or
remote XTI device file(s).

6.2.8 XTI UDP RR

An XTI UDP RR test is essentially the same as a UDP RR test only using the XTI rather
than BSD Sockets interface. It is requested by passing a value of “XTI UDP RR” to the
‘-t’ global command-line option.

The test-specific options for an XTI UDP RR test are the same as those for a UDP RR
test with the addition of the ‘-X <devspec>’ option to specify the name of the local and/or
remote XTI device file(s).

6.2.9 DLCL RR

6.2.10 DLCO RR

Chapter 6: Using Netperf to Measure Request/Response 35

6.2.11 SCTP RR

Chapter 7: Using Netperf to Measure Aggregate Performance 36

7 Using Netperf to Measure Aggregate
Performance

Ultimately, Chapter 13 [Netperf4], page 68 will be the preferred benchmark to use when
one wants to measure aggregate performance because netperf has no support for explicit
synchronization of concurrent tests. Until netperf4 is ready for prime time, one can make
use of the heuristics and procedures mentioned here for the 85% solution.

There are a few ways to measure aggregate performance with netperf. The first is to
run multiple, concurrent netperf tests and can be applied to any of the netperf tests. The
second is to configure netperf with --enable-burst and is applicable to the TCP RR test.
The third is a variation on the first.

7.1 Running Concurrent Netperf Tests

Chapter 13 [Netperf4], page 68 is the preferred benchmark to use when one wants to mea-
sure aggregate performance because netperf has no support for explicit synchronization of
concurrent tests. This leaves netperf2 results vulnerable to skew errors.

However, since there are times when netperf4 is unavailable it may be necessary to
run netperf. The skew error can be minimized by making use of the confidence interval
functionality. Then one simply launches multiple tests from the shell using a for loop or
the like:

for i in 1 2 3 4

do

netperf -t TCP_STREAM -H tardy.cup.hp.com -i 10 -P 0 &

done

which will run four, concurrent Section 5.2.1 [TCP STREAM], page 23 tests from the
system on which it is executed to tardy.cup.hp.com. Each concurrent netperf will iterate
10 times thanks to the ‘-i’ option and will omit the test banners (option ‘-P’) for brevity.
The output looks something like this:

87380 16384 16384 10.03 235.15

87380 16384 16384 10.03 235.09

87380 16384 16384 10.03 235.38

87380 16384 16384 10.03 233.96

We can take the sum of the results and be reasonably confident that the aggregate
performance was 940 Mbits/s. This method does not need to be limited to one system
speaking to one other system. It can be extended to one system talking to N other systems.
It could be as simple as:

for host in ’foo bar baz bing’

do

netperf -t TCP_STREAM -H $hosts -i 10 -P 0 &

done

A more complicated/sophisticated example can be found in ‘doc/examples/runemomniagg2.sh’
where.

If you see warnings about netperf not achieving the confidence intervals, the best thing
to do is to increase the number of iterations with ‘-i’ and/or increase the run length of
each iteration with ‘-l’.

You can also enable local (‘-c’) and/or remote (‘-C’) CPU utilization:

Chapter 7: Using Netperf to Measure Aggregate Performance 37

for i in 1 2 3 4

do

netperf -t TCP_STREAM -H tardy.cup.hp.com -i 10 -P 0 -c -C &

done

87380 16384 16384 10.03 235.47 3.67 5.09 10.226 14.180

87380 16384 16384 10.03 234.73 3.67 5.09 10.260 14.225

87380 16384 16384 10.03 234.64 3.67 5.10 10.263 14.231

87380 16384 16384 10.03 234.87 3.67 5.09 10.253 14.215

If the CPU utilizations reported for the same system are the same or very very close
you can be reasonably confident that skew error is minimized. Presumably one could then
omit ‘-i’ but that is not advised, particularly when/if the CPU utilization approaches 100
percent. In the example above we see that the CPU utilization on the local system remains
the same for all four tests, and is only off by 0.01 out of 5.09 on the remote system. As the
number of CPUs in the system increases, and so too the odds of saturating a single CPU,
the accuracy of similar CPU utilization implying little skew error is diminished. This is
also the case for those increasingly rare single CPU systems if the utilization is reported as
100% or very close to it.

NOTE: It is very important to remember that netperf is calculating system-
wide CPU utilization. When calculating the service demand (those last two
columns in the output above) each netperf assumes it is the only thing running
on the system. This means that for concurrent tests the service demands
reported by netperf will be wrong. One has to compute service demands for
concurrent tests by hand.

If you wish you can add a unique, global ‘-B’ option to each command line to append
the given string to the output:

for i in 1 2 3 4

do

netperf -t TCP_STREAM -H tardy.cup.hp.com -B "this is test $i" -i 10 -P 0 &

done

87380 16384 16384 10.03 234.90 this is test 4

87380 16384 16384 10.03 234.41 this is test 2

87380 16384 16384 10.03 235.26 this is test 1

87380 16384 16384 10.03 235.09 this is test 3

You will notice that the tests completed in an order other than they were started from the
shell. This underscores why there is a threat of skew error and why netperf4 will eventually
be the preferred tool for aggregate tests. Even if you see the Netperf Contributing Editor
acting to the contrary!-)

7.1.1 Issues in Running Concurrent Tests

In addition to the aforementioned issue of skew error, there can be other issues to consider
when running concurrent netperf tests.

For example, when running concurrent tests over multiple interfaces, one is not always
assured that the traffic one thinks went over a given interface actually did so. In particular,

Chapter 7: Using Netperf to Measure Aggregate Performance 38

the Linux networking stack takes a particularly strong stance on its following the so called
‘weak end system model’. As such, it is willing to answer ARP requests for any of its
local IP addresses on any of its interfaces. If multiple interfaces are connected to the same
broadcast domain, then even if they are configured into separate IP subnets there is no a
priori way of knowing which interface was actually used for which connection(s). This can
be addressed by setting the ‘arp_ignore’ sysctl before configuring interfaces.

As it is quite important, we will repeat that it is very important to remember that each
concurrent netperf instance is calculating system-wide CPU utilization. When calculating
the service demand each netperf assumes it is the only thing running on the system. This
means that for concurrent tests the service demands reported by netperf will be wrong.
One has to compute service demands for concurrent tests by hand

Running concurrent tests can also become difficult when there is no one “central” node.
Running tests between pairs of systems may be more difficult, calling for remote shell
commands in the for loop rather than netperf commands. This introduces more skew error,
which the confidence intervals may not be able to sufficiently mitigate. One possibility is
to actually run three consecutive netperf tests on each node - the first being a warm-up,
the last being a cool-down. The idea then is to ensure that the time it takes to get all
the netperfs started is less than the length of the first netperf command in the sequence of
three. Similarly, it assumes that all “middle” netperfs will complete before the first of the
“last” netperfs complete.

7.2 Using - -enable-burst

Starting in version 2.5.0 --enable-burst=yes is the default, which means one no longer
must:

configure --enable-burst

To have burst-mode functionality present in netperf. This enables a test-specific ‘-b num’
option in Section 6.2.1 [TCP RR], page 31, Section 6.2.4 [UDP RR], page 33 and Chapter 9
[The Omni Tests], page 47 tests.

Normally, netperf will attempt to ramp-up the number of outstanding requests to ‘num’
plus one transactions in flight at one time. The ramp-up is to avoid transactions being
smashed together into a smaller number of segments when the transport’s congestion win-
dow (if any) is smaller at the time than what netperf wants to have outstanding at one
time. If, however, the user specifies a negative value for ‘num’ this ramp-up is bypassed and
the burst of sends is made without consideration of transport congestion window.

This burst-mode is used as an alternative to or even in conjunction with multiple-
concurrent RR tests and as a way to implement a single-connection, bidirectional bulk-
transfer test. When run with just a single instance of netperf, increasing the burst size
can determine the maximum number of transactions per second which can be serviced by
a single process:

for b in 0 1 2 4 8 16 32

do

netperf -v 0 -t TCP_RR -B "-b $b" -H hpcpc108 -P 0 -- -b $b

done

9457.59 -b 0

Chapter 7: Using Netperf to Measure Aggregate Performance 39

9975.37 -b 1

10000.61 -b 2

20084.47 -b 4

29965.31 -b 8

71929.27 -b 16

109718.17 -b 32

The global ‘-v’ and ‘-P’ options were used to minimize the output to the single figure of
merit which in this case the transaction rate. The global -B option was used to more clearly
label the output, and the test-specific ‘-b’ option enabled by --enable-burst increase the
number of transactions in flight at one time.

Now, since the test-specific ‘-D’ option was not specified to set TCP NODELAY, the
stack was free to “bundle” requests and/or responses into TCP segments as it saw fit,
and since the default request and response size is one byte, there could have been some
considerable bundling even in the absence of transport congestion window issues. If one
wants to try to achieve a closer to one-to-one correspondence between a request and response
and a TCP segment, add the test-specific ‘-D’ option:

for b in 0 1 2 4 8 16 32

do

netperf -v 0 -t TCP_RR -B "-b $b -D" -H hpcpc108 -P 0 -- -b $b -D

done

8695.12 -b 0 -D

19966.48 -b 1 -D

20691.07 -b 2 -D

49893.58 -b 4 -D

62057.31 -b 8 -D

108416.88 -b 16 -D

114411.66 -b 32 -D

You can see that this has a rather large effect on the reported transaction rate. In
this particular instance, the author believes it relates to interactions between the test and
interrupt coalescing settings in the driver for the NICs used.

NOTE: Even if you set the ‘-D’ option that is still not a guarantee that each
transaction is in its own TCP segments. You should get into the habit of
verifying the relationship between the transaction rate and the packet rate via
other means.

You can also combine --enable-burst functionality with concurrent netperf tests. This
would then be an “aggregate of aggregates” if you like:

for i in 1 2 3 4

do

netperf -H hpcpc108 -v 0 -P 0 -i 10 -B "aggregate $i -b 8 -D" -t TCP_RR -- -b 8 -D &

done

46668.38 aggregate 4 -b 8 -D

44890.64 aggregate 2 -b 8 -D

Chapter 7: Using Netperf to Measure Aggregate Performance 40

45702.04 aggregate 1 -b 8 -D

46352.48 aggregate 3 -b 8 -D

Since each netperf did hit the confidence intervals, we can be reasonably certain that the
aggregate transaction per second rate was the sum of all four concurrent tests, or something
just shy of 184,000 transactions per second. To get some idea if that was also the packet
per second rate, we could bracket that for loop with something to gather statistics and run
the results through beforeafter:

/usr/sbin/ethtool -S eth2 > before

for i in 1 2 3 4

do

netperf -H 192.168.2.108 -l 60 -v 0 -P 0 -B "aggregate $i -b 8 -D" -t TCP_RR -- -b 8 -D &

done

wait

/usr/sbin/ethtool -S eth2 > after

52312.62 aggregate 2 -b 8 -D

50105.65 aggregate 4 -b 8 -D

50890.82 aggregate 1 -b 8 -D

50869.20 aggregate 3 -b 8 -D

beforeafter before after > delta

grep packets delta

rx_packets: 12251544

tx_packets: 12251550

This example uses ethtool because the system being used is running Linux. Other
platforms have other tools - for example HP-UX has lanadmin:

lanadmin -g mibstats <ppa>

and of course one could instead use netstat.

The wait is important because we are launching concurrent netperfs in the background.
Without it, the second ethtool command would be run before the tests finished and perhaps
even before the last of them got started!

The sum of the reported transaction rates is 204178 over 60 seconds, which is a total of
12250680 transactions. Each transaction is the exchange of a request and a response, so we
multiply that by 2 to arrive at 24501360.

The sum of the ethtool stats is 24503094 packets which matches what netperf was re-
porting very well.

Had the request or response size differed, we would need to know how it compared with
the MSS for the connection.

Just for grins, here is the exercise repeated, using netstat instead of ethtool

netstat -s -t > before

for i in 1 2 3 4

ftp://ftp.cup.hp.com/dist/networking/tools

Chapter 7: Using Netperf to Measure Aggregate Performance 41

do

netperf -l 60 -H 192.168.2.108 -v 0 -P 0 -B "aggregate $i -b 8 -D" -t TCP_RR -- -b 8 -D & done

wait

netstat -s -t > after

51305.88 aggregate 4 -b 8 -D

51847.73 aggregate 2 -b 8 -D

50648.19 aggregate 3 -b 8 -D

53605.86 aggregate 1 -b 8 -D

beforeafter before after > delta

grep segments delta

12445708 segments received

12445730 segments send out

1 segments retransmited

0 bad segments received.

The sums are left as an exercise to the reader :)

Things become considerably more complicated if there are non-trvial packet losses and/or
retransmissions.

Of course all this checking is unnecessary if the test is a UDP RR test because UDP
“never” aggregates multiple sends into the same UDP datagram, and there are no AC-
Knowledgements in UDP. The loss of a single request or response will not bring a “burst”
UDP RR test to a screeching halt, but it will reduce the number of transactions outstanding
at any one time. A “burst” UDP RR test will come to a halt if the sum of the lost requests
and responses reaches the value specified in the test-specific ‘-b’ option.

7.3 Using - -enable-demo

One can

configure --enable-demo

and compile netperf to enable netperf to emit “interim results” at semi-regular intervals.
This enables a global -D option which takes a reporting interval as an argument. With that
specified, the output of netperf will then look something like

$ src/netperf -D 1.25

MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain () port 0 AF_INET : demo

Interim result: 25425.52 10^6bits/s over 1.25 seconds ending at 1327962078.405

Interim result: 25486.82 10^6bits/s over 1.25 seconds ending at 1327962079.655

Interim result: 25474.96 10^6bits/s over 1.25 seconds ending at 1327962080.905

Interim result: 25523.49 10^6bits/s over 1.25 seconds ending at 1327962082.155

Interim result: 25053.57 10^6bits/s over 1.27 seconds ending at 1327962083.429

Interim result: 25349.64 10^6bits/s over 1.25 seconds ending at 1327962084.679

Interim result: 25292.84 10^6bits/s over 1.25 seconds ending at 1327962085.932

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

Chapter 7: Using Netperf to Measure Aggregate Performance 42

bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 10.00 25375.66

The units of the “Interim result” lines will follow the units selected via the global -f
option. If the test-specific -o option is specified on the command line, the format will be
CSV:

...

2978.81,MBytes/s,1.25,1327962298.035

...

If the test-specific -k option is used the format will be keyval with each keyval being
given an index:

...

NETPERF_INTERIM_RESULT[2]=25.00

NETPERF_UNITS[2]=10^9bits/s

NETPERF_INTERVAL[2]=1.25

NETPERF_ENDING[2]=1327962357.249

...

The expectation is it may be easier to utilize the keyvals if they have indices.

But how does this help with aggregate tests? Well, what one can do is start the netperfs
via a script, giving each a Very Long (tm) run time. Direct the output to a file per
instance. Then, once all the netperfs have been started, take a timestamp and wait for
some desired test interval. Once that interval expires take another timestamp and then
start terminating the netperfs by sending them a SIGALRM signal via the likes of the kill

or pkill command. The netperfs will terminate and emit the rest of the “usual” output,
and you can then bring the files to a central location for post processing to find the aggregate
performance over the “test interval.”

This method has the advantage that it does not require advance knowledge of how long
it takes to get netperf tests started and/or stopped. It does though require sufficiently
synchronized clocks on all the test systems.

While calls to get the current time can be inexpensive, that neither has been nor is uni-
versally true. For that reason netperf tries to minimize the number of such “timestamping”
calls (eg gettimeofday) calls it makes when in demo mode. Rather than take a timestamp
after each send or recv call completes netperf tries to guess how many units of work will
be performed over the desired interval. Only once that many units of work have been com-
pleted will netperf check the time. If the reporting interval has passed, netperf will emit an
“interim result.” If the interval has not passed, netperf will update its estimate for units
and continue.

After a bit of thought one can see that if things “speed-up” netperf will still honor the
interval. However, if things “slow-down” netperf may be late with an “interim result.” Here
is an example of both of those happening during a test - with the interval being honored
while throughput increases, and then about half-way through when another netperf (not
shown) is started we see things slowing down and netperf not hitting the interval as desired.

$ src/netperf -D 2 -H tardy.hpl.hp.com -l 20

MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to tardy.hpl.hp.com () port 0 AF_INET : demo

Interim result: 36.46 10^6bits/s over 2.01 seconds ending at 1327963880.565

Chapter 7: Using Netperf to Measure Aggregate Performance 43

Interim result: 59.19 10^6bits/s over 2.00 seconds ending at 1327963882.569

Interim result: 73.39 10^6bits/s over 2.01 seconds ending at 1327963884.576

Interim result: 84.01 10^6bits/s over 2.03 seconds ending at 1327963886.603

Interim result: 75.63 10^6bits/s over 2.21 seconds ending at 1327963888.814

Interim result: 55.52 10^6bits/s over 2.72 seconds ending at 1327963891.538

Interim result: 70.94 10^6bits/s over 2.11 seconds ending at 1327963893.650

Interim result: 80.66 10^6bits/s over 2.13 seconds ending at 1327963895.777

Interim result: 86.42 10^6bits/s over 2.12 seconds ending at 1327963897.901

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 20.34 68.87

So long as your post-processing mechanism can account for that, there should be no
problem. As time passes there may be changes to try to improve the netperf’s honoring
the interval but one should not ass-u-me it will always do so. One should not assume the
precision will remain fixed - future versions may change it - perhaps going beyond tenths
of seconds in reporting the interval length etc.

Chapter 8: Using Netperf to Measure Bidirectional Transfer 44

8 Using Netperf to Measure Bidirectional
Transfer

There are two ways to use netperf to measure the performance of bidirectional transfer. The
first is to run concurrent netperf tests from the command line. The second is to configure
netperf with --enable-burst and use a single instance of the Section 6.2.1 [TCP RR],
page 31 test.

While neither method is more “correct” than the other, each is doing so in different ways,
and that has possible implications. For instance, using the concurrent netperf test mech-
anism means that multiple TCP connections and multiple processes are involved, whereas
using the single instance of TCP RR there is only one TCP connection and one process on
each end. They may behave differently, especially on an MP system.

8.1 Bidirectional Transfer with Concurrent Tests

If we had two hosts Fred and Ethel, we could simply run a netperf Section 5.2.1
[TCP STREAM], page 23 test on Fred pointing at Ethel, and a concurrent netperf
TCP STREAM test on Ethel pointing at Fred, but since there are no mechanisms to
synchronize netperf tests and we would be starting tests from two different systems, there
is a considerable risk of skew error.

Far better would be to run simultaneous TCP STREAM and Section 5.2.2
[TCP MAERTS], page 24 tests from just one system, using the concepts and procedures
outlined in Section 7.1 [Running Concurrent Netperf Tests], page 36. Here then is an
example:

for i in 1

do

netperf -H 192.168.2.108 -t TCP_STREAM -B "outbound" -i 10 -P 0 -v 0 \

-- -s 256K -S 256K &

netperf -H 192.168.2.108 -t TCP_MAERTS -B "inbound" -i 10 -P 0 -v 0 \

-- -s 256K -S 256K &

done

892.66 outbound

891.34 inbound

We have used a for loop in the shell with just one iteration because that will be much
easier to get both tests started at more or less the same time than doing it by hand. The
global ‘-P’ and ‘-v’ options are used because we aren’t interested in anything other than
the throughput, and the global ‘-B’ option is used to tag each output so we know which
was inbound and which outbound relative to the system on which we were running netperf.
Of course that sense is switched on the system running netserver :) The use of the global
‘-i’ option is explained in Section 7.1 [Running Concurrent Netperf Tests], page 36.

Beginning with version 2.5.0 we can accomplish a similar result with the Chapter 9 [The
Omni Tests], page 47 and Section 9.3.1 [Omni Output Selectors], page 51:

for i in 1

do

netperf -H 192.168.1.3 -t omni -l 10 -P 0 -- \

-d stream -s 256K -S 256K -o throughput,direction &

Chapter 8: Using Netperf to Measure Bidirectional Transfer 45

netperf -H 192.168.1.3 -t omni -l 10 -P 0 -- \

-d maerts -s 256K -S 256K -o throughput,direction &

done

805.26,Receive

828.54,Send

8.2 Bidirectional Transfer with TCP RR

Starting with version 2.5.0 the --enable-burst configure option defaults to yes, and start-
ing some time before version 2.5.0 but after 2.4.0 the global ‘-f’ option would affect the
“throughput” reported by request/response tests. If one uses the test-specific ‘-b’ option to
have several “transactions” in flight at one time and the test-specific ‘-r’ option to increase
their size, the test looks more and more like a single-connection bidirectional transfer than
a simple request/response test.

So, putting it all together one can do something like:

netperf -f m -t TCP_RR -H 192.168.1.3 -v 2 -- -b 6 -r 32K -S 256K -S 256K

MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 192.168.1.3 (192.168.1.3) port 0 AF_INET : interval : first burst 6

Local /Remote

Socket Size Request Resp. Elapsed

Send Recv Size Size Time Throughput

bytes Bytes bytes bytes secs. 10^6bits/sec

16384 87380 32768 32768 10.00 1821.30

524288 524288

Alignment Offset RoundTrip Trans Throughput

Local Remote Local Remote Latency Rate 10^6bits/s

Send Recv Send Recv usec/Tran per sec Outbound Inbound

8 0 0 0 2015.402 3473.252 910.492 910.492

to get a bidirectional bulk-throughput result. As one can see, the -v 2 output will include
a number of interesting, related values.

NOTE: The logic behind --enable-burst is very simple, and there are no calls
to poll() or select() which means we want to make sure that the send()

calls will never block, or we run the risk of deadlock with each side stuck trying
to call send() and neither calling recv().

Fortunately, this is easily accomplished by setting a “large enough” socket buffer size
with the test-specific ‘-s’ and ‘-S’ options. Presently this must be performed by the user.
Future versions of netperf might attempt to do this automagically, but there are some issues
to be worked-out.

8.3 Implications of Concurrent Tests vs Burst
Request/Response

There are perhaps subtle but important differences between using concurrent unidirectional
tests vs a burst-mode request to measure bidirectional performance.

Broadly speaking, a single “connection” or “flow” of traffic cannot make use of the
services of more than one or two CPUs at either end. Whether one or two CPUs will be

Chapter 8: Using Netperf to Measure Bidirectional Transfer 46

used processing a flow will depend on the specifics of the stack(s) involved and whether or
not the global ‘-T’ option has been used to bind netperf/netserver to specific CPUs.

When using concurrent tests there will be two concurrent connections or flows, which
means that upwards of four CPUs will be employed processing the packets (global ‘-T’ used,
no more than two if not), however, with just a single, bidirectional request/response test
no more than two CPUs will be employed (only one if the global ‘-T’ is not used).

If there is a CPU bottleneck on either system this may result in rather different results
between the two methods.

Also, with a bidirectional request/response test there is something of a natural balance
or synchronization between inbound and outbound - a response will not be sent until a
request is received, and (once the burst level is reached) a subsequent request will not be
sent until a response is received. This may mask favoritism in the NIC between inbound
and outbound processing.

With two concurrent unidirectional tests there is no such synchronization or balance and
any favoritism in the NIC may be exposed.

Chapter 9: The Omni Tests 47

9 The Omni Tests

Beginning with version 2.5.0, netperf begins a migration to the ‘omni’ tests or “Two routines
to measure them all.” The code for the omni tests can be found in ‘src/nettest_omni.c’
and the goal is to make it easier for netperf to support multiple protocols and report a
great many additional things about the systems under test. Additionally, a flexible output
selection mechanism is present which allows the user to chose specifically what values she
wishes to have reported and in what format.

The omni tests are included by default in version 2.5.0. To disable them, one must:

./configure --enable-omni=no ...

and remake netperf. Remaking netserver is optional because even in 2.5.0 it has “unmi-
grated” netserver side routines for the classic (eg ‘src/nettest_bsd.c’) tests.

9.1 Native Omni Tests

One access the omni tests “natively” by using a value of “OMNI” with the global ‘-t’ test-
selection option. This will then cause netperf to use the code in ‘src/nettest_omni.c’ and
in particular the test-specific options parser for the omni tests. The test-specific options for
the omni tests are a superset of those for “classic” tests. The options added by the omni
tests are:

-c This explicitly declares that the test is to include connection establishment and
tear-down as in either a TCP CRR or TCP CC test.

-d <direction>

This option sets the direction of the test relative to the netperf process. As of
version 2.5.0 one can use the following in a case-insensitive manner:

send, stream, transmit, xmit or 2

Any of which will cause netperf to send to the netserver.

recv, receive, maerts or 4

Any of which will cause netserver to send to netperf.

rr or 6 Either of which will cause a request/response test.

Additionally, one can specify two directions separated by a ’|’ character and
they will be OR’ed together. In this way one can use the ”Send|Recv” that will
be emitted by the Section 9.3.1 [Omni Output Selectors], page 51 Section 9.3
[Omni Output Selection], page 50 when used with a request/response test.

-k [Section 9.3 [Omni Output Selection], page 50]

This option sets the style of output to “keyval” where each line of output has
the form:

key=value

For example:

$ netperf -t omni -- -d rr -k "THROUGHPUT,THROUGHPUT_UNITS"

OMNI TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET : demo

THROUGHPUT=59092.65

THROUGHPUT_UNITS=Trans/s

Using the ‘-k’ option will override any previous, test-specific ‘-o’ or ‘-O’ option.

Chapter 9: The Omni Tests 48

-o [Section 9.3 [Omni Output Selection], page 50]

This option sets the style of output to “CSV” where there will be one line
of comma-separated values, preceded by one line of column names unless the
global ‘-P’ option is used with a value of 0:

$ netperf -t omni -- -d rr -o "THROUGHPUT,THROUGHPUT_UNITS"

OMNI TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET : demo

Throughput,Throughput Units

60999.07,Trans/s

Using the ‘-o’ option will override any previous, test-specific ‘-k’ or ‘-O’ option.

-O [Section 9.3 [Omni Output Selection], page 50]

This option sets the style of output to “human readable” which will look quite
similar to classic netperf output:

$ netperf -t omni -- -d rr -O "THROUGHPUT,THROUGHPUT_UNITS"

OMNI TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET : demo

Throughput Throughput

Units

60492.57 Trans/s

Using the ‘-O’ option will override any previous, test-specific ‘-k’ or ‘-o’ option.

-t This option explicitly sets the socket type for the test’s data connection. As
of version 2.5.0 the known socket types include “stream” and “dgram” for
SOCK STREAM and SOCK DGRAM respectively.

-T <protocol>

This option is used to explicitly set the protocol used for the test. It is case-
insensitive. As of version 2.5.0 the protocols known to netperf include:

TCP Select the Transmission Control Protocol

UDP Select the User Datagram Protocol

SDP Select the Sockets Direct Protocol

DCCP Select the Datagram Congestion Control Protocol

SCTP Select the Stream Control Transport Protocol

udplite Select UDP Lite

The default is implicit based on other settings.

The omni tests also extend the interpretation of some of the classic, test-specific options
for the BSD Sockets tests:

-m <optionspec>

This can set the send size for either or both of the netperf and netserver sides
of the test:

-m 32K

sets only the netperf-side send size to 32768 bytes, and or’s-in transmit for the
direction. This is effectively the same behaviour as for the classic tests.

Chapter 9: The Omni Tests 49

-m ,32K

sets only the netserver side send size to 32768 bytes and or’s-in receive for the
direction.

-m 16K,32K

sets the netperf side send size to 16284 bytes, the netserver side

send size to 32768 bytes and the direction will be "Send|Recv."

-M <optionspec>

This can set the receive size for either or both of the netperf and netserver sides
of the test:

-M 32K

sets only the netserver side receive size to 32768 bytes and or’s-in send for the
test direction.

-M ,32K

sets only the netperf side receive size to 32768 bytes and or’s-in receive for the
test direction.

-M 16K,32K

sets the netserver side receive size to 16384 bytes and the netperf side receive
size to 32768 bytes and the direction will be "Send|Recv."

9.2 Migrated Tests

As of version 2.5.0 several tests have been migrated to use the omni code in
‘src/nettest_omni.c’ for the core of their testing. A migrated test retains all its previous
output code and so should still “look and feel” just like a pre-2.5.0 test with one exception
- the first line of the test banners will include the word “MIGRATED” at the beginning as
in:

$ netperf

MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET : demo

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 10.00 27175.27

The tests migrated in version 2.5.0 are:

• TCP STREAM

• TCP MAERTS

• TCP RR

• TCP CRR

• UDP STREAM

• UDP RR

It is expected that future releases will have additional tests migrated to use the “omni”
functionality.

Chapter 9: The Omni Tests 50

If one uses “omni-specific” test-specific options in conjunction with a migrated test,
instead of using the classic output code, the new omni output code will be used. For example
if one uses the ‘-k’ test-specific option with a value of “MIN LATENCY,MAX LATENCY”
with a migrated TCP RR test one will see:

$ netperf -t tcp_rr -- -k THROUGHPUT,THROUGHPUT_UNITS

MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET : demo

THROUGHPUT=60074.74

THROUGHPUT_UNITS=Trans/s

rather than:

$ netperf -t tcp_rr

MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET : demo

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 10.00 59421.52

16384 87380

9.3 Omni Output Selection

The omni test-specific ‘-k’, ‘-o’ and ‘-O’ options take an optional output selector by
which the user can configure what values are reported. The output selector can take several
forms:

‘filename’

The output selections will be read from the named file. Within the file there
can be up to four lines of comma-separated output selectors. This controls
how many multi-line blocks of output are emitted when the ‘-O’ option is used.
This output, while not identical to “classic” netperf output, is inspired by it.
Multiple lines have no effect for ‘-k’ and ‘-o’ options. Putting output selections
in a file can be useful when the list of selections is long.

comma and/or semi-colon-separated list

The output selections will be parsed from a comma and/or semi-colon-separated
list of output selectors. When the list is given to a ‘-O’ option a semi-colon
specifies a new output block should be started. Semi-colons have the same
meaning as commas when used with the ‘-k’ or ‘-o’ options. Depending on
the command interpreter being used, the semi-colon may have to be escaped
somehow to keep it from being interpreted by the command interpreter. This
can often be done by enclosing the entire list in quotes.

all If the keyword all is specified it means that all known output values should be
displayed at the end of the test. This can be a great deal of output. As of
version 2.5.0 there are 157 different output selectors.

? If a “?” is given as the output selection, the list of all known output selectors
will be displayed and no test actually run. When passed to the ‘-O’ option they
will be listed one per line. Otherwise they will be listed as a comma-separated

Chapter 9: The Omni Tests 51

list. It may be necessary to protect the “?” from the command interpreter by
escaping it or enclosing it in quotes.

no selector

If nothing is given to the ‘-k’, ‘-o’ or ‘-O’ option then the code selects a default
set of output selectors inspired by classic netperf output. The format will be
the ‘human readable’ format emitted by the test-specific ‘-O’ option.

The order of evaluation will first check for an output selection. If none is specified with
the ‘-k’, ‘-o’ or ‘-O’ option netperf will select a default based on the characteristics of the
test. If there is an output selection, the code will first check for ‘?’, then check to see if it
is the magic ‘all’ keyword. After that it will check for either ‘,’ or ‘;’ in the selection and
take that to mean it is a comma and/or semi-colon-separated list. If none of those checks
match, netperf will then assume the output specification is a filename and attempt to open
and parse the file.

9.3.1 Omni Output Selectors

As of version 2.5.0 the output selectors are:

OUTPUT_NONE

This is essentially a null output. For ‘-k’ output it will simply add a line that
reads “OUTPUT NONE=” to the output. For ‘-o’ it will cause an empty
“column” to be included. For ‘-O’ output it will cause extra spaces to separate
“real” output.

SOCKET_TYPE

This will cause the socket type (eg SOCK STREAM, SOCK DGRAM) for the
data connection to be output.

PROTOCOL This will cause the protocol used for the data connection to be displayed.

DIRECTION

This will display the data flow direction relative to the netperf process. Units:
Send or Recv for a unidirectional bulk-transfer test, or Send|Recv for a re-
quest/response test.

ELAPSED_TIME

This will display the elapsed time in seconds for the test.

THROUGHPUT

This will display the throughput for the test. Units: As requested via the global
‘-f’ option and displayed by the THROUGHPUT UNITS output selector.

THROUGHPUT_UNITS

This will display the units for what is displayed by the THROUGHPUT output
selector.

LSS_SIZE_REQ

This will display the local (netperf) send socket buffer size (aka SO SNDBUF)
requested via the command line. Units: Bytes.

LSS_SIZE This will display the local (netperf) send socket buffer size (SO SNDBUF)
immediately after the data connection socket was created. Peculiarities of dif-

Chapter 9: The Omni Tests 52

ferent networking stacks may lead to this differing from the size requested via
the command line. Units: Bytes.

LSS_SIZE_END

This will display the local (netperf) send socket buffer size (SO SNDBUF) im-
mediately before the data connection socket is closed. Peculiarities of different
networking stacks may lead this to differ from the size requested via the com-
mand line and/or the size immediately after the data connection socket was
created. Units: Bytes.

LSR_SIZE_REQ

This will display the local (netperf) receive socket buffer size (aka
SO RCVBUF) requested via the command line. Units: Bytes.

LSR_SIZE This will display the local (netperf) receive socket buffer size (SO RCVBUF)
immediately after the data connection socket was created. Peculiarities of dif-
ferent networking stacks may lead to this differing from the size requested via
the command line. Units: Bytes.

LSR_SIZE_END

This will display the local (netperf) receive socket buffer size (SO RCVBUF)
immediately before the data connection socket is closed. Peculiarities of differ-
ent networking stacks may lead this to differ from the size requested via the
command line and/or the size immediately after the data connection socket was
created. Units: Bytes.

RSS_SIZE_REQ

This will display the remote (netserver) send socket buffer size (aka
SO SNDBUF) requested via the command line. Units: Bytes.

RSS_SIZE This will display the remote (netserver) send socket buffer size (SO SNDBUF)
immediately after the data connection socket was created. Peculiarities of dif-
ferent networking stacks may lead to this differing from the size requested via
the command line. Units: Bytes.

RSS_SIZE_END

This will display the remote (netserver) send socket buffer size (SO SNDBUF)
immediately before the data connection socket is closed. Peculiarities of differ-
ent networking stacks may lead this to differ from the size requested via the
command line and/or the size immediately after the data connection socket was
created. Units: Bytes.

RSR_SIZE_REQ

This will display the remote (netserver) receive socket buffer size (aka
SO RCVBUF) requested via the command line. Units: Bytes.

RSR_SIZE This will display the remote (netserver) receive socket buffer size
(SO RCVBUF) immediately after the data connection socket was created.
Peculiarities of different networking stacks may lead to this differing from the
size requested via the command line. Units: Bytes.

Chapter 9: The Omni Tests 53

RSR_SIZE_END

This will display the remote (netserver) receive socket buffer size
(SO RCVBUF) immediately before the data connection socket is closed.
Peculiarities of different networking stacks may lead this to differ from the size
requested via the command line and/or the size immediately after the data
connection socket was created. Units: Bytes.

LOCAL_SEND_SIZE

This will display the size of the buffers netperf passed in any “send” calls it
made on the data connection for a non-request/response test. Units: Bytes.

LOCAL_RECV_SIZE

This will display the size of the buffers netperf passed in any “receive” calls it
made on the data connection for a non-request/response test. Units: Bytes.

REMOTE_SEND_SIZE

This will display the size of the buffers netserver passed in any “send” calls it
made on the data connection for a non-request/response test. Units: Bytes.

REMOTE_RECV_SIZE

This will display the size of the buffers netserver passed in any “receive” calls
it made on the data connection for a non-request/response test. Units: Bytes.

REQUEST_SIZE

This will display the size of the requests netperf sent in a request-response test.
Units: Bytes.

RESPONSE_SIZE

This will display the size of the responses netserver sent in a request-response
test. Units: Bytes.

LOCAL_CPU_UTIL

This will display the overall CPU utilization during the test as measured by
netperf. Units: 0 to 100 percent.

LOCAL_CPU_METHOD

This will display the method used by netperf to measure CPU utilization. Units:
single character denoting method.

LOCAL_SD This will display the service demand, or units of CPU consumed per unit of
work, as measured by netperf. Units: microseconds of CPU consumed per
either KB (K==1024) of data transferred or request/response transaction.

REMOTE_CPU_UTIL

This will display the overall CPU utilization during the test as measured by
netserver. Units 0 to 100 percent.

REMOTE_CPU_METHOD

This will display the method used by netserver to measure CPU utilization.
Units: single character denoting method.

REMOTE_SD

This will display the service demand, or units of CPU consumed per unit of
work, as measured by netserver. Units: microseconds of CPU consumed per
either KB (K==1024) of data transferred or request/response transaction.

Chapter 9: The Omni Tests 54

SD_UNITS This will display the units for LOCAL SD and REMOTE SD

CONFIDENCE_LEVEL

This will display the confidence level requested by the user either explicitly via
the global ‘-I’ option, or implicitly via the global ‘-i’ option. The value will
be either 95 or 99 if confidence intervals have been requested or 0 if they were
not. Units: Percent

CONFIDENCE_INTERVAL

This will display the width of the confidence interval requested either explicitly
via the global ‘-I’ option or implicitly via the global ‘-i’ option. Units: Width
in percent of mean value computed. A value of -1.0 means that confidence
intervals were not requested.

CONFIDENCE_ITERATION

This will display the number of test iterations netperf undertook, perhaps while
attempting to achieve the requested confidence interval and level. If confidence
intervals were requested via the command line then the value will be between
3 and 30. If confidence intervals were not requested the value will be 1. Units:
Iterations

THROUGHPUT_CONFID

This will display the width of the confidence interval actually achieved for
THROUGHPUT during the test. Units: Width of interval as percentage of reported
throughput value.

LOCAL_CPU_CONFID

This will display the width of the confidence interval actually achieved for over-
all CPU utilization on the system running netperf (LOCAL_CPU_UTIL) during
the test, if CPU utilization measurement was enabled. Units: Width of interval
as percentage of reported CPU utilization.

REMOTE_CPU_CONFID

This will display the width of the confidence interval actually achieved for over-
all CPU utilization on the system running netserver (REMOTE_CPU_UTIL) during
the test, if CPU utilization measurement was enabled. Units: Width of interval
as percentage of reported CPU utilization.

TRANSACTION_RATE

This will display the transaction rate in transactions per second for a re-
quest/response test even if the user has requested a throughput in units of
bits or bytes per second via the global ‘-f’ option. It is undefined for a non-
request/response test. Units: Transactions per second.

RT_LATENCY

This will display the average round-trip latency for a request/response test,
accounting for number of transactions in flight at one time. It is undefined for
a non-request/response test. Units: Microseconds per transaction

BURST_SIZE

This will display the “burst size” or added transactions in flight in a
request/response test as requested via a test-specific ‘-b’ option. The number

Chapter 9: The Omni Tests 55

of transactions in flight at one time will be one greater than this value. It is
undefined for a non-request/response test. Units: added Transactions in flight.

LOCAL_TRANSPORT_RETRANS

This will display the number of retransmissions experienced on the data connec-
tion during the test as determined by netperf. A value of -1 means the attempt
to determine the number of retransmissions failed or the concept was not valid
for the given protocol or the mechanism is not known for the platform. A value
of -2 means it was not attempted. As of version 2.5.0 the meaning of values are
in flux and subject to change. Units: number of retransmissions.

REMOTE_TRANSPORT_RETRANS

This will display the number of retransmissions experienced on the data con-
nection during the test as determined by netserver. A value of -1 means the
attempt to determine the number of retransmissions failed or the concept was
not valid for the given protocol or the mechanism is not known for the platform.
A value of -2 means it was not attempted. As of version 2.5.0 the meaning of
values are in flux and subject to change. Units: number of retransmissions.

TRANSPORT_MSS

This will display the Maximum Segment Size (aka MSS) or its equivalent for
the protocol being used during the test. A value of -1 means either the concept
of an MSS did not apply to the protocol being used, or there was an error in
retrieving it. Units: Bytes.

LOCAL_SEND_THROUGHPUT

The throughput as measured by netperf for the successful “send” calls it made
on the data connection. Units: as requested via the global ‘-f’ option and
displayed via the THROUGHPUT_UNITS output selector.

LOCAL_RECV_THROUGHPUT

The throughput as measured by netperf for the successful “receive” calls it
made on the data connection. Units: as requested via the global ‘-f’ option
and displayed via the THROUGHPUT_UNITS output selector.

REMOTE_SEND_THROUGHPUT

The throughput as measured by netserver for the successful “send” calls it
made on the data connection. Units: as requested via the global ‘-f’ option
and displayed via the THROUGHPUT_UNITS output selector.

REMOTE_RECV_THROUGHPUT

The throughput as measured by netserver for the successful “receive” calls it
made on the data connection. Units: as requested via the global ‘-f’ option
and displayed via the THROUGHPUT_UNITS output selector.

LOCAL_CPU_BIND

The CPU to which netperf was bound, if at all, during the test. A value of -1
means that netperf was not explicitly bound to a CPU during the test. Units:
CPU ID

LOCAL_CPU_COUNT

The number of CPUs (cores, threads) detected by netperf. Units: CPU count.

Chapter 9: The Omni Tests 56

LOCAL_CPU_PEAK_UTIL

The utilization of the CPU most heavily utilized during the test, as measured
by netperf. This can be used to see if any one CPU of a multi-CPU system was
saturated even though the overall CPU utilization as reported by LOCAL_CPU_

UTIL was low. Units: 0 to 100%

LOCAL_CPU_PEAK_ID

The id of the CPU most heavily utilized during the test as determined by
netperf. Units: CPU ID.

LOCAL_CPU_MODEL

Model information for the processor(s) present on the system running netperf.
Assumes all processors in the system (as perceived by netperf) on which netperf
is running are the same model. Units: Text

LOCAL_CPU_FREQUENCY

The frequency of the processor(s) on the system running netperf, at the time
netperf made the call. Assumes that all processors present in the system running
netperf are running at the same frequency. Units: MHz

REMOTE_CPU_BIND

The CPU to which netserver was bound, if at all, during the test. A value of -1
means that netperf was not explicitly bound to a CPU during the test. Units:
CPU ID

REMOTE_CPU_COUNT

The number of CPUs (cores, threads) detected by netserver. Units: CPU count.

REMOTE_CPU_PEAK_UTIL

The utilization of the CPU most heavily utilized during the test, as measured
by netserver. This can be used to see if any one CPU of a multi-CPU system
was saturated even though the overall CPU utilization as reported by REMOTE_

CPU_UTIL was low. Units: 0 to 100%

REMOTE_CPU_PEAK_ID

The id of the CPU most heavily utilized during the test as determined by
netserver. Units: CPU ID.

REMOTE_CPU_MODEL

Model information for the processor(s) present on the system running netserver.
Assumes all processors in the system (as perceived by netserver) on which
netserver is running are the same model. Units: Text

REMOTE_CPU_FREQUENCY

The frequency of the processor(s) on the system running netserver, at the time
netserver made the call. Assumes that all processors present in the system
running netserver are running at the same frequency. Units: MHz

SOURCE_PORT

The port ID/service name to which the data socket created by netperf was
bound. A value of 0 means the data socket was not explicitly bound to a port
number. Units: ASCII text.

Chapter 9: The Omni Tests 57

SOURCE_ADDR

The name/address to which the data socket created by netperf was bound. A
value of 0.0.0.0 means the data socket was not explicitly bound to an address.
Units: ASCII text.

SOURCE_FAMILY

The address family to which the data socket created by netperf was bound. A
value of 0 means the data socket was not explicitly bound to a given address
family. Units: ASCII text.

DEST_PORT

The port ID to which the data socket created by netserver was bound. A value
of 0 means the data socket was not explicitly bound to a port number. Units:
ASCII text.

DEST_ADDR

The name/address of the data socket created by netserver. Units: ASCII text.

DEST_FAMILY

The address family to which the data socket created by netserver was bound.
A value of 0 means the data socket was not explicitly bound to a given address
family. Units: ASCII text.

LOCAL_SEND_CALLS

The number of successful “send” calls made by netperf against its data socket.
Units: Calls.

LOCAL_RECV_CALLS

The number of successful “receive” calls made by netperf against its data socket.
Units: Calls.

LOCAL_BYTES_PER_RECV

The average number of bytes per “receive” call made by netperf against its data
socket. Units: Bytes.

LOCAL_BYTES_PER_SEND

The average number of bytes per “send” call made by netperf against its data
socket. Units: Bytes.

LOCAL_BYTES_SENT

The number of bytes successfully sent by netperf through its data socket. Units:
Bytes.

LOCAL_BYTES_RECVD

The number of bytes successfully received by netperf through its data socket.
Units: Bytes.

LOCAL_BYTES_XFERD

The sum of bytes sent and received by netperf through its data socket. Units:
Bytes.

LOCAL_SEND_OFFSET

The offset from the alignment of the buffers passed by netperf in its “send”
calls. Specified via the global ‘-o’ option and defaults to 0. Units: Bytes.

Chapter 9: The Omni Tests 58

LOCAL_RECV_OFFSET

The offset from the alignment of the buffers passed by netperf in its “receive”
calls. Specified via the global ‘-o’ option and defaults to 0. Units: Bytes.

LOCAL_SEND_ALIGN

The alignment of the buffers passed by netperf in its “send” calls as specified
via the global ‘-a’ option. Defaults to 8. Units: Bytes.

LOCAL_RECV_ALIGN

The alignment of the buffers passed by netperf in its “receive” calls as specified
via the global ‘-a’ option. Defaults to 8. Units: Bytes.

LOCAL_SEND_WIDTH

The “width” of the ring of buffers through which netperf cycles as it makes its
“send” calls. Defaults to one more than the local send socket buffer size divided
by the send size as determined at the time the data socket is created. Can be
used to make netperf more processor data cache unfriendly. Units: number of
buffers.

LOCAL_RECV_WIDTH

The “width” of the ring of buffers through which netperf cycles as it makes
its “receive” calls. Defaults to one more than the local receive socket buffer
size divided by the receive size as determined at the time the data socket is
created. Can be used to make netperf more processor data cache unfriendly.
Units: number of buffers.

LOCAL_SEND_DIRTY_COUNT

The number of bytes to “dirty” (write to) before netperf makes a “send” call.
Specified via the global ‘-k’ option, which requires that –enable-dirty=yes was
specified with the configure command prior to building netperf. Units: Bytes.

LOCAL_RECV_DIRTY_COUNT

The number of bytes to “dirty” (write to) before netperf makes a “recv” call.
Specified via the global ‘-k’ option which requires that –enable-dirty was spec-
ified with the configure command prior to building netperf. Units: Bytes.

LOCAL_RECV_CLEAN_COUNT

The number of bytes netperf should read “cleanly” before making a “receive”
call. Specified via the global ‘-k’ option which requires that –enable-dirty was
specified with configure command prior to building netperf. Clean reads start
were dirty writes ended. Units: Bytes.

LOCAL_NODELAY

Indicates whether or not setting the test protocol-specific “no delay” (eg
TCP NODELAY) option on the data socket used by netperf was requested by
the test-specific ‘-D’ option and successful. Units: 0 means no, 1 means yes.

LOCAL_CORK

Indicates whether or not TCP CORK was set on the data socket used by netperf
as requested via the test-specific ‘-C’ option. 1 means yes, 0 means no/not
applicable.

Chapter 9: The Omni Tests 59

REMOTE_SEND_CALLS

REMOTE_RECV_CALLS

REMOTE_BYTES_PER_RECV

REMOTE_BYTES_PER_SEND

REMOTE_BYTES_SENT

REMOTE_BYTES_RECVD

REMOTE_BYTES_XFERD

REMOTE_SEND_OFFSET

REMOTE_RECV_OFFSET

REMOTE_SEND_ALIGN

REMOTE_RECV_ALIGN

REMOTE_SEND_WIDTH

REMOTE_RECV_WIDTH

REMOTE_SEND_DIRTY_COUNT

REMOTE_RECV_DIRTY_COUNT

REMOTE_RECV_CLEAN_COUNT

REMOTE_NODELAY

REMOTE_CORK

These are all like their “LOCAL ” counterparts only for the netserver rather
than netperf.

LOCAL_SYSNAME

The name of the OS (eg “Linux”) running on the system on which netperf was
running. Units: ASCII Text

LOCAL_SYSTEM_MODEL

The model name of the system on which netperf was running. Units: ASCII
Text.

LOCAL_RELEASE

The release name/number of the OS running on the system on which netperf
was running. Units: ASCII Text

LOCAL_VERSION

The version number of the OS running on the system on which netperf was
running. Units: ASCII Text

LOCAL_MACHINE

The machine architecture of the machine on which netperf was running. Units:
ASCII Text.

REMOTE_SYSNAME

REMOTE_SYSTEM_MODEL

REMOTE_RELEASE

REMOTE_VERSION

REMOTE_MACHINE

These are all like their “LOCAL ” counterparts only for the netserver rather
than netperf.

Chapter 9: The Omni Tests 60

LOCAL_INTERFACE_NAME

The name of the probable egress interface through which the data connection
went on the system running netperf. Example: eth0. Units: ASCII Text.

LOCAL_INTERFACE_VENDOR

The vendor ID of the probable egress interface through which traffic on the
data connection went on the system running netperf. Units: Hexadecimal IDs
as might be found in a ‘pci.ids’ file or at the PCI ID Repository.

LOCAL_INTERFACE_DEVICE

The device ID of the probable egress interface through which traffic on the
data connection went on the system running netperf. Units: Hexadecimal IDs
as might be found in a ‘pci.ids’ file or at the PCI ID Repository.

LOCAL_INTERFACE_SUBVENDOR

The sub-vendor ID of the probable egress interface through which traffic on the
data connection went on the system running netperf. Units: Hexadecimal IDs
as might be found in a ‘pci.ids’ file or at the PCI ID Repository.

LOCAL_INTERFACE_SUBDEVICE

The sub-device ID of the probable egress interface through which traffic on the
data connection went on the system running netperf. Units: Hexadecimal IDs
as might be found in a ‘pci.ids’ file or at the PCI ID Repository.

LOCAL_DRIVER_NAME

The name of the driver used for the probable egress interface through which
traffic on the data connection went on the system running netperf. Units:
ASCII Text.

LOCAL_DRIVER_VERSION

The version string for the driver used for the probable egress interface through
which traffic on the data connection went on the system running netperf. Units:
ASCII Text.

LOCAL_DRIVER_FIRMWARE

The firmware version for the driver used for the probable egress interface
through which traffic on the data connection went on the system running
netperf. Units: ASCII Text.

LOCAL_DRIVER_BUS

The bus address of the probable egress interface through which traffic on the
data connection went on the system running netperf. Units: ASCII Text.

LOCAL_INTERFACE_SLOT

The slot ID of the probable egress interface through which traffic on the data
connection went on the system running netperf. Units: ASCII Text.

http://pciids.sourceforge.net/
http://pciids.sourceforge.net/
http://pciids.sourceforge.net/
http://pciids.sourceforge.net/

Chapter 9: The Omni Tests 61

REMOTE_INTERFACE_NAME

REMOTE_INTERFACE_VENDOR

REMOTE_INTERFACE_DEVICE

REMOTE_INTERFACE_SUBVENDOR

REMOTE_INTERFACE_SUBDEVICE

REMOTE_DRIVER_NAME

REMOTE_DRIVER_VERSION

REMOTE_DRIVER_FIRMWARE

REMOTE_DRIVER_BUS

REMOTE_INTERFACE_SLOT

These are all like their “LOCAL ” counterparts only for the netserver rather
than netperf.

LOCAL_INTERVAL_USECS

The interval at which bursts of operations (sends, receives, transactions) were
attempted by netperf. Specified by the global ‘-w’ option which requires –
enable-intervals to have been specified with the configure command prior to
building netperf. Units: Microseconds (though specified by default in millisec-
onds on the command line)

LOCAL_INTERVAL_BURST

The number of operations (sends, receives, transactions depending on the test)
which were attempted by netperf each LOCAL INTERVAL USECS units of
time. Specified by the global ‘-b’ option which requires –enable-intervals to have
been specified with the configure command prior to building netperf. Units:
number of operations per burst.

REMOTE_INTERVAL_USECS

The interval at which bursts of operations (sends, receives, transactions) were
attempted by netserver. Specified by the global ‘-w’ option which requires –
enable-intervals to have been specified with the configure command prior to
building netperf. Units: Microseconds (though specified by default in millisec-
onds on the command line)

REMOTE_INTERVAL_BURST

The number of operations (sends, receives, transactions depending on the test)
which were attempted by netperf each LOCAL INTERVAL USECS units of
time. Specified by the global ‘-b’ option which requires –enable-intervals to have
been specified with the configure command prior to building netperf. Units:
number of operations per burst.

Chapter 9: The Omni Tests 62

LOCAL_SECURITY_TYPE_ID

LOCAL_SECURITY_TYPE

LOCAL_SECURITY_ENABLED_NUM

LOCAL_SECURITY_ENABLED

LOCAL_SECURITY_SPECIFIC

REMOTE_SECURITY_TYPE_ID

REMOTE_SECURITY_TYPE

REMOTE_SECURITY_ENABLED_NUM

REMOTE_SECURITY_ENABLED

REMOTE_SECURITY_SPECIFIC

A bunch of stuff related to what sort of security mechanisms (eg SELINUX)
were enabled on the systems during the test.

RESULT_BRAND

The string specified by the user with the global ‘-B’ option. Units: ASCII Text.

UUID The universally unique identifier associated with this test, either generated
automagically by netperf, or passed to netperf via an omni test-specific ‘-u’
option. Note: Future versions may make this a global command-line option.
Units: ASCII Text.

MIN_LATENCY

The minimum “latency” or operation time (send, receive or request/response
exchange depending on the test) as measured on the netperf side when the
global ‘-j’ option was specified. Units: Microseconds.

MAX_LATENCY

The maximum “latency” or operation time (send, receive or request/response
exchange depending on the test) as measured on the netperf side when the
global ‘-j’ option was specified. Units: Microseconds.

P50_LATENCY

The 50th percentile value of “latency” or operation time (send, receive or re-
quest/response exchange depending on the test) as measured on the netperf
side when the global ‘-j’ option was specified. Units: Microseconds.

P90_LATENCY

The 90th percentile value of “latency” or operation time (send, receive or re-
quest/response exchange depending on the test) as measured on the netperf
side when the global ‘-j’ option was specified. Units: Microseconds.

P99_LATENCY

The 99th percentile value of “latency” or operation time (send, receive or re-
quest/response exchange depending on the test) as measured on the netperf
side when the global ‘-j’ option was specified. Units: Microseconds.

MEAN_LATENCY

The average “latency” or operation time (send, receive or request/response
exchange depending on the test) as measured on the netperf side when the
global ‘-j’ option was specified. Units: Microseconds.

Chapter 9: The Omni Tests 63

STDDEV_LATENCY

The standard deviation of “latency” or operation time (send, receive or re-
quest/response exchange depending on the test) as measured on the netperf
side when the global ‘-j’ option was specified. Units: Microseconds.

COMMAND_LINE

The full command line used when invoking netperf. Units: ASCII Text.

OUTPUT_END

While emitted with the list of output selectors, it is ignored when specified as
an output selector.

Chapter 10: Other Netperf Tests 64

10 Other Netperf Tests

Apart from the typical performance tests, netperf contains some tests which can be used to
streamline measurements and reporting. These include CPU rate calibration (present) and
host identification (future enhancement).

10.1 CPU rate calibration

Some of the CPU utilization measurement mechanisms of netperf work by comparing the
rate at which some counter increments when the system is idle with the rate at which that
same counter increments when the system is running a netperf test. The ratio of those rates
is used to arrive at a CPU utilization percentage.

This means that netperf must know the rate at which the counter increments when the
system is presumed to be “idle.” If it does not know the rate, netperf will measure it
before starting a data transfer test. This calibration step takes 40 seconds for each of the
local or remote systems, and if repeated for each netperf test would make taking repeated
measurements rather slow.

Thus, the netperf CPU utilization options ‘-c’ and and ‘-C’ can take an optional calibra-
tion value. This value is used as the “idle rate” and the calibration step is not performed.
To determine the idle rate, netperf can be used to run special tests which only report the
value of the calibration - they are the LOC CPU and REM CPU tests. These return the
calibration value for the local and remote system respectively. A common way to use these
tests is to store their results into an environment variable and use that in subsequent netperf
commands:

LOC_RATE=‘netperf -t LOC_CPU‘

REM_RATE=‘netperf -H <remote> -t REM_CPU‘

netperf -H <remote> -c $LOC_RATE -C $REM_RATE ... -- ...

...

netperf -H <remote> -c $LOC_RATE -C $REM_RATE ... -- ...

If you are going to use netperf to measure aggregate results, it is important to use the
LOC CPU and REM CPU tests to get the calibration values first to avoid issues with some
of the aggregate netperf tests transferring data while others are “idle” and getting bogus
calibration values. When running aggregate tests, it is very important to remember that
any one instance of netperf does not know about the other instances of netperf. It will
report global CPU utilization and will calculate service demand believing it was the only
thing causing that CPU utilization. So, you can use the CPU utilization reported by netperf
in an aggregate test, but you have to calculate service demands by hand.

10.2 UUID Generation

Beginning with version 2.5.0 netperf can generate Universally Unique IDentifiers (UUIDs).
This can be done explicitly via the “UUID” test:

$ netperf -t UUID

2c8561ae-9ebd-11e0-a297-0f5bfa0349d0

In and of itself, this is not terribly useful, but used in conjunction with the test-specific
‘-u’ option of an “omni” test to set the UUID emitted by the Section 9.3.1 [Omni Output

Chapter 10: Other Netperf Tests 65

Selectors], page 51 output selector, it can be used to tie-together the separate instances of
an aggregate netperf test. Say, for instance if they were inserted into a database of some
sort.

Chapter 11: Address Resolution 66

11 Address Resolution

Netperf versions 2.4.0 and later have merged IPv4 and IPv6 tests so the functionality of the
tests in ‘src/nettest_ipv6.c’ has been subsumed into the tests in ‘src/nettest_bsd.c’
This has been accomplished in part by switching from gethostbyname()to getaddrinfo()

exclusively. While it was theoretically possible to get multiple results for a hostname from
gethostbyname() it was generally unlikely and netperf’s ignoring of the second and later
results was not much of an issue.

Now with getaddrinfo and particularly with AF UNSPEC it is increasingly likely that a
given hostname will have multiple associated addresses. The establish_control() routine
of ‘src/netlib.c’ will indeed attempt to chose from among all the matching IP addresses
when establishing the control connection. Netperf does not really care if the control
connection is IPv4 or IPv6 or even mixed on either end.

However, the individual tests still ass-u-me that the first result in the address list is the
one to be used. Whether or not this will turn-out to be an issue has yet to be determined.

If you do run into problems with this, the easiest workaround is to specify IP ad-
dresses for the data connection explicitly in the test-specific ‘-H’ and ‘-L’ options. At
some point, the netperf tests may try to be more sophisticated in their parsing of returns
from getaddrinfo() - straw-man patches to netperf-feedback@netperf.org would of
course be most welcome :)

Netperf has leveraged code from other open-source projects with amenable licensing
to provide a replacement getaddrinfo() call on those platforms where the configure

script believes there is no native getaddrinfo call. As of this writing, the replacement
getaddrinfo() as been tested on HP-UX 11.0 and then presumed to run elsewhere.

mailto:netperf-feedback@netperf.org

Chapter 12: Enhancing Netperf 67

12 Enhancing Netperf

Netperf is constantly evolving. If you find you want to make enhancements to netperf, by
all means do so. If you wish to add a new “suite” of tests to netperf the general idea is to:

1. Add files ‘src/nettest_mumble.c’ and ‘src/nettest_mumble.h’ where mumble is re-
placed with something meaningful for the test-suite.

2. Add support for an appropriate ‘--enable-mumble’ option in ‘configure.ac’.

3. Edit ‘src/netperf.c’, ‘netsh.c’, and ‘netserver.c’ as required, using #ifdef
WANT MUMBLE.

4. Compile and test

However, with the addition of the “omni” tests in version 2.5.0 it is preferred that one
attempt to make the necessary changes to ‘src/nettest_omni.c’ rather than adding new
source files, unless this would make the omni tests entirely too complicated.

If you wish to submit your changes for possible inclusion into the mainline sources,
please try to base your changes on the latest available sources. (See Section 2.1 [Getting
Netperf Bits], page 3.) and then send email describing the changes at a high level to
netperf-feedback@netperf.org or perhaps netperf-talk@netperf.org. If the consen-
sus is positive, then sending context diff results to netperf-feedback@netperf.org is
the next step. From that point, it is a matter of pestering the Netperf Contributing Editor
until he gets the changes incorporated :)

mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org
mailto:netperf-feedback@netperf.org

Chapter 13: Netperf4 68

13 Netperf4

Netperf4 is the shorthand name given to version 4.X.X of netperf. This is really a separate
benchmark more than a newer version of netperf, but it is a descendant of netperf so the
netperf name is kept. The facetious way to describe netperf4 is to say it is the egg-laying-
woolly-milk-pig version of netperf :) The more respectful way to describe it is to say it is the
version of netperf with support for synchronized, multiple-thread, multiple-test, multiple-
system, network-oriented benchmarking.

Netperf4 is still undergoing evolution. Those wishing to work with or on netperf4 are
encouraged to join the netperf-dev mailing list and/or peruse the current sources.

http://www.netperf.org/cgi-bin/mailman/listinfo/netperf-dev
http://www.netperf.org/svn/netperf4/trunk

Chapter 13: Concept Index 69

Concept Index

A
Aggregate Performance . 36

B
Bandwidth Limitation . 4

C
Connection Latency . 32
CPU Utilization . 7

D
Design of Netperf . 7

I
Installation . 3

Introduction . 1

L
Latency, Connection Establishment 32, 33, 34
Latency, Request-Response 31, 33, 34, 35
Limiting Bandwidth . 4, 25

M
Measuring Latency. 31

P
Packet Loss . 33
Port Reuse . 32

T
TIME WAIT . 32

Chapter 13: Option Index 70

Option Index

--enable-burst, Configure 36
--enable-cpuutil, Configure 4
--enable-dlpi, Configure . 4
--enable-histogram, Configure 4
--enable-intervals, Configure 4
--enable-omni, Configure . 4
--enable-sctp, Configure . 4
--enable-unixdomain, Configure 4
--enable-xti, Configure . 4
-4, Global . 19
-4, Test-specific . 23, 31
-6 Test-specific . 31
-6, Global . 19
-6, Test-specific . 23
-a, Global . 11
-A, Global . 11
-b, Global . 11
-B, Global . 11
-c, Global . 12
-C, Global . 12
-c, Test-specific . 47
-d, Global . 12
-D, Global . 12
-d, Test-specific . 47
-f, Global . 12
-F, Global . 12
-h, Global . 12
-H, Global . 13
-h, Test-specific . 21, 30
-H, Test-specific . 30
-i, Global . 14

-I, Global . 13
-j, Global . 14
-k, Test-specific . 47
-l, Global . 15
-L, Global . 15
-L, Test-specific . 21, 30
-m, Test-specific . 21
-M, Test-specific . 22
-n, Global . 16
-N, Global . 16
-o, Global . 16
-O, Global . 17
-o, Test-specific . 47
-O, Test-specific . 48
-p, Global . 17
-P, Global . 17
-P, Test-specific . 22, 30
-r, Test-specific . 30
-S Test-specific . 22
-s, Global . 17
-S, Global . 17
-s, Test-specific . 22, 30
-S, Test-specific . 31
-t, Global . 17
-T, Global . 18
-t, Test-specific . 48
-T, Test-specific . 48
-v, Global . 18
-V, Global . 19
-w, Global . 19
-W, Global . 19

	Introduction
	Conventions

	Installing Netperf
	Getting Netperf Bits
	Installing Netperf
	Verifying Installation

	The Design of Netperf
	CPU Utilization
	CPU Utilization in a Virtual Guest

	Global Command-line Options
	Command-line Options Syntax
	Global Options

	Using Netperf to Measure Bulk Data Transfer
	Issues in Bulk Transfer
	Options common to TCP UDP and SCTP tests
	TCP_STREAM
	TCP_MAERTS
	TCP_SENDFILE
	UDP_STREAM
	XTI_TCP_STREAM
	XTI_UDP_STREAM
	SCTP_STREAM
	DLCO_STREAM
	DLCL_STREAM
	STREAM_STREAM
	DG_STREAM

	Using Netperf to Measure Request/Response
	Issues in Request/Response
	Options Common to TCP UDP and SCTP _RR tests
	TCP_RR
	TCP_CC
	TCP_CRR
	UDP_RR
	XTI_TCP_RR
	XTI_TCP_CC
	XTI_TCP_CRR
	XTI_UDP_RR
	DLCL_RR
	DLCO_RR
	SCTP_RR

	Using Netperf to Measure Aggregate Performance
	Running Concurrent Netperf Tests
	Issues in Running Concurrent Tests

	Using - -enable-burst
	Using - -enable-demo

	Using Netperf to Measure Bidirectional Transfer
	Bidirectional Transfer with Concurrent Tests
	Bidirectional Transfer with TCP_RR
	Implications of Concurrent Tests vs Burst Request/Response

	The Omni Tests
	Native Omni Tests
	Migrated Tests
	Omni Output Selection
	Omni Output Selectors

	Other Netperf Tests
	CPU rate calibration
	UUID Generation

	Address Resolution
	Enhancing Netperf
	Netperf4
	Concept Index
	Option Index

