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Abstract

This document describes the Fortran 90 and C user interfacesto MUMPS 4.10.0 We describe in
detail the data structures, parameters, calling sequences, and error diagnostics. Basic example programs
usingMUMPSare also provided.

∗Information on how to obtain updated copies of MUMPS can be obtained from the Web pages
http://mumps.enseeiht.fr/ andhttp://graal.ens-lyon.fr/MUMPS/

1

http://mumps.enseeiht.fr/
http://graal.ens-lyon.fr/MUMPS/


Contents
1 Introduction 4

2 Main functionalities of MUMPS 4.10.0 5
2.1 Input matrix structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Analysis/Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Post-processing facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Solving the transposed system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Arithmetic versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 The working host processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Sequential version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Shared memory version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.9 Out-of-core facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.10 Determinant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.11 Computing entries ofA−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.12 Reduce/condense a problem on an interface (Schur complement, reduced/condensed RHS)9

3 User interface and available routines 10

4 Input and output parameters 13
4.1 Version number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Control of the three main phases: Analysis, Factorization, Solve . . . . . . . . . . . . . 13
4.3 Control of parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Matrix type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0 . . . . . . . . . . 15
4.6 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0. . . . . . . . . . . . . . . . . . 16
4.7 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18) 6=0 . . . . . . . . . . 16
4.8 Scaling: ICNTL(8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9 Given ordering: ICNTL(7)=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.10 Schur complement with reduced (or condensed) right-hand side: ICNTL(19), ICNTL(26) 17
4.11 Out-of-core (ICNTL(22) 6= 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.12 Workspace parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.13 Right-hand side and solution vectors/matrices. . . . . . . . . . . . . . . . . . . . . . . 21
4.14 Writing a matrix to a file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Control parameters 23
5.1 Integer control parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Real/complex control parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Compatibility between options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Information parameters 34
6.1 Information local to each processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Information available on all processors. . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Error diagnostics 38

8 Calling MUMPS from C 41
8.1 Array indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Issues related to the C and Fortran communicators. . . . . . . . . . . . . . . . . . . . 41
8.3 Fortran I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4 Runtime libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.5 Integer, real and complex datatypes in C and Fortran. . . . . . . . . . . . . . . . . . . 43
8.6 Sequential version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Scilab and MATLAB/Octave interfaces 43

2



10 Examples of use of MUMPS 45
10.1 An assembled problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.2 An elemental problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.3 An example of calling MUMPS from C. . . . . . . . . . . . . . . . . . . . . . . . . . 49

11 Notes on MUMPS distribution 51

3



1 Introduction
MUMPS(“MUltifrontal Massively Parallel Solver”) is a package for solving systems of linear equations of
the formAx = b, whereA is a square sparse matrix that can be either unsymmetric, symmetric positive
definite, or general symmetric.MUMPSimplements a direct method based on a multifrontal approach
which performs a direct factorization

A = LU (1)

whereL is a lower triangular matrix andU an upper triangular matrix. If the matrix is symmetric then
the factorization

A = LDL
T (2)

whereD is block diagonal matrix with blocks of order 1 or 2 on the diagonal is performed. We refer the
reader to the papers [5, 6, 9, 20, 21, 25, 24, 11] for full details of the techniques used.MUMPSexploits
both parallelism arising from sparsity in the matrixA and from dense factorizations kernels.

The main features of theMUMPSpackage include the solution of the transposed system, input of
the matrix in assembled format (distributed or centralized) or elemental format, error analysis, iterative
refinement, scaling of the original matrix, out-of-core capability, parallel analysis, detection of null pivots,
basic estimate of rank deficiency and null space basis for symmetric matrices, and computation of a Schur
complement matrix.MUMPSoffers several built-in ordering algorithms, a tight interface to some external
ordering packages such as PORD [31], SCOTCH [28] or METIS [26] (strongly recommended), and the
possibility for the user to input a given ordering. Finally,MUMPSis available in various arithmetics
(real or complex, single or double precision). A parallel analysis and an out-of-core functionality are
also available. Most recent experimental functionalitiesinvolve the computation of the determinant, the
computation of the entries in the inverse ofA and exploiting sparsity of the right-hand sides to reduce the
amount of floating-point operations and accesses to the factor matrices.

The software is mainly written in Fortran 90 although a C interface is available (see Section8). Scilab
and MATLAB/Octave interfaces are also available in the caseof sequential executions. The parallel
version ofMUMPSrequires MPI [33] for message passing and makes use of the BLAS [15, 16], BLACS,
and ScaLAPACK [13] libraries. The sequential version only relies on BLAS.

MUMPSis downloaded from the web site almost four times a day on average and has been run on very
many machines, compilers and operating systems, although our experience is really only with UNIX-
based systems. We have tested it extensively on parallel computers from SGI, Cray, and IBM and on
clusters of workstations.

MUMPSdistributes the work tasks among the processors, but an identified processor (the host) is
required to perform most of the analysis phase, to distribute the incoming matrix to the other processors
(slaves) in the case where the matrix is centralized, and to collect the solution. The systemAx = b is
solved in three main steps:

1. Analysis.
During analysis, preprocessing (see Section2.2) including an ordering based on the symmetrized
patternA + AT and a symbolic factorization is performed. Both parallel and sequential
implementation of the analysis phase is available. A mapping of the multifrontal computational
graph is then computed and used to estimate the number of oeprations and memory necessary
for factorization and solution. LetApre denotes the preprocessed matrix (further defined in
Section2.2).

2. Factorization.
During factorization a direct factorizationApre = LU or Apre = LDLT depending on
the symmetry of the preprocessed matrix is computed. The original matrix is first distributed
(or redistributed) onto the processors depending on the mapping of the dependency graph of
factorization, the so calledelimination tree [27]. The numerical factorization is then a sequence
of dense factorization on so calledfrontal matrices. In addition to standard threshold pivoting and
two-by-two pivoting (not so standard in distributed memorycodes) there is an option to perform
static pivoting. The elimination tree also expresses independency between tasks and enables
multiple fronts to be processed simultaneously. This approach is calledmultifrontal approach .
After the factorization, the factor matrices are kept distributed (in core memory or on disk); they
will be used at the solution phase.
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3. Solution.
The solution ofLUxpre = bpre or LDLTxpre = bpre wherexpre andbpre are respectively
the transformed solutionx and right-hand sideb associated to the preprocessed matrixApre, is
obtained through aforward elimination step

Ly = bpre or LDy = bpre , (3)

followed by abackward elimination step

Uxpre = y or L
T
xpre = y . (4)

The right-hand sideb is first preprocessed and then broadcasted from the host to the working
processors. Sparse right-hand sides might be used to limit the volume of data exchange during
this step. A forward elimination (Equation3) and a backward substitution (Equation4) are then
performed using the (distributed) factors computing during factorization to obtainxpre. The
solutionxpre is finally postprocessed to obtain the solutionx of the original systemAx = b,
wherex is either assembled on the host or kept distributed on the working processors. Iterative
refinement and backward error analysis are also postprocessing options of the solution phase.

Each of these phases can be called separately and several instances ofMUMPScan be handled
simultaneously.MUMPSallows the host processor to participate to the factorization and solve phases,
just like any other processor (see Section2.6).

For both the symmetric and the unsymmetric algorithms used in the code, we have chosen a
fully asynchronous approach with dynamic scheduling of thecomputational tasks. Asynchronous
communication is used to enable overlapping between communication and computation. Dynamic
scheduling was initially chosen to accommodate numerical pivoting in the factorization. The other
important reason for this choice was that, with dynamic scheduling, the algorithm can adapt itself at
execution time to remap work and data to more appropriate processors. In fact, we combine the main
features of static and dynamic approaches; we use the estimation obtained during the analysis to map
some of the main computational tasks; the other tasks are dynamically scheduled at execution time. The
main data structures (the original matrix and the factors) are similarly partially mapped during the analysis
phase.

2 Main functionalities of MUMPS 4.10.0

We describe here the main functionalities of the solverMUMPS. The user should refer to Sections4 and5
for a complete description of the parameters that must be setor that are referred to in this Section. The
variables mentioned in this section are components of a structuremumpspar of type MUMPSSTRUC
(see Section3) and for the sake of clarity, we refer to them only by their component name. For example,
we use ICNTL to refer tomumpspar%ICNTL .

2.1 Input matrix structure
MUMPSprovides several possibilities for inputting the matrix. The selection is controlled by the
parametersICNTL(5) andICNTL(18).

The input matrix can be supplied inelemental formatand must then be input centrally on the host
(ICNTL(5)=1 andICNTL(18)=0). For full details see Section4.6. Otherwise, it can be supplied in
assembled formatin coordinate form (ICNTL(5)=0), and, in this case, there are several possibilities (see
Sections4.5and4.7):

1. the matrix can be input centrally on the host processor (ICNTL(18)=0);

2. only the matrix structure is provided on the host for the analysis phase and the matrix entries are
provided for the numerical factorization, distributed across the processors:

• either according to a mapping supplied by the analysis (ICNTL(18)=1),

• or according to a user determined mapping (ICNTL(18)=2);
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3. it is also possible to distribute the matrix pattern and the entries in any distribution in local triplets
(ICNTL(18)=3) for both analysis and factorization (recommended option for distributed entry).

By default the input matrix is considered in assembled format (ICNTL(5)=0) and input centrally on
the host processor (ICNTL(18)=0).

2.2 Analysis/Preprocessing
A range of symmetric orderings to preserve sparsity is available during the analysis phase. In addition
to the symmetric orderings, the package offers pre-processing facilities: permuting to zero-free diagonal
and prescaling. When all preprocessing options are activated, the preprocessed matrixApre that will be
effectively factored is :

Apre = P Dr A Qc Dc P
T , (5)

whereP is a permutation matrix applied symmetrically,Qc is a (column) permutation andDr andDc

are diagonal matrices for (respectively row and column) scaling. Note that when the matrix is symmetric,
preprocessing is designed to preserved symmetry.

Preprocessing highly influences the performance (memory and time) of the factorization and solution
steps. The default values correspond to an automatic setting performed by the package which depends on
the ordering packages installed, the type of the matrix (symmetric or unsymmetric), the size of the matrix
and the number of processors available. We thus strongly recommend the user to install all ordering
packages to offer maximum choice to the automatic decision process.

• Symmetric permutation :P

The symmetric permutation can be computed either sequentially, or in parallel. TheICNTL(28)
parameter is responsible for setting the strategy.

In the case where the symmetric permutation is computed sequentially, the ordering method is set
by the ICNTL(7) parameter which offers a range of ordering options including the approximate
minimum degree ordering (AMD, [4]), an approximate minimum degree ordering with automatic
quasi-dense row detection (QAMD, [3]), an approximate minimum fill-in ordering (AMF), an
ordering where bottom-up strategies are used to build separators by Jürgen Schulze from University
of Paderborn (PORD, [31]), the SCOTCH package [28], and the METIS package from Univ. of
Minnesota [26]. A user-supplied ordering can also be provided and the pivot order must be set by
the user on the host inPERM IN (see Section4.9).

In the case where the symmetric permutation is computed in parallel, the ordering method is set by
theICNTL(29). One of the PT-SCOTCH and ParMetis parallel ordering tools can used in this case.

In addition to the symmetric orderings,MUMPSoffers other pre-processing facilities: permuting to
zero-free diagonal and prescaling.

• Permutations to a zero-free diagonal :Qc

Controlled byICNTL(6), this permutation is recommended for very unsymmetric matrices to
reduce fill-in and arithmetic cost, see [17, 18]. For symmetric matrices this permutation can also
be used to constrain the symmetric permutation (see alsoICNTL(12) option). Furthermore, when
numerical values are provided on entry to the analysis phase, ICNTL(6) may also build scaling
vectors during the analysis, that will be either used or discarded depending on the scaling option
ICNTL(8).

• Row and Column scalings :Dr andDc

Controlled by ICNTL(8), this preprocessing improves the numerical accuracy and makes all
estimations performed during analysis more reliable. A range of classical scalings are provided
and can be automatically performed within the package (see Section4.8), either during the analysis
phase or at the beginning of the factorization phase.

Furthermore, preprocessing strategies for symmetric indefinite matrices, as described in [19], can
be applied and also lead to scaling arrays; they are controlled byICNTL(12).
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2.3 Post-processing facilities
It has been shown [12] that with only two to three steps of iterative refinement thesolution can often be
significantly improved. Iterative refinement can be optionally performed after the solution step using the
parameterICNTL(10).

MUMPSalso enables the user to perform classical error analysis based on the residuals (see the
description ofICNTL(11) in Section5). We calculate an estimate of the sparse backward error using
the theory and metrics developed in [12]. We use the notation̄x for the computed solution and a modulus
sign on a vector or a matrix to indicate the vector or matrix obtained by replacing all entries by their
moduli. The scaled residual

|b−Ax̄|
i

(|b|+ |A| |x̄|)
i

(6)

is computed for all equations except those for which the numerator is nonzero and the denominator is
small. For all the exceptional equations,

|b−Ax̄|
i

(|A| |x̄|)
i
+ ‖Ai‖∞‖x̄‖∞

(7)

is used instead, whereAi is row i of A. The largest scaled residual (6) is returned inRINFOG(7)and the
largest scaled residual (7) is returned inRINFOG(8). If all equations are in category (1), zero is returned
in RINFOG(8). The computed solution̄x is the exact solution of the equation

(A+ δA)x = (b+ δb),

where

δAij ≤ max(RINFOG(7),RINFOG(8))|A|
ij

,

andδbi ≤ max(RINFOG(7)|b|
i
,RINFOG(8)‖Ai‖∞‖x̄‖∞). Note thatδA respects the sparsity ofA

in the sense thatδAij is zero for structural zeros inA, i.e., whenAij=0. An upper bound for the error in
the solution is returned inRINFOG(9). Finally condition numberscond1 andcond2 for the linear system
(not just the matrix) are returned inRINFOG(10)andRINFOG(11), respectively, and

‖δx‖
‖x‖ ≤ RINFOG(9) = RINFOG(7)× cond1 + RINFOG(8)× cond2.

2.4 Solving the transposed system
Given a sparse matrixA, the systemAX = B or ATX = B can be solved during the solve stage,
whereA is square of ordern andX andB are of ordern by nrhs. This is controlled byICNTL(9).

2.5 Arithmetic versions
Several versions of the packageMUMPSare available:REAL, DOUBLE PRECISION, COMPLEX, and
DOUBLE COMPLEX.

To compile all or any particular version, please refer to theroot README of the MUMPS sources.
This document applies to all four arithmetics. In the following we use the conventions below:

1. the termreal is used forREALor DOUBLE PRECISION,

2. the termcomplex is used forCOMPLEXor DOUBLE COMPLEX,

2.6 The working host processor
The analysis phase is performed on the host processor. This processor is the one with rank 0 in the
communicator provided toMUMPS. By setting the variablePARto 1 (see Section4.3), MUMPSallows the
host to participate in computations during the factorization and solve phases, just like any other processor.
This allowsMUMPSto run on a single processor and prevents the host processor being idle during the
factorization and solve phases (as would be the case forPAR=0). We thus generally recommend using a
working host processor (PAR=1).
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The only case where it may be worth usingPAR=0 is with a large centralized matrix on a purely
distributed architecture with relatively small local memory: PAR=1 will lead to a memory imbalance
because of the storage related to the initial matrix on the host.

2.7 Sequential version
It is possible to useMUMPSsequentially by limiting the number of processors to one, but the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries and the user program needs to make explicit
calls toMPI INIT andMPI FINALIZE .

A purely sequential version ofMUMPSis also available. For this, a special library is distributed that
provides all external references needed byMUMPSfor a sequential environment.MUMPScan thus be
used in a simple sequential program, ignoring everything related to parallelism or MPI. Details on how
to build a purely sequential version ofMUMPSare available in the file README available in theMUMPS
distribution. Note that for the sequential version, the componentPAR must be set to 1 (see Section4.3)
and that the calling program should not make use of MPI.

2.8 Shared memory version
On networks of SMP nodes (multiprocessor nodes with a sharedmemory) or on multicore-based
machines, a parallel shared memory BLAS library (also called multithread BLAS) is often available.
Using shared memory or threaded BLAS (between 2 and 4 threadsper MPI process) can be significantly
more efficient than running with only MPI processes. For example on a computer with 2 SMP nodes and
16 processors per node, we advise to run using 16 MPI processes with 2 threads per MPI process.

2.9 Out-of-core facility
Controlled byICNTL(22), a preliminary out-of-core facility is available in both sequential and parallel
environments. In this version only the factors are written to disk during the factorization phase and
will be read each time a solution phase is requested. Our experience is that on a reasonably small
number of processors this can significantly reduce the memory requirement while not increasing much
the factorization time. The extra cost of the out-of-core feature is thus mainly during the solve phase,
where factors have to be read from disk for both the forward elimination and the backward substitution.

2.10 Determinant
Controlled byICNTL(33), MUMPS has an option to compute the determinant of the matrixprovided on
entry. It is available for symmetric and unsymmetric matrices for all arithmetics (single, double, real,
complex), and for all matrix input formats.

If A = LU (unsymmetric matrices), thendet(A) = det(L) × det(U) =
∏n

i=1
Uii, wheren is the

order of the matrixA. If A = LDLt (symmetric matrices), thendet(A) =
∏n

i=1
Dii. The sign of

the determinant is maintained by keeping track of all internal permutations. Scaling arrays are taken into
account too, in case the matrix is scaled. To avoid overflows and guarantee an accurate computation, the
mantissa and exponent are computed separately and renormalized when needed.

The determinant is only computed when requested by the user.For more information, seeICNTL(33).
If the user is only interested in the determinant, he/she maytell MUMPS that the factor matrices can be
discarded (seeICNTL(31)), significantly reducing the storage requirements.

2.11 Computing entries ofA−1

Several applications require the explicit computation of selected entries of the inverse of large sparse
matrices. In most cases, many entries are requested, for example all diagonal entries. To compute column
j of the inverse, the equationAx = ej can be used, whereej is thejth column of the identity matrix. One
can obtain major savings if the structural zeros ofej are exploited or if only few entries of thejth column
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are requested [32, 2]. If we have anLU factorization ofA, a−1
ij , the(i, j) entry ofA−1, is obtained by

solving successively the two triangular systems:

y = L−1ej (8)

a−1
ij = (U−1y)i (9)

MUMPS provides a functionality, controlled byICNTL(30), to compute a set of entries ofA−1,
while avoiding most of the computations on explicit zeros inEquations (8) and (9). The list of entries of
A−1 to be computed and the memory for those entries should be provided as a sparse right-hand side,
see the descriptions ofICNTL(30) in Section5, and ofIRHS PTR, IRHS SPARSE, andRHS SPARSE
in Section4.13. In a parallel environment there are quite a lot of opportunities for improvements which
are the topic of on going research activities but are not yet included in this release.

2.12 Reduce/condense a problem on an interface (Schur complement and
reduced/condensed right-hand side)
A Schur complement matrix (centralized or provided as 2D block cyclic matrix) can be returned to the
user (seeICNTL(19), ICNTL(26) and Section4.10). The user must specify the list of indices of the Schur
matrix. MUMPSthen provides both a partial factorization of the complete matrix and returns the assembled
Schur matrix in user memory. The Schur matrix is considered as a full matrix. The partial factorization
that builds the Schur matrix can also be used to solve linear systems associated with the “interior”
variables (ICNTL(26)=0) and also to handle a reduced/condensed right-hand-side(ICNTL(26)=1,2) as
described in the following discussion.

Let us consider a partitioned matrix (here with an unsymmetric matrix) where the variables ofA2,2,
specified by the user, correspond to the Schur variables and on which a partial factorization has been
performed. In the following, and only for the sake of clearness we have ordered last all variables belonging
to the Schur.

A =

(

A1,1 A1,2

A2,1 A2,2

)

=

(

L1,1 0
L2,1 I

)(

U1,1 U1,2

0 S

)

(10)

Thus the Schur complement, as returned byMUMPS, is such thatS = A2,2 −A2,1A
−1
1,1A1,2.

ICNTL(26) can then be used during the solution phase to describe how this partial factorization can
be used to solveAx = b:

• Compute a partial solution:
If ICNTL(26)=0 then the solve is performed on the internal problem:

A1,1x1 = b1.

Entries in the right-hand side corresponding to indices from the Schur matrix need not be set on
entry and they are explicitly set to zero on output.

• Solve the complete system in three steps:

(

L1,1 0
L2,1 I

)(

U1,1 U1,2

0 S

)(

x1

x2

)

=

(

b1
b2

)

(11)

1. Reduction/condensation phase:
One can compute withICNTL(26)=1, the intermediatey vector, in whichy2 is often referred
to as the reduced/condensed right-hand-side.

(

L1,1 0
L2,1 I

)(

y1
y2

)

=

(

b1
b2

)

(12)

Then one has to solve
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(

U1,1 U1,2

0 S

)(

x1

x2

)

=

(

y1
y2

)

(13)

2. Using Schur matrix:
The Schur matrix is an output of the factorisation phase. It is the responsibility of the user to
computex2 such thatSx2 = y2.

3. Expansion phase:
Givenx2 andy1, optionICNTL(26)=2 of the solve phase can be used to computex1. Note
that the package usesy1 computed (and stored in themumpsstructure) during the first step
(ICNTL(26)=1) and that the complete solutionx is provided on output.

Note that the Schur complement could be considered as an element contribution to the interface block
in a domain decomposition approach.MUMPScould then be used to solve this interface problem using
the element entry functionality.

3 User interface and available routines
In the following, we use the notation[SDCZ]MUMPSto refer to DMUMPS, SMUMPS, ZMUMPSor
CMUMPS, corresponding to theREAL, DOUBLE PRECISION, COMPLEXand DOUBLE COMPLEX
versions, respectively. Similarly[SDCZ]MUMPSSTRUC refers to either SMUMPSSTRUC,
DMUMPSSTRUC, CMUMPSSTRUC, or ZMUMPSSTRUC, and [sdcz]mumps struc.h to
smumps struc.h , dmumpsstruc.h , cmumps struc.h or zmumps struc.h .

In the Fortran 90 interface (see Section8 for the C interface), there is a single user callable subroutine
per arithmetic, called[SDCZ]MUMPS, that has a single parametermumpspar of Fortran 90 derived
datatype[SDCZ]MUMPSSTRUCdefined in [sdcz]mumpsstruc.h. The interface is the same for the
sequential version, only the compilation process and libraries need be changed. In the case of the parallel
version, MPI must be initialized by the user before the first call to [SDCZ]MUMPSis made. The calling
sequence for theDOUBLE PRECISIONversion may look as follows:

INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
...
INTEGER IERR
TYPE (DMUMPS_STRUC) :: mumps_par
...
CALL MPI_INIT(IERR) ! Not needed in purely sequential versi on
...
mumps_par%JOB = ... ! Set some arguments to the package: thos e
mumps_par%ICNTL(3)=6 ! are components of the mumps_par str ucture
...
CALL DMUMPS( mumps_par )
...
CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential v ersion

For other arithmetics, dmumpsstruc.h should be replaced bysmumps struc.h ,
cmumps struc.h , or zmumps struc.h , and the ’D’ in DMUMPSand DMUMPSSTRUCby
’S’ , ’C’ or ’Z’ .

The variablemumpspar of datatype[SDCZ]MUMPSSTRUCholds all the data for the problem. It
has many components, only some of which are of interest to theuser. The other components are internal
to the package. Some of the components must only be defined on the host. Others must be defined
on all processors. The file[sdcz]mumps struc.h defines the derived datatype and must always
be included in the program that callsMUMPS. The file [sdcz]mumps root.h , which is included in
[sdcz]mumps struc.h , must also be available at compilation time. Components of the structure
[SDCZ]MUMPSSTRUCthat are of interest to the user are shown in Figure1.
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The interface toMUMPSconsists in calling the subroutine[SDCZ]MUMPSwith the appropriate
parameters set inmumpspar .
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INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]MUMPS_STRUC

SEQUENCE
C INPUT PARAMETERS
C ----------------
C Problem definition
C ------------------
C Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
C Type of parallelism (PAR=1 host working, PAR=0 host not wor king)

INTEGER SYM, PAR, JOB
C Control parameters
C ------------------

INTEGER ICNTL(40)

real CNTL(15)

INTEGER N ! Order of input matrix
C Assembled input matrix : User interface
C ----------------------------------------

INTEGER NZ

real/complex , DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry
C --------------------------------

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex , DIMENSION(:), POINTER :: A loc

C Unassembled input matrix: User interface
C ----------------------------------------

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/complex , DIMENSION(:), POINTER :: A ELT

C MPI Communicator and identifier
C -------------------------------

INTEGER COMM, MYID
C Ordering and scaling, if given by user (optional)
C -------------------------------------------------

INTEGER, DIMENSION(:), POINTER :: PERM_IN

real/complex, DIMENSION(:), POINTER :: COLSCA, ROWSCA

C INPUT/OUTPUT data : right-hand side and solution
C -----------------

real/complex, DIMENSION(:), POINTER :: RHS, REDRHS
real/complex, DIMENSION(:), POINTER :: RHS SPARSE

INTEGER, DIMENSION(:), POINTER :: IRHS_SPARSE, IRHS_PTR
INTEGER NRHS, LRHS, NZ_RHS, LSOL_loc, LREDRHS

real/complex, DIMENSION(:), POINTER :: SOL loc

INTEGER, DIMENSION(:), POINTER :: ISOL_loc
C OUTPUT data and Statistics
C --------------------------

INTEGER, DIMENSION(:), POINTER :: SYM_PERM, UNS_PERM
INTEGER INFO(40)
INTEGER INFOG(40) ! Global information (host only)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

C Schur
INTEGER SIZE_SCHUR, NPROW, NPCOL, MBLOCK, NBLOCK
INTEGER SCHUR_MLOC, SCHUR_NLOC, SCHUR_LLD
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex, DIMENSION(:), POINTER :: SCHUR

C Mapping if provided by MUMPS
INTEGER, DIMENSION(:), POINTER :: MAPPING

C Version number
CHARACTER(LEN=46) VERSION_NUMBER

C Name of file to dump a problem in matrix market format
CHARACTER(LEN=255) WRITE_PROBLEM

C Out-of-core
CHARACTER(LEN=63) :: OOC PREFIX
CHARACTER(LEN=255) :: OOC TMPDIR

END TYPE [SDCZ]MUMPS_STRUC

Figure 1: Main components of the structure[SDCZ]MUMPSSTRUC defined in
[sdcz]mumps struc.h . real/complex qualifies parameters that are real in the real version and
complex in the complex version, whereasreal is used for parameters that are always real, even in the
complex version ofMUMPS.
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4 Input and output parameters
In this section, we describe the components of the variable mumpspar of datatype
[SDCZ]MUMPSSTRUC. Those components define the arguments toMUMPSthat must be set by
the user, or that are returned to the user.

4.1 Version number
mumpspar%VERSION NUMBER (string) is set byMUMPSto the version number of MUMPS after a

call to the initialization phase (JOB=-1).

For C users (see Section8 for more general information), a macro MUMPSVERSION is also defined
in the include files[sdcz]mumps c.h ; it contains a string defining the version number. Typically, it
is defined by:#define MUMPS VERSION "4.10.0" This may be useful for users who wish to
get the version number associated to the header file they include in their application (the component
VERSION NUMBER of the structure may be badly initialized in case of incompatible alignment options
or incorrect version of the header file).

4.2 Control of the three main phases: Analysis, Factorization, Solve

mumpspar%JOB (integer) must be initialized by the user on all processors before a call toMUMPS.
It controls the main action taken byMUMPS. It is not altered byMUMPS.

JOB = –1 initializes an instance of the package. A call with JOB= –1 must be performed before
any other call to the package on the same instance. It sets default values for other components of
MUMPSSTRUC(such as ICNTL, see below), which may then be altered before subsequent calls
to MUMPS. Note that three components of the structure must always be set by the user (on all
processors) before a call with JOB= –1. These are

• mumpspar%COMM,
• mumpspar%SYM, and
• mumpspar%PAR.

Note that if the user wants to modify one of those three components then he/she must destroy the
instance (call with JOB= –2) then reinitialize the instance (call with JOB= –1).
Furthermore, after a call with JOB= –1, the internal component mumpspar%MYID contains
the rank of the calling processor in the communicator provided to MUMPS. Thus, the test
“(mumps par%MYID == 0)” may be used to identify the host processor (see Section2.6).
Finally, the version number is returned in mumpspar%VERSION NUMBER (see Section4.1).

JOB= –2 destroys an instance of the package. All data structures associated with the instance, except
those provided by the user in mumpspar, are deallocated. It should be called by the user only when
no further calls toMUMPSwith this instance are required. It should be called before afurther JOB
= –1 call with the same argument mumpspar.

JOB=1 performs the analysis. In this phase,MUMPSchooses pivots from the diagonal using a selection
criterion to preserve sparsity. It uses the pattern ofA + AT but ignores numerical values. It
subsequently constructs subsidiary information for the numerical factorization (a JOB=2 call).
An option exists for the user to input the pivotal sequence (ICNTL(7)=1, see below) in which case
only the necessary information for a JOB=2 call will be generated.
The numerical values of the original matrix, mumpspar%A, must be provided by the user during
the analysis phase only ifICNTL(6) is set to a value between 2 and 7. SeeICNTL(6) in Section5
for more details.
MUMPSuses the pattern of the matrixA input by the user. In the case ofa centralized matrix, the
following components of the structure defining the matrix pattern must be set by the user only on
the host:

• mumpspar%N, mumpspar%NZ, mumpspar%IRN, and mumpspar%JCN if the user wishes
to input the structure of the matrix inassembled format(ICNTL(5)=0 andICNTL(18) 6= 3)
(see Section4.5),
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• mumpspar%N, mumpspar%NELT, mumpspar%ELTPTR, and mumpspar%ELTVAR if the
user wishes to input the matrix inelemental format(ICNTL(5)=1) (see Section4.6).

These components should be passed unchanged when later calling the factorization (JOB=2) and
solve (JOB=3) phases.

In the case ofa distributed assembled matrix(see Section4.7for more details and options),

• If ICNTL(18) = 1 or 2, the previous requirements hold except that IRN and JCN are no longer
required and need not be passed unchanged to the factorization phase.

• If ICNTL(18) = 3, the user should provide

– mumpspar%N on the host

– mumpspar%NZ loc, mumpspar%IRN loc and mumpspar%JCNloc on all slave
processors. Those should be passed unchanged to the factorization (JOB=2) and solve
(JOB=3) phases.

A call to MUMPSwith JOB=1 must be preceded by a call with JOB= –1 on the same instance.

JOB=2 performs the factorization. It uses the numerical values of the matrixA provided by the user
and the information from the analysis phase (JOB=1) to factorize the matrixA.

If the matrix is centralizedon the host (ICNTL(18)=0), the pattern of the matrix should be passed
unchanged since the last call to the analysis phase (see JOB=1); the following components of the
structure define the numerical values and must be set by the user (on the host only) before a call
with JOB=2:

• mumpspar%A if the matrix is in assembled format (ICNTL(5)=0), or

• mumpspar%A ELT if the matrix is in elemental format (ICNTL(5)=1).

If the initial matrix is distributed (ICNTL(5)=0 and ICNTL(18) 6= 0), then the following
components of the structure must be set by the user on all slave processors before a call with
JOB=2:

• mumpspar%A loc on all slave processors, and

• mumpspar%NZ loc, mumpspar%IRN loc and mumpspar%JCNloc if ICNTL(18)=1 or 2.
(For ICNTL(18)=3, NZ loc, IRN loc and JCNloc have already been passed to the analysis
step and must be passed unchanged.)

(See Sections4.5, 4.6, and4.7.)

The actual pivot sequence used during the factorization mayslightly differ from the sequence
returned by the analysis if the matrixA is not diagonally dominant.

An option exists for the user to input scaling vectors or letMUMPScompute such vectors
automatically (in arrays COLSCA/ROWSCA,ICNTL(8) 6= 0, see Section4.8).

A call to MUMPSwith JOB=2 must be preceded by a call with JOB=1 on the same instance.

JOB=3 performs the solution. It can also be used (seeICNTL(25)) to compute the null space basis
of symmetric matrices provided that “null pivot row” detection (ICNTL(24)) was on and that the
number of null pivotsINFOG(28)was different from 0. It uses the right-hand side(s)B provided
by the user and the factors generated by the factorization (JOB=2) to solve a system of equations
AX = B or ATX = B. The pattern and values of the matrix should be passed unchanged since
the last call to the factorization phase (see JOB=2). The structure component mumpspar%RHS
must be set by the user (on the host only) before a call with JOB=3. (See Section4.13.)

A call to MUMPSwith JOB=3 must be preceded by a call with JOB=2 (or JOB=4) on the same
instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. It must be preceded by a call toMUMPS
with JOB= –1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must be preceded by a call toMUMPSwith JOB=1
on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. It must be preceded by a call toMUMPSwith
JOB= –1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance are possible.
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4.3 Control of parallelism
mumpspar%COMM (integer) must be set by the user on all processors before theinitialization phase

(JOB= –1) and must not be changed. It must be set to a valid MPI communicator that will be used
for message passing insideMUMPS. It is not altered byMUMPS. The processor with rank 0 in this
communicator is used byMUMPSas thehost processor. Note that only the processors belonging to
the communicator should callMUMPS.

mumpspar%PAR (integer) must be initialized by the user on all processors and is accessed byMUMPS
only during the initialization phase (JOB = –1). It is not altered byMUMPSand its value is
communicated internally to the other phases as required. Possible values for PAR are:

0 host is not involved in factorization/solve phases

1 host is involved in factorization/solve phases

Other values are treated as 1. Note that the value of PAR should be identical on all processors; if
this is not the case, the value on processor 0 is used by the package.

If PAR is set to 0, the host will only hold the initial problem,perform symbolic computations during
the analysis phase, distribute data, and collect results from other processors. If set to 1, the host will
also participate in the factorization and solve phases. If the initial problem is large and memory is
an issue, PAR = 1 is not recommended if the matrix is centralized on processor 0 because this can
lead to memory imbalance, with processor 0 having a larger memory load than the other processors.
Note that setting PAR to 1, and using only 1 processor, leads to a sequential code.

4.4 Matrix type
mumpspar%SYM (integer) must be initialized by the user on all processors and is accessed by

MUMPSonly during the initialization phase (JOB= –1). It is not altered byMUMPS. Its value
is communicated internally to the other phases as required.Possible values for SYM are:

0 A is unsymmetric

1 A is suitable for symmetric positive definite since numericalpivoting is not performed and
pivots are taken directly from the diagonal. In case ScaLAPACK is called, PPOTRF is
used, which assumes positive diagonal pivots (an error -40 is returned in INFOG(1)). In case
ScaLAPACK is not used (ICNTL(13)>0), this option will also work for more general classes
of matrices, typically symmetric negative matrices. If theuser thinks his matrix is positive
definite, he/she may want to check that the number of negativepivots (INFOG(12)) is zero
on exit. Another approach to suppress numerical pivoting which works with ScaLAPACK
for both positive definite and negative definite matrices consists in setting SYM=2 and
CNTL(1)=0.0D0 (recommended strategy).

2 A is general symmetric

Other values are treated as 0. Note that the value of SYM should be identical on all processors; if
this is not the case, the value on processor 0 is used by the package. For the complex version, the
value SYM=1 is currently treated as SYM=2. We do not have a version for Hermitian matrices in
this release ofMUMPS.

4.5 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0
mumpspar%N (integer), mumpspar%NZ (integer), mumpspar%IRN (integer array pointer,

dimension NZ), mumpspar%JCN (integer array pointer, dimension NZ), and mumpspar%A
(real/complex array pointer, dimension NZ) hold the matrix in assembled format. These
components should be set by the user only on the host and only when ICNTL(5)=0 and
ICNTL(18)=0; they are not modified by the package.

• N is the order of the matrixA, N > 0. It is not altered byMUMPS.

• NZ is the number of entries being input, NZ> 0. It is not altered byMUMPS.

• IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively,
for the matrix entries.
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• A is a real (complex in the complex version) array of length NZ. The user must set A(k) to
the value of the entry in row IRN(k) and column JCN(k) of the matrix. A is accessed when
JOB=1 only whenICNTL(6) 6= 0. Duplicate entries are summed and any with IRN(k) or
JCN(k) out-of-range are ignored.
Note that, in the case of the symmetric solver, a diagonal nonzeroaii is held as A(k)=aii,
IRN(k)=JCN(k)=i, and a pair of off-diagonal nonzerosaij = aji is held as A(k)=aij and
IRN(k)=i, JCN(k)=j or vice-versa. Again, duplicate entries are summed and entries with
IRN(k) or JCN(k) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern of thematrix and must be set by
the user before the analysis phase (JOB=1). Component A mustbe set before the factorization
phase (JOB=2) or before analysis (JOB=1) if a numerical preprocessing option is requested (1 <
ICNTL(6) < 7).

4.6 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0
mumpspar%N (integer), mumpspar%NELT (integer), mumpspar%ELTPTR (integer array pointer,

dimension NELT+1), mumpspar%ELTVAR (integer array pointer, dimension ELTPTR(NELT+1)
– 1), and mumpspar%A ELT (real/complex array pointer) hold the matrix in elemental format.
These components should be set by the user only on the host andonly whenICNTL(5)=1:

• N is the order of the matrixA, N > 0. It is not altered byMUMPS.

• NELT is the number of elements being input, NELT> 0. It is not altered byMUMPS.

• ELTPTR is an integer array of length NELT+1. ELTPTR(j) points to the position in ELTVAR
of the first variable in element j, and ELTPTR(NELT+1) must beset to the position after the
last variable of the last element. Note that ELTPTR(1) should be equal to 1. ELPTR is not
altered byMUMPS.

• ELTVAR is an integer array of length ELTPTR(NELT+1) – 1 and must be set to the lists
of variables of the elements. It is not altered byMUMPS. Those for element j are stored in
positions ELTPTR(j), . . . , ELTPTR(j+1)–1. Out-of-range variables are ignored.

• A ELT is a real (complex in the complex version) array. IfNp denotes ELTPTR(p+1)–
ELTPTR(p), then the values for element j are stored in positionsKj + 1, . . . ,Kj + Lj, where

– Kj =
∑j−1

p=1
Np

2, andLj = Nj
2 in the unsymmetric case (SYM = 0)

– Kj =
∑j−1

p=1
(Np · (Np + 1))/2, andLj = (Nj · (Nj + 1))/2 in the symmetric case

(SYM 6= 0). Only the lower triangular part is stored.

Values within each element are stored column-wise. Values corresponding to out-of-range
variables are ignored and values corresponding to duplicate variables within an element are
summed. AELT is not accessed whenJOB= 1. Note that, although the elemental matrix may
be symmetric or unsymmetric in value, its structure is always symmetric.

The components N, NELT, ELTPTR, and ELTVAR describe the pattern of the matrix and must
be set by the user before the analysis phase (JOB=1). Component A ELT must be set before the
factorization phase (JOB=2). Note that, in the current release of the package, the element entry
must be centralized on the host.

4.7 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18) 6=0
When the matrix is in assembled form (ICNTL(5)=0), we offer several options to distribute the matrix,
defined by the control parameterICNTL(18) described in Section5. The following components of the
structure define the distributed assembled matrix input. They are valid for nonzero values ofICNTL(18),
otherwise the user should refer to Section4.5.

mumpspar%N (integer), mumpspar%NZ (integer), mumpspar%NZ loc (integer), mumpspar%IRN
(integer array pointer, dimension NZ), mumpspar%JCN (integer array pointer, dimension NZ),
mumpspar%IRN loc (integer array pointer, dimension NZloc), mumpspar%JCN loc (integer
array pointer, dimension NZloc), mumpspar%A loc (real/complex array pointer, dimension
NZ loc), and mumpspar%MAPPING (integer array, dimension NZ).
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• N is the order of the matrixA, N > 0. It must be set on the host before analysis. It is not
altered byMUMPS.

• NZ is the number of entries being input in the definition ofA, NZ > 0. It must be defined on
the host before analysis ifICNTL(18) = 1, or 2.

• IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively,
for the matrix entries. They must be defined on the host beforeanalysis ifICNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis.

• NZ loc is the number of entries local to a processor. It must be defined on all processors in
the case of the working host model of parallelism (PAR=1), and on all processors except the
host in the case of the non-working host model of parallelism(PAR=0), before analysis if
ICNTL(18) = 3, and before factorization ifICNTL(18) = 1 or 2.

• IRN loc, JCNloc are integer arrays of length NZloc containing the global1 row and column
indices, respectively, for the matrix entries. They must bedefined on all processors if PAR=1,
and on all processors except the host if PAR=0, before analysis if ICNTL(18) = 3, and before
factorization ifICNTL(18) = 1 or 2.

• NZ loc is the dimension of the pointer array Aloc (see below).
• A loc is a real (complex in the complex version) array of dimension NZloc that must be

defined before the factorization phase (JOB=2) on all processors if PAR = 1, and on all
processors except the host if PAR = 0. The user must set Aloc(k) to the value in row
IRN loc(k) and column JCNloc(k).

• MAPPING is an integer array of size NZ which is returned byMUMPSon the host after
the analysis phase as an indication of a preferred mapping ifICNTL(18) = 1. In that case,
MAPPING(i) = IPROC means that entry IRN(i), JCN(i) should beprovided on processor with
rank IPROC in theMUMPScommunicator. Remark that MAPPING is allocated byMUMPS,
and not by the user. It will be freed during a call toMUMPSwith JOB = -2.

We recommend the use of optionsICNTL(18)= 2 or 3 because they are the simplest and most flexible
options. Furthermore, those options (2 or 3) are in general almost as efficient as the more sophisticated
(but more complicated for the user) optionICNTL(18)=1.

4.8 Scaling: ICNTL(8)
mumpspar%COLSCA, mumpspar%ROWSCA (double precision array pointers, dimension N) are

optional, respectively column and row scaling arrays required only by the host. If a scaling is
provided by the user (ICNTL(8) = –1), these arrays must be allocated and initialized by the user
on the host, before a call to the factorization phase (JOB=2). They might also be automatically
allocated and computed by the package during analysis (ifICNTL(6)=5 or 6), in which case
ICNTL(8) = –2 will be set by the package during analysis and should be passed unchanged to
the solve phase (JOB=3).

4.9 Given ordering: ICNTL(7)=1
mumpspar%PERM IN (integer array pointer, dimension N) must be allocated and initialized by the

user on the host ifICNTL(7)=1. It is accessed during the analysis (JOB=1) and PERMIN(i), i=1,
. . . , N must hold the position of variable i in the pivot order.Note that, even when the ordering is
provided by the user, the analysis must still be performed before numerical factorization.

4.10 Schur complement with reduced (or condensed) right-hand side:
ICNTL(19) and ICNTL(26)
mumpspar%SIZE SCHUR (integer) must be initialized by the user on the host to the number of

variables defining the Schur complement ifICNTL(19) = 1, 2, or 3. It is only accessed during
the analysis phase and is not altered by MUMPS. Its value is communicated internally to the other
phases as required.SIZE SCHURshould be greater or equal to 0 and strictly smaller thanN.

1If the calling application manages both local and global indices, the global indices must be provided.
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mumpspar%LISTVAR SCHUR (integer array pointer, dimension mumpspar%SIZE SCHUR) must
be allocated and initialized by the user on the host ifICNTL(19) = 1, 2 or 3. It is not altered by
MUMPS. It is accessed during analysis (JOB=1) and LISTVARSCHUR(i), i=1, . . . , SIZESCHUR
must hold theith variable of the Schur complement matrix.

Centralized Schur complement stored by rows (ICNTL(19) =1)

Note that this option is becoming obsolete and is not recommended anymore because the memory for
the Schur is doubled and because it requires a copy or messagetranfer of the Schur computed internally
by MUMPS into the mumpspar%SCHUR argument. If a centralized Schur complement is required, we
refer the user to the paragraph “Centralized Schur complement stored by columns (ICNTL(19)=2 or 3)”
instead.

mumpspar%SCHUR is a real (complex in the complex version) 1-dimensional pointer array that
should point toSIZE SCHUR× SIZE SCHURlocations in memory. It must be allocated by the
user on the host (independently of the value of mumpspar%PAR) before the factorization phase.
On exit, it holds the Schur complement matrix. On output fromthe factorization phase, and on
the host node, the 1-dimensional pointer array SCHUR of length SIZE SCHUR× SIZE SCHUR
holds the (dense) Schur matrix of orderSIZE SCHUR. Note that the order of the indices in the
Schur matrix is identical to the order provided by the user inLISTVAR SCHURand that the Schur
matrix is storedby rows. If the matrix is symmetric then only the lower triangular part of the Schur
matrix is provided (by rows) and the upper part is not significant. (This can also be viewed as the
upper triangular part stored by columns in which case the lower part is not defined.)

Distributed Schur complement (ICNTL(19) =2 or 3)

For symmetric matrices, the value ofICNTL(19) controls whether only the lower part (ICNTL(19) = 2)
or the complete matrix (ICNTL(19) = 3) is generated. MUMPS always provides the complete matrixfor
unsymmetric matrices so that either value forICNTL(19) has the same effect.

If ICNTL(19)=2 or 3, the following parameters should be defined on the hoston
entry to the analysis phase:

mumpspar%NPROW, mumpspar%NPCOL, mumpspar%MBLOCK , and mumpspar%NBLOCK
are integers corresponding to the characteristics of a 2D block cyclic grid of processors. They
should be defined on the host before a call to the analysis phase. If any of these quantities is smaller
than or equal to zero or has not been defined by the user, or if NPROW× NPCOL is larger than
the number of slave processors available (total number of processors ifPAR=1, total number of
processors minus 1 if mumpspar%PAR=0), then a grid shape will be computed by the analysis
phase ofMUMPSand NPROW, NPCOL, MBLOCK, NBLOCK will be overwritten on exitfrom
the analysis phase. Please refer to [13] (for example) for more details on the notion of grid of
processors and on 2D block cyclic distributions. We briefly describe the meaning of the four above
parameters here:

• NPROW is the number of rows of the process grid (or the number of processors in a column
of the process grid),

• NPCOL is the number of columns of the process grid (or the number of processors in a row
of the process grid),

• MBLOCK is the blocking factor used to distribute the rows of the Schur complement,
• NBLOCK is the blocking factor used to distribute the columnsof the Schur complement.

As in ScaLAPACK, we use a row-major process grid of processors, that is, process ranks (as
provided toMUMPSin the MPI communicator) are consecutive in a row of the process grid.
NPROW, NPCOL, MBLOCK and NBLOCK should be passed unchanged from the analysis phase
to the factorization phase. If the matrix is symmetric (SYM=1 or 2) andICNTL(19)=3 (see below),
then the values ofMBLOCK andNBLOCK should be equal.

On exit from the analysis phase, the following two components are set byMUMPSon the first
NPROW× NPCOL slave processors (the host is excluded ifPAR=0 and the processors with largest
MPI ranks in the communicator provided toMUMPSmay not be part of the grid of processors).
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mumpspar%SCHUR MLOC is an integer giving the number of rows of the local Schur complement
matrix on the concerned processor. It is equal to MAX(1,NUMROC(SIZE SCHUR, MBLOCK,
myrow, 0, NPROW)), where

• NUMROC is an INTEGER function defined in most ScaLAPACK implementations (also used
internally by theMUMPSpackage),

• SIZE SCHUR, MBLOCK, NPROWhave been defined earlier, and

• myrowis defined as follows:
Let myidbe the rank of the calling process in the communicator COMM provided toMUMPS.
(myidcan be returned by the MPI routineMPI COMMRANK.)

– if PAR= 1 myrowis equal tomyid/ NPCOL,

– if PAR= 0 myrowis equal to(myid− 1) / NPCOL.

Note that an upperbound of the minimum value of leading dimension (SCHURLLD defined below)
is equal to ((SIZE SCHUR+MBLOCK-1)/MBLOCK+NPROW-1)/NPROW*MBLOCK.

mumpspar%SCHUR NLOC is an integer giving the number of columns of the local Schur
complement matrix on the concerned processor. It is equal toNUMROC(SIZE SCHUR,
NBLOCK, mycol, 0,NPCOL), where

• SIZE SCHUR, NBLOCK, NPCOLhave been defined earlier, and

• mycolis defined as follows:
Let myidbe the rank of the calling process in the communicator COMM provided toMUMPS.
(myidcan be returned by the MPI routineMPI COMMRANK.)

– if PAR= 1 mycolis equal to MOD(myid, NPCOL),

– if PAR= 0 mycolis equal to MOD(myid− 1, NPCOL).

On entry to the factorization phase(JOB = 2), SCHURLLD should be defined by the user and
SCHURshould be allocated by the user on theNPROW× NPCOL first slave processors (the host is
excluded if PAR=0 and the processors with largest MPI ranks in the communicator provided toMUMPS
may not be part of the grid of processors).

mumpspar%SCHUR LLD is an integer defining the leading dimension of the local Schur complement
matrix. It should be larger or equal to the local number of rows of that matrix,SCHURMLOC
(as returned byMUMPSon exit from the analysis phase on the processors that participate in the
computation of the Schur). SCHURLLD is not modified byMUMPS.

mumpspar%SCHUR is a real (complex in the complex version) one-dimensional pointer array that
should be allocated by the user before a call to the factorization phase. Its size should be at
least equal toSCHURLLD × (SCHURNLOC - 1) + SCHURMLOC, whereSCHURMLOC,
SCHURNLOC, andSCHURLLD have been defined above.On exit to the factorization phase,
the pointer arraySCHUR contains the Schur complement, stored by columns, in the format
corresponding to the 2D cyclic grid ofNPROW× NPCOLprocessors, with block sizesMBLOCK
andNBLOCK, and local leading dimensionsSCHURLLD.

The Schur complement is stored by columns. Note that settingNPCOL × NPROW = 1
will centralize the Schur complement matrix,stored by columns(instead of by rows as in the
ICNTL(19)=1 option). It will then be available on the host node ifPAR=1, and on the node with
MPI identifier 1 (first working slave processor) ifPAR=0. More details on this are presented in the
paragraph below.

If ICNTL(19) =2 and the Schur is symmetric (SYM=1 or 2), only the lower triangle is provided,
stored by columns.

If ICNTL(19) =3 and the Schur is symmetric (SYM=1 or 2), then both the lower and upper
triangles are provided, stored by columns. Note that ifICNTL(19)=3, then the constraint
mumpspar%MBLOCK = mumpspar%NBLOCK should hold.

(For unsymmetric matrices,ICNTL(19)=2 andICNTL(19)=3 have the same effect.)
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Centralized Schur complement stored by columns (ICNTL(19) =2 or 3)

This option is recommended compared toICNTL(19)=1. It is a particular case of the distributed Schur
complement(ICNTL(19)=2 or 3, see the above paragraph), where the Schur complementis only assigned
to one processor. Therefore we refer the reader to the previous section for a detailed description of
using this option. Let us summarize it a simple case of use, where the user wants a centralized Schur
complement and wherePAR=1 (working host node).

On top ofSIZE SCHURandLISTVAR SCHURdescribed earlier, the user should set the following
parameters on the hoston entry to the analysis phase:

NPROW= NPCOL= 1, in order to define a distribution that uses only one processor (the host assuming
thatPAR=1);

MBLOCK = NBLOCK = 100. Those arguments must be provided and be strictly positive but their
actual value will not change the distribution since NPROW=NPCOL=1.

ICNTL(19)=2 or 3.

On entry to the factorization phase, the user should provide on the host2:

mumpspar%SCHUR LLD =SIZE SCHUR: we consider here the simple case where the leading
dimension of the Schur is equal to its order.

mumpspar%SCHUR, a real (complex in the complex version) one-dimensional pointer array of size
SIZE SCHUR× SIZE SCHURthat should be allocated by the user.

On exit to the factorization phase, the pointer arraySCHURavailable on the host contains the Schur
complement. IfSYM=0, then the options ofICNTL(19)=2 andICNTL(19)=3have an identical behaviour
and the asymmetric Schur complement is returned by columns (i.e., in column-major format). IfSYM=1
or 2 andICNTL(19)=2, then only the lower triangular part of the symmetric Schur is returned, stored by
columns, and the upper triangular part should not be accessed. (Note that this is equivalent to say that
the upper triangular part is returned by rows and the lower triangular part is not accessed.) IfSYM=1
or 2 andICNTL(19)=3, then both the lower and upper triangular parts are returned. Because the Schur
complement is symmetric, this can be seen both as a row-majorand as a column-major storage.

Using partial factorization during solution phase (ICNTL(26) = 0, 1 or 2)

As explained in Section2.12, when a Schur complement has been computed during the factorization
phase, then either the solution phase computes a solution onthe internal problem (ICNTL(26)=0, see
control parameterICNTL(26)), or the complete problem can use a reduced righ-hand side tobuild the
solution of the problem on the Schur variables (ICNTL(26)=1 andICNTL(26)=2).

If ICNTL(26)=1 or 2, then the following parameters must be defined on the host on entry to the
solution step:

mumpspar%LREDRHS is an optional integer parameter defining the leading dimension of the reduced
right-hand side, REDRHS, that must be set by the user whenNRHSis provided. It must be larger
or equal toSIZE SCHUR, the size of the Schur complement.

mumpspar%REDRHS is a real (complex in the complex version) one-dimensional pointer array that
should be allocated by the user before entering the solutionphase. Its size should be at least equal
to LREDRHS×(NRHS-1)+ SIZE SCHUR. If ICNTL(26)=1, then on exit from the solution phase,
REDRHS(i+(k-1)*LREDRHS), i=1, . . ., SIZE SCHUR, k=1, . . ., NRHS will hold the reduced
right-hand side. IfICNTL(26)=2, then REDRHS(i+(k-1)*LREDRHS), i=1, . . ., SIZE SCHUR,
k=1, . . ., NRHSmust be set (on entry to the solution phase) to the solution onthe Schur variables.
In that case (ie,ICNTL(26)=2), it is not altered byMUMPS.

2As said above, we assume a working host model (PAR=1), otherwise this becomes processor 1 – please refer to thegeneral
description from paragraph “Distributed Schur Complement” above for more information.
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4.11 Out-of-core (ICNTL(22)6= 0)
The decision to use the disk to store the matrix of factors is controlled byICNTL(22) (ICNTL(22) 6= 0
implies out-of-core). Only the value on the host node is significant.

Both mumpspar%OOC TMPDIR and mumpspar%OOC PREFIX can be provided by the user
(on each processor) to control respectively the directory where the out-of-core files will be stored and
the prefix of those files. If not provided, the /tmp directory will be tried and file names will be chosen
automatically.

It is also possible to provide the directory and filename prefix through environment variables.
If mumps par%OOC TMPDIR is not defined, then MUMPS checks for the environment variable
MUMPS OOC TMPDIR. If not defined, then the directory /tmp is attempted.Similarly, if
mumpspar%OOC PREFIX is not defined, then MUMPS checks for the environment variable
MUMPS OOC PREFIX. If not defined, then MUMPS chooses the filename automatically.

4.12 Workspace parameters
The memory required to run the numerical phases is estimatedduring the analysis. The size of the
workspace required during numerical factorization depends on algorihtmic parameters such as the in-
core/out-of-core strategies (ICNTL(22)) and the memory relaxation parameterICNTL(14).

Two main integer and real/complex workarrays (IS and S, respectively) that hold factors, active frontal
matrices, and contribution blocks are allocated internally. Note that, apart from these two large work
arrays, other internal work arrays exist (for example, internal communication buffers in the parallel case,
or integer arrays holding the structure of the assembly tree).

At the end of the analysis phase, the following estimations of the memory required to run the
numerical phases are provided (for the given or default value of the memory relaxation parameter
ICNTL(14)):

• INFO(15)returns the minimum size in Megabytes to run the numerical phases (factorisation/solve)
in-core . (The maximum and sum over all processors are returned rerspectively inINFOG(16)and

INFOG(17)).

• INFO(17) provides an estimation (in Megabytes) of the minimum total memory required to run
the numerical phasesout-of-core. (The maximum and sum over all processors are returned
respectively inINFOG(26)andINFOG(27)).

Those memory estimations can be used as lower bounds when theuser wants to explicitly control the
memory used (see description ofICNTL(23)).

As a first general approach, we advise the user to rely on the estimations provided during the analysis
phase. If the user wants to increase the allocated workspace(typically, numerical pivoting that leads to
extra storage, or previous call to MUMPS that failed becauseof a lack of allocated memory), we describe
in the following how the size of the workspace can be controlled.

• The memory relaxation parameterICNTL(14) is designed to control the increase, with respect to the
estimations performed during analysis, in the size of the workspace allocated during the numerical
phase.

• The user can also provide the size of the total memoryICNTL(23) that the package is allowed to
use internally. ICNTL(23) is expressed in Megabytes per processor. IfICNTL(23) is provided,
ICNTL(14) is still used to relax the integer workspace and some internal buffers. That memory
is subtracted fromICNTL(23); what remains determines the size of the main (and most memory-
consuming) real/complex array holding the factors and stack of contribution blocks.

4.13 Right-hand side and solution vectors/matrices
The formats of the right-hand side and of the solution are controlled by ICNTL(20) and ICNTL(21),
respectively.
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Centralized dense right-hand side (ICNTL(20) =0) and/or centralized dense solution
(ICNTL(21) =0)

If ICNTL(20)=0 or ICNTL(21)=0, the following components of the MUMPS structure should be defined
on the host.

mumpspar%RHS (real/complex array pointer, dimensionLRHS×NRHS) is a real (complex in the
complex version) array that should be allocated by the user on the host before a call toMUMPSwith
JOB= 3, 5, or 6.

On entry, ifICNTL(20)=0, RHS(i+(k-1)× LRHS) must hold the i-th component ofkth right-hand
side vector (1 ≤ k ≤NRHS) of the equations being solved. The default value forNRHSis 1 and
the default value forLRHS is N, the order of the matrix (see below).

On exit, if ICNTL(21)=0, thenRHS(i+(k-1)×LRHS) will hold the i-th component of thekth
solution vector,1 ≤ k ≤NRHS. Remark that whenICNTL(20)=0 (dense right-hand side) and
ICNTL(21)=1 (distributed solution),RHSmay still be modified on exit to the package, but will not
contain any significant data for the user.

mumpspar%NRHS (integer) is an optional parameter that is significant on thehost before a call to
the solution phase ofMUMPS(JOB = 3, 5, or 6) . IfNRHS is set, it should hold the number of
right-hand side vectors. If not set, the value 1 is assumed, as this ensures backward compatibility
of theMUMPSinterface with versions of the package prior to 4.3.3. Note that if NRHS> 1, then
functionalities related to iterative refinement and error analysis (seeICNTL(10) andICNTL(11) are
currently disabled.

mumpspar%LRHS (integer) is an optional parameter that is significant on thehost before a call to the
solve phase ofMUMPS(JOB=3, 5, or 6). IfNRHSis provided,LRHSshould then hold the leading
dimension of the arrayRHSand should be greater than or equal toN.

Sparse right-hand side (ICNTL(20) =1 or ICNTL(30) =1)

If ICNTL(20)=1 or ICNTL(30)=1, the following input parameters should be defined on the host only
before a call toMUMPSwith JOB=3, 5, or 6:

mumpspar%NZ RHS (integer) should hold the total number of non-zeros in all the right-hand side
vectors.

mumpspar%NRHS (integer), if set, should hold the number of right-hand sidevectors. If not set, the
value 1 is assumed.

mumpspar%RHS SPARSE (real/complex array pointer, dimensionNZ RHS) should hold the
numerical values of the non-zero inputs of each right-hand side vector whenICNTL(20)=1. It
must be allocated but needs not be initialized whenICNTL(30)=1. See alsoIRHS PTRbelow.

mumpspar%IRHS SPARSE(integer array pointer, dimensionNZ RHSshould hold the indices of the
variables of the non-zero inputs of each right-hand side vector.

mumpspar%IRHS PTR is an integer array pointer of dimensionNRHS+1. IRHS PTR
is such that the i-th right-hand side vector is defined by its non-zero row indices
IRHS SPARSE(IRHS PTR(i)...IRHSPTR(i+1)-1) and the corresponding numerical
values RHS SPARSE(IRHS PTR(i)...IRHSPTR(i+1)-1). Note that IRHSPTR(1)=1 and
IRHS PTR(NRHS+1)=NZ RHS+1.

Note that, if the right-hand side is sparse and if the solution is centralized (ICNTL(21)=0) and if the
computation of entries inA−1 is not requested (ICNTL(30)=0), then mumpspar%RHS should still be
allocated on the host, as explained in the previous section.On exit from a call toMUMPSwith JOB=3, 5,
or 6, it will hold the centralized solution. More explicitly, with ICNTL(30)=1 mumpspar%RHS needs
not be allocated and since selected entries of the inverse ofthe matrix are requested, mumpspar%NRHS
must be set toN and columnj of the sparse right-hand side, that might be empty, corresponds to column
j of A−1.
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Distributed solution (ICNTL(21) =1)

On some networks with low bandwidth, and especially when there are many right-hand side vectors,
centralizing the solution on the host processor might be a costly part of the solution phase. If this is
critical to the user, this functionality allows the solution to be left distributed over the processors. The
solution should then be exploited in its distributed form bythe user application.

mumpspar%SOL loc is areal/complexarray pointer, of dimensionLSOL loc× NRHS(whereNRHS
corresponds to the value provided in mumpspar%NRHSon the host), that should be allocated by
the user before the solve phase (JOB=3) on all processors in the case of the working host model
of parallelism (PAR=1), and on all processors except the host in the case of the non-working host
model of parallelism (PAR=0). Its leading dimensionLSOL loc should be larger than or equal to
INFO(23), whereINFO(23)has the value returned byMUMPSon exit from the factorization phase.
On exit from the solve phase, SOLloc(i+(k-1)×LSOL loc) will contain the value corresponding to
variableISOL loc(i) in thekth solution vector.

mumpspar%LSOL loc (integer). LSOLloc must be set to the leading dimension of SOLloc (see
above) and should be larger than or equal to INFO(23), where INFO(23) has the value returned by
MUMPSon exit from the factorization phase.

mumpspar%ISOL loc (integer array pointer, dimension INFO(23)) ISOLloc should be allocated by
the user before the solve phase (JOB=3) on all processors in the case of the working host model
of parallelism (PAR=1), and on all processors except the host in the case of the non-working host
model of parallelism (PAR=0). ISOLloc should be of size at least INFO(23), where INFO(23) has
the value returned byMUMPSon exit from the factorization phase. On exit from the solve phase,
ISOL loc(i) contains the index of the variables for which the solution (in SOL loc) is available on
the local processor. Note that if successive calls to the solve phase (JOB=3) are performed for a
given matrix, ISOLloc will have the same contents for each of these calls.

Note that if the solution is kept distributed, then functionalities related to error analysis and iterative
refinement (seeICNTL(10) andICNTL(11)) are currently not available.

4.14 Writing a matrix to a file
mumpspar%WRITE PROBLEM (string) can be set by the user before the analysis phase (JOB=1) in

order to write the matrix passed toMUMPSinto the file “WRITE PROBLEM”. This only applies to
assembled matrices and the format used to write the matrix isthe “matrix market” format3. If the
matrix is distributed, then each processor must initializeWRITE PROBLEM. Each processor will
then write its share of the matrix in a file whose name is “WRITEPROBLEM” appended by the
rank of the processor in the communicator passed toMUMPS. Note that WRITEPROBLEM should
include both the path and the file name.

5 Control parameters
On exit from the initialization call (JOB= –1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the corresponding entries in mumpspar%ICNTL and
mumpspar%CNTL should be reset after this initial call and before the call in which they are used.

5.1 Integer control parameters
mumpspar%ICNTL is an integer array of dimension 40.

ICNTL(1) is the output stream for error messages. If it is negative or zero, these messages will be
suppressed. Default value is 6.

ICNTL(2) is the output stream for diagnostic printing, statistics, and warning messages. If it is negative
or zero, these messages will be suppressed. Default value is0.

3Seehttp://math.nist.gov/MatrixMarket/
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ICNTL(3) is the output stream for global information, collected on the host. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diagnostic messages. Maximum value is 4 and
default value is 2 (errors and warnings printed). Possible values are

• ≤ 0: No messages output.

• 1 : Only error messages printed.

• 2 : Errors, warnings, and main statistics printed.

• 3 : Errors and warnings and terse diagnostics (only first ten entries of arrays) printed.

• ≥ 4: Errors and warnings and information on input and output parameters printed.

ICNTL(5) has default value 0 and is only accessed by the host and only during the analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled format in the structure components N,
NZ, IRN, JCN, and A (or NZloc, IRN loc, JCNloc, A loc, see Section4.7). If ICNTL(5) = 1, the
input matrix must be given in elemental format in the structure components N, NELT, ELTPTR,
ELTVAR, and A ELT. Values of ICNTL(5) different from 0 and 1 are treated as 0.

Please note that parallel analysis is only available for matrices in assembled format and, thus, an
error will be raised if ICNTL(5)=1 and ICNTL(28)=2.

ICNTL(6) has default value 7 (automatic choice done by the package) and is used to control an option
for permuting and/or scaling the matrix. It is only accessedby the host and only during the analysis
phase. For unsymmetric matrices, if ICNTL(6)=1, 2, 3, 4, 5, 6a column permutation (based on
weighted bipartite matching algorithms described in [17, 18]) is applied to the original matrix to get
a zero-free diagonal. For symmetric matrices, if ICNTL(6)=1, 2, 3, 4, 5, 6, the column permutation
is not applied but it can be used to determine a set of recommended1×1 and2×2 pivots (see [19]
for more details).

Possible values of ICNTL(6) are:

• 0 : No column permutation is computed.

• 1 : The permuted matrix has as many entries on its diagonal possible. The values on the
diagonal are of arbitrary size.

• 2 : The permutation is such that the smallest value on the diagonal of the permuted matrix is
maximized.

• 3 : Variant of option 2 with different performance.

• 4 : The sum of the diagonal entries of the permuted matrix (if permutation was applied) is
maximized.

• 5 : The product of the diagonal entries of the permuted matrix(if permutation was applied) is
maximized. Vectors are computed (and stored in COLSCA and ROWSCA, only if ICNTL(8)
is set to -2 or 77) to scale the matrix. In case the matrix is effectively permuted (unsymmetric
matrix) then the nonzero diagonal entries in the permuted matrix are one in absolute value and
all the off-diagonal entries less than or equal to one in absolute value.

• 6 : Similar to 5 but with a different algorithm.

• 7 : Based on the structural symmetry of the input matrix and onthe availability of the
numerical values, the value of ICNTL(6) is automatically chosen by the software.

Other values are treated as 0.

Except for ICNTL(6)=0, 1 or 7, the numerical values of the original matrix, mumpspar%A, must
be provided by the user during the analysis phase. If the matrix is symmetric positive definite (SYM
= 1), or in elemental format (ICNTL(5)=1), or the ordering is provided by the user (ICNTL(7)=1),
or the Schur option (ICNTL(19) = 1, 2, or 3) is required, or the matrix is initially distributed
(ICNTL(18) 6= 0), then ICNTL(6) is treated as 0.

On unsymmetric matrices(SYM = 0), the user is advised to set ICNTL(6) to a nonzero value
when the matrix is very unsymmetric in structure. On output from the analysis phase, when the
column permutation is not the identity, the pointer mumpspar%UNSPERM (internal data valid
until a call to MUMPSwith JOB=-2) provides access to the permutation on the host processor.
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(The column permutation is such that entryai,perm(i) is on the diagonal of the permuted matrix.)
Otherwise, the pointer is unassociated.

On general symmetric matrices(SYM = 2), we advise either to letMUMPSselect the strategy
(ICNTL(6) = 7) or to set ICNTL(6)= 5 if the user knows that the matrix is for example an
augmented system (which is a system with a large zero diagonal block). On output from the analysis
the pointer mumpspar%UNS PERMis unassociated.
On output from the analysis phase,INFOG(23)holds the value of ICNTL(6) that was effectively
used.
Please note that this permutation/scaling of the matrix is incompatible with parallel analysis and,
thus and error will be raised ifICNTL(28)=2 and ICNTL(6)=1,2,3,4,5, or 6.

ICNTL(7) has default value 7 and is only accessed by the host and only during the analysis phase. If
sequential analysis is to be performed (ICNTL(28)=1), it determines the pivot order to be used
for the factorization. Note that, even when the ordering is provided by the user, the analysis must
be performed before numerical factorization. In exceptional cases, The option corresponding to
ICNTL(7) may be forced byMUMPSwhen the ordering suggested by the user is not compatible
with the value ofICNTL(12). Possible values for ICNTL(7) are:

• 0 : Approximate Minimum Degree (AMD) [4] is used,
• 1 : the pivot order should be set by the user inPERM IN, on the host processor. In that case,

PERM IN must be allocated on the host by the user andPERM IN(i), (i=1, ... N) must hold
the position of variable i in the pivot order.

• 2 : Approximate Minimum Fill (AMF) is used,
• 3 : SCOTCH4 [28] is used (if previously installed by the user).
• 4 : PORD5 [31] is used,
• 5 : the METIS6 [26] package is used (if previously installed by the user),
• 6 : Approximate Minimum Degree with automatic quasi-dense row detection (QAMD) is

used.
• 7 : Automatic choice by the software during analysis phase. This choice will depend on

the ordering packages made available, on the matrix (type and size), and on the number of
processors.

Other values are treated as 7. Currently, options 3, 4 and 5 are only available if the corresponding
packages are installed (see comments in the Makefiles to letMUMPSknow about them). If the
packages are not installed then options 3, 4 and 5 are treatedas 7.

• If the user asks for a Schur complement matrix and the matrix is assembled then only options
0, 1, 5 and 7 are currently available. Other options are treated as 7.

• For elemental matrices(ICNTL(5)=1), only options 0, 1, 5 and 7 are available, with option
7 leading to an automatic choice between AMD and METIS (options 0 or 5); other values are
treated as 7. Furthermore, if the user asks for a Schur complement matrix, only options 0, 1
and 7 are currently available. Other options are treated as 7which will (currently) be treated
as 0 (AMD).

Generally, with the automatic choice corresponding to ICNTL(7)=7, the option chosen by
the package depends on the ordering packages installed, thetype of matrix (symmetric or
unsymmetric), the size of the matrix and the number of processors.
For matrices with relatively dense rows, we highly recommend option 6 which may significantly
reduce the time for analysis.
On output, the pointer mumpspar%SYM PERM provides access, on the host processor, to the
symmetric permutation that is effectively used by the MUMPSpackage, andINFOG(7) to the
ordering option that was effectively used. (mumpspar%SYM PERM(i), (i=1, ... N) holds the
position of variable i in the pivot order.)
Please note that ICNTL(7) is meaningless if the parallel analysis is chosen, i.e.,ICNTL(28)=2.

4Seehttp://gforge.inria.fr/projects/scotch/ to obtain a copy.
5Distributed within MUMPS by permission of J. Schulze (University of Paderborn).
6Seehttp://glaros.dtc.umn.edu/gkhome/metis/metis/overvi ewto obtain a copy.
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ICNTL(8) has default value 77.

It is used to describe the scaling strategy and is only accessed by the host.

If ICNTL(8) = –1, scaling vectors must be provided in COLSCA and ROWSCA by the user, who
is then responsible for allocating and freeing them, If ICNTL(8) = 0, no scaling is performed, and
arrays COLSCA/ROWSCA are not used. Otherwise, the scaling arrays COLSCA/ROWSCA are
allocated and computed by the package.

If ICNTL(8) = 77, then an automatic choice of the scaling option may be performed, either during
the analysis or the factorization. The effective value usedfor ICNTL(8) is returned in INFOG(33).
If the scaling arrays are computed during the analysis, thenthey are ready to be used by the
factorization stage. Note that scalings can be efficiently computed during analysis when requested
(seeICNTL(6) andICNTL(12)).

Possible values of ICNTL(8)are listed below:

• -2: Scaling computed during analysis (see [17, 18] for the unsymmetric case and [19] for the
symmetric case).

• -1: Scaling arrays provided on entry to the numerical factorization phase.

• 0 : No scaling applied/computed.

• 1 : Diagonal scaling computed during the numerical factorization phase,

• 2 : Row and column scaling based on [14], computed during the numerical factorization phase,

• 3 : Column scaling computed during the numerical factorization phase,

• 4 : Row and column scaling based on infinite row/column norms,computed during the
numerical factorization phase,

• 5 : Scaling based on [14] followed by column scaling; computed during the numerical
factorization phase,

• 6 : Scaling based on [14] followed by row and column scaling; computed during the numerical
factorization phase.

• 7 : Simultaneous row and colum iterative scaling based on [30] and [10]; computed during the
numerical factorization phase.

• 8 : Similar to 7 but more rigorous and expensive to compute; computed during the numerical
factorization phase.

• 77 (analysis only) : Automatic choice of ICNTL(8) value doneduring analysis.

If the input matrix is symmetric (SYM 6= 0), then only options –2, –1, 0, 1, 7, 8 and 77 are allowed
and other options are treated as 0; if ICNTL(8)= –1, the user should ensure that the array ROWSCA
is equal to (or points to the same location as) the array COLSCA. If the input matrix is in elemental
format (ICNTL(5) = 1), then only options –1 and 0 are allowed and other options are treated as 0.
If the initial matrix is distributed (ICNTL(18) 6= 0 andICNTL(5) = 0), then only options 7, 8 and
77 are allowed, otherwise no scaling is applied. If ICNTL(8)= –2 then the user has to provide the
numerical values of the original matrix (mumpspar%A) on entry to the analysis.

ICNTL(9) has default value 1 and is only accessed by the host during the solve phase. If ICNTL(9) = 1,
Ax = b is solved, otherwise,ATx = b is solved.

ICNTL(10) has default value 0 and is only accessed by the hostduring the solve phase. IfNRHS
= 1, then ICNTL(10) corresponds to the maximum number of steps of iterative refinement. If
ICNTL(10) ≤ 0, iterative refinement is not performed.

In the current version, ifICNTL(21)=1 (solution kept distributed), or ifNRHS> 1, then iterative
refinement is not performed and ICNTL(10) is treated as 0.

ICNTL(11) has default value 0 and is only accessed by the hostand only during the solve phase. A
positive value will return statistics related to the linearsystem solved (Ax = b or ATx = b

depending on the value ofICNTL(9)): the infinite norm of the input matrix, the computed
solution, and the scaled residual in RINFOG(4), RINFOG(5) and RINFOG(6), respectively, a
backward error estimate in RINFOG(7) and RINFOG(8), an estimate for the error in the solution in
RINFOG(9), and condition numbers for the linear system in RINFOG(10) and RINFOG(11). See
also Section2.3. Note that if performance is critical, ICNTL(11) should be kept equal to 0. Finally,
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note that, ifNRHS> 1, or if ICNTL(21)=1 (solution vector kept distributed) then error analysis is
not performed andICNTL(11) is treated as 0.

ICNTL(12) is meaningful only on general symmetric matrices(SYM = 2) and its default value is 0
(automatic choice). For unsymmetric matrices (SYM=0) or symmetric definite positive matrices
(SYM=1) all values of ICNTL(12) are treated as 1 (nothing done). It is only accessed by the host
and only during the analysis phase. It defines the ordering strategy (see [19] for more details) and
is used, in conjunction withICNTL(6), to add constraints to the ordering algorithm (ICNTL(7)
option). Possible values of ICNTL(12) are :

• 0 : automatic choice

• 1 : usual ordering (nothing done)

• 2 : ordering on the compressed graph associated with the matrix.

• 3 : constrained ordering, only available withAMF(ICNTL(7)=2).

Other values are treated as 0. ICNTL(12),ICNTL(6), ICNTL(7) values are strongly related. As
for ICNTL(6), if the matrix is in elemental format (ICNTL(5)=1), or the ordering is provided by
the user (ICNTL(7)=1), or the Schur option (ICNTL(19) 6= 0) is required, or the matrix is initially
distributed (ICNTL(18) 6= 0) then ICNTL(12) is treated as one.

If MUMPSdetects some incompatibility between control parameters then it uses the following
rules to automatically reset the control parameters. Firstly ICNTL(12) has a lower priority than
ICNTL(7) so that if ICNTL(12)= 3 and the ordering required is notAMFthen ICNTL(12) is
internally treated as 2. Secondly ICNTL(12) has a higher priority than ICNTL(6) and ICNTL(8).
Thus if ICNTL(12)= 2 and ICNTL(6) was not active (ICNTL(6)=0) then ICNTL(6) is treated as 5
if numerical values are provided, or as 1 otherwise. Furthermore, if ICNTL(12)= 3 then ICNTL(6)
is treated as 5 and ICNTL(8) is treated as -2.

On output from the analysis phase, INFOG(24) holds the valueof ICNTL(12) that was effectively
used. Note that INFOG(7) and INFOG(23) hold the values of ICNTL(7) and ICNTL(6)
(respectively) that were effectively used.

ICNTL(13) has default value 0 and is only accessed by the hostduring the analysis phase. If ICNTL(13)
≤ 0, ScaLAPACK will be used for the root frontal matrix (last Schur complement to be factored)
if its size is larger than a machine-dependent minimum size.Otherwise (ICNTL(13)> 0),
ScaLAPACK will not be used and the root node will be treated sequentially. Processing the root
sequentially can be useful when the user is interested in theinertia of the matrix (seeINFO(12)and
INFOG(12)), or when the user wants to detect null pivots (seeICNTL(24)).

This parameter also controls splitting of the root frontal matrix. If the number of working processors
is strictly larger than ICNTL(13) with ICNTL(13)>0 (ScaLAPACK off), then splitting of the root
node is performed, in order to automatically recover part ofthe parallelism lost because the root
node was processed sequentially. Finally, setting ICNTL(13) to -1 will force splitting of the root
node in all cases (even sequentially), while values strictly smaller than -1 will be treated as 0.

Note that, although ICNTL(13) controls the efficiency of thefactorization and solve phases,
preprocessing work is performed during analysis and this option must be set on entry to the analysis
phase.

ICNTL(14) is accessed by the host both during the analysis and the factorization phases. It corresponds
to the percentage increase in the estimated working space. When significant extra fill-in is caused
by numerical pivoting, increasing ICNTL(14) may help. Except in special cases, the default value
is 20 (which corresponds to a 20 % increase).

ICNTL(15-17) Not used in current version.

ICNTL(18) has default value 0 and is only accessed by the hostduring the analysis phase, if the matrix
format is assembled (ICNTL(5) = 0). ICNTL(18) defines the strategy for the distributed input
matrix. Possible values are:

• 0: the input matrix is centralized on the host. This is the default, see Section4.5.

• 1: the user provides the structure of the matrix on the host atanalysis,MUMPSreturns a
mapping and the user should then provide the matrix distributed according to the mapping on
entry to the numerical factorization phase.
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• 2: the user provides the structure of the matrix on the host atanalysis, and the distributed
matrix on all slave processors at factorization. Any distribution is allowed.

• 3: user directly provides the distributed matrix input bothfor analysis and factorization.

Other values are treated as 0. For options 1, 2, 3, see Section4.7for more details on the input/output
parameters toMUMPS. For flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the hostduring the analysis phase. If
ICNTL(19)=1, then the Schur complement matrix will be returned to the user on the host after
the factorization phase. If ICNTL(19)=2 or 3, then the Schurwill be returned to the user on the
slave processors in the form of a 2D block cyclic distributedmatrix (ScaLAPACK style). Values
not equal to 1, 2 or 3 are treated as 0. IF ICNTL(19) equals 1, 2,or 3, the user must set on entry to
the analysis phase, on the host node:

• the integer variableSIZE SCHURto the size of the Schur matrix,

• the integer array pointerLISTVAR SCHURto the list of indices of the Schur matrix.

For a distributed Schur complement (ICNTL(19)=2 or 3), the integer variablesNPROW, NPCOL,
MBLOCK, NBLOCK may also be defined on the host before the analysis phase (default
values will otherwise be provided). Furthermore, workspace should be allocated by the user
before the factorization phase in order forMUMPSto store the Schur complement (seeSCHUR,
SCHURMLOC, SCHURNLOC, andSCHURLLD in Section4.10).

Note that the partial factorization of the interior variables can then be exploited to perform a solve
phase (transposed matrix or not, seeICNTL(9)). Note that the right-hand side (RHS) provided on
input must still be of sizeN (or N × NRHSin case of multiple right-hand sides) even if only the
N-SIZE SCHURindices will be considered and if onlyN-SIZE SCHURindices of the solution
will be relevant to the user.

Finally, since the Schur complement is a partial factorization of the global matrix (with partial
ordering of the variables provided by the user), the following options ofMUMPSare incompatible
with the Schur option: maximum transversal, scaling, iterative refinement, error analysis and
parallel analysis. If the ordering is given (ICNTL(7)=1) then the following property should hold:
PERM IN(LISTVAR SCHUR(i)) = N-mumpsSIZESCHUR+i, for i=1,SIZE SCHUR.

ICNTL(20) has default value 0 and is only accessed by the hostduring the solve phase. If
ICNTL(20)=0, the right-hand side must be given in dense formin the structure componentRHS. If
ICNTL(20)=1, then the right-hand side must be given in sparse form using the structure components
IRHS SPARSE, RHS SPARSE, IRHS PTRandNZ RHS. Values of ICNTL(20) that are different
from 0 and 1 are treated as 0. (See Section4.13).

ICNTL(21) has default value 0 and is only accessed by the hostduring the solve phase. If ICNTL(21)=0,
the solution vector will be assembled and stored in the structure componentRHS, that must have
been allocated earlier by the user. If ICNTL(21)=1, the solution vector is kept distributed at the
end of the solve phase, and will be available on each slave processor in the structure components
ISOL loc and SOL loc. ISOL loc and SOL loc must then have been allocated by the user and
must be of size at leastINFO(23), whereINFO(23)has been returned by MUMPS at the end of the
factorization phase. Values of ICNTL(21) different from 0 and 1 are currently treated as 0.

Note that if the solution is kept distributed, error analysis and iterative refinement (controlled by
ICNTL(10) andICNTL(11)) are not applied.

ICNTL(22) has default value 0 and controls the in-core/ out-of-core (OOC) facility. It must be set on
the host before the factorization phase. Possible values are:

• 0: In core factorization and solution phases (default standard version).

• 1: Out of core factorization and solve phases. The complete matrix of factors is written to disk
(see Section4.11).

ICNTL(23) has default value 0. It can be provided by the user at the beginning of the factorization phase
and is only significant on the host. It corresponds to the maximum size of the working memory in
MegaBytes that MUMPS can allocate per working processor. (It covers all internal integer and real
(complex in the complex version) workspace.)
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If ICNTL(23) is greater than 0 then MUMPS automatically computes the size of the internal
workarrays such that the storage for all MUMPS internal datais equal to ICNTL(23). The relaxation
ICNTL(14) is first applied to the internal integer workarrayIS and to communication and I/O
buffers; the remaining available space is given to the main (and most critical) real/complex internal
workarray S holding the factors and the stack of contribution blocks. A lower bound of ICNTL(23)
(if ICNTL(14) has not been modified since the analysis) is given byINFOG(16)if the factorization
is in-core (ICNTL(22)=0), and byINFOG(26)if the factorization is out-of-core (ICNTL(22)=1).

If ICNTL(23) is left to its default value 0 then each processor will allocate workspace based on
the estimates computed during the analysis (INFO(17) if ICNTL(14) has not been modified since
analysis, or larger ifICNTL(14) was increased). Note that these estimates are accurate in the
sequential version ofMUMPS, but that they can be inaccurate in the parallel case, especially for the
out-of-core version. Therefore, in parallel, we recommendto use ICNTL(23) and provide a value
significantly larger thanINFOG(16)in the in-core case, orINFOG(26)in the out-of-core case.

ICNTL(24) has default value 0 and controls the detection of “null pivot rows”. Null pivot rows are
modified to enable the solution phase to provide one solutionamong the possible solutions of
the numerically deficient matrix. Note that the list of row indices corresponding to null pivots
is returned on the host inPIVNUL LIST(1:INFOG(28)). The solution phase (JOB=3) can then
be used to either provide a “regular” solution (in the sense that it is a possible solution of the
complete system when the right-hand-side belongs to the span of the original matrix) or to compute
the associated vectors of the null-space basis (seeICNTL(25), case of symmetric matrices only).
Possible values of ICNTL(24) are:

• 0 Nothing done. A null pivot will result in errorINFO(1)=–10.

• 1 Null pivot row detection;CNTL(3) is used to compute the threshold to decide that a pivot
row is “null”. The parameterCNTL(5) then defines the fixation that will be used to enable the
solution phase to provide a possible solution to the original system.

Other values are treated as 0. Note that when ScaLAPACK is applied on the root node (see
ICNTL(13)), then exact null pivots on the root will stop the factorization (INFO(1)=–10) while
tiny pivots on the root node will still be factored. SettingICNTL(13) to a non-zero value will help
with the correct detection of null pivots but degrade performance.

ICNTL(25) has default value 0 and is only accessed by the hostduring the solution phase. It allows the
computation of a null space basis, which is meaningful only if a zero-pivot detection option was
requested (ICNTL(24) 6= 0) during the factorization and if the matrix was found to be deficient
(INFOG(28)> 0); This functionality is only available for symmetric matrices and is not currently
available in the case of unsymmetric matrices. Possible values of ICNTL(25) are:

• 0 A normal solution step is performed. If the matrix was foundsingular during factorization
then one possible solution is returned.

• i with 1 ≤ i ≤ INFOG(28). The i-th vector of the null space basis is computed.

• -1. The complete null space basis is computed.

• Other values result in an error.

Note that when vectors from the null space are requested, both centralized and distributed solutions
options can be used. In both cases space, to store the null space, vectors must be allocated by the
user and provided to MUMPS. If the solution is centralized (ICNTL(21)=0), then the null space
vectors are returned to the user in the array RHS, allocated by the user on the host. If the solution is
distributed (ICNTL(21)=1), then the null space vectors are returned in the arraySOL loc. In both
cases, note that the number of columns of RHS or SOLloc must be equal to the number of vectors
requested, so thatNRHSis equal to:

• 1 if 1 ≤ ICNTL(25)≤ INFOG(28);

• INFOG(28)if ICNTL(25)=-1.

Finally, note that iterative refinement, error analysis, and the option to solve the transpose system
(ICNTL(9)) are ignored when the solution step is used to return vectorsfrom the null space
(ICNTL(25) 6= 0).
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ICNTL(26) has default value 0 and is accessed by the host during the solution phase. ICNTL(26)
is only meaningful if combined with the Schur option (ICNTL(19) 6= 0, see above). It can be
used to condense/reduce (ICNTL(26)=1) the right-hand sideon the Schur variables, or to expand
(ICNTL(26)=2) the Schur local solution on the complete solution (see Section2.12).

If ICNTL(26) 6= 0, then the user should provide workspace in the pointer array REDRHS, as well
as a leading dimensionLREDRHS(see Section4.10).

If ICNTL(26)=1 then only a forward elimination is performed. The solutioncorresponding to the
‘internal” (non-Schur) variables is returned together with the reduced/condensed right-hand-side.
The reduced right-hand side is made available on the host inREDRHS.

If ICNTL(26)=2 then REDRHS is considered to be the solution corresponding to the Schur
variables. The backward substitution is then performed with the given right-hand side to compute
the solution associated with the ”internal” variables. Note that the solution corresponding to the
Schur variables is also made available in the main solution vector/matrix.

Values different from 1 and 2 are treated as 0. Note that if no Schur complement was computed,
ICNTL(26) = 1 or 2 results in an error. Finally, if ICNTL(26) =1 or 2, then error analysis and
iterative refinements are disabled.

ICNTL(27) Experimental parameter subject to change in a future release. ICNTL(27) is only accessed
by the host during the solution phase. It controls the blocking size for multiple right-hand sides. It
influences both the memory usage (seeINFOG(30)andINFOG(31)) and the solution time. Larger
values of ICNTL(27) lead to larger memory requirements and abetter performance (except if the
larger memory requirements induce swapping effects). Tuning ICNTL(27) is critical, especially
when factors are on disk (ICNTL(22)=1 at the factorization stage) because factors must be accessed
once for each block of right-hand sides. A negative value indicates that an automatic setting
is performed by the solver: when ICNTL(27) is negative, the blocksize is currently set to (i)
−2×ICNTL(27) if the factors are on disk (ICNTL(22)=1); and to (ii)−ICNTL(27) otherwise
(in-core factors). The default value is -8 and zero is treated as one.

ICNTL(28) This parameter is only accessed by the host process during the analysis phase and decides
whether a parallel or a sequential analysis will be performed. Three values are possible:

• 0: automatic choice.

• 1: sequential analysis. In this case the ordering method is set byICNTL(7) and theICNTL(29)
(see details below) parameter is meaningless.

• 2: parallel analysis. A parallel ordering and parallel symbolic factorization will be performed
if either the PT-SCOTCH or ParMetis parallel ordering tools(or both) are available, depending
on the value ofICNTL(29). In this caseICNTL(7) is meaningless and, consequently, all the
features accessible through this control parameter are notavailable.

Any other values will be treated as 0.

At this moment, the parallel analysis is not available for unassembled matrices (i.e.,ICNTL(5)=1),
in the case where a Schur complement is requested (i.e.,ICNTL(19)=1) or in the case where a
maximum transversal is requested on the input matrix (i.e.,ICNTL(6)=1,2,3,4,5 or 6).

ICNTL(29) is accessed by host process only during the analysis phase and only if a parallel analysis has
to be performed, i.e.,ICNTL(28)=2 (see details above). It defines the parallel ordering toolto be
used to compute the fill-in reducing permutation. Three values are possible:

• 0: automatic choice.

• 1: PT-SCOTCH: the PT-SCOTCH parallel ordering tool will be used to reorder the input
matrix, if available.

• 2: ParMetis: the ParMetis parallel ordering tool will be used to reorder the input matrix, if
available.

Any other value will be treated as 0. Also, note that ICNTL(29) is meaningless if the sequential
analysis is chosen, i.e.,ICNTL(28)=1.

ICNTL(30) has default value 0 and is significant only during the solution phase. IfICNTL(30)6= 0, a
user-specified set of entries in the inverse of the original matrix (A−1) will be computed.
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WhenICNTL(30)6= 0 then, on entry to the solution phase, the sparse right-hand-side (NZ RHS,
NRHS, RHS SPARSE, IRHS SPARSE, IRHS PTR, see Section4.13) should be set to hold the
target entries ofA−1 that need be computed.RHS SPARSEmust be allocated but needs not be
initialized andNRHSmust be set toN. On outputRHS SPARSE, IRHS SPARSE, IRHS PTRthen
hold the requested entries ofA−1 andRHSneeds not be allocated by the user.

When a set of entries ofA−1 is requested, the associated set of columns will be computedin blocks
of sizeICNTL(27). In an out-of-core context (ICNTL(22)=1), largerICNTL(27) values will most
likely decrease the amount of factors read from the disk and reduce the solution time [32, 2]. In an
in-core context, the effects might be mixed.

When this functionality is requested, error analysis and iterative refinement will not be performed,
even if the corresponding options are set (ICNTL(10) andICNTL(20). Because the entries ofA−1

are returned inRHS SPARSEon the host, this functionality is incompatible with the distributed
solution option (ICNTL(21). Furthermore, computing entries ofA−1 is not possible in the case of
partial factorizations with a Schur complement (ICNTL(19)).

ICNTL(31) has default value 0 and is only accessed by the hostduring the analysis phase. It is used
to indicate that factors may be discarded during the factorization because the solve phase will not
require them. ICNTL(31) may have the following values:

• 0 (default): all factors needed to perform the solution phase will be kept during the
factorization phase.

• 1: indicates that the user is not interested in solving the linear system (Equations3 or 4) and
will not call MUMPS solution phase (JOB=3). This option is meaningful when only statistics
from the factorization, such as (for example) definiteness,value of the determinant, number
of entries in factors after numerical pivoting, number of negative or null pivots are required.
In that case, the memory allocated for the factorization will rely on the out-of-core estimates.

Out-of-range values are treated as 0.

ICNTL(32) is not used in the current version.

ICNTL(33) has default value 0 and is only accessed by the hostduring the factorization phase. If
ICNTL(33) is different from 0, the package will attempt to compute the determinant of the input
matrix. Note that null pivots (seeICNTL(24)), static pivots (seeCNTL(4)) and elements of the
Schur complement (seeICNTL(18)) are excluded from the computation of the determinant. To
avoid underflows and overflows, the mantissa and the exponentof the determinant are computed
separately. The sign of the determinant should be correct for symmetric matrices. When ICNTL(33)
is different from 0, the determinant is returned inRINFOG(12), RINFOG(13), andINFOG(34)such
that the determinant is obtained by multiplying (RINFOG(12), RINFOG(13)) by 2 to the power
INFOG(34). In real arithmeticRINFOG(13)is equal to 0.

ICNTL(34-40) are not used in the current version.

5.2 Real/complex control parameters
mumpspar%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivoting. It is only accessed by the host during
the factorization phase. It forms a trade-off between preserving sparsity and ensuring numerical
stability during the factorization. In general, a larger value of CNTL(1) increases fill-in but leads
to a more accurate factorization. If CNTL(1) is nonzero, numerical pivoting will be performed. If
CNTL(1) is zero, no such pivoting will be performed and the subroutine will fail if a zero pivot
is encountered. If the matrix is diagonally dominant, then setting CNTL(1) to zero will decrease
the factorization time while still providing a stable decomposition. On unsymmetric or general
symmetric matrices, CNTL(1) has default value 0.01. For symmetric positive definite matrices
numerical pivoting is suppressed and the default value is 0.0. Values less than 0.0 are treated as 0.0.
In the unsymmetric case (respectively symmetric case), values greater than 1.0 (respectively 0.5)
are treated as 1.0 (respectively 0.5).
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CNTL(2) is the stopping criterion for iterative refinement and is only accessed by the host during the
solve phase. LetBerr = maxi

|r|i
(|A|·|x|+|b|)i

[12]. Iterative refinement will stop when either the
required accuracy is reached (Berr < CNTL(2) ) or the convergence rate is too slow (Berr does
not decrease by at least a factor of 5). Default value is

√
ǫ whereǫ holds the machine precision and

depends on the arithmetic version.

CNTL(3) is only used combined with null pivot detection (ICNTL(24) = 1) and is not used otherwise.
CNTL(3) has default value0.0 and is only accessed by the host during the numerical factorization
phase. LetApre be the preprocessed matrix to be factored (see Equation5). A pivot is considered
to be null if the infinite norm of its row/column is smaller than a thresholdthres. Let ǫ be the
machine precision and‖.‖ be the infinite norm.

• If CNTL(3) > 0 then thres = CNTL(3)×‖Apre‖
• If CNTL(3) = 0.0 then thres = ǫ× 10−5 × ‖Apre‖
• If CNTL(3) < 0 then thres = |CNTL(3)|

CNTL(4) determines the threshold for static pivoting. It isonly accessed by the host, and must be set
either before the factorization phase, or before the analysis phase. It has default value -1.0. If
CNTL(4) < 0.0 static pivoting is not activated. If CNTL(4)> 0.0 static pivoting is activated and
the magnitude of small pivots smaller than CNTL(4) will be set to CNTL(4). If CNTL(4) = 0.0
static pivoting is activated and the threshold value used isdetermined automatically.

CNTL(5) defines the fixation for null pivots and is effective only when null pivot detection is active
(ICNTL(24) = 1). CNTL(5) has default value0.0 and is only accessed by the host during the
numerical factorization phase. LetApre be the preprocessed matrix to be factored (see Equation5).
If CNTL(5) > 0, in which case we recommend setting it to a large floating-point value in order to
limit the impact of this pivot on the rest of the matrix, the detected null pivot is set to +/- CNTL(5)
×‖Apre‖. The sign of the pivot is preserved in the modified diagonal entry and the factorization
continues. In the symmetric case (SYM = 2), if CNTL(5)≤ 0 then the pivot column of theL factors
is set to zero and the pivot entry in matrixD is set to one. In the unsymmetric case, a large fixation
is automatically chosen when CNTL(5)≤ 0 and the remaining part of the pivot row of theU factor
is set to 0.

CNTL(6-15) are not used in the current version.

5.3 Compatibility between options
As shown above, the package has a lot of options and this givesan exponential amount of combinations
of options. Almost all options are indeed compatible with each other but obviously a few of them are not,
either because the implementation of some options is more complicated in some context, or because some
algorithms cannot be applied or do not make sense under certain conditions. For each option and ICNTL
parameter, the list of incompatibilities is normally givenin the description of the option. The objective of
this section is to provide to the user a more global view of themain incompatibilities.

Table 1 highlights the incompatibilities between functionalities and matrix input formats
(functionalities which do not appear in this table are compatible with all matrix input formats).

In Table2, we present the numerical limitations of the solver when ScaLAPACK is used on the final
dense Schur complement of MUMPS.

Regarding the solve phase (JOB=3), iterative refinement and error analysis are incompatible with
some options, as reported in Table3. Although iterative refinement and error analysis could be performed
externally to the package, they are provided by the package for convenience for all matrix formats but not
for all situations. For example, they do not really make sense when computing something different from
the solution ofAx = b (e.g. entries of the inverse, null space basis, only forwardsubstitution performed).

Finally, note that orderings available for the sequential and the parallel analysis phase (see
ICNTL(28)) are controlled by two different parameters (ICNTL(7) and ICNTL(29)), which have a
different range of allowed values, so their is no incompatibility as such. But orderings based on minimum-
degree (for example) are only available with the sequentialanalysis.
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Functionality (Control) Matrix input format (ICNTL(18) andICNTL(5))
Centralised Distributed assembled

Assembled Elemental (distr. elemental not avail.)

Unsymmetric (ICNTL(6)) All options Not available Not available
permutations (ICNTL(6)=0) (ICNTL(6)=0)
Scalings (ICNTL(8)) All options Only option 1 Only options 7, 8, or 1

(user-provided) (user-provided)
Constrained/com- (ICNTL(12)) All options Not available Not available
ressed orderings (ICNTL(12)=0) (ICNTL(12)=0)
Type of analysis (ICNTL(28)) Sequential (parallel not available) Sequential or parallel
Schur complement (ICNTL(19)) All options All options but not compatible

with Parallel analysis

Table 1: Compatibilities between MUMPS functionalities and matrix-input formats.

SCALAPACK
OFF ON

Null pivot list ok null pivots on root node
(ICNTL(24)) not available and failure

if exact null pivot on root
LDLt factorization ok ok butLU /PDGETRFperformed on root
(SYM=2) ok node (no ScalapackLDLt kernel)
Number of negative ok lowerbound (negative pivots
pivots (INFOG(12)) not counted on root node)

Table 2: MUMPS relies on ScaLAPACK to factorize the last dense Schur complement. If exact inertia
(number of negative pivots) or null pivot list is critical, ScaLAPACK can be switched off, see ICNTL(13)
although this might imply a small performance degradation.

iterative refinement error analysis
Functionality Control ICNTL(10) ICNTL(11)
Multiple right-hand sides NRHS> 1 Incomp. Incomp.
Distributed solution ICNTL(21) Incomp. Incomp.
Reduced right-hand sides/ ICNTL(26)=1 Incomp. Incomp.
partial solution ICNTL(26)=2 Incomp. Incomp.
Compute null space (*) ICNTL(25) Incomp. Incomp.
Entries ofA−1 ICNTL(30) Incomp. Incomp.

Table 3: List of incompatibilities with postprocessings options at the end of the solve phase. (*) The null
space estimate is only available for symmetric matrices.
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6 Information parameters
The parameters described in this section are returned byMUMPSand hold information that may be of
interest to the user. Some of the information is local to eachprocessor and some only on the host. If an
error is detected (see Section7), the information may be incomplete.

6.1 Information local to each processor
The arrays mumpspar%RINFO and mumpspar%INFO are local to each process.

mumpspar%RINFO is a double precision array of dimension 20. It contains the following local
information on the execution ofMUMPS:

RINFO(1) - after analysis: The estimated number of floating-point operations on the processor for the
elimination process.

RINFO(2) - after factorization: The number of floating-point operations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-point operations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumpspar%INFO is an integer array of dimension 40. It contains the following local information on
the execution ofMUMPS:

INFO(1) is 0 if the call toMUMPSwas successful, negative if an error occurred (see Section7), or
positive if a warning is returned.

INFO(2) holds additional information about the error or thewarning. If INFO(1)= –1, INFO(2) is the
processor number (in communicator mumpspar%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated size of the real/complex space needed on the processor to store
the factors in memory if the factorization is performed in-core (ICNTL(22)=0). If INFO(3) is
negative, then the absolute value corresponds tomillions of real/complex entries used to store the
factor matrices. If the user plans to perform an out-of-corefactorization (ICNTL(22)=1), then
a rough estimation of the size of the disk space in bytes of thefiles written by the concerned
processor can be obtained by multiplying INFO(3) (or its absolute value multiplied by 1 million
when negative) by 4, 8, 8, or 16 for single precision, double precision, single complex, and double
complex arithmetics, respectively. The effective value will be returned in INFO(9) (see below), but
only after the factorization.

INFO(4) - after analysis: Estimated integer space needed onthe processor for factors.

INFO(5) - after analysis: Estimated maximum front size on the processor.

INFO(6) - after analysis: Number of nodes in the complete tree. The same value is returned on all
processors.

INFO(7) - after analysis: Minimum estimated size of the maininternal integer workarray IS to run the
numerical factorizationin-core .

INFO(8) - after analysis: Minimum estimated size of the maininternal real/complex workarray S to run
the numerical factorizationin-core . If negative, then the absolute value corresponds tomillions
of real/complex entries needed in this workarray.

INFO(9) - after factorization: Size of the real/complex space used on the processor to store the factor
matrices. If negative, then the absolute value correspondsto millions of real/complex entries used
to store the factor matrices. In the case of an out-of-core execution (ICNTL(22)=1), the disk space
in bytes of the files written by the concerned processor can beobtained by multiplying INFO(9) (or
its absolute value multiplied by 1 million) by 4, 8, 8, or 16 for single precision, double precision,
single complex, and double complex arithmetics, respectively.
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INFO(10) - after factorization: Size of the integer space used on the processor to store the factor
matrices.

INFO(11) - after factorization: Order of the largest frontal matrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pivots selected on the processor ifSYM=0 or
number of negative pivots on the processor ifSYM=1 or 2. If ICNTL(13)=0 (the default), this
excludes pivots from the parallel root node treated by ScaLAPACK. (This means that the user
should set ICNTL(13)=1 or use a single processor in order to get the exact number of off-diagonal
or negative pivots rather than a lower bound.) Note that for complex symmetric matrices (SYM=1
or 2), INFO(12) will be 0. See alsoINFOG(12), which provides the total number of off-diagonal
or negative pivots over all processors.

INFO(13) - after factorization: The number of postponed elimination because of numerical issues.

INFO(14) - after factorization: Number of memory compresses.

INFO(15) - after analysis: estimated size in Megabytes of all working space to run the numerical phases
(factorisation/solve) in-core (ICNTL(22)=0 for the factorization). The maximum and sum over
all processors are returned rerspectively inINFOG(16)andINFOG(17).

INFO(16) - after factorization: total size (in millions of bytes) of all MUMPSinternal data allocated
during the numerical factorization.

INFO(17) - after analysis: estimated size in Megabytes of all working space to run the numerical phases
out-of-core (ICNTL(22) 6=0) with the default strategy. The maximum and sum over all processors

are returned respectively inINFOG(26)andINFOG(27).

INFO(18) - after factorization: local number of null pivotsresulting from detected when ICNTL(24)=1.

INFO(19) - after analysis: Estimated size of the main internal integer workarray IS to run the numerical
factorization out-of-core.

INFO(20) - after analysis: Estimated size of the main internal real/complex workarray S to run the
numerical factorizationout-of-core. If negative, then the absolute value corresponds tomillions

of real/complex entries needed in this workarray.

INFO(21) - after factorization: Effective space used in themain real/complex workarray S. If negative,
then the absolute value corresponds tomillionsof real/complex entries needed in this workarray.

INFO(22) - after factorization: Size in millions of bytes ofmemory effectively used during
factorization.

INFO(23) - after factorization: total number of pivots eliminated on the processor. In the case of a
distributed solution (seeICNTL(21)), this should be used by the user to allocate solution vectors
ISOL loc and SOLloc of appropriate dimensions (ISOL loc of size INFO(23),SOL loc of size
LSOL loc × NRHS where LSOLloc ≥ INFO(23)) on that processor, between the factorization
and solve steps.

INFO(24) - after analysis: estimated number of entries in factors on the processor. If negative, then the
absolute value corresponds tomillions of entries in the factors. Note that in the unsymmetric case,
INFO(24)=INFO(3). In the symmetric case, however, INFO(24)< INFO(3).

INFO(25) - After factorization : number of tiny pivots (number of pivots modified by static pivoting)
detected on the processor.

INFO(26) - after solution: effective size in Megabytes of all working space to run the solution
phase. (The maximum and sum over all processors are returnedrespectively inINFOG(30)and
INFOG(31)).

INFO(27) - after factorization: effective number of entries in factors on the processor. If negative, then
the absolute value corresponds tomillions of entries in the factors. Note that in the unsymmetric
case, INFO(27)=INFO(9). In the symmetric case, however, INFO(27)≤ INFO(9). The total
number of entries over all processors is available inINFOG(29).

INFO(28) - INFO(40) are not used in the current version.
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6.2 Information available on all processors
The arrays mumpspar%RINFOG and mumpspar%INFOG :

mumpspar%RINFOG is a double precision array of dimension 20. It contains the following global
information on the execution ofMUMPS:

RINFOG(1) - after analysis: The estimated number of floating-point operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of floating-point operations (on all processors) for
the assembly process.

RINFOG(3) - after factorization: The total number of floating-point operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysis: Only returned ifICNTL(11) 6= 0. See
description ofICNTL(11).

RINFOG(12) - after factorization: if the computation of thedeterminant was requested (seeICNTL(33)),
RINFOG(12) contains the real part of the determinant. The determinant may contain an imaginary
part in case of complex arithmetic (seeRINFOG(13)). It is obtained by multiplying (RINFOG(12),
RINFOG(13)) by 2 to the powerINFOG(34).

RINFOG(13) - after factorization: if the computation of thedeterminant was requested (seeICNTL(33)),
RINFOG(13) contains the imaginary part of the determinant.The determinant is then obtained by
multiplying (RINFOG(12), RINFOG(13)) by 2 to the powerINFOG(34).

RINFOG(14) - RINFOG(20) are not used in the current version.

mumpspar%INFOG is an integer array of dimension 40. It contains the following global information on
the execution ofMUMPS:

INFOG(1) is 0 if the call toMUMPSwas successful, negative if an error occurred (see Section7), or
positive if a warning is returned.

INFOG(2) holds additional information about the error or the warning.

The difference between INFOG(1:2) and INFO(1:2) is that INFOG(1:2) is identical on all processors. It
has the value of INFO(1:2) of the processor which returned with the most negativeINFO(1) value. For
example, if processorp returns with INFO(1)=–13, andINFO(2)=10000, then all other processors will
return with INFOG(1)=–13andINFOG(2)=10000, and withINFO(1)=–1andINFO(2)=p.

INFOG(3) - after analysis: Total (sum over all processors) estimated real/complex workspace to store
the factor matrices. If negative, then the absolute value corresponds tomillions of real/complex
entries used to store the factor matrices. If the user plans to perform an out-of-core factorization
(ICNTL(22)=1), then a rough estimate of the total disk space in bytes (for all processors) can
be obtained by multiplying INFOG(3) (or its absolute value multiplied by 1 million) by 4, 8,
8, or 16 for single precision, double precision, single complex, and double complex arithmetics,
respectively. The effective value is returned inINFOG(9) (see below), but only after the
factorization.

INFOG(4) - after analysis: Total (sum over all processors) estimated integer workspace to store the
factor matrices

INFOG(5) - after analysis: Estimated maximum front size in the complete tree.

INFOG(6) - after analysis: Number of nodes in the complete tree.

INFOG(7) - after analysis: the ordering method actually used. The returned value will depend on
the type of analysis performed, e.g. sequential or parallel(seeINFOG(32)). Please refer to
ICNTL(7) and ICNTL(29) for more details on the ordering methods available in sequential and
parallel analysis respectively.

INFOG(8) - after analysis: structural symmetry in percent (100 : symmetric, 0 : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structural symmetry was not computed which will be
the case if the input matrix is in elemental form.)
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INFOG(9) - after factorization: Total (sum over all processors) real/complex workspace to store
the factor matrices. If negative, then the absolute value corresponds to the size inmillions of
real/complex entries used to store the factors. In case of anout-of-core factorization (ICNTL(22)=1,
the total disk space in bytes of the files written by all processors can be obtained by multiplying
INFOG(9) (or its absolute value multiplied by 1 million) by 4, 8, 8, or 16 for single precision,
double precision, single complex, and double complex arithmetics, respectively.

INFOG(10) - after factorization: Total (sum over all processors) integer workspace to store the factor
matrices.

INFOG(11) - after factorization: Order of largest frontal matrix.

INFOG(12) - after factorization: Total number of off-diagonal pivots if SYM=0 or total number of
negative pivots (real arithmetic) ifSYM=1 or 2. If ICNTL(13)=0 (the default) this excludes pivots
from the parallel root node treated by ScaLAPACK. (This means that the user should setICNTL(13)
to a positive value, say 1, or use a single processor in order to get the exact number of off-diagonal
or negative pivots rather than a lower bound.) Furthermore,when ICNTL(24) is set to 1 and
SYM=1 or 2,INFOG(12)excludes the null7 pivots, even if their sign is negative. In other words, a
pivot cannot be both null and negative.

Note that ifSYM=1 or 2,INFOG(12)will be 0 for complex symmetric matrices.

INFOG(13) - after factorization: Total number of delayed pivots. A large number (more that 10% of
the order of the matrix) indicates numerical problems. Settings related to numerical preprocessing
(ICNTL(6),ICNTL(8), ICNTL(12)) might then be modified by the user.

INFOG(14) - after factorization: Total number of memory compresses.

INFOG(15) - after solution: Number of steps of iterative refinement.

INFOG(16) and INFOG(17) - after analysis: Estimated size (in million of bytes) of allMUMPSinternal
data for running factorizationin core .

• —–(16) : value on the most memory consuming processor.

• —–(17) : sum over all processors.

INFOG(18) and INFOG(19) - after factorization: Size in millions of bytes of allMUMPSinternal data
allocated during factorization.

• —–(18) : value on the most memory consuming processor.

• —–(19) : sum over all processors.

INFOG(20) - after analysis: Estimated number of entries in the factors. If negative the absolute
value corresponds tomillions of entries in the factors. Note that in the unsymmetric case,
INFOG(20)=INFOG(3). In the symmetric case, however, INFOG(20)< INFOG(3).

INFOG(21) and INFOG(22) - after factorization: Size in millions of bytes of memory effectively used
during factorization.

• —–(21) : value on the most memory consuming processor.

• —–(22) : sum over all processors.

INFOG(23) - After analysis: value of ICNTL(6) effectively used.

INFOG(24) - After analysis: value of ICNTL(12) effectivelyused.

INFOG(25) - After factorization : number of tiny pivots (number of pivots modified by static pivoting)

INFOG(26) and INFOG(27) - after analysis: Estimated size (in millions of bytes) of allMUMPSinternal
data for running factorizationout-of-core (ICNTL(22)6= 0) for a given value ofICNTL(14) and
for the default strategy.

• —–(26) : max over all processors

• —–(27) : sum over all processors

INFOG(28) - After factorization: number of null pivots encountered. See CNTL(3) for the definition of
a null pivot.

7i.e., whose magnitude is smaller than the tolerance defined by CNTL(3).

37



INFOG(29) - After factorization: effective number of entries in the factors (sum over all processors).
If negative, then the absolute value corresponds tomillions of entries in the factors. Note that in
the unsymmetric case, INFOG(29)=INFOG(9). In the symmetric case, however, INFOG(29)≤
INFOG(9).

INFOG(30) and INFOG(31) - after solution: Size in millions of bytes of memory effectively used during
solution phase:

• —–(30) : max over all processors

• —–(31) : sum over all processors

INFOG(32) - after analysis: the type of analysis actually done (seeICNTL(28)). INFOG(32) has value
1 if sequential analysis was performed, in which caseINFOG(7) returns the sequential ordering
option used, as defined byICNTL(7). INFOG(32) has value 2 if parallel analysis was performed,
in which caseINFOG(7)returns the parallel ordering used, as defined byICNTL(29).

INFOG(33): effective value used forICNTL(8). It is set both after the analysis and the factorization
phases. IfICNTL(8)=77 on entry to the analysis and INFOG(33) has value 77 on exitfrom the
analysis, then no scaling was computed during the analysis and the automatic decision will only be
done during factorization (except if the user modifiesICNTL(8) to set a specific option on entry to
the factorization).

INFOG(34): if the computation of the determinant was requested (seeICNTL(33)), INFOG(34) contains
the exponent of the determinant. See alsoRINFOG(12)and RINFOG(13): the determinant is
obtained by multiplying (RINFOG(12), RINFOG(13)) by 2 to the powerINFOG(34).

INFOG(35) - INFOG(40) are not used in the current version.

7 Error diagnostics
MUMPSuses the following mechanism to process errors that may occur during the parallel execution of
the code. If, during a call toMUMPS, an error occurs on a processor, this processor informs all the other
processors before they return from the call. In parts of the code where messages are sent asynchronously
(for example the factorization and solve phases), the processor on which the error occurs sends a message
to the other processors with a specific error tag. On the otherhand, if the error occurs in a subroutine that
does not use asynchronous communication, the processor propagates the error to the other processors.

On successful completion, a call toMUMPSwill exit with the parameter mumpspar%INFOG(1) set to
zero. A negative value for mumpspar%INFOG(1) indicates that an error has been detected on one of the
processors. For example, if processors returns withINFO(1)= –8andINFO(2)=1000, then processors
ran out of integer workspace during the factorization and the size of the workspace should be increased by
1000 at least. The other processors are informed about this error and return withINFO(1)= –1 (i.e., an
error occurred on another processor) and INFO(2)=s (i.e., the error occurred on processors). If several
processors raised an error, those processors do not overwrite INFO(1), i.e., only processors that did not
produce an error will setINFO(1)to -1 andINFO(2)to the rank of the processor having the most negative
error code.

The behaviour is slightly different for the global information parametersINFOG(1)andINFOG(2):
in the previous example, all processors would return withINFOG(1)= –8 andINFOG(2)=1000.

The possible error codes returned inINFO(1) (andINFOG(1)) have the following meaning:

–1 An error occurred on processorINFO(2).

–2 NZ is out of range.INFO(2)=NZ.

–3 MUMPSwas called with an invalid value forJOB. This may happen for example if the analysis
(JOB=1) was not performed before the factorization (JOB=2), or the factorization was not
performed before the solve (JOB=3), or the initialization phase (JOB=-1) was performed a second
time on an instance not freed (JOB=-2). See description ofJOBin Section3. This error also occurs
if JOBdoes not contain the same value on all processes on entry toMUMPS.

–4 Error in user-provided permutation arrayPERM IN at positionINFO(2). This error may only occur
on the host.

38



–5 Problem of REAL or COMPLEX workspace allocation of sizeINFO(2)during analysis.

–6 Matrix is singular in structure.INFO(2)holds the structural rank.

–7 Problem of INTEGER workspace allocation of sizeINFO(2)during analysis.

–8 Main internal integer workarray IS too small for factorization. This may happen, for example, if
numerical pivoting leads to significantly more fill-in than was predicted by the analysis. The user
should increase the value ofICNTL(14) before calling the factorization again (JOB=2).

–9 Main internal real/complex workarray S too small. IfINFO(2) is positive, then the number of entries
that are missing in S at the moment when the error is raised is available inINFO(2). If INFO(2) is
negative, then its absolute value should be multiplied by 1 million. If an error –9 occurs, the user
should increase the value ofICNTL(14) before calling the factorization (JOB=2) again, except if
ICNTL(23) is provided, in which caseICNTL(23) should be increased.

–10 Numerically singular matrix.

–11 Internal real/complex workarray S too small for solution. Please contact us. IfINFO(2) is positive,
then the number of entries that are missing in S at the moment when the error is raised is available
in INFO(2).

–12 Internal real/complex workarray S too small for iterative refinement. Please contact us.

–13 An error occurred in a Fortran ALLOCATE statement. The size that the package requested is
available inINFO(2). If INFO(2) is negative, then the size that the package requested is obtained
by multiplying the absolute value ofINFO(2)by 1 million.

–14 Internal integer workarray IS too small for solution. See error INFO(1)= –8.

–15 Integer workarray IS too small for iterative refinement and/or error analysis. See error INFO(1)=
–8.

–16 N is out of range.INFO(2)=N.

–17 The internal send buffer that was allocated dynamically byMUMPSon the processor is too small.
The user should increase the value ofICNTL(14) before callingMUMPSagain.

–20 The internal reception buffer that was allocated dynamically by MUMPSis too small.INFO(2)holds
the minimum size of the reception buffer required (in bytes). The user should increase the value of
ICNTL(14) before callingMUMPSagain.

–21 Value of PAR=0 is not allowed because only one processor is available; Running MUMPSin host-
node mode (the host is not a slave processor itself) requiresat least two processors. The user should
either setPARto 1 or increase the number of processors.

–22 A pointer array is provided by the user that is either

• not associated, or
• has insufficient size, or
• is associated and should not be associated (for example, RHSon non-host processors).

INFO(2) points to the incorrect pointer array in the table below:
INFO(2) array

1 IRN or ELTPTR
2 JCNor ELTVAR
3 PERM IN
4 A or A ELT
5 ROWSCA
6 COLSCA
7 RHS
8 LISTVAR SCHUR
9 SCHUR
10 RHS SPARSE
11 IRHS SPARSE
12 IRHS PTR
13 ISOL loc
14 SOL loc
15 REDRHS
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–23 MPI was not initialized by the user prior to a call toMUMPSwith JOB= –1.

–24 NELT is out of range.INFO(2)=NELT.

–25 A problem has occurred in the initialization of the BLACS. This may be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instead.

–26 LRHS is out of range.INFO(2)=LRHS.

–27 NZ RHSandIRHS PTR(NRHS+1) do not match.INFO(2)= IRHS PTR(NRHS+1).

–28 IRHS PTR(1) is not equal to 1.INFO(2)= IRHS PTR(1).

–29 LSOL loc is smaller thanINFO(23). INFO(2)=LSOL loc.

–30 SCHURLLD is out of range.INFO(2)= SCHURLLD.

–31 A 2D block cyclic symmetric (SYM=1 or 2) Schur complement is required with the option
ICNTL(19)=3, but the user has provided a process grid that does not satisfy the constraint
MBLOCK=NBLOCK. INFO(2)=MBLOCK-NBLOCK.

–32 Incompatible values ofNRHS and ICNTL(25). Either ICNTL(25) was set to -1 andNRHS is
different fromINFOG(28); or ICNTL(25) was set toi, 1≤ i ≤ INFOG(28)andNRHSis different
from 1. Value ofNRHSis stored inINFO(2).

–33 ICNTL(26) was asked for during solve phase but the Schur complement wasnot asked for at the
analysis phase (ICNTL(19)). INFO(2)=ICNTL(26).

–34 LREDRHSis out of range. INFO(2)=LREDRHS.

–35 This error is raised when the expansion phase is called (ICNTL(26) = 2) but reduction phase
(ICNTL(26)=1) was not called before.INFO(2)contains the value ofICNTL(26).

–36 Incompatible values ofICNTL(25) andINFOG(28). The value ofICNTL(25) is stored inINFO(2).

–37 Value of ICNTL(25) incompatible with some other parameter. withSYM or ICNTL(xx). If
INFO(2)=0 thenICNTL(25) is incompatible withSYM: in current version, the null space basis
functionality is not available for unsymmetric matrices (SYM=0). Otherwise,ICNTL(25) is
incompatible with ICNTL(xx), and the index xx is stored inINFO(2).

–38 Parallel analysis was set (i.e.,ICNTL(28)=2) but PT-SCOTCH or ParMetis were not provided.

–39 Incompatible values forICNTL(28) andICNTL(5) and/orICNTL(19) and/orICNTL(6). Parallel
analysis is not possible in the cases where the matrix is unassembled and/or a Schur complement is
requested and/or a maximum transversal is requested on the matrix.

–40 The matrix was indicated to be positive definite (SYM=1) by the user but a negative or null pivot
was encountered during the processing of the root by ScaLAPACK. SYM=2 should be used.

–44 The solve phase (JOB=3) cannot be performed because the factors or part of the factors are not
available.INFO(2)contains the value ofICNTL(31).

–45 NRHS≤ 0. INFO(2)contains the value ofNRHS.

–46 NZ RHS≤ 0. This is currently not allowed in case of reduced right-hand-side (ICNTL(26)=1) and
in case entries ofA−1 are requested (ICNTL(30)=1). INFO(2)contains the value ofNZ RHS.

–47 Entries ofA−1 were requested during the solve phase (JOB=3, ICNTL(30)=1) but the constraint
NRHS=N is not respected. The value ofNRHSis provided inINFO(2).

–48 A−1 Incompatible values ofICNTL(30) and ICNTL(xx). xx is stored inINFO(2).

–49 SIZE SCHURhas an incorrect value (SIZE SCHUR< 0 or SIZE SCHUR≥N, or SIZE SCHUR
was modified on the host since the analysis phase. The value ofSIZE SCHUR is provided in
INFO(2).

–90 Error in out-of-core management. See the error message returned on output unitICNTL(1) for more
information.

A positive value ofINFO(1) is associated with a warning message which will be output on unit
ICNTL(2) whenICNTL(4) ≥ 2.
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+1 Index (in IRN or JCN) out of range. Action taken by subroutine is to ignore any such entries and
continue.INFO(2) is set to the number of faulty entries. Details of the first tenare printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed solutionwas found to be zero.

+4 User dataJCNhas been modified (internally) by the solver.

+8 Warning return from the iterative refinement routine. More thanICNTL(10) iterations are required.

+ Combinations of the above warnings will correspond to summing the constituent warnings.

8 Calling MUMPS from C
MUMPSis a Fortran 90 library, designed to be used from Fortran 90 rather than C. However a basic C
interface is provided that allows users to callMUMPSdirectly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose components match those in theMUMPSstructure for
Fortran (Figure1). Thus the description of the parameters in Sections4 and5 applies. Figure2 shows the
C structure[SDCZ]MUMPSSTRUCC. This structure is defined in the include file[sdcz]mumps c.h
and there is one main routine per available arithmetic with the following prototype:

void [sdcz]mumps_c([SDCZ]MUMPS_STRUC_C * idptr);

An example of callingMUMPSfrom C for a complex assembled problem is given in Section10.3. The
following subsections discuss some technical issues that auser should be aware of before using the C
interface toMUMPS.

In the following, we suppose thatid has been declared of type[SDCZ]MUMPSSTRUCC.

8.1 Array indices
Arrays in C start at index 0 whereas they normally start at 1 inFortran. Therefore, care must be taken when
providing arrays to the C structure. For example, the row indices of the matrixA, stored inIRN(1:NZ)
in the Fortran version should be stored inirn[0:nz-1] in the C version. (Note that the contents of
irn itself is unchanged with values between 1 and N.) One solution to deal with this is to define macros:

#define ICNTL( i ) icntl[ (i) - 1 ]
#define A( i ) a[ (i) -1 ]
#define IRN( i ) irn[ (i) -1 ]
...

and then use the uppercase notation with parenthesis (instead of lowercase/brackets). In that case, the
notationid.IRN(I) , whereI is in { 1, 2, ... NZ} can be used instead ofid.irn[I-1] ; this notation
then matches exactly with the description in Sections4 and5, where arrays are supposed to start at 1.

This can be slightly more confusing for element matrix input(see Section4.6), where some arrays
are used to index other arrays. For instance, the first value in eltptr , eltptr[0] , pointing into
the list of variables of the first element ineltvar , should be equal to 1. Effectively, using the
notation above, the list of variables for elementj = 1 starts at locationELTVAR(ELTPTR(j)) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]-1] .

8.2 Issues related to the C and Fortran communicators
In general, C and Fortran communicators have a different datatype and are not directly compatible.
For the C interface,MUMPSrequires a Fortran communicator to be provided inid.comm fortran .
If, however, this field is initialized to the special value -987654, the Fortran communicator
MPI COMMWORLDis used by default. If you need to callMUMPSbased on a smaller number of processors
defined by a C subcommunicator, then you should convert your Ccommunicator to a Fortran one. This
has not been included inMUMPSbecause it is dependent on theMPI implementation and thus not portable.
ForMPI2, and most MPI implementations, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);
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typedef struct

{
int sym, par, job;

int comm fortran; / * Fortran communicator * /

int icntl[40];

real cntl[15];

int n;

/ * Assembled entry * /

int nz; int * irn; int * jcn; real/complex * a;

/ * Distributed entry * /

int nz loc; int * irn loc; int * jcn loc; real/complex * a loc;

/ * Element entry * /

int nelt; int * eltptr; int * eltvar; real/complex * a elt;

/ * Ordering, if given by user * /

int * perm in;

/ * Scaling (input only in this version) * /

real/complex * colsca; real/complex * rowsca;

/ * RHS, solution, output data and statistics * /

real/complex * rhs, * redrhs, * rhs sparse, * sol loc;

int * irhs sparse, * irhs ptr, * isol loc;

int nrhs, lrhs, lredrhs, nz rhs, lsol loc;

int info[40],infog[40];

real rinfo[20], rinfog[20];

int * sym perm, * uns perm;

int * mapping;

/ * Schur * / int size schur; int * listvar schur; real/complex * schur;

int nprow, npcol, mblock, nblock, schur lld, schur mloc,schur nloc;

/ * Version number * /

char version number[80];

char ooc tmpdir[256], ooc prefix[64]; char write problem[256];

/ * Internal parameters * /

int instance number;

} [SDCZ]MUMPSSTRUCC;

Figure 2: Definition of the C structure[SDCZ]MUMPSSTRUCC. real/complex is used for data that can
be either real or complex,real for data that stays real (float or double ) in the complex version.

42



(Note that F INT is defined in [sdcz]mumps c.h and normally is an int.) For MPI
implementations where the Fortran and the C communicators have the same integer representation

id.comm_fortran = (F_INT) comm_c;

should work.
For some MPI implementations, check if id.comm fortran =

MPIR FromPointer(comm c) can be used.

8.3 Fortran I/O
Diagnostic, warning and error messages (controlled byICNTL(1:4) / icntl[0..3] ) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 whichcorresponds tostdout . For a more
general usage with specific file names from C, passing a C file handler is not currently possible. One
solution would be to use a Fortran subroutine along the linesof the model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT
CHARACTER* ( * ) NAME
OPEN(UNIT, file=NAME)
RETURN
END

and have (in the C user code) a statement like
openfile ( &mumps par.ICNTL(1), name, name length byval)

(or slightly different depending on the C-Fortran calling conventions); something similar could be done
to close the file.

8.4 Runtime libraries
The Fortran 90 runtime library corresponding to the compiler used to compileMUMPSis required at the
link stage. One way to provide it is to perform the link phase with the Fortran compiler (instead of the C
compiler orld ).

8.5 Integer, real and complex datatypes in C and Fortran
We assume that theint , float anddouble types are compatible with the FortranINTEGER, REAL
andDOUBLE PRECISIONdatatypes. If this were not the case, the files[dscz]mumps prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define thecomplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the FortranCOMPLEXandDOUBLE COMPLEXtypes:

typedef struct {float r,i; } mumpscomplex; for simple precision (cmumps), and
typedef struct {double r,i; } mumpsdouble complex; for double precision

(zmumps).
Types for complex data from the user program should be compatible with those above.

8.6 Sequential version
The C interface toMUMPSis compatible with the sequential version; see Section2.7.

9 Scilab and MATLAB/Octave interfaces
Thanks to Octave MEX compatibility, an Octave interface canbe generated based on the MATLAB one.
All the documentation provided in this section for the MATLAB interface, also applies to the Octave case.

The main callable functions are
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id = initmumps;
id = dmumps(id [,mat] );
id = zmumps(id [,mat] );

We have designed these interfaces such that their usage is assimilar as possible to the existing C and
Fortran interfaces to MUMPS. Only an interface to the sequential version of MUMPS is provided, thus
only the parameters related to the sequential version of MUMPS are available. (Note that in the out-of-
core case, functionalities allowing to control the directory and name of temporary files, are, however, not
currently available.) The main differences and characteristics are:

• The existence of a functioninitmumps (usage:id=initmumps ) that builds an initial structure
id in which id.JOB is set to -1 andid.SYM is set to 0 (unsymmetric solver by default).

• Only the double precision and double complex versions of MUMPS are interfaced, since they
correspond to the arithmetics used in MATLAB/Scilab.

• the sparse matrixA is passed to the interface functionsdmumpsandzmumpsas a Scilab/MATLAB
object (parameters ICNTL(5), N, NZ, NELT, . . . are thus irrelevant).

• the right-hand side vector or matrix, possibly sparse, is passed to the interface functionsdmumps
and/orzmumps in the argumentid.RHS , as a Scilab/MATLAB object (paramaters ICNTL(20),
NRHS, NZRHS, . . . are thus irrelevant).

• The Schur complement matrix, if required, is allocated within the interface and returned as a
Scilab/MATLAB dense matrix. Furthermore, the parameters SIZE SCHUR and ICNTL(19) need
not be set by the user; they are set automatically depending on the availability and size of the list of
Schur variables,id.VAR SCHUR.

• We have chosen to use a new variableid.SOL to store the solution, instead of overwriting
id.RHS .

Please refer to the report [22] for a more detailed description of these interfaces. Please also refer to the
README file in directories MATLAB or Scilab of the main MUMPS distribution for more information
on installation. For example, one important thing to note isthat at installation, the user must provide
the Fortran 90 runtime libraries corresponding to the compiled MUMPSpackage. This can be done in
the makefile for the MATLAB interface (filemake.inc ) and in the builder for the Scilab interface (file
builder.sce ).

Finally, note that examples of usage of the MATLAB and the Scilab interfaces are provided in
directoriesMATLABand Scilab/examples , respectively. In the following, we describe the input
and output parameters of the function[dz]mumps , that are relevant in the context of this interface to the
sequential version of MUMPS.

Input Parameters
• mat : sparse matrix which has to be provided as the second argument of dmumps if id.JOB is

strictly larger than 0.

• id.SYM : controls the matrix type (symmetric positive definite, symmetric indefinite or
unsymmetric) and it has do be initialized by the user before the initialization phase ofMUMPS
(see id.JOB). Its value is set to 0 after the call of initmumps.

• id.JOB : defines the action that will be realized byMUMPS: initialize, analyze and/or factorize
and/or solve and releaseMUMPSinternal C/Fortran data. It has to be set by the user before any call
to MUMPS(except after a call to initmumps, which sets its value to -1).

• id.ICNTL and id.CNTL : define control parameters that can be set after the initialization call
(id.JOB = -1). See Section “Control parameters” for more details. If the user does not modify
an entry in id.ICNTL thenMUMPSuses the default parameter. For example, if the user wants to
use the AMD ordering, he/she should set id.ICNTL(7) = 0. Notethat the following parameters
are inhibited because they are automatically set within theinterface: id.ICNTL(19) which controls
the Schur complement option and id.ICNTL(20) which controls the format of the right-hand side.
Note that parameters id.ICNTL(1:4) may not work properly depending on your compiler and your
environment. In case of problem, we recommand to swith printing off by setting id.ICNL(1:4)=-1.
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• id.PERM IN : corresponds to the given ordering option (see Section “Input and output parameters”
for more details). Note that this permutation is only accessed if the parameter id.ICNTL(7) is set to
1.

• id.COLSCA and id.ROWSCA : are optional scaling arrays (see Section “Input and output
parameters” for more details)

• id.RHS : defines the right-hand side. The parameter id.ICNTL(20) related to its format (sparse or
dense) is automatically set within the interface. Note thatid.RHS is not modified (as inMUMPS),
the solution is returned in id.SOL.

• id.VAR SCHUR : corresponds to the list of variables that appear in the Schur complement matrix
(see Section “Input and output parameters” for more details).

• id.REDRHS (input parameter only if id.VARSCHUR was provided during the factorization and
if ICNTL(26)=2 on entry to the solve phase): partial solution on the variables corresponding
to the Schur complement. It is provided by the user and normally results from both the Schur
complement and the reduced right-hand side that were returned byMUMPSin a previous call. When
ICNTL(26)=2,MUMPSuses this information to build the solution id.SOL on the complete problem.
See Section “Schur complement” for more details.

Output Parameters
• id.SCHUR : if id.VAR SCHUR is provided of size SIZESCHUR, then id.SCHUR corresponds to

a dense array of size (SIZESCHUR,SIZESCHUR) that holds the Schur complement matrix (see
Section “Input and output parameters” for more details). The user does not have to initialize it.

• id.REDRHS (output parameter only if ICNTL(26)=1 and id.VARSCHUR was defined): Reduced
right-hand side (or condensed right-hand side on the variables associated to the Schur complement).
It is computed byMUMPSduring the solve stage if ICNTL(26)=1. It can then be used outside
MUMPS, together with the Schur complement, to build a solution on the interface. See Section
“Schur complement” for more details.

• id.INFOG and id.RINFOG : information parameters (see Section “Information parameters” ).

• id.SYM PERM : corresponds to a symmetric permutation of the variables (see discussion
regarding ICNTL(7) in Section “Control parameters” ). Thispermutation is computed during the
analysis and is followed by the numerical factorization except when numerical pivoting occurs.

• id.UNS PERM : column permutation (if any) on exit from the analysis phaseof MUMPS(see
discussion regarding ICNTL(6) in Section “Control parameters” ).

• id.SOL : dense vector or matrix containing the solution afterMUMPSsolution phase.

Internal Parameters
• id.INST: (MUMPSreserved component)MUMPSinternal parameter.

• id.TYPE: (MUMPSreserved component) defines the arithmetic (complex or double precision).

10 Examples of use of MUMPS

10.1 An assembled problem
An example program illustrating a possible use ofMUMPSon assembledDOUBLE PRECISION
problems is given Figure3. Two files must be included in the program:mpif.h for MPI and
mumpsstruc.h for MUMPS. The filemumpsroot.h must also be available because it is included in
mumpsstruc.h . The initialization and termination of MPI are performed inthe user program via the
calls toMPI INIT andMPI FINALIZE .

The MUMPSpackage is initialized by callingMUMPSwith JOB= –1, the problem is read in by the
host (in the components N, NZ, IRN, JCN, A, and RHS), and the solution is computed in RHS with a
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, I
CALL MPI_INIT(IERR)

C Define a communicator for the package
id%COMM = MPI_COMM_WORLD

C Ask for unsymmetric code
id%SYM = 0

C Host working
id%PAR = 1

C Initialize an instance of the package
id%JOB = -1
CALL DMUMPS(id)

C Define problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5, * ) id%N
READ(5, * ) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, * ) ( id%IRN(I) ,I=1, id%NZ )
READ(5, * ) ( id%JCN(I) ,I=1, id%NZ )
READ(5, * ) ( id%A(I),I=1, id%NZ )
READ(5, * ) ( id%RHS(I) ,I=1, id%N )

END IF
C Call package for solution

id%JOB = 6
CALL DMUMPS(id)

C Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN

WRITE( 6, * ) ’ Solution is ’,(id%RHS(I),I=1,id%N)
END IF

C Deallocate user data
IF ( id%MYID .eq. 0 )THEN

DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
C Destroy the instance (deallocate internal data structure s)

id%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 3: Example program usingMUMPSon an assembledDOUBLE PRECISIONproblem
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call on all processors toMUMPSwith JOB=6. Finally, a call toMUMPSwith JOB= –2 is performed to
deallocate the data structures used by the instance of the package.

Thus for the assembled5× 5 matrix and right-hand side
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we could have as input

5 : N
12 : NZ
1 2 3.0
2 3 -3.0
4 3 2.0
5 5 1.0
2 1 3.0
1 1 2.0
5 2 4.0
3 4 2.0
2 5 6.0
3 2 -1.0
1 3 4.0
3 3 1.0 : A
20.0
24.0
9.0
6.0
13.0 :RHS

and we obtain the solution RHS(i) = i, i = 1, . . . , 5.

10.2 An elemental problem
An example of a driver to useMUMPSfor elementDOUBLE PRECISIONproblems is given in Figure4.
The calling sequence is similar to that for the assembled problem in Section10.1but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR, AELT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matrices always have a symmetric structure. For
the two-element matrix and right-hand side

1
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( −1 2 3
2 1 1
1 1 1
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2 −1 3
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3 2 1
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,











12
7
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we could have as input

5
2
6
18
1 4 7
1 2 3 3 4 5
-1.0 2.0 1.0 2.0 1.0 1.0 3.0 1.0 1.0 2.0 1.0 3.0 -1.0 2.0 2.0 3.0 - 1.0 1.0
12.0 7.0 23.0 6.0 22.0

and we obtain the solution RHS(i) = i, i = 1, . . . , 5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA_ELT
CALL MPI_INIT(IERR)

C Define a communicator for the package
id%COMM = MPI_COMM_WORLD

C Ask for unsymmetric code
id%SYM = 0

C Host working
id%PAR = 1

C Initialize an instance of the package
id%JOB = -1
CALL DMUMPS(id)

C Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5, * ) id%N
READ(5, * ) id%NELT
READ(5, * ) LELTVAR
READ(5, * ) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, * ) ( id%ELTPTR(I) ,I=1, id%NELT+1 )
READ(5, * ) ( id%ELTVAR(I) ,I=1, LELTVAR )
READ(5, * ) ( id%A_ELT(I),I=1, NA_ELT )
READ(5, * ) ( id%RHS(I) ,I=1, id%N )

END IF
C Specify element entry

id%ICNTL(5) = 1
C Call package for solution

id%JOB = 6
CALL DMUMPS(id)

C Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN

WRITE( 6, * ) ’ Solution is ’,(id%RHS(I),I=1,id%N)
C Deallocate user data

DEALLOCATE( id%ELTPTR )
DEALLOCATE( id%ELTVAR )
DEALLOCATE( id%A_ELT )
DEALLOCATE( id%RHS )

END IF
C Destroy the instance (deallocate internal data structure s)

id%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 4: Example program usingMUMPSon an elementalDOUBLE PRECISIONproblem.
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10.3 An example of calling MUMPS from C
An example of a driver to useMUMPSfrom C is given in Figure5.
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/ * Example program using the C interface to the

* double precision version of MUMPS, dmumps_c.

* We solve the system A x = RHS with

* A = diag(1 2) and RHS = [1 4]ˆT

* Solution is [1 2]ˆT * /
#include <stdio.h>
#include "mpi.h"
#include "dmumps_c.h"
#define JOB_INIT -1
#define JOB_END -2
#define USE_COMM_WORLD -987654
int main(int argc, char ** argv) {

DMUMPS_STRUC_C id;
int n = 2;
int nz = 2;
int irn[] = {1,2};
int jcn[] = {1,2};
double a[2];
double rhs[2];

int myid, ierr;
ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
/ * Define A and rhs * /
rhs[0]=1.0;rhs[1]=4.0;
a[0]=1.0;a[1]=2.0;

/ * Initialize a MUMPS instance. Use MPI_COMM_WORLD. * /
id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=U SE_COMM_WORLD;
dmumps_c(&id);
/ * Define the problem on the host * /
if (myid == 0) {

id.n = n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a = a; id.rhs = rhs;

}
#define ICNTL(I) icntl[(I)-1] / * macro s.t. indices match documentation * /
/ * No outputs * /

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICN TL(4)=0;
/ * Call the MUMPS package. * /

id.job=6;
dmumps_c(&id);
id.job=JOB_END; dmumps_c(&id); / * Terminate instance * /
if (myid == 0) {

printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}
return 0;

}

Figure 5: Example program usingMUMPSfrom C on an assembled problem.
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11 Notes on MUMPS distribution
This version of MUMPS is provided to you free of charge. It is p ublic
domain, based on public domain software developed during th e Esprit IV
European project PARASOL (1996-1999). Since this first pub lic domain
version in 1999, research and developments have been suppor ted by the
following institutions: CERFACS, CNRS, ENS Lyon, INPT(ENS EEIHT)-IRIT,
INRIA, and University of Bordeaux.

The MUMPS team at the moment of releasing this version includ es
Patrick Amestoy, Maurice Bremond, Alfredo Buttari, Abdou G uermouche,
Guillaume Joslin, Jean-Yves L’Excellent, Francois-Henry Rouet, Bora
Ucar and Clement Weisbecker.

We are also grateful to Emmanuel Agullo, Caroline Bousquet, Indranil
Chowdhury, Philippe Combes, Christophe Daniel, Iain Duff, Vincent Espirat,
Aurelia Fevre, Jacko Koster, Stephane Pralet, Chiara Pugli si, Gregoire
Richard, Tzvetomila Slavova, Miroslav Tuma and Christophe Voemel who
have been contributing to this project.

Up-to-date copies of the MUMPS package can be obtained
from the Web pages:
http://mumps.enseeiht.fr/ or http://graal.ens-lyon.fr /MUMPS

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

User documentation of any code that uses this software can
include this complete notice. You can acknowledge (using
references [1] and [2]) the contribution of this package
in any scientific publication dependent upon the use of the
package. You shall use reasonable endeavours to notify
the authors of the package of this publication.

[1] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent ,
A fully asynchronous multifrontal solver using distribute d dynamic
scheduling, SIAM Journal of Matrix Analysis and Applicatio ns,
Vol 23, No 1, pp 15-41 (2001).

[2] P. R. Amestoy and A. Guermouche and J.-Y. L’Excellent and
S. Pralet, Hybrid scheduling for the parallel solution of li near
systems. Parallel Computing Vol 32 (2), pp 136-156 (2006).

Other acknowledgements
Apart from the contributors cited above, we are grateful to Jürgen Schulze for letting us distribute PORD
developed at the University of Paderborn, and to Alexis Salzman for his help regarding the determinant.

We thank Eddy Caron for the administration of a server used everyday by the MUMPS team.
We also want to thank BRGM, EADS-CCR, LARIA, Lawrence Berkeley National Laboratory,

PARALLAB (Bergen) and Rutherford Appleton Laboratory for research discussions that have certainly
influenced this work.

Finally we want to thank the institutions that have providedaccess to their parallel machines: Centre

51



Informatique National de l’Enseignement Supérieur (CINES), CERFACS, CICT (Toulouse), Fédération
Lyonnaise de Calcul Haute-Performance, Institut du Développement et des Ressources en Informatique
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