
The ALPS project release 2.0:

Open source software for strongly correlated

systems

B. Bauer1 L. D. Carr2 H.G. Evertz3 A. Feiguin4 J. Freire5

S. Fuchs6 L. Gamper1 J. Gukelberger1 E. Gull7 S. Guertler8

A. Hehn1 R. Igarashi9,10 S.V. Isakov1 D. Koop5 P.N. Ma1

P. Mates1,5 H. Matsuo11 O. Parcollet12 G. Paw lowski13

J.D. Picon14 L. Pollet1,15 E. Santos5 V.W. Scarola16

U. Schollwöck17 C. Silva5 B. Surer1 S. Todo10,11 S. Trebst18

M. Troyer1‡ M. L. Wall2 P. Werner1 S. Wessel19,20

1Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
2Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
3Institut für Theoretische Physik, Technische Universität Graz, A-8010 Graz, Austria
4Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming

82071, USA
5Scientific Computing and Imaging Institute, University of Utah, Salt Lake City,

Utah 84112, USA
6Institut für Theoretische Physik, Georg-August-Universität Göttingen, Göttingen,

Germany
7Columbia University, New York, NY 10027, USA
8Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, 53115 Bonn,

Germany
9Center for Computational Science & e-Systems, Japan Atomic Energy Agency,

110-0015 Tokyo, Japan
10Core Research for Evolutional Science and Technology, Japan Science and

Technology Agency, 332-0012 Kawaguchi, Japan
11Department of Applied Physics, University of Tokyo, 113-8656 Tokyo, Japan
12Institut de Physique Théorique, CEA/DSM/IPhT-CNRS/URA 2306, CEA-Saclay,

F-91191 Gif-sur-Yvette, France
13Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań,

Poland
14Institute of Theoretical Physics, EPF Lausanne, CH-1015 Lausanne, Switzerland
15Physics Department, Harvard University, Cambridge 02138, Massachusetts, USA
16Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
17Department for Physics, Arnold Sommerfeld Center for Theoretical Physics and

Center for NanoScience, University of Munich, 80333 Munich, Germany
18Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106,

USA
19Institute for Solid State Theory, RWTH Aachen University, 52056 Aachen,

Germany

‡ Corresponding author: troyer@comp-phys.org

The ALPS project release 2.0: Open source software for strongly correlated systems 2

20Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57,

70550 Stuttgart, Germany

Abstract. We present release 2.0 of the ALPS (Algorithms and Libraries for

Physics Simulations) project, an open source software project to develop libraries and

application programs for the simulation of strongly correlated quantum lattice models

such as quantum magnets, lattice bosons, and strongly correlated fermion systems.

The code development is centered on common XML and HDF5 data formats, libraries

to simplify and speed up code development, common evaluation and plotting tools, and

simulation programs. The programs enable non-experts to start carrying out serial or

parallel numerical simulations by providing basic implementations of the important

algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC)

using non-local updates, extended ensemble simulations, exact and full diagonalization

(ED), the density matrix renormalization group (DMRG) both in a static version

and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte

Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide

a powerful framework for programers to develop their own applications, which, for

instance, greatly simplify the steps of porting a serial code onto a parallel, distributed

memory machine. Major changes in release 2.0 include the use of HDF5 for binary

data, evaluation tools in Python, support for the Windows operating system, the use of

CMake as build system and binary installation packages for Mac OS X and Windows,

and integration with the VisTrails workflow provenance tool. The software is available

from our web server at http://alps.comp-phys.org/.

1. Introduction

In this paper we present release 2.0 of the ALPS project (Algorithms and Libraries

for Physics Simulations), an open source software development project for strongly

correlated lattice models. This paper updates the publications on the previous

releases [1, 2] to include changes and new features in version 2.0.

Quantum fluctuations and competing interactions in quantum many body systems

lead to unusual and exciting properties of strongly correlated materials such as

quantum magnetism, high temperature superconductivity, heavy fermion behavior, and

topological quantum order. The strong interactions make accurate analytical treatments

hard and direct numerical simulations are essential to increase our understanding of the

unusual properties of these systems.

The last two decades have seen tremendous progress in the development of

algorithms, including refinements to existing numerical algorithms, such as exact

diagonalization [3], the density matrix renormalization group [4, 5, 6, 7] and (quantum)

Monte Carlo (QMC) techniques, as well as the advent of a new class of variational

approaches based on tensor network states [8, 9, 10, 11, 12]. Some of the algorithmic

refinements have led to computational speedups of many orders of magnitude, such as

the development of non-local update schemes [13, 14] in QMC methods [15, 16, 17, 18, 19,

20, 21, 22], the sampling of extended ensembles [23, 24, 25, 26, 27, 28], or the continuous-

time approach to quantum impurity problems [29, 30, 31, 32, 33]. These advances often

http://alps.comp-phys.org/

The ALPS project release 2.0: Open source software for strongly correlated systems 3

come at the cost of increased algorithmic complexity and challenge the current model of

program development in this research field. In contrast to other research areas, in which

large “community codes” are being used, the field of strongly correlated systems has so

far been based mostly on single codes developed by individual researchers for particular

projects. While simple algorithms used a decade ago could be easily programmed by

a beginning graduate student in a matter of weeks, it now takes substantially longer

to master and implement the new algorithms. At the same time, the use of numerical

approaches is increasing.

2. The ALPS project

2.1. Overview

The ALPS project aims to overcome the problems posed by the growing complexity of

algorithms and the specialization of researchers to single algorithms through an open-

source software development initiative. Its goals are to simplify the development of new

codes through libraries and evaluation tools, and to help users with “black box” codes of

some of the most popular algorithms. To achieve these goals the ALPS project provides:

• Standardized file formats based on XML [34] and HDF5 [35] to simplify

exchange, distribution and archiving of simulation results, and to achieve

interoperability between codes.

• Evaluation tools for reading, writing and post-processing simulation results,

including the creation of 2D and 3D plots.

• Libraries for common aspects of simulations of quantum and classical lattice

models, to simplify code development and allow implementation on a variety of

serial and parallel platforms.

• A set of applications covering the major algorithms. These are useful for:

theoreticians who want to test theoretical ideas or new algorithms for lattice models

and to explore their properties, experimentalists trying to fit experimental data

to theoretical models to obtain information about the microscopic properties of

materials, and students learning computational physics and many-body theory.

• A build system allowing ALPS to be built on Linux, MacOS X, Windows, and

supercomputing platforms, and the creation of simple binary installers.

• An extensive set of tutorials teaching the use of the ALPS libraries and the various

applications.

• License conditions [36, 37] that encourage researchers to contribute to the ALPS

project by gaining scientific credit for use of their work.

• Outreach through a web page [38], mailing lists, and workshops to distribute the

results and to educate researchers both about the algorithms and the use of the

applications.

The ALPS project release 2.0: Open source software for strongly correlated systems 4

• Improved reproducibility of numerical results by publishing source codes used

to obtain published results and by integration with the VisTrails [39] provenance

enabled workflow system.

In contrast to other fields, where open-source development efforts started decades

ago, we can directly build our design on recent developments in computer science,

especially:

• XML[34] (eXtensible Markup Language) and HDF5[35] (Hierarchical Data Format

version 5) as portable data formats supported by a large number of standard tools

• generic and object oriented programming in C++ to achieve flexible but still

optimal codes

• OpenMP[40] and MPI[41] for parallelization on shared memory machines, clusters,

and high performance supercomputers.

2.2. New features in version 2.0

The specific new features in version 2.0 are:

• CMake build system [42], simplifying configuration and enabling ALPS to be built

on Windows.

• Binary installer packages for MacOS X and Windows.

• Using the binary file format HDF5 [35] in addition to XML, which is much faster

and needs less space.

• More flexible and powerful evaluation tools using Python.

• A revised and substantially faster version of the directed loop quantum Monte Carlo

(QMC) code dirloop sse, and two new applications: QMC solvers for dynamical

mean field theory (dmft) and a time-evolving block decimation code (tebd) for the

dynamics of one-dimensional quantum systems.

• Integration with the VisTrails workflow provenance system [39].

• An expanded set of tutorials, and completely new tutorials using Python and

VisTrails.

3. Building and Installing ALPS

3.1. Build system

ALPS 2.0 uses CMake [42], which is more flexible and portable than the previously used

autotools. All aspects of the build process are controlled by CMake variables, which

can be easily changed in several ways, including a graphical user interface. This allows

the user a large degree of customization of the ALPS installation. Furthermore, CMake

supports the automatic creation of binary installation packages and building ALPS on

Windows – two often requested features. A snapshot of the build instructions at the

time of the release are included in the source distribution.

The ALPS project release 2.0: Open source software for strongly correlated systems 5

3.2. Building ALPS from source

Details about building ALPS from source and the required tools and libraries are

discussed in Appendix C. This is the recommended way of building ALPS on Unix

and Linux systems or if one wants to use specific BLAS libraries or Python interpreters

on MacOS or Windows. Updated instructions as operating systems change will be made

available on the ALPS web page [38].

3.3. Binary Installation Packages

To simplify installation on Mac OS X and Windows, we provide CMake-generated binary

installation packages for these operating systems. To take advantage of all features of

ALPS we recommend the user to download and install a binary installer for VisTrails [39]

in addition to the ALPS installers. On both operating systems the PATH variable

should be adjusted to include the directory containing the ALPS binaries. The Windows

installer gives one the option to do so automatically. The default installation directory

on Mac OS X is /opt/alps/bin and on Windows C:\Program Files\ALPS\bin on 32-

bit versions and C:\Program Files (x86)\ALPS\bin on 64-bit versions, respectively.

Source and binary installation packages for Mac OS X using macports [43] and for

Linux using Ubuntu and Debian package managers will be made available in the near

future.

3.4. LiveALPS

For Linux we additionally provide an ISO disk image, called LiveALPS, of a full Linux

distribution with ALPS preinstalled. Based on a remastered CD-release of Knoppix [44]

it is ready to use on a PC without special configuration. While it can be burned to

a DVD we recommend using it with a USB flash drive for performance reasons. This

solution is especially useful for Linux users that want to try ALPS, in summer schools,

or in lectures.

4. Data formats

The most fundamental part of the ALPS project is the definition of common

standardized file formats suitable for a wide range of applications. Standardized file

formats enable the exchange of data between applications, allow the development of

common evaluation tools, reduce the learning curve, simplify the application of more

than one algorithm to a given model, and are a prerequisite for the storage of simulation

data in a common archive.

4.1. XML

The ISO standard XML [34] was chosen in ALPS version 1 [1, 2] for the specification of

these formats because it has become the main text-based data format on the Internet

The ALPS project release 2.0: Open source software for strongly correlated systems 6

and because it is supported by a large and growing number of tools.

We have designed a number of XML schemas [45] to describe

• the input of simulation parameters,

• the lattices,

• quantum lattice models,

• and the output of results.

An introduction to XML and the ALPS XML formats is given in Appendix D, and

a detailed specification of the formats is provided on our web pages [38, 45].

4.2. HDF5

We now complement XML by the widely used Hierarchical Data Format 5 (HDF5) [35],

a de-facto standard for writing large binary files in a portable, machine-independent

way. HDF5 is directly supported by many visualization and data analysis tools and a

wide array of tools are available for C, C++, Fortran, Python, and other languages.

In ALPS, HDF5 is now used as the default output format for simulation data. This

approach is significantly faster than writing to text-based formats when large files need

to be written. On-the-fly compression of binary data further reduces file size.

The ALPS HDF5 files store simulation parameters, the detailed results of Monte

Carlo simulations, spectra and expectation values of exact diagonalization and DMRG

simulations, and time evolutions in the TEBD code. ALPS comes with a library of C++

and Python functions to load these results, but they can also be read with any other

tool supporting HDF5. The exact schema of the HDF5 files is available on the ALPS

web page [38]. For backward compatibility with users’ evaluation tools, the simulation

codes accept a --write-xml command line option to also write all results in XML.

The implementation of HDF5 capabilities within ALPS is split into two layers. The

lower layer implements a generic and general-purpose C++ interface to the C HDF5

library. This layer is not tied to other parts of the ALPS library and can therefore be

used by user code that is otherwise independent from ALPS and its file formats. The

functions of this library are also exposed to Python, and can thus be used not only from

C++ codes but also from Python scripts. On top of that, the specific file formats used

by the ALPS library and applications are implemented in the respective components of

the ALPS library.

5. ALPS Libraries

Main developers: L. Gamper, E. Gull. A. Hehn, B. Surer, S. Todo and M. Troyer.

The ALPS libraries are the foundation of all the ALPS applications, providing the

functionality common to all of them:

• an XML parser and output stream to read and write the ALPS XML files.

The ALPS project release 2.0: Open source software for strongly correlated systems 7

• a HDF5 library to read and write HDF5 files

• an expression library to manipulate and evaluate symbolic expressions.

• a scheduler for the automatic parallelization of Monte Carlo simulations and

other embarrassingly parallel applications, implementing load balancing and

checkpointing [46].

• a lattice structure library for the creation of arbitrary graphs and Bravais lattices

from XML input.

• a model library for the construction of basis sets, operators and Hamiltonians from

XML input.

• the “alea” library for the statistical analysis and evaluation of Monte Carlo data

including a binning analysis of errors and jackknife analysis of cross-correlations

[46].

• a serialization library “osiris” for the serialization of C++ data structures, used for

writing program checkpoints and portable binary result files [46].

These libraries make full use of object oriented and generic[47] programming techniques,

thus being flexible while still not losing any performance compared to FORTRAN

programs. To give just one example, the lattice library, implemented generically using

C++ template features, is based on the Boost Graph Library[48, 49] (BGL) and does

not restrict the user to a specific data structure as in C or Fortran libraries. Instead the

application programmer can choose the data structure best suited for the application,

and as long as the data structure provides the BGL graph interface, the ALPS lattice

library can construct the lattice from the XML description.

6. Evaluation Tools in Python

Main developers: B. Bauer, L. Gamper, J. Gukelberger, P.N. Ma, O. Parcollet, B. Surer,

M. Troyer, and M. L. Wall.

The previous versions of ALPS had very limited data evaluation capabilities that

were restricted to extracting plots from collections of XML files using XSLT. This is

remedied in ALPS 2.0 by basing data evaluation on the powerful Python language [50].

Python is an easy-to-learn, interpreted, object-oriented language allowing interactive

analysis of data and arbitrary complex evaluations. Some brief examples of the Python

language as well as the pyalps Python package new to ALPS 2.0 can be found in

Appendix B.

We provide a complete set of library functions to write and read ALPS files and

a number of useful functions to evaluate the simulation results and to make plots. In

particular, the ALPS classes for the recording and evaluation of Monte Carlo data are

all exported from C++ to Python, enabling an easy binning analysis [51] and jackknife

analysis of Monte Carlo data. Two-dimensional plots are created using the widely

available Python matplotlib package [52] or by using ALPS functions to write grace [53]

The ALPS project release 2.0: Open source software for strongly correlated systems 8

or gnuplot [54] input files. Creation of 3D graphs is supported through VisTrails and

the Visualization ToolKit (VTK) [55] VisTrails modules.

6.1. The Python language

Python [50] is an open-source, high-level, object-oriented interpreted programming

language developed with a focus on portability and high productivity. This is achieved

with a clear syntax and extensive standard libraries. A wealth of material is available for

learning the language, including its own extensive standard documentation and several

books[56, 57].

Python is an interpreted language, meaning that the source code is executed

without an intermediate compilation step. This allows for interactive use, and easy

analysis of simulation data. It also is simplifies code development and exchange, in

particular since using an interpreted language also often improves the portability of the

resulting code.

In addition to the Python standard library, the PyLab environment, which consists

in particular of the NumPy [58], SciPy [59] and matplotlib [52] libraries, offers powerful

tools for numerical calculations and plotting. This makes Python particularly suitable

for the data analysis part of the overall ALPS workflow. Wherever possible, the data

types used in the pyalps package are built on top of the NumPy data types, allowing

direct use of the PyLab libraries.

Python programs can interoperate with code written in a different language.

As an example, a low-level numerical method could be implemented in C/C++ for

performance reasons but still be called from a high-level Python code. This can be

significantly simplified by using the Boost.Python [49] library. Specifically, this library

provides a simple interface to export C++ functions and classes to Python while taking

care of Python internals such as memory management. We make use of this library to

export parts of the ALPS library to Python in the pyalps package.

6.2. The pyalps package

ALPS 2.0 contains a package of Python modules for interfacing the low-level ALPS

code to Python and vice versa, running simulations, and evaluation and post-processing

of data. This package is known as pyalps. The advantages of using Python versus

exclusively using low-level code for the above tasks are manifold. For example, Python’s

large standard library and ability to easily interface with low-level code allow for great

flexibility in post-processing of data. Also, the use of Python facilitates use of the

VisTrails workflow provenance tool, as VisTrails is written in Python.

Pyalps includes functions to write the xml files read by most applications, and

additional functions to write special input files for applications with non-xml interfaces

such as dmft and tebd. It also includes functions to run applications with specified

input files both in series and in parallel. An example of the preparation of input files

and running a simulation using pyalps is shown in Fig. 5.

The ALPS project release 2.0: Open source software for strongly correlated systems 9

Once the simulation has been run we must extract and evaluate data from it.

At the heart of the pyalps evaluation tools is the DataSet class. A DataSet has as

members x and y which are NumPy arrays containing numerical data. A DataSet also

has a member props which is a dictionary – one of the built-in types of Python –

of metadata describing the numerical data. The presence of the metadata allows for

complex evaluations, for example when dealing with many DataSets from a parameter

scan.

Using Boost.Python, large parts of the ALPS alea library for Monte Carlo

observables are exported to Python. This allows the user to write Monte Carlo

applications in Python while profiting from the full functionality of the ALPS C++

libraries. In addition, this allows the definition of numerical data types in Python

which carry full statistical information. These types allow calculations with the syntax

of normal floating-point numbers, but will perform a full error analysis. We also provide

functions to read HDF5 files into a DataSet. Wrapper functions around matplotlib for

plotting of data stored in DataSets help the user by, e.g., automatically setting axis

labels or legends from the metadata.

7. Applications

In addition to common libraries, the ALPS project includes a number of ready-to-use

applications implementing the most important unbiased algorithms for quantum many-

body systems. All applications from ALPS 1.3, with the exception of the single particle

DMRG demonstration program, have been retained in ALPS 2.0. They continue to

work in the same way, with minor bug fixes and patches for incompatibilities, and we

have added a number of new applications in version 2.0.

The applications all share the same file formats, simplifying their use, reducing

the learning curve, and enabling the easy investigation of a model with more than one

method. Tutorials on the use of the applications are included with the sources that can

be found on the ALPS web page [38].

7.1. Exact diagonalization

The exact diagonalization codes have been optimized for flexibility and not the highest

performance or the goal to reach the biggest system sizes.

The codes make use of conserved quantum numbers, such as particle number or

magnetization, and use translation symmetry to reduce the Hilbert space dimension.

This speeds up the calculations and allows larger systems to be calculated. In addition,

by calculating the energy eigenvalues separately for each momentum, the momentum-

resolved excitation spectrum can be calculated.

The user may also specify custom measurements of averaged or local site- and bond

operators, as well as arbitrary 2-point correlation functions. As an example, for the

inhomogeneous bosonic Hubbard model of figure D6, one can specify the measurement

The ALPS project release 2.0: Open source software for strongly correlated systems 10

of the average double occupancy, local density, density correlations, and Green’s function

by defining the following input parameters, which use the definitions of site and bond

operators provided with the model:

MEASURE_AVERAGE[Double] = double_occupancy

MEASURE_LOCAL[Local density] = n

MEASURE_CORRELATION[Density correlation] = n

MEASURE_CORRELATION[Green function] = "bdag:b"

MEASURE_STRUCTURE_FACTOR[Density Structure Factor] = n

7.1.1. Sparse diagonalization code sparsediag, main developer: M. Troyer

sparsediag calculates the ground state and low lying excited states of quantum lattice

models using the Lanczos [3] algorithm.

7.1.2. Full diagonalization code fulldiag, main developer: M. Troyer

fulldiag calculates the complete spectrum of quantum lattice models and from it all

thermodynamic properties. Access to the complete spectrum allows the calculation of

all thermodynamic properties and of the temperature dependence of any measurement

specified by the user.

7.2. Classical Monte Carlo simulations

7.2.1. Classical Monte Carlo codes for spin models spinmc, main developer: M. Troyer

spinmc is a classical Monte Carlo code for classical magnets employing local and cluster

updates [13, 14]. Supported models are Ising, XY, Heisenberg, and Potts models with

isotropic and anisotropic interactions and magnetic fields.

7.3. Quantum Monte Carlo simulations

7.3.1. The looper code, main developer: S. Todo

The loop program implements the loop cluster algorithm [15, 18, 19, 21], a generalization

of the classical cluster updates [13, 14] to quantum systems in both a path integral and

a stochastic series expansion (SSE) representation [60, 17]. It supports isotropic and

anisotropic models of quantum magnets in transverse and longitudinal fields.

7.3.2. The directed loop algorithm code dirloop sse, main developer: S. Isakov and

L. Pollet

The dirloop sse code in ALPS 2.0 is a completely new and improved implementation

of the directed loop QMC algorithm [20, 22], replacing the previous one in ALPS 1.2 and

1.3. It is ideal for spin models in magnetic fields, frustrated spin models, and hard-core

boson models.

The ALPS project release 2.0: Open source software for strongly correlated systems 11

7.3.3. The worm algorithm code worm, main developers: S. Trebst and M. Troyer

The worm code implements the worm algorithm [16] and is ideal for bosonic models.

7.3.4. The extended ensemble code qwl, main developers: M. Troyer and S. Wessel

The qwl code is an extended ensemble QMC program using a generalization of the Wang-

Landau[23, 24] algorithm to quantum systems,[25] to obtain thermodynamic quantities

over large temperature ranges.

7.4. Density Matrix Renormalization Group (DMRG) algorithms

7.4.1. The dmrg code, main developers: A. Feiguin (core code) and M. Troyer (ALPS

interface)

The dmrg code implements the DMRG algorithm [4, 5] to calculate ground states

and low-lying excited states of quasi-one dimensional quantum systems. It can also

measure arbitrary local quantities and two-point functions.

7.4.2. Time Evolving Block Decimation Code tebd, main developers: L. D. Carr and

M. L. Wall

Release 2.0 contains interfaces to the Open Source TEBD project [61], which is

a collection of Fortran libraries using the Time-Evolving Block Decimation (TEBD)

algorithm [8, 9] to simulate time evolution of one-dimensional quantum systems. TEBD

can also find ground states via imaginary time evolution. The TEBD routines included

in ALPS are an updated version of the v2.0 release of Open Source TEBD with

improvements for speed and numerical stability.

At present, the TEBD routines can simulate the spin, boson Hubbard, hardcore

boson, spinless fermion, and fermion Hubbard models from the ALPS models library.

All Hamiltonian parameters are assumed uniform throughout the system. Because

TEBD produces wavefunctions, a wide array of observables can be computed including

local quantities, two-point correlation functions, entanglement measures, and overlaps

between the state at different times. Observables calculated are the z and x

magnetizations, their squares, and the 〈Ŝz
i Ŝ

z
j 〉 and 〈Ŝx

i Ŝ
x
j 〉 correlations for the spin

model, the occupation number, its square, and the 〈n̂in̂j〉 and 〈â†i âj〉 correlation

functions for the boson Hubbard, hardcore boson, spinless fermions, and fermion

Hubbard models; and, additionally, the magnetization and 〈Ŝz
i Ŝ

z
j 〉 correlation function

for the fermion Hubbard model. All models calculate the energy, von Neumann

entanglement entropy of each site, the von Neumann entanglement entropy on each

bond, and the overlap of the wavefunction at time t with the state at t = 0 (i.e., the

Loschmidt echo).

7.5. Dynamical Mean Field Theory QMC Solvers dmft

Main developers: S. Fuchs, E. Gull, B. Surer, M. Troyer and P. Werner

The ALPS project release 2.0: Open source software for strongly correlated systems 12

Dynamical mean field theory (DMFT) is a method to simulate fermionic lattice

systems which approximates the self-energy Σ(k, ω) by a momentum-independent

function Σ(ω). For such a “local” self-energy, the diagrammatic structure simplifies

considerably and the lattice problem can be mapped onto an impurity problem subject

to a self-consistency condition for the bath [62, 63]. The method may be extended from

a single-site to a cluster formalism, thereby rendering it controlled in practice [64]. We

provide a simple implementation of the DMFT self-consistency loop for general single-

site multi-orbital problems. For the solution of the quantum impurity model we provide

a legacy Hirsch-Fye QMC code [65] as well as two continuous-time QMC algorithms.

The “interaction expansion” algorithm [29, 30] expands the impurity model

partition function in powers of the interaction terms and samples the resulting diagrams

stochastically. This method, historically the first continuous-time quantum Monte

Carlo impurity solver algorithm, is particularly suitable for the simulation of impurity

clusters. The complementary hybridization expansion algorithm [31, 32] expands the

impurity model partition function in the impurity-bath hybridization, treating the local

(impurity) Hamiltonian exactly. The method is useful to simulate multi-orbital models,

since it can easily treat general interaction terms. The current implementation of

the ALPS code (both for the interaction expansion and the hybridization expansion)

is restricted to (multiorbital) single site and density-density interactions. A detailed

description of the ALPS DMFT algorithms is given in Ref. [66].

8. Integration with the VisTrails Workflow and Computational Provenance

Tools

Main developers: B. Bauer, J. Freire, L. Gamper, J. Gukelberger, D. Koop, P. Mates,

E. Santos, V.W. Scarola, C. Silva, B. Surer and M. Troyer.

8.1. Computational Provenance

ALPS 2.0 seeks to ensure result reproducibility. Provenance (also referred to as history,

audit trail, lineage, or pedigree) captures information about the steps used to generate

a given result [67, 68]. Such information is crucial in data preservation and determining

data quality as well as interpreting, reproducing, sharing, and publishing results. Release

2.0 improves upon previous ALPS versions by using the VisTrails [39] workflow system

to record provenance-related information, including algorithm workflows, simulation

parameters, and version history to automate reproducibility.

VisTrails is an open-source system that was designed to support exploratory

computational tasks such as visualization and data mining while ensuring computational

provenance [39, 69]. VisTrails enforces provenance with workflows that allow a capture

mechanism and an infrastructure for storage, access, and queries. In Appendix A we

present a concise introduction to scientific workflows and VisTrails.

The ALPS project release 2.0: Open source software for strongly correlated systems 13

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Temperature T/J

0.00

0.05

0.10

0.15

0.20

Su
sc

ep
tib

ili
ty

 χ
J

ladder
chain lattice

Figure 1. A figure produced by an ALPS VisTrails workflow: the uniform

susceptibility of the Heisenberg chain and ladder. Clicking the figure retrieves the

workflow used to create it. Opening that workflow on a machine with VisTrails and

ALPS installed lets the reader execute the full calculation.

CollectDataSets

Axis

PreparePlot

Axis Legend

ShowMplPlot

Temperature

LatticeModel

SimulationNamePrepareMonteCarlo

IterateValue

RunLoop

SpinModel

WriteInputFiles

ChainLattice

LoadAlpsMeasurements

J
(Parameter)

GetResultFiles

LoopMonteCarloParameters

J0
(Parameter)

J1
(Parameter)

LatticeModel

SpinModelLadderLattice

ConcatenateParameters

TransformProperties

PersistentIntermediateDir

Figure 2. The workflow that created Fig. 1. The workflow image has been created by

VisTrails for the specific workflow used to create the exact version shown in the figure.

Clicking the figure retrieves the workflow.

http://alps.comp-phys.org/vistrails/download.php?getvt=10&db=vistrails&host=alps.ethz.ch&port=3306&tag=&execute=True&showspreadsheetonly=True&embedWorkflow=True&includeFullTree=False&version=169
http://alps.comp-phys.org/vistrails/download.php?getvt=10&db=vistrails&host=alps.ethz.ch&port=3306&tag=&execute=False&showspreadsheetonly=False&embedWorkflow=True&includeFullTree=False&version=169

The ALPS project release 2.0: Open source software for strongly correlated systems 14

8.2. The ALPS VisTrails package

ALPS 2.0 provides a package of modules for VisTrails, built on top of the pyalps package,

that allows the user to perform the three major steps of a scientific workflow, namely

i) the preparation of input files, ii) the execution of simulations, iii) the analysis and

plotting of simulation data. The three groups of modules are intended to integrate

seamlessly, but at the same time allow the separate use of each group, which for example

allows the user to analyze data with VisTrails that has not been prepared using the ALPS

library or file formats.

The design goal of the data analysis modules is to take care of common, repetitive

tasks, while at the same time being as flexible as scripts. Common data formats,

designed to allow interoperability with the powerful NumPy/SciPy libraries, are used

by all modules. A set of self-contained modules are provided for common tasks, such as

fitting or various types of plots. A framework of Transform modules allows the user to

specify arbitrary transformations by providing small Python codes.

The modules for input preparation and data analysis are designed to assist the user

in dealing with a large number of simulations. For example, modules are provided to

sweep parameter ranges, to combine data from many simulations or to load data from

ALPS files and text files. Modules to load data from custom file formats can also easily

be implemented.

VisTrails workflows in ALPS 2.0 use descriptive nouns and verbs for the names of

modules that execute Python scripts which in turn execute ALPS algorithms in Python

or compiled code. Fig. 2 shows an example ALPS workflow that takes input lattice

parameters and model definitions (modules described by nouns, such as ChainLattice

and LatticeModel), executes the quantum Monte Carlo looper code, and then renders

the data (modules described by verbs such as RunLoop and PreparePlot).

The creation of such workflows is explained in a set of tutorials and on the web page.

Furthermore, all ALPS tutorials, discussed in the next section, are available as VisTrails

workflows, providing an extensive set of examples that can be used as templates for the

user’s simulations.

This paper already makes use of ALPS 2.0 and VisTrails. Full provenance

information for the results in Fig. 1 is available from the URL linked to the figure.

Clicking the figure will download the workflow that has been used to prepare the figure

and its version history. After installing VisTrails and ALPS, the reader of the paper

can redo the full simulation.

ALPS VisTrails is also suitable for data analysis only. For compute-intensive

problems requiring computer cluster resources the data analysis within Vistrails is

performed by reading the observables from stored result files. Operating in this way

is the workflow producing Fig. 3 showing a data collapse of the Binder cumulant in

the classical Ising model. The workflow downloads the corresponding result files from

a server, loads the Binder Cumulant observable and allows to interactively determine

the critical exponents by a parameter exploration. The reader is invited to explore the

The ALPS project release 2.0: Open source software for strongly correlated systems 15

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
T

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

B
in

d
e
r

C
u
m

u
la

n
t

U
4

 g

Classical Ising model

L = 32.0
L = 64.0
L = 48.0

Figure 3. In this example we show a data collapse of the Binder Cumulant in the

classical Ising model. The data has been produced by remotely run simulations and

the critical exponent has been obtained with the help of the VisTrails parameter

exploration functionality.

1 cat > parm << EOF
LATTICE=” chain l a t t i c e ”
MODEL=” sp in ”
l o c a l S=1/2
L=60

6 J=1
THERMALIZATION=5000
SWEEPS=50000
ALGORITHM=” loop ”
{T=0.05;}

11 {T=0.1;}
{T=0.2;}
{T=0.3;}
{T=0.4;}
{T=0.5;}

16 {T=0.6;}
{T=0.7;}
{T=0.75;}
{T=0.8;}
{T=0.9;}

21 {T=1.0;}
{T=1.25;}
{T=1.5;}
{T=1.75;}
{T=2.0;}

26 EOF

parameter2xml parm
loop −−auto−eva luate −−write−xml parm . in . xml

Figure 4. A shell script to perform an ALPS simulation to calculate the uniform

susceptibility of a Heisenberg spin chain. Evaluation options are limited to viewing

the output files. Any further evaluation requires the use of Python, VisTrails, or a

program written by the user.

sensitivity of the data collapse to the correlation length critical exponent.

9. Tutorials and Examples

Main contributors: B. Bauer, A. Feiguin, J. Gukelberger, E. Gull, U. Schollwöck,

B. Surer, S. Todo, S. Trebst, M. Troyer, M.L. Wall and S. Wessel

The ALPS web page [38], which is a community-maintained wiki system and the

central resource for code developments, also offers extensive resources to ALPS users.

In particular, the web pages feature an extensive set of tutorials, which for each ALPS

application explain the use of the application codes and evaluation tools in the context

of a pedagogically chosen physics problem in great detail. These application tutorials

are further complemented by a growing set of tutorials on individual code development

http://alps.comp-phys.org/vistrails/download.php?getvt=15&db=vistrails&host=alps.comp-phys.org&port=3306&tag=&execute=True&showspreadsheetonly=True&embedWorkflow=True&includeFullTree=False&version=332

The ALPS project release 2.0: Open source software for strongly correlated systems 16

1 import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t

#prepare the input parameters
6 parms = []

for t in [0 . 0 5 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 , 1 . 25 , 1 . 5 , 1 . 75 , 2 . 0] :
parms . append (
{
’LATTICE ’ : ” chain l a t t i c e ” ,

11 ’MODEL’ : ” sp in ” ,
’ l o c a l S ’ : 0 . 5 ,
’T ’ : t ,
’ J ’ : 1 ,
’THERMALIZATION’ : 5000 ,

16 ’SWEEPS’ : 50000 ,
’L ’ : 60 ,
’ALGORITHM’ : ” loop ”
}

)
21

#wri t e the input f i l e and run the s imu la t ion
i n p u t f i l e = pyalps . w r i t e I npu tF i l e s (’ parm2c ’ , parms)
pyalps . runAppl i cat ion (’ loop ’ , i n p u t f i l e)

26 #load the s u s c e p t i b i l i t y and c o l l e c t i t as func t i on o f temperature T
data = pyalps . loadMeasurements (pyalps . g e tRe su l tF i l e s (p r e f i x=’ parm2c ’) , ’ S u s c e p t i b i l i t y ’)
s u s c e p t i b i l i t y = pyalps . co l lectXY (data , x=’T ’ , y=’ S u s c e p t i b i l i t y ’)

#make p l o t
31 p l t . f i g u r e ()

pyalps . p l o t . p l o t (s u s c e p t i b i l i t y)
p l t . x l ab e l (’ Temperature T/J ’)
p l t . y l ab e l (’ S u s c e p t i b i l i t y $\ ch i J$ ’)
p l t . t i t l e (’Quantum Heisenberg chain ’)

36 p l t . show ()

Figure 5. A Python script to perform an ALPS simulation to calculate the uniform

susceptibility of a Heisenberg spin chain, load and evaluate the data, and make a plot.

based on the ALPS libraries.

9.1. Tutorials on Using the ALPS Codes

We provide tutorials and instructions for using ALPS in three ways:

(i) from the command line (without data evaluation and plotting)

(ii) using Python scripts

(iii) and using the VisTrails workflow system.

The input files needed for the tutorials are available on the web page but are also

included in the source and binary distributions.

An example for running an ALPS application from the command line is shown in

Fig. 4. This example calculates the uniform susceptibility of a quantum Heisenberg spin

chain. The same example, containing additional code to evaluate and plot the results

using Python is shown in Fig. 5. The workflow using VisTrails is shown in Fig. 2, and

its version history in Fig. A3. Following the links in the PDF version of the latter figures

retrieves the corresponding vistrail files.

The ALPS project release 2.0: Open source software for strongly correlated systems 17

9.2. Tutorials on Writing Codes with ALPS

A second set of tutorials demonstrate how to use ALPS libraries and tools in new

simulation codes. We provide examples of how to write a simple Monte Carlo simulation

in either Python or C++ and how to integrate it with the ALPS tools. We also

demonstrate how a user’s code can be easily integrated into the VisTrails workflow

system.

10. License

The ALPS libraries are licensed under the ALPS library license [36] and the applications

under the ALPS application license [37]. These licenses are modeled after the GNU

General Public License (GPL), but contain an additional requirement to cite this paper

as well as relevant papers for each of the application codes. These papers need to be cited

and the use of ALPS acknowledged in any scientific project that makes use of ALPS.

This includes the case when ALPS has only been used to test a scientist’s application

code.

The detailed license text is included in the files LICENSE.txt [36] and

LICENSE-applications.txt [37]. Any use of ALPS requires citing this paper. These

files can be found at the top level of the source distribution and in the directory

share/alps of the binary distributions. The papers that need to be cited for the use

of a specific application are printed to the standard output when that application is

run. The list of papers is also included in the file CITATIONS.txt. Since some of those

references are to preprints we recommend that the ALPS web page [38] is checked for

updates.

11. Future Development plans

The ALPS project is a work in progress and development will continue after this release

2.0. Immediate plans for release 2.1 within about a year include the development of more

evaluation tools for Monte Carlo simulations and more 2D and 3D plotting functionality.

ALPS 2.1 will also provide support for more programming languages. In addition

to the Python support in the current version we plan to add a Fortran library to write

the ALPS HDF5 files from Fortran. This will enable the use of the ALPS evaluation

tools not only with C++ or Python codes, but also with results of Fortran codes.

A key part of ALPS 2.1 will be a more flexible and optimized scheduler. It will

allow the simple integration of ALPS codes into other programs and Python scripts. It

is also designed to scale to tens of thousands of CPUs, compared to the current scheduler

that scales only to a few thousand CPUs.

Besides improved versions of some of the simulation codes, there will be a new worm

algorithm program for optical lattice simulations with millions of lattice sites, and an

extension of the DMFT codes to clusters.

ALPS is an open initiative and we welcome contributions from the community.

The ALPS project release 2.0: Open source software for strongly correlated systems 18

12. Acknowledgements

We thank A.F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Honecker, A. Läuchli,

M. Körner, A. Kozhevnikov, S. Manmana, M. Matsumoto, I.P. McCulloch, F. Michel

and R.M. Noack, for their contributions to previous versions of ALPS and for useful

discussions. We thank D. Abrahams for developing Boost.Python and for his support

of the Boost libraries.

We thank all users of the previous versions of ALPS and beta testers of ALPS

2.0, especially J. Alfonsi, S. Aicardi, A. Akande, P. Anders, A. Anfossi, Z. Asadzadeh,

R. Bhat, J.H. Brewer, S. Bulut, E. Burovski, G. Carleo, G. Chen, M.D. Costa,

M. Dolfi, M. Ferrero, J. Figgins, S. Gazit, U. Gerber, R. Ghulghazaryan, C. Gils, S.

Greschner, C. Hamer, J. Hammond, K. Hassan, N. Heine, F.-J. Jiang, R. Jordens, H.G.

Katzgraber, B. Keiyh, J. Kim, J. Kolasinski, B. Koopman, F. Körmann, E. Kozik,

M.F. Krenn, F. Kruger, M. Laurent, J. Lopes, M. Maik, M. Maksymenko, N. Moran,

A. Nunnenkamp, J.D. Peel, S. Pilati, K. Prsa, N. Rahman, M. Rofiq, H. Rønnow, J.

Ruostekoski, J. Schnack, N. Schuch, A. Sen, K. Shtengel, J. Single, M. Skoulatos, C.

Sliwa, M. Spenke, M. Stoudenmire, V. Tangoulis, A. Taroni, B. Thielemann, M. Tovar,

H. Tran, V. Varma, S. Ward, T. Wasiutynski, J. Wen, J. Wilms, H. Wunderlich, F.

Xiao, X.Q. Yu, J. Zakrzewski, Z.-X. Zhou, and R. Ziemkiewicz. We thank P. Zoller for

the suggestion to provide binary installers.

The development of ALPS has profited from support of the Pauli Center at

ETH Zürich, the Swiss HP2C initiative, the Kavli Institute for Theoretical Physics

in Santa Barbara through NSF grants PHY-0551164 and DMR-0705847, the Aspen

Center for Physics, the Swiss National Science Foundation, the Jeffress Memorial Trust,

Grant No. J-992, the National Science Foundation under grant PHY-0903457 and

DMR-0955707, the Golden Energy Computing Organization at the Colorado School

of Mines for the use of resources acquired with financial assistance from the National

Science Foundation and the National Renewable Energy Laboratories, the Deutsche

Forschungsgemeinschaft through the collaborative research center SFB 602, Japan

Society for the Promotion of Science through KAKENHI No. 20540364, Next-Generation

Supercomputer Project from MEXT Japan, and a grant from the Army Research Office

with funding from the DARPA OLE program.

Work on VisTrails is primarily supported by grants and contracts from the U.S.

National Science Foundation, the U.S. Department of Energy, and IBM.

Appendix A. Scientific Workflows and VisTrails

Appendix A.1. Workflows

Workflow systems provide well-defined languages for specifying complex tasks

from simpler ones; they capture complex processes at various levels of detail

and systematically record the provenance information necessary for automation,

reproducibility, and result sharing.

The ALPS project release 2.0: Open source software for strongly correlated systems 19

RUN 1 RESULT

value = 1 value = 1

L = 60

ALGORITHM = LOOP
SWEEPS = 50000

max = 1.5
min = 0

max = 0.22
min = 0

RUN 1
User: troyer
Start: 2010-11-28 14:54:36
End: 2010-11-28 14:58:38

LadderLattice
Input: 60
Output: Lattice
Start: 2010-11-28 14:54:36
End: 2010-11-28 14:54:36

Parameter J0
Input: 1
Output: value (1)
Start: 2010-11-28 14:54:36
End: 2010-11-28 14:54:36

Parameter J1
Input: 1
Output: value (1)
Start: 2010-11-28 14:54:36
End: 2010-11-28 14:54:36
...

RUN 2
User: bauerb
Start: 2010-11-28 15:19:05
End: 2010-11-28 15:25:21

LadderLattice
Input: 100
Output: None
Start: 2010-11-28 15:19:05
End: 2010-11-28 15:19:05

Parameter J0
Input: 1
Output: value (1)
Start: 2010-11-28 15:19:05
End: 2010-11-28 15:19:05
...

Work�ow Speci�cation Work�ow Instance Work�ow Execution

Figure A1. The workflow specification (on the left) shows a workflow to calculate

the uniform magnetic susceptibility of a quantum Heisenberg spin ladder and plot it

as a function of temperature. The workflow instance (in the middle), in addition to

the workflow specification, contains value assignments for parameters of the modules.

This instance was used to derive the plot in the bottom right. The workflow runs (on

the right) consist of information collected while the workflow instance was executed.

We start by introducing basic concepts underlying workflows and provenance along

with the basic terminology. Scientific workflows are often used to perform data intensive

tasks and are represented as dataflow networks [70] where the execution order is

determined by the flow of data through the workflow. Scientific workflow systems

offer a number of advantages over programs and scripts for constructing and managing

computational tasks. In addition to providing a simple programming model, many

systems provide intuitive visual programming interfaces which make them more usable

for users who do not have substantial programming expertise. As we discuss below, the

structure present in workflow definitions also enables a series of operations and queries

that simplify the manipulation and re-use of workflows. From now on, we use the terms

scientific workflow, workflow, pipeline, and dataflow interchangeably.

Formally, a workflow specification is defined by a tuple (M, I,O,C, p : O∪I →M),

where M, I,O,C are, respectively, sets of modules, input ports, output ports, connections,

and p is a function that assigns a unique module to input and output ports. If x ∈ I∪O
and m = p(x) then we say that x is a port of module m and that m is the module of x.

The set C of connections is a subset of O× I. In a connection (o, i) ∈ C, o is called the

source port and i is called the target port. Furthermore, the module of the source port

cannot be the same as the module of the target port. Additionally each port (input or

output) has an associated type and a name that is unique across the ports of the same

module. A module signature is defined as a set of pairs, where each pair contains a port

name and its type. In addition, each module has a set of parameters. Each parameter

The ALPS project release 2.0: Open source software for strongly correlated systems 20

has a unique name across the set of parameters of the same module.

A workflow instance consists of a specification combined with bindings that provide

values to parameters in the modules. A workflow run is the execution of the following

algorithm for a workflow instance: each module checks whether all its input ports that

are target ports of a connection have a value; if false it waits; if true, the module,

according to its semantics, produces output values on its output ports; values that are

produced in an output port flow to target ports of all the connections that have that

output port as its source port; this algorithm continues until there are no more modules

to execute. These concepts are illustrated in Figure A1.

Appendix A.2. Data Provenance

In the context of scientific workflows, data provenance is a record of the derivation

of a set of results. There are two distinct forms of provenance [71]: prospective and

retrospective. Prospective provenance captures the specification of a computational task

(i.e., a workflow specification or instance)—it corresponds to the steps that need to be

followed (or a recipe) to generate a data product or class of data products. Retrospective

provenance captures the steps that were executed (i.e., the workflow run) as well as

information about the execution environment used to derive a specific data product—a

detailed log of the execution of a computational task.

An important piece of information present in workflow provenance is information

about causality : the dependency relationships between data products and the

processes that generate them. Causality can be inferred from both prospective and

retrospective provenance. Data provenance also includes user-defined information,

such as documentation that cannot be automatically captured but records important

decisions and notes. This data is often captured in the form of annotations.

Provenance of Workflow Evolution. Although workflows have been traditionally used

to automate repetitive processes, for many exploratory scientific tasks such as data

analysis and visualization, change is the norm. As users formulate and test hypotheses,

they often need to refine and compare the results of several workflows. VisTrails [39]

supports a novel change-based provenance model that treats workflow instances as first-

class data products [72, 73]. As a scientist makes modifications to a workflow, the system

transparently records those changes (e.g., the addition of a module, the modification of

a parameter, etc.) akin to a database transaction log. Note that the change-based model

uniformly captures both changes to parameter values and to workflow definitions. This

sequence of changes is sufficient to determine the provenance of data products, and it

also captures information about how the workflows evolve over time. We refer to this

detailed provenance of the workflow evolution as a visual trail, or a vistrail.

As Figure A2 illustrates, each node in a vistrail corresponds to a workflow instance

and contains value assignments for the module parameters. A series of workflow runs

may be associated with a node as well as additional metadata, such as user annotations.

The ALPS project release 2.0: Open source software for strongly correlated systems 21

Figure A2. Workflow evolution provenance. In this example we have calculated the

system size dependence of the spin gap of spin-1 and spin-1/2 Heisenberg chains, first

calculating the gap by exact diagonalization and then performing fits to ∆(L) = c/L

and ∆(L) = ∆0 + c exp(−L/ξ). As expected from the Haldane conjecture the plots

show that the first fit is best for the gapless spin-1/2 chain and the second fit is best for

the gapped spin-1 chain. Complete provenance of the exploration process is displayed

as a history tree with each node representing a workflow instance that generates a plot.

Detailed meta-data is also stored including free-text notes made by the scientist, the

date and time the workflow was created or modified, an optional descriptive tag, and

the user that created it.

A tree-based view of a vistrail allows a scientist to return to a previous version in

an intuitive way, to undo bad changes, to compare different workflows, and to be

reminded of the actions that led to a particular result. Another important benefit of the

change-based provenance model is that it enables a series of operations that simplify

the exploration process, in particular, the ability to refine workflows by analogy [74], as

well as to visually compare workflows and their results [72].

It is important to note that the provenance of workflow execution and workflow

evolution help inform each other, leading to improved methods for using the combined

information. Knowing which workflow instances have executed correctly can explain why

workflows were updated, and the number of times that an instance has been executed

The ALPS project release 2.0: Open source software for strongly correlated systems 22

Upgrade

Improved the plots

Without symbols

Susceptibility of chain and ladder

Moved modules

Figure A3. The version history tree of the workflow that created Fig. 1. Each ellipsis

corresponds to a version of the workflow, as shown in Fig. 2. Clicking the figure

retrieves the vistrail including all workflow versions.

can help highlight important versions of workflows. Similarly, knowing how a workflow

evolved can help users debug errors that occur when running modified versions. Change-

based provenance from workflow evolution can also speed up runs of similar workflows

via caching [75].

Appendix A.3. Caching and persistent storage

One important piece of infrastructure provided by VisTrails is the management of data

both used and produced by computational processes, including intermediate results.

While parameters and workflow structure may change from execution to execution,

many of the intermediate results can be reused without recomputation. Note that

with traditional scripts, users must manually record and recall intermediate results,

meaning it is often necessary to repeat the entire computation. VisTrails supports

efficient exploration of such analyses by automatically caching intermediate results. The

results in the cache are identified by the signature of the upstream subworkflow (a hash

computed from all of the computations that led to the value). If the signature exists in

the cache, we need not compute any of the upstream subworkflow but instead return

the value in the cache. If anything in the subworkflow changes, the signature will also

change, and VisTrails will recompute the value. VisTrails also allows modules that are

not deterministic to be flagged as non-cacheable; note that all modules downstream of

such modules must also be recomputed each time.

In addition, VisTrails provides a persistence package to help users manage their

http://alps.comp-phys.org/vistrails/download.php?getvt=10&db=vistrails&host=alps.ethz.ch&port=3306&tag=&execute=False&showspreadsheetonly=False&embedWorkflow=True&includeFullTree=True

The ALPS project release 2.0: Open source software for strongly correlated systems 23

data and provide persistent caching. This package provides storage and versioning of

input, intermediate, and output data to ensure that workflows are able to access their

data. Data is identified by unique IDs rather than file paths, and users can name and

annotate the data in order to facilitate searching. The data can be linked to a local disk

but is stored in a managed repository to ensure that it is retained. VisTrails will create

new versions if data changes, and provides persistent caching using the same signature

scheme as in-memory caching. In contrast to the in-memory caching mechanism, a

persistent intermediate result can be recalled in later sessions. Using the metadata

stored in persistent store and provenance information, it is possible to connect data

with the workflows that either used or generated it and vice versa [76]. In addition,

users can not only trace data lineage but also retrieve the exact input data—even if

that data was changed or removed on the filesystem.

Appendix A.4. Sharing content and reproducible research

One of the goals of the VisTrails system is to facilitate the publication of scientific results.

VisTrails and its social workflow repository CrowdLabs greatly simplify the process of

packaging workflows and results for publication. By supporting the publication on wikis,

web sites, or scientific documents (through LaTeX extensions such as in this paper),

this framework allows users to create documents whose digital artifacts (e.g., figures)

include a deep caption: detailed provenance information which contains the specification

of the computational process (or workflow) and associated parameters used to produce

the artifact. Figures 1 and 2 are examples of this mechanism in action: both images

were included by using VisTrails directly and clicking on the images will download the

workflow with the parameters used to generate them. This workflow can then be used

by the reader to reproduce the figures.

CrowdLabs is a social online workflow repository for the VisTrails system. It

combines workflow management tools with a scalable infrastructure to allow scientists to

collaboratively analyze and visualize data. CrowdLabs is capable of hosting, executing,

and serving results from VisTrails workflows, including those that make use of the

ALPS VisTrails package. CrowdLabs also leverages provenance information (e.g.,

workflow/pipeline specifications, libraries, packages, users, datasets and results) to

provide a richer sharing experience: users can search and query this information.

VisMashups [77], another component developed on top of VisTrails, is a system

for simplifying the creation, maintenance and use of customized workflows. It is also

integrated into CrowdLabs and enables users to modify parameters and re-execute

workflows from within their web browsers. This provides an entry point for non-experts

to explore and interact with complicated simulation workflows. We will develop ALPS

tutorials also as VisMashups, enabling the interactive exploration of tutorial problems

with the reader’s web browser, without the need to install ALPS.

The ALPS project release 2.0: Open source software for strongly correlated systems 24

1 # Li s t s :
t va lu e s = [0 . 0 5 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4]
print t va lu e s [0]

4
A l i s t wi th d i f f e r e n t types
t va lu e s = [0 . 5 , ’ abc ’]

1 # Creating and acces s ing a d i c t i ona ry
parms =
{

4 ’LATTICE ’ : ’ chain l a t t i c e ’ ,
’MODEL’ : ’ sp in ’ ,
’ l o c a l S ’ : 0 . 5 ,
’T ’ : 0 . 01 ,
’ J ’ : 1 ,

9 ’THERMALIZATION’ : 5000 ,
’SWEEPS’ : 50000 ,
’L ’ : 60 ,
’ALGORITHM’ : ’ loop ’
}

14
print parms [’ J ’]

Figure B1. Examples for creating lists and dictionaries in Python.

Appendix B. Python examples

The Python language and its use for the evaluation tools of ALPS are explained in

Section 6. In this appendix, we give some examples for the usage of Python and the

pyalps package.

Python contains a large number of built-in high-level data types, such as strings,

integers, floating point numbers, lists, and dictionaries. The dictionary type in Python

is called a dict, and is a mutable group of key and value pairs. All the built-in

container types in Python can store elements of different type at the same time. The

dict type is used in ALPS 2.0 to pass metadata about a simulation to the simulation

execution commands. An example of this is is shown in Fig. 5, where the parameters

for a series of Monte Carlo simulations are stored in the dict parms and passed to

the writeInputFiles function of the pyalps package to write input files for the loop

application. Fig. B1 shows examples of how to use lists and dictionaries in Python.

The def statement defines a function or method. An example of a simple Python

function from the pyalps package is given in Fig. B2. This example also demonstrates

the unusual feature of Python that tab indentation is used for block delimiters.

In addition to the procedural programming paradigm, Python supports object-

oriented programming. Since the DataSet class is a crucial part of the pyalps package,

a slightly reduced version is shown as example class in Fig. B3. The declaration of

a class is started by the def statement. A constructor can be provided as init ;

in general, method names that start and end with define special methods, such as

operators. As an example, the repr method of the DataSet is used for converting

to a string for the print statement.

All non-static methods of a Python class must take the instance of the class as a

first argument; this is commonly called self.

In Fig. B4, an example script is shown which creates a DataSet instance, creates

some data (y = x2, x ∈ [0, 1]) and makes a plot using plotting functionality from the

pyalps package. We store the legend string and the axis labels for the final plot into

The ALPS project release 2.0: Open source software for strongly correlated systems 25

1 def subtract spect rum (s1 , s2 , t o l e r an c e=1e−12):
r e s = pyalps . DataSet ()
r e s . props = s1 . props

4
for i in range (l en (s1 . x)) :

remove = False
for j in range (l en (s2 . x)) :

i f abs (s1 . x [i]− s2 . x [j]) < t o l e r an c e and abs (s1 . y [i]− s2 . y [j]) < t o l e r an c e :
9 remove = True

break
i f not remove :

r e s . x = np . append (r e s . x , s1 . x [i])
r e s . y = np . append (r e s . y , s1 . y [i])

14
return r e s

Figure B2. Example of a Python function from the pyalps package. The function

takes two DataSet instances as input and returns a new DataSet that contains all (x,y)

values that occur in the first but not in the second. The intended use is for plotting of

spectra, where states that occur in several quantum number sectors should sometimes

be shown only once.

1 class DataSet (Re su l tPrope r t i e s) :
def i n i t (s e l f) :

Re su l tPrope r t i e s . i n i t (s e l f)

5 s e l f . x = np . array ([])
s e l f . y = np . array ([])

def r e p r (s e l f) :
return ”x=%s \ny=%s \nprops=%s” % (s e l f . x , s e l f . y , s e l f . props)

Figure B3. Simple example of a Python class from the pyalps package.

1 import pyalps
from pyalps . p l o t import p lo t
import numpy as np
import matp lo t l i b . pyplot as p l t

6 ds = pyalps . DataSet ()
ds . x = np . l i n s p a c e (0 , 1 , 10)
ds . y = ds . x∗∗2
ds . props [’ x l ab e l ’] = ’ γ ’
ds . props [’ y l ab e l ’] = ’ $\gammaˆ2$ ’

11 ds . props [’ l a b e l ’] = ’Example legend ’

p l o t ([ds])
p l t . l egend ()
p l t . show ()

Figure B4. Plotting a simple function with pyalps.

The ALPS project release 2.0: Open source software for strongly correlated systems 26

Name Description

Boost LIBRARY PATH Path to the Boost source tree. If Boost is not available as

binary, this has to be set by the user when first running

cmake.

CMAKE C COMPILER C compiler. This is determined from the system path or

environment variable CC.

CMAKE CXX COMPILER C++ compiler. This is determined from the system path

or environment variable CXX.

PYTHON INTERPRETER Path of the Python interpreter that pyalps should be

built for. If not set, a default be determined or Python

is disabled.

Table C1. List of CMake variables that have to be provided when first running cmake.

These cannot be changed afterwards.

the props dict of the DataSet instance. Note that the plotting function from pyalps is

passed a list with one DataSet – this function, like most other pyalps functions, operates

directly on lists of DataSets in order to assist the user in dealing with larger sets of data.

Appendix C. ALPS Installation with CMake

Appendix C.1. Prerequisites

The following tools and libraries are required to build ALPS:

• The CMake build system [42] of version 2.8.0 or newer.

• The BLAS [78] and LAPACK libraries [79]. Ideally optimized versions for the target

architecture should be used instead of the generic netlib versions.

• The Boost C++ libraries version 1.43.0 or later (Boost 1.45.0 is included in one

version of the source tarball) [49]. Boost does not have to be installed; instead, the

ALPS installation process can build the required Boost libraries if necessary.

• The HDF5 library version 1.8 [35].

• A standard complying C++ compiler. ALPS has been tested with gcc versions 4.2,

4.3 and 4.4 as well as MSVC 9, IBM xlC++ 11.1, and Intel’s icpc 10 and 11.

To build optional parts of ALPS it is recommended to install in addition:

• Python version 2.5 or 2.6 [50].

• The NumPy [58], SciPy [59], and matplotlib [52] Python packages.

• The VisTrails scientific workflow and provenance management system [39] and all

its dependencies.

• A Fortran 90 compiler for the tebd code.

The ALPS project release 2.0: Open source software for strongly correlated systems 27

Name Description

CMAKE INSTALL PREFIX Installation prefix. Default is /opt/alps.

VISTRAILS APP DIR Path to the directory where VisTrails is installed.

ALPS BUILD APPLICATIONS Enable or disable build process for ALPS applications.

ALPS BUILD EXAMPLES Enable or disable build process for ALPS examples.

ALPS BUILD TESTS Enable or disable build process for ALPS tests.

ALPS BUILD PYTHON Enable or disable build process for pyalps.

HDF5 LIBRARIES Path of the HDF5 libraries.

HDF5 INCLUDE DIR Path to HDF5 header files.

BLAS LIBRARY Path of the BLAS library.

LAPACK LIBRARY Path of the LAPACK library.

Table C2. List of CMake variables that can be changed at any time. Some of these

are mandatory, i.e., if ALPS is unable to determine a value automatically, an error will

be generated.

Appendix C.2. The CMake build system

While we generally recommend the use of the binary installation packages whenever

available, the source installation using the CMake build system may offer several

advantages to experienced users:

• Specific compiler versions and optimization flags can be provided.

• The binary installers are tied to a specific version of Python, whereas the source

installation can be built against the version of Python that the user prefers.

• Custom versions of external libraries such as the BLAS and LAPACK libraries can

be provided.

The CMake build process is controlled by a set of variables describing the build

environment, paths, and targets (libraries and programs) to be built. Most of these

variables are automatically determined in the top-level file CMakeLists.txt. Each

source directory also contains such a file with prescriptions for building certain targets

given the global configuration variables. A major advantage of CMake over other build

systems such as the autotools is that it allows the user easy access and modification

of all variables via a graphical interface, the tool ccmake or by directly editing the file

CMakeCache.txt.

With a few exceptions (which are listed below), all CMake variables can be changed

at any point during the installation. CMake will be able to determine the effects of

changing a variable and, if necessary, repeat the compilation of parts of ALPS given

the new configuration. This gives the user the possibility to change aspects of the

configuration without repeating the entire installation process.

Some of the most important CMake variables for the ALPS build system are listed in

Tables C1 and C2. Note that library paths have to be given as absolute paths; if several

libraries are required, e.g. for BLAS, the paths should be separated with semicolons.

The ALPS project release 2.0: Open source software for strongly correlated systems 28

An important point is linking against the correct versions of BLAS and LAPACK,

since this may seriously affect the performance of some applications. ALPS will try to

determine automatically which libraries should be used and will give optimized libraries

like Intel’s MKL precedence over standard libraries. Nevertheless, it is recommended to

check whether this has been recognized correctly.

Appendix C.3. Installation steps

It is strongly recommended to perform the configuration and compilation of ALPS in

a separate directory (build directory). Running any CMake commands in the source

directory will likely cause problems in later stages. For concreteness, we will assume

in the following that the ALPS source can be found in /home/user/alps and Boost

sources can be found in /home/user/boost 1 43 0. For other libraries, we will assume

that they are installed in standard system paths. All commands should be executed in

the build directory, which initially must be empty.
The first step is to create an initial CMake configuration:

cmake -D Boost_ROOT_DIR:PATH=/home/user/boost_1_43_0 /home/user/alps

Additional variables can be passed with the -D flag. For example, if the HDF5
libraries are not found in a standard path, Python should not be used, and a non-
standard compiler should be used, the following commands need to be executed:

export CC=/opt/local/bin/gcc-mp-4.4

export CXX=/opt/local/bin/g++-mp-4.4

cmake -D Boost_ROOT_DIR:PATH=/home/user/boost_1_43_0 \

-D HDF5_LIBRARIES=/home/user/HDF5/lib/libhdf5.so \

-D HDF5_INCLUDE_DIR=/home/user/HDF5/include \

-D ALPS_BUILD_PYTHON=OFF /home/user/alps

Please note that cmake should always be run from an empty directory. If an error

occurs, please clear all files from the build directory before running cmake again. By

default, CMake will generate a set of UNIX Makefiles. It is also possible to use other

generators; for example, project files for XCode or KDevelop can be created.

In the next step, additional variables can be customized by either editing the file

CMakeCache.txt directly, running the command ccmake or invoking the CMake GUI.
Now the standard procedure is to build, test, and install ALPS using

make

make test

make install

The VisTrails packages can also be installed from the CMake installation

process. On UNIX or Linux platforms, it is sufficient to set the CMake

variable VISTRAILS APP DIR. If, for example, the file vistrails.py from the

VisTrails installation is found in the directory /home/user/vistrails/vistrails/,

VISTRAILS APP DIR should be set to /home/user/vistrails/. On Mac OS X, a more

advanced build type is needed since VisTrails delivers a specific version of Python. For

instructions for this special case, we refer to our website.

The ALPS project release 2.0: Open source software for strongly correlated systems 29

1 <PARAMETERS>
<PARAMETER name=”LATTICE”> square </PARAMETER>
<PARAMETER name=”MODEL”> sp in </PARAMETER>
<PARAMETER name=”L”> 10 </PARAMETER>

5 <PARAMETER name=”T”> 0 .5 </PARAMETER>
</PARAMETERS>

Figure D1. Excerpt from an XML file for simulation input parameters .

1 <SCALARAVERAGE name=” Su s c e p t i b i l i t y ”>
<MEAN> 421 .3 </MEAN>
<ERROR converged=”yes ”> 1 .54 </ERROR>

4 <VARIANCE> 1 .06 e+05 </VARIANCE>
</SCALARAVERAGE>

Figure D2. Excerpt from an XML file for simulation results of the uniform

susceptibility in a Monte Carlo simulation.

Appendix D. The ALPS XML schemas

XML is the format of choice for text-based ALPS files. Unlike simple formats, where the

location of a number in the file specifies its meaning (e.g. the first number is system size,

the second temperature), XML specifies the meaning of data through meta-information

provided by markup with tags, as shown in figure D1 for input parameters and in figure

D2 for simulation results. The meaning of these files is easy to decipher even years

after the simulation, unlike many other formats. A resemblance to HTML is no chance,

since HTML (XHTML) is indeed also an XML format. Instead of looking directly at

the long (and sometimes ugly) output files in XML format, the XML files can be easily

transformed to other formats using XSLT transformations[80] and viewed, e.g. directly

as HTML in a web browser, or printed as plain text.

Besides XML schemas for parameter input and output of results we have developed

XML schemas for the description of lattices and models. Examples are shown in figures

D3 and D4. For detailed specification of the formats see our XML web page.[45]

Providing an input file (such as the one where an excerpt is shown in figure D1

together with lattice and model definitions in figures D3 and D4 to any of the ALPS

applications will run that application on the given model (provided the application

supports that type of models) and returns an output file containing data such as shown

in figure D2.

Appendix D.1. Lattice definitions

Besides the ability to specify translation invariant lattices as shown in Fig. D3, starting

in release 1.3 ALPS has included the possibility to specify inhomogeneity and depletion.

While in a regular lattice, the model Hamiltonian is the same for all bonds or sites with

the same type, in an inhomogeneous lattice the couplings in the model can be different

for each bond or site. Examples are disordered systems, with randomly chosen couplings

such as spin glasses, or systems in spatially varying trapping potentials, such as optical

The ALPS project release 2.0: Open source software for strongly correlated systems 30

1 <LATTICEGRAPH name = ” square ”>
<FINITELATTICE>

<LATTICE dimension=”2”/>
<EXTENT dimension=”1” s i z e=”L”/>

5 <EXTENT dimension=”2” s i z e=”L”/>
<BOUNDARY type=” pe r i o d i c ”/>

</FINITELATTICE>
<UNITCELL>

<VERTEX/>
10 <EDGE>

<SOURCE vertex=”1” o f f s e t=”0 0”/>
<TARGET vertex=”1” o f f s e t=”0 1”/>

</EDGE>
<EDGE>

15 <SOURCE vertex=”1” o f f s e t=”0 0”/>
<TARGET vertex=”1” o f f s e t=”1 0”/>

</EDGE>
</UNITCELL>

</LATTICEGRAPH>

Figure D3. The definition of a square lattice with one site (vertex) per unit cell and

bonds (edges) only to nearest neighbors. After describing the dimension, extent and

boundary conditions of the Bravais lattice in the <FINITELATTICE> element, the unit

cell including the bonds in the lattice is defined.

1 <BASIS name=” sp in ”>
<SITEBASIS>

<QUANTUMNUMBER name=”S” min=”1/2” max=”1/2”/>
<QUANTUMNUMBER name=”Sz” min=”−S” max=”S”/>
<OPERATOR name=”Splus ” matrixelement=” sq r t (S∗(S+1)−Sz ∗(Sz+1))”>

6 <CHANGE quantumnumber=”Sz” change=”1”/>
</OPERATOR>
<OPERATOR name=”Sminus” matrixelement=” sq r t (S∗(S+1)−Sz ∗(Sz−1))”>

<CHANGE quantumnumber=”Sz” change=”−1”/>
</OPERATOR>

11 <OPERATOR name=”Sz” matrixelement=”Sz”/>
</SITEBASIS>

</BASIS>

<HAMILTONIAN name=” sp in ”>
16 <BASIS r e f=” sp in ”/>

<SITETERM> −h∗Sz </SITETERM>
<BONDTERM source=” i ” t a r g e t=” j ”>

Jxy /2∗(Splus (i)∗Sminus (j) + Sminus (i)∗ Splus (j)) + Jz∗Sz (i)∗ Sz (j)
</BONDTERM>

21 </HAMILTONIAN>

Figure D4. The definition of a spin-1/2 XXZ spin Hamiltonian with one type of

exchange coupling only: H = −h
∑

i S
z
i +

∑
〈i,j〉

(
(Jxy/2)(S+

i S
−
j + S−i S

+
j) + JzS

z
i S

z
j

)
.

After describing the local basis for each site and operators acting on it, the Hamiltonian

is defined.

lattices in harmonic traps. Inhomogeneities can be specified for vertices (sites) and

edges (bonds), either for all (such as for all vertices in figure D5), or only for one type

of vertex or edge.

One can also randomly deplete the lattice by removing a fraction of sites or bonds

is randomly removed from a lattice. Currently only site depletion is implemented, but

additional types of depletion can be added easily if the need arises. Please contact the

authors if you need that feature. In the example in figure D5, the fraction of depleted

The ALPS project release 2.0: Open source software for strongly correlated systems 31

1 <LATTICEGRAPH name = ” dep le ted inhomogeneous square l a t t i c e ”>
<FINITELATTICE>

<LATTICE dimension=”2”/>
4 <EXTENT dimension=”1” s i z e=”L”/>

<EXTENT dimension=”2” s i z e=”L”/>
<BOUNDARY type=” pe r i o d i c ”/>

</FINITELATTICE>
<UNITCELL>

9 <VERTEX/>
<EDGE>

<SOURCE vertex=”1” o f f s e t=”0 0”/>
<TARGET vertex=”1” o f f s e t=”0 1”/>

</EDGE>
14 <EDGE>

<SOURCE vertex=”1” o f f s e t=”0 0”/>
<TARGET vertex=”1” o f f s e t=”1 0”/>

</EDGE>
</UNITCELL>

19 <INHOMOGENEOUS><VERTEX/></INHOMOGENEOUS>}
<DEPLETION>

<VERTEX probab i l i t y=”DEPLETION” seed=”DEPLETION SEED”/>
</DEPLETION>

</LATTICEGRAPH>

Figure D5. The definition of a square lattice with one site (vertex) per unit cell and

bonds (edges) only to nearest neighbors. First the dimension, extent, and boundary

conditions of the Bravais lattice are described in the <FINITELATTICE> element, then

the unit cell including the bonds in the lattice is defined. The new feature shown here

is the specification of an inhomogeneous lattice, allowing to specify different couplings

on the sites (in this example), and the depletion of the vertices of the lattices.

sites is specified to be passed in the DEPLETION input parameter, and the random number

generator seed DEPLETION SEED can be changed to give different random realizations of

the depletion pattern.

For more examples of lattices we refer the reader to the file lattices.xml included

in ALPS that contains a number of commonly used lattices. A detailed discussion of

the creation of lattice files is presented on the ALPS web page.

Appendix D.2. Model definitions

Figure D4 shows the simplest definition of an XXZ spin model with Hamiltonian

H = −h
∑
i

Sz
i +

∑
〈i,j〉

(
(Jxy/2)(S+

i S
−
j + S−i S

+
j) + JzS

z
i S

z
j

)
(D.1)

Figure D6 shows the definition of the Hamiltonian of a bosonic Hubbard model in

a harmonic trap

H = − µ
∑
i

ni +
U

2

∑
i

ni(ni − 1) (D.2)

− t
∑
〈i,j〉

(
b†ibj + b†jbi

)
+
K

2

∑
i

(x2i + y2i).

One feature shown in this example, is the ability to specify composite site and bond

operators, such as the double occupancy site term or the boson hop bond term.

The ALPS project release 2.0: Open source software for strongly correlated systems 32

1 <BASIS name=”boson”>
2 <SITEBASIS>

<PARAMETER name=”Nmax” de f au l t=” i n f i n i t y ”/>
<QUANTUMNUMBER name=”N” min=”0” max=”Nmax”/>
<OPERATOR name=”bdag” matrixelement=” sq r t (N+1)”>

<CHANGE quantumnumber=”N” change=”1”/>
7 </OPERATOR>

<OPERATOR name=”b” matrixelement=” sq r t (N) ”>
<CHANGE quantumnumber=”N” change=”−1”/>

</OPERATOR>
<OPERATOR name=”n” matrixelement=”N”/>

12 </SITEBASIS>
</BASIS>

<SITEOPERATOR name=”double occupancy ” s i t e=”x”>
n(x)∗ (n(x)−1)/2

17 </SITEOPERATOR>

<BONDOPERATOR name=”boson hop” source=”x” ta r g e t=”y”>
bdag (x)∗b(y)+bdag (y)∗b(x)

</BONDOPERATOR>
22

<HAMILTONIAN name=” trapped boson Hubbard”>
<PARAMETER name=”mu” de f au l t=”0”/>
<PARAMETER name=” t ” d e f au l t=”1”/>
<PARAMETER name=”U” de f au l t=”0”/>

27 <PARAMETER name=”K” de f au l t=”0”/>
<BASIS r e f=”boson”/>
<SITETERM s i t e=” i ”>
−mu∗n(i) + U∗double occupancy (i) + K/2∗ ((x−L/2)ˆ2 + (y−L/2)ˆ2)

</SITETERM>
32 <BONDTERM source=” i ” t a r g e t=” j ”>

−t ∗boson hop (i , j)
</BONDTERM>

</HAMILTONIAN>

Figure D6. The definition of a bosonic Hubbard Hamiltonian (D.2) in a harmonic

trap. After describing the local basis for each site and operators acting on it, one

can also define composite site and bond operators, such as the double occupancy and

bosonic hopping terms, which are then used in the definition of the Hamiltonian,

instead of writing all terms explicitly as in the example in Fig. D4. Another feature

shown here is the use of the parameters x and y in the couplings to create spatially-

dependent couplings when combined with an inhomogeneous lattice.

These site and bond operators can be used in the specification of the model and of

measurements. The other new feature, also shown in the example, is the ability, in

conjunction with the specification of an inhomogeneous lattice, to use site-dependent

couplings, such as the harmonic trapping potential K which depends on the x and y

coordinates of the site. This feature has been used for the simulation of cold bosonic

gases in optical lattices [81].

For more examples of models we refer the reader to the file lattices.xml included

in ALPS that contains a number of commonly used models. A detailed discussion of

the creation of model files is presented on the ALPS web page.

The ALPS project release 2.0: Open source software for strongly correlated systems 33

References

[1] Alet F, Dayal P, Grzesik A, Honecker A, Körner M, Läuchli A, Manmana S R, McCulloch I P,

Michel F, Noack R M, Schmid G, Schollwöck U, Stöckli F, Todo S, Trebst S, Troyer M, Werner

P and Wessel S 2005 Journal of the Physical Society of Japan 74S 30–35

[2] Albuquerque A, Alet F, Corboz P et al. 2007 Journal of Magnetism and Magnetic Materials 310

1187–1193

[3] Lanczos C 1950 J. Res. Natl. Bur. Stand. 49 225

[4] White S R 1992 Phys. Rev. Lett. 69 2863–2866

[5] Schollwöck U 2005 Rev. Mod. Phys. 77 259–315

[6] Daley A J, Kollath C, Schollwöck U and Vidal G 2004 Journal of Statistical Mechanics: Theory

and Experiment 2004 P04005

[7] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401

[8] Vidal G 2003 Phys. Rev. Lett. 91 147902

[9] Vidal G 2004 Phys. Rev. Lett. 93 040502

[10] Verstraete F and Cirac J I 2004 preprint cond-mat/0407066 (unpublished)

[11] Murg V, Verstraete F and Cirac J I 2007 Phys. Rev. A 75 033605

[12] Vidal G 2007 Phys. Rev. Lett. 99 220405

[13] Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86–88

[14] Wolff U 1989 Phys. Rev. Lett. 62 361–364

[15] Evertz H G, Lana G and Marcu M 1993 Phys. Rev. Lett. 70 875–879

[16] Prokof’ev N V, Svistunov B V and Tupitsyn I S 1998 JETP Sov. Phys. 87 310

[17] Sandvik A W 1999 Phys. Rev. B 59 R14157–R14160

[18] Todo S and Kato K 2001 Phys. Rev. Lett. 87 047203

[19] http://wistaria.comp-phys.org/alps-looper/

[20] Syljůasen O F and Sandvik A W 2002 Phys. Rev. E 66 046701

[21] Evertz H G 2003 Advances in Physics 52(1) 1–66

[22] Alet F, Wessel S and Troyer M 2005 Phys. Rev.E. 71 036706

[23] Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050–2053

[24] Wang F and Landau D P 2001 Phys. Rev. E 64 056101

[25] Troyer M, Wessel S and Alet F 2003 Phys. Rev. Lett. 90 120201

[26] Trebst S, Huse D A and Troyer M 2004 Phys. Rev. E 70 046701

[27] Katzgraber H, Trebst S, Huse D and Troyer M 2006 Journal of Statistical Mechanics: Theory and

Experiment P03018

[28] Wessel S, Stoop N, Gull E, Trebst S and Troyer M 2007 Journal of Statistical Mechanics: Theory

and Experiment P12005

[29] Rubtsov A N and Lichtenstein A I 2004 JETP Letters 80 61–65

[30] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122

[31] Werner P, Comanac A, de’ Medici L et al. 2006 Phys. Rev. Lett. 97 076405

[32] Werner P and Millis A J 2006 Phys. Rev. B 74 155107

[33] Gull E, Werner P, Parcollet O and Troyer M 2008 EPL (Europhysics Letters) 82 57003

[34] http://www.w3.org/XML/

[35] http://www.hdf5.org/

[36] http://alps.comp-phys.org/static/software//LICENSE.txt

[37] http://alps.comp-phys.org/static/software//LICENSE-applications.txt

[38] http://alps.comp-phys.org/

[39] http://www.vistrails.org/

[40] http://www.openmp.org/

[41] http://www.mpi-forum.org/

[42] http://www.cmake.org/

[43] http://www.macports.org/

http://wistaria.comp-phys.org/alps-looper/
http://www.w3.org/XML/
http://www.hdf5.org/
http://alps.comp-phys.org/static/software//LICENSE.txt
http://alps.comp-phys.org/static/software//LICENSE-applications.txt
http://alps.comp-phys.org/
http://www.vistrails.org/
http://www.openmp.org/
http://www.mpi-forum.org/
http://www.cmake.org/
http://www.macports.org/

The ALPS project release 2.0: Open source software for strongly correlated systems 34

[44] http://www.knoppix.net/

[45] http://xml.comp-phys.org/

[46] Troyer M, Ammon B and Heeb E 1998 Lecture Notes in Computer Science 1505 191

[47] Czarnecki K and Eisenecker U 2000 Generative Programming (Addison-Wesley)

[48] Siek J, Lee L Q and Lumsdaine A 2001 The Boost Graph Library User Guide and Reference Manual

(Addison-Wesley)

[49] http://www.boost.org/

[50] http://www.python.org/

[51] Ambegaokar V and Troyer M 2010 American Journal of Physics 78 150–157

[52] http://matplotlib.sourceforge.net/

[53] http://plasma-gate.weizmann.ac.il/Grace/

[54] http://www.gnuplot.info/

[55] http://www.vtk.org/

[56] Lutz M 2009 Learning Python (O’Reilly & Associates)

[57] Lutz M 2006 Programming Python (Third Edition) (O’Reilly & Associates)

[58] http://numpy.scipy.org/

[59] http://www.scipy.org/

[60] Sandvik A W and Kurkijärvi J 1991 Phys. Rev. B 43 5950–5961

[61] http://physics.mines.edu/downloads/software/tebd/

[62] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13

[63] Kotliar G, Savrasov S Y, Haule K et al. 2006 Rev. Mod. Phys. 78 865

[64] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027

[65] Hirsch J E and Fye R M 1986 Phys. Rev. Lett. 56 2521–2524

[66] Gull E, Werner P, Fuchs S, Surer B, Pruschke T and Troyer M 2010 Continuous-time quantum

monte carlo impurity solvers

[67] Silva C, Freire J and Callahan S 2007 IEEE Computing in Science and Engineering 9 82

[68] Freire J, Koop D and Silva C 2008 Computing in Science and Engineering 10 11

[69] Bavoil L, Callahan S, Crossno P, Freire J, Scheidegger C, Silva C and Vo H 2005 Proceeding of

IEEE Visualization 18

[70] Lee E A and Parks T M 1995 Proceedings of the IEEE 83 773–801

[71] Clifford B, Foster I, Hategan M, Stef-Praun T, Wilde M and Zhao Y 2007 Concurrency and

Computation: Practice and Experience

[72] J Freire, C T Silva, S P Callahan, Santos E, Scheidegger C E and Vo H T 2006 Managing rapidly-

evolving scientific workflows International Provenance and Annotation Workshop (IPAW) LNCS

4145 pp 10–18 invited paper

[73] Callahan S, J. Freire, Santos E, Scheidegger C, Silva C and Vo H 2006 Managing the Evolution of

Dataflows with VisTrails (Extended Abstract) IEEE Workshop on Workflow and Data Flow for

Scientific Applications (SciFlow)

[74] Scheidegger C E, Vo H T, Koop D, Freire J and Silva C T 2007 IEEE Transactions on Visualization

and Computer Graphics (Proceedings of Visualization) 13 1560–1567

[75] Bavoil L, Callahan S, Crossno P, J. Freire, Scheidegger C, Silva C and Vo H 2005 Vistrails: Enabling

interactive multiple-view visualizations Prof. of IEEE Visualization pp 135–142

[76] Koop D, Santos E, Bauer B, Troyer M, Freire J and Silva C 2010 Bridging workflow and data

provenance using strong links Scientific and Statistical Database Management (Lecture Notes

in Computer Science vol 6187) ed Gertz M and Ludscher B (Springer Berlin / Heidelberg) pp

397–415

[77] Santos E, Lins L, Ahrens J, Freire J and Silva C 2009 IEEE Transactions on Visualization and

Computer Graphics 15 1539

[78] http://www.netlib.org/blas/

[79] http://www.netlib.org/lapack/

[80] http://www.w3.org/TR/xslt/

http://www.knoppix.net/
http://xml.comp-phys.org/
http://www.boost.org/
http://www.python.org/
http://matplotlib.sourceforge.net/
http://plasma-gate.weizmann.ac.il/Grace/
http://www.gnuplot.info/
http://www.vtk.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://physics.mines.edu/downloads/software/tebd/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.w3.org/TR/xslt/

The ALPS project release 2.0: Open source software for strongly correlated systems 35

[81] Wessel S, Alet F, Troyer M and Batrouni G G 2004 Phys. Rev. A 70 053615

	Introduction
	The ALPS project
	Overview
	New features in version 2.0

	Building and Installing ALPS
	Build system
	Building ALPS from source
	Binary Installation Packages
	LiveALPS

	Data formats
	XML
	HDF5

	ALPS Libraries
	Evaluation Tools in Python
	The Python language
	The pyalps package

	Applications
	Exact diagonalization
	Sparse diagonalization code sparsediag,
	Full diagonalization code fulldiag,

	Classical Monte Carlo simulations
	Classical Monte Carlo codes for spin models spinmc,

	Quantum Monte Carlo simulations
	The looper code,
	The directed loop algorithm code dirloop_sse,
	The worm algorithm code worm,
	The extended ensemble code qwl,

	Density Matrix Renormalization Group (DMRG) algorithms
	The dmrg code,
	Time Evolving Block Decimation Code tebd,

	Dynamical Mean Field Theory QMC Solvers dmft

	Integration with the VisTrails Workflow and Computational Provenance Tools
	Computational Provenance
	The ALPS VisTrails package

	Tutorials and Examples
	Tutorials on Using the ALPS Codes
	Tutorials on Writing Codes with ALPS

	License
	Future Development plans
	Acknowledgements
	Scientific Workflows and VisTrails
	Workflows
	Data Provenance
	Caching and persistent storage
	Sharing content and reproducible research

	Python examples
	ALPS Installation with CMake
	Prerequisites
	The CMake build system
	Installation steps

	The ALPS XML schemas
	Lattice definitions
	Model definitions

