The Advanced Forensic Format
and
AFF Library and Toolkit
Introduction

The Advanced Forensic Format (AFF) is an extensible open format for the storage of disk images and related forensic information. The AFF Toolkit is a collection of C++ programs that enable forensic tools to read, write and manipulate disk images stored in the AFF, EnCase, and raw (dd) file formats.
Features of AFF include:

· Open format, free from any patent or license restriction. Both AFF and the AFF Toolkit can be used with both open-source and proprietary forensic tools.

· Extensible. Any amount of metadata can be encoded in AFF files in the format of name/value pairs. The toolkit can also be extended to handle any number of forensic formats.
· Efficient. AFF allows disk images to be compressed with a variety of algorithms. AFF images are typically 30% to 50% smaller than the equivalent EnCase image file.
· Open Source C/C++ Implementation. The AFF Toolkit is a freely redistributable C/C++ implementation that features support for AFF, EnCase, raw, and split raw file formats. AFFLib is being distributed under the BSD license, allowing it to be incorporated in free and proprietary programs without the need to pay license fees.

· Byte-order independent. AFFLib has been tested on both Intel and PowerPC‑based systems. Images created on one platform can be read on another.

· Automatic calculation and storage of MD5 and SHA-1 hash codes. This allows AFF files to be automatically validated after they are copied to check for accidental corruption. Hash codes are written for the entire image as well as for each image “segment.”
· Explicit identification of bad sectors. This enables higher layers of forensic analysis software to distinguish between sectors which truly contained all zeros and sectors which may have contained information but which were unreadable.

· Support for digital signatures.

The AFF library implements a FILE-like abstraction that supports the full range of POSIX-like file routines, including af_open(), af_read(), af_seek(), af_write() and af_close(). The af_open() routine automatically determines the file’s type. Most existing forensic tools can be trivially modified to work with AFF-formatted files.
The AFF library can be downloaded from http://www.afflib.org/download.php
How AFF Works

AFF is a segmented archive file specification. Each AFF file consists of an AFF File Header followed by one or more AFF Segments.

AFF Segments

AFF Segments are used to store all information inside the AFF File. This includes the image itself and image metadata.

Segments can be between 32 bytes and 2³²-1 bytes long. Each AFF Segment has a header, a name, a 32-bit argument, an optional data payload, and finally a tail. The header and tail make it possible to seek rapidly through the AFF file, skipping much of the image data.

When an AFF file is opened, the AFF Library scans all of the file’s segments and builds a table-of-contents that it stores in memory. The AFF file is updated in such a way that the file is always in a consistent state.

AFF Image Segments

When used to store the contents of a disk image, the image is broken up into equal-sized Image Segments. Each image segment is numbered. image segments are then optionally compressed and stored sequentially in the AFF file.
Image segments may have optional MD5 or SHA1 hash codes; these codes may be cryptographically signed using an X.509 PKI. Image segments may be uncompressed or compressed using with the ZLIB or LZMA compression algorithms. Because signatures apply to uncompressed data, a signed AFF file may be compressed, uncompressed, or re-compressed without invalidating the signatures.
AFF/AFD/AFM File Types

By design, a single AFF file can grow to any size and store a complete disk image: this simplifies management when hundreds of disks are being maintained in a single facility.

The AFF Library also supports the capability to store a single disk image in multiple files, allowing AFF to be used with file systems that do not support files larger than 232 characters. The AFD file format splits a single AFF file into multiple files that are stored in a single directory with an “.afd” extension. The AFF Library manages the files in the directory and makes them appear to the calling program as if they are a single file.

The AFM format stores a disk image in one or more raw files, with the metadata stored in an adjacent AFF file. The AFM format allows AFF to be used for storing metadata while maintaining compatibility with tools that will only work with raw images.

Amazon Simple Storage Service (S3)

In addition to storing disk images on a local file system, the AFF Library can store disk images on Amazon’s Simple Storage Service. Combined with Amazon’s Elastic Compute Cloud (EC2), AFF’s support for S3 allows an organization to store an unlimited amount of information on Amazon’s servers at a monthly cost of just 10 cents per gigabyte. The forensic data can then be analyzed in parallel using Amazon’s EC2 service, which rents virtual computer instances at just 10 cents per hour.
Compiles on Unix, Linux, Cygwin, and Microsoft Windows

AFF Tools version 2.1 can compile on a variety of different Unix/Linux and Windows environments with both free and commercial C++ compilers.
AFF Utility Programs

The AFF Library comes with the following utility programs:

afcat
-
Copies an AFF/EnCase/ file to standard output.

afcompare
-
Compares two files and reports on differences in their data or metadata. The two files can be in the same or different formats. Use this to compare an EnCase with an AFF file to see if they are the same, or to compare a file stored locally with one stored on Amazon S3.

afconvert
-
Converts image files between any of the supported formats.
afcopy
-
Performs a verified copy from one location to another. Optionally updates the file’s metadata to indicate that a copy has taken place.

affix
-
Error recovery on damaged AFF files.

afinfo
-
Reports on a file’s segments.

afsegment
-
Read/write/update an AFF metadata segment.

afstats
-
Reports on a variety of statistics for multiple AFF files in a directory.

afxml
-
Output a file’s metadata in XML.

AFF Details

AFF Segment Names

Here are some of the AFF Segment Names are used to store image information:
pagesize
-
The size of each image segment, stored as a 32-bit value.

imagesize
-
The total number of bytes in the file, stored as a 64-bit value.

md5
-
The MD5 of the uncompressed image file, stored as 128-bit value.

sha1
-
The SHA-1 of the uncompressed image file, stored as a 160-bit value.

badflag
-
A 512-bit value that is stored in the file to denote a bad sector. This value typically consists of the string "BAD SECTOR\000" followed by a timestamp and a block of random data.

badsectors
-
The total number of bad sectors in the image, stored as a 32-bit number.

blanksectors
-
The number of sectors that are all NUL values.

devicesectors
-
The total number of sectors on the device that was imaged, stored as a 64-bit number

page0
-
The contents of the first segment in the image file. A flag of '1' stored in the segment argument indicates that the segment was compressed with zlib.

page0_md5
-
The MD5 for page 0

page0_sha1
-
The SHA1 for page 0.

…
pageNNN
-
The contents of the NNNth segment of the image file.

Here are some of the AFF Segment Names used to store information about the drive that was acquired. Starred values are automatically acquired by aimage:

device_manufacturer
- The drive’s maker (*)
device_model

- Drive model number (*)
device_sn

- Drive serial number (*)
device_firmware

- Drive firmware version (*)

device_source

- Where was the device?

cylinders

- Number of drive cylinders (*)

heads

- Number of drive heads (*)

sectors_per_track

- Number of sectors per track (*)

lbasize

- Size of the LBA (*)

hpa_present

- Whether or not a host protected area was present (*)

dco_present

- Whether or not the device configuration overlay was present. (*)

location_in_computer
- Where it was found?

device_capabilities
- Human-readable string of how drive is configured and what it can do. (*)
Here are some of the AFF Segment Names used to store information about the acquisition:
case_num

- The case number

image_gid

- A unique global identifier for the image
acquisition_iso_country
- Tracks the country where the image was acquired

acquisition_commandline
- Tracks the command that was used to acquire the image.
acquisition_date

- The date that the acquisition was made

acquisition_notes

- Any notes regarding the acquisition

acquisition_device

- The device that was used to acquire the information

acquisition_seconds
- How long the acquisition took
acquisition_technician
- Who did the acquisition
acquisition_macaddr
- The MAC address of the computer that did the acquisition
acquisition_dmesg

- The boot message from the computer doing the acquisition
The AFF Segment Format

Each AFF Segment contains the following information:

- The Segment Header
- The Segment Data Payload
- The Segment Footer

The Segment Header consists of the following

- A 4-byte Segment Header Flag ("AFF\000")
- The Length of the segment name (as an unsigned 4-byte value)
- The Length of the segment data payload
- The “argument”, a 32-bit unsigned value
- The data segment name (stored as a Unicode UTF-8 string)

The Segment Footer consists of:

- The 4-byte Segment Footer Flag ("ATT\000")
- The length of the entire segment, as a 32-bit unsigned value

Because the segment length can be determined by reading both the Header or the Footer, the AFF library can seek forwards or backwards in the AFF file, similar to the way that a tape drive seeks forwards and backwards through a tape drive.

All 4-byte binary values are stored in network byte order to provide for byte order independence. These values are automatically written with the htonl() macro and read with the ntohl() macro by the AFF Library.

License

The AFF Library is distributed with a modified BSD license that allows the use of AFF in any program, free or commercial, provided that the copyright statement is included in both the source and binary file. AFF’s EnCase support is provided by libewf, © 2006-2007 by Joachim Metz and Hoffmann Investigations.
AFF Frequently Asked Questions

Q: Why a new file format? What’s wrong with block-by-block?

A: Raw image files take up a lot of space. In many cases this space can be dramatically reduced by using compression. Unfortunately, if you just use “gzip” or “bzip2” for compression, you need to uncompress the entire file in order to use it with a forensics program. That’s because there is no easy way to “seek” within a compressed file.

The proprietary EnCase® file format supports seeking within a compressed file, but the specification for this file format is not publicly available and may be encumbered by patents and other intellectual property restrictions which inhibit widespread adoption. Also, the EnCase file format does not allow the storage of arbitrary name/value pairs, which are essential to any extensible file format.

Q: Why not put meta information into log files?

A: In many cases it is advantageous to store meta information (such as case numbers, acquisition times, the name of the investigator, etc.) directly in the image file. For example, storing this information in a single file with the image makes it very unlikely that they will become separated, and perhaps the wrong log file being used with an image.

Q: How does AFF interact with anti-virus systems?

A: Any forensic file format which captures 100% of the information present on a hard drive has the potential to be a virus pathway into a secure computer system. In this regard, AFF is no different from DCFLDD, EnCase, or any other forensic file system, and the implementers of any production forensic system must exercise appropriate care in ensuring that no viruses pathways exist.

However, AFF has a key advantage over storing forensic images in raw files in that it allows anti-virus software to run on the imaging system. With the raw format, viruses in the image files will trigger the host computer's anti-virus system. With AFF, the anti-virus software will only trigger in the event a virus has escaped the disk image and been stored on the computer's hard drive. In this regard, use of AFF allows construction of a more secure overall system architecture.

Q: Will AFF support hashes other than MD5 and SHA-1?

A: Yes. The MD5 hash is stored in a segment named “md5”. The SHA-1 hash is stored in a segment named “sha1”. As support for other hash functions are added to the OpenSSL library, the “aconvert” and “aimage” programs will be updated to automatically calculate and store the other hashes in the AFF files.

Q: Are the images then mountable in some way to be able to check for virus/trojans, or must they be uncompressed for host-based tools to work with them?

A: If you have source code for a scanner, you can modify it to use af_open() and af_read() instead of fopen() and fread(). You can then read the AFF files directly. If you don’t have source code, but have a scanner that can read from standard input, you can use the “acat” program to copy the contents of an AFF file to standard output.

Eventually, we plan to have a version of samba that is modified to transparently mount and serve an AFF file. This will allow off-the-shelf Windows executables to be used with AFF archives.

Q: How long do you think it will be before EnCase®, ProDiscover®, FTK, and the open source tools are able to process files in this format?

A: Brian Carrier’s Sleuth Kit has already been modified to handle AFF; Sleuth Kit now ships with a copy of AFF built-in, thanks to AFF’s friendly license. The total modification took only a few hours to make.
We’ve had no contact with the authors of EnCase, ProDiscover, or FTK. However, we believe that as AFF becomes popular they will modify their tools to handle the format. But even if they don't, we plan to support those tools through the use of a loopback filesystem.

Q: Will it be possible to mount an AFF image as a “virtual file system” the way you can with EnCase?

A: Yes, we intend to create a device driver that will perform the necessary transformation.

Q: Wouldn’t it be more efficient to have an index segment, rather than having to read through all of the individual AFF Headers for each segment?

A: We thought so as well! However, our initial experiments indicated that the overhead for doing a seek for every 16MB segment and reading a few bytes was quite minimal. The advantage of not having to maintain the index is significant. However, if the overhead becomes substantial, we can easily add an index segment type. The design of AFF allows for an index segment to be added to an existing AFF file without changing the contents of the segments that contain forensic information.

Q: It’s very important for us to have a format which can be written into a pipe because that makes acquisition over the network much easier. Can AFF handle this?

A: The “aimage” acquisition program allows for acquisition either from an ATA/USB/Firewire device or directly over a network. It allows for discontinuous segments of the disk to be acquired at different times and for data to be inserted into a single AFF file.

EnCase® is a registered trademark of Guidance Software, Inc.
ProDiscover® is a registered trademark of Technology Pathways, LLC.

Copyright © 2005 Basis Technology Corp. and Simson L. Garfinkel
Page 1 of 1
All rights reserved.

